
The Stair Sketch: Bringing more Clarity to
Memorize Recent Events

Yikai Zhao∗, Yubo Zhang∗, Pu Yi∗, Tong Yang∗†, Bin Cui∗, Steve Uhlig‡
∗School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and Application

Peking University, China
†Peng Cheng Laboratory, Shenzhen, China

‡School of Electronic Engineering and Computer Science, Queen Mary University of London, United Kingdom

Abstract—Data stream processing has become fundamental
in computer science, with a wide range of applications, such
as in databases, data mining, and security. Memorizing when
an item appears in the data stream is one important task in
stream processing. Because the older data is, the less value it
has, memorizing recent events with higher accuracy is desirable.
To achieve this, we propose a novel data stream processing
structure named the Stair sketch. Our key idea is to organize
the memory used by different time periods in the shape of stairs.
We deploy the Stair sketch on Bloom filters, CM sketches, and
CU sketches as case studies. Experiment results show that our
approach outperforms state-of-the-art algorithms by more than
5× in accuracy while providing comparable efficiency. The source
code of the Stair sketch is available at GitHub.

I. INTRODUCTION
A. Background and Motivation

Data stream processing consists in collecting, analyzing,
or answering queries about the data at any prior time and
the current time. Specifically, given a data stream and a
time period [T1, T2], one is usually interested in whether an
item occurs, or how many times it does. However, not all
occurrences are equally important: one often cares more about
recent occurrences than older ones. For example, the Youtube
recommendation system [1] ranks the popularity of videos
according to the number of hits, especially recent hits. As
another example, when a network firewall [2] detects that a
server is under attack, the users who have visited the server
recently are more suspicious. Due to the high volume of data
in today’s streams, people tend to use sublinear data structures,
namely sketches, because of their high efficiency in terms
of both time and space. Typical sketches include the Bloom
filter [3], the CM sketch [4], and others [5]–[8].

Given the higher importance of recent occurrences and the
efficiency of sketches, this paper aims to devise a new sketch
that can memorize recent events with higher accuracy. We call
this property of our scheme time gradualness. There are two
aspects to this time gradualness.
• Error gradualness. Our scheme needs to be more accurate

when performing estimation over more recent periods. This
makes better use of the memory available.

• Time stability. The estimation error for the recent past needs
to be stable within a well-defined bound. This supports the
long-term deployment and use of the scheme.

These two concepts are formally defined in Section III.

Co-primary authors: Yikai Zhao {zhaoyikai@pku.edu.cn} and Yubo Zhang
{zhangyubo18@pku.edu.cn}. Tong Yang {yangtongemail@gmail.com} is the
corresponding author.

B. Prior Art and Their Limitations
Hokusai [9] is the foundational work that achieved time

gradualness for data stream processing. It builds a fixed size
sketch for each new time period, such as a CM sketch or a
Bloom filter, and compresses some old ones to control the
memory usage. It is simple and easy to deploy in practice.
However, Hokusai also comes with several shortcomings.
First, the load of each sketch is imbalanced. In practical data
streams, the number of items in each period may vary, and so
does the accuracy of sketches built during each period. As a
result, the accuracy will sometimes be very low and sometimes
very high. Second, to allow compression, the sketches used
in Hokusai cannot rely on the optimal parameters to achieve
the highest accuracy. For instance, as pointed by [10], to
build a compressed Bloom filter [3], only 2 hash functions
should be used, much less than the optimal number of hash
functions. Third, compressing a sketch requires traversing the
whole sketch, which is time consuming. To address these
shortcomings, the successors of Hokusai have fallen into
two categories. The first category keeps error gradualness
but discards time stability. The typical solution is the Ada-
sketch [11]. Its key idea is to set higher weights for more
recent items. The second category keeps time stability but
discards error gradualness. Typical solutions are persistent
data sketching [12] and persistent Bloom filter [13]. They share
sketches for different time periods to achieve time stability.
However, they are memory consuming, because they memorize
all events with the same accuracy. None of the above solutions
can achieve both aspects of time gradualness. Our design
goal is to achieve the time gradualness while significantly
improving accuracy, by focusing on higher accuracy for more
recent items.

C. Our Solution
To achieve the design goal, we propose a novel data stream

processing structure called the Stair sketch. The Stair sketch
can meet both requirements of time gradualness, and is much
more accurate than the state-of-the-art solutions in terms of
time gradualness. Our Stair sketch is generic, in that it can be
applied to many sketches. We choose the Bloom filter [3], the
CM sketch [4], and the CU sketch [5] as case studies.

Our data structure consists of many atomic sketches, each
of which can be a Bloom filter, a CM sketch, or others [5]–[8].
We build several atomic sketches for each time period. Given
a time period, the more atomic sketches it uses, the higher



5

4 5

3 4 5

2 3 4 5

1 2 3 4

Fig. 1: A Stair sketch with 10 atomic sketches.

accuracy it achieves. The key idea of the Stair sketch is to
organize the memory in a stair shape: the number of atomic
sketches used for each period increases just like the height
of each stair. We use an example in Figure 1 to show the
basic version of the Stair sketch. Time periods 1, 2, 3, 4 have
passed. The numbers of atomic sketches used for them are
1, 2, 3, and 4, respectively. Therefore, the accuracy increases
gradually. Now time period 5 arrives. We build four atomic
sketches for it, and delete one atomic sketch from each time
period 1, 2, 3, 4. The deleted sketches will be persistent but
on a slow memory or disk. In this way, we organize our data
structure in a stair shape, and achieve a fixed memory usage.

Similarly to Hokusai, our basic version is imbalanced. From
a design point of view, sharing is an effective strategy to reduce
load imbalance. Therefore, we propose horizontal sharing,
which lets atomic sketches at the same horizontal line share
memory. Horizontal sharing is effective because each sharing
spans across multiple time periods. We also show that the Stair
sketch is a generic structure. By using different kinds of atomic
sketches, such as Bloom filters, CM sketches, or CU sketches,
the Stair sketch can handle different data stream tasks.
Contributions: Our contributions are the following: 1) We
propose the concept of time gradual data stream processing,
which has two aspects: time stability and error gradualness.
2) We propose a novel scheme named the Stair sketch, which
is a general data stream processing structure achieving time
gradualness. 3) We apply our Stair sketch to Bloom filters,
CM sketches, and CU sketches as case studies. 4) We conduct
extensive experiments, the results show that the Stair sketch
is time gradual, and outperforms state-of-the-art algorithms
by more than 5× in accuracy while providing comparable
efficiency. The source code of the Stair sketch is available
at GitHub [14].

II. RELATED WORK

A. Typical Sketches for Data Streams

In recent years, sketches have been extensively used because
of their reasonable trade-off among accuracy, time efficiency,
and memory usage [15]. Typical sketch algorithms, including
the Bloom filter [3], the CM sketch [4], the CU sketch [5], and
others [6]–[8], [16]–[23], form the basis of various applications
in the fields of databases [24]–[30], data mining [31]–[37], and
information security [38]–[43]. Among those sketches, many
share the same hash-based scheme. They use very similar data
structures, as shown in Figure 2. The data structures use d
hash functions and a cell array. Upon each item’s arrival, it
is mapped by d pair-wise independent hash functions to d
cells, which are then updated. The algorithms then utilize the
information stored in the cells to offer an estimation.

Fig. 2: A common hash-based probabilistic data structure
(d = 3 in this figure).

For a Bloom filter (BF), each cell is essentially a bit, which
is set to 0 at the beginning. For each incoming item, its
d mapped bits are set to 1. For a membership query, i.e.,
querying whether an item occurs in the data stream, the BF
checks its d mapped bits to see if all of them have been set to
1. Clearly, there is a false positive issue for Bloom filters due
to hash collisions, but the False Positive Rate (FPR) is fairly
small. Indeed, it is pointed out that with a memory of fewer
than 10 bits per item, the BF can achieve a 1% FPR [44].

For the CM and CU sketch, each cell is a counter. For
the CM sketch, each counter is initially 0, and each time the
counter is mapped, it is incremented by 1. The frequency of an
item is estimated by the minimum value among its d mapped
counters. The CU sketch closely resembles the CM sketch. The
only difference is that when inserting an item, the CU sketch
only increments the mapped counters that have the minimum
value in the d counters. The CM and CU both have one-sided
errors. For comparison, the CU sketch has a lower error rate.

Besides the above three typical algorithms, many other
sketch algorithms share the same hash-based scheme in Fig-
ure 2, such as the Count sketch [7], the CSM sketch [8], the
SuMax sketch [45], the Bitmap [46], and [6], [47]–[50].
B. Time Sensitive Sketch Schemes

The algorithms mentioned earlier have gained wide accep-
tance due to their simple implementation and great efficiency.
One recent research direction has been to enhance them to
support time-sensitive queries. The motivation for this is that in
various scenarios, we may want to ask questions about data at
a prior time instance, which is not supported by the algorithms
mentioned above. For instance, a Bloom filter can answer
questions like “Has this item arrived before?”. However, in
many scenarios, one might also ask time-sensitive queries like
“Has this item arrived in the last five minutes?” or “Has
this item come between 9:30 and 10:00?” that a Bloom filter
cannot answer. Besides membership queries, this issue applies
to frequency estimation tasks as well. To support time-sensitive
queries as well as make an efficient usage of space, many
algorithms have been proposed based on the above sketches.

Hokusai [9] tries to allocate a CM sketch for each time
period, and the CM for more recent time periods consume
more space. To query the frequency of an item during a
certain time period, Hokusai simply queries the corresponding
CM sketches. The key idea is to make an efficient trade-
off between accuracy and space. By splitting the history into
dyadic time periods and compressing the sketches recording
older information by half on a regular basis, it saves memory
for recording newer information. In this way, Hokusai gets a
more accurate frequency estimation for more recent history.



Inspired by the pre-emphasis and de-emphasis technique
used in Dolby noise reduction, Ada-CMS [11] gives a time-
adaptive estimation of frequency (i.e., more accurate estima-
tion for recent statistics). The Ada-CMS has a similar data
structure to the CM sketch. When inserting an item e that
arrived in time period t, Ada-CMS increases all the mapped
counters of the tuple (e, t) by f(t), which is a monotonically
increasing function. To query the frequency of e during period
t, Ada-CMS gets the minimum value of all mapped counters of
the tuple (e, t) and divides them by f(t), taking the final result
as the estimated value. Due to the monotonicity of function
f , the effect of older counters on recent ones is reduced.

Persistent data sketching [12] improves the CM sketch into
a persistent data structure, so that it can support queries for
history frequency. It uses a piecewise-linear function to ap-
proximate the historical value of each counter. For membership
queries, the persistent Bloom filter [13] (PBF) extends the
Bloom filter. There are two versions of the PBF in its paper,
the PBF-1 and PBF-2. The PBF-1 splits the entire time interval
into smaller periods with a size that is a power of two, which
is similar to the interval splitting of the segment tree. For
each period, it builds a Bloom filter. The PBF-2 combines
some small Bloom filters in the PBF-1 to save space, which
improves its overall performance but makes it time unstable.

III. PROBLEM STATEMENT

We introduce the data stream model used in this paper, and
formally define time gradualness. A data stream S is defined
as follows,

S = {〈e1, t1〉, 〈e2, t2〉, · · · , 〈en, tn〉, · · · } (1)

where ei is an item belonging to the set U = {1, 2, · · · , N},
and ti ∈ Z+ is a monotonically increasing timestamp indicat-
ing in which period item ei occurs. LetNk =

∑
i=1 1{ti=k} be

the number of items in the k-th period. We assume that there
is an upper bound for these nk, i.e., Nk 6 N . It is worth
noting that although the number of items in each period does
not exceed N , it varies dramatically in different periods.

Given a data stream S and an estimation solution, the
estimation error E(k, k′) refers to the average error about the
k′-th period estimated by the scheme, and it is currently in
the k-th period. For example, for membership queries, E(5, 2)
indicates the average error of estimating whether item e has
occurred in the second period and we are in the fifth period.
Given the memory budgetM, we use the estimation error E to
formally define error gradualness and time stability as follows.
Error Gradualness: A property indicating that a scheme has
a lower estimation error for the more recent period, i.e.,

E(k, k′) 6 E(k, k′′) ∀ k′′ 6 k′ 6 k (2)

Time Stability: A property indicating that the estimation error
of a scheme for the most recent period (i.e., current period) is
stable within a well-defined nontrivial bound that only relates
to N and M, i.e.,

E(k, k) 6 f(N ,M) ∀ k (3)

A scheme has time gradualness if and only if it satisfies both
error gradualness and time stability.

IV. THE STAIR SKETCH

The Stair sketch is a generic structure and can be applied
to many existing sketches such as Bloom filters [3], CM
sketches [4], CU sketches [5], and more [6]–[8]. To illustrate
the rationale of our Stair sketch, we show its application with
Bloom filters as a case study. Then we will show how to apply
the Stair sketch data stream processing structure to many other
existing typical sketches.
A. Stair Bloom Filter: Basic Version

4

3 4

2 3 4

1 2 3 4

3

2 3

1 2 3

2

1 21

4 5

3 4 5

2 3 4 5

1 2 3 4 5

4 5 6

3 4 5 6

2 3 4 5 6

1 2 3 4 5 6

4 5 6 7

3 4 5 6 7

2 3 4 5 6 7

1 2 3 4 5 6 7

1

3 1

2 3 1

1 2 3 1

(𝒆, 𝟒)

5 6 7

4321

Bloom filters (BFs)

BFs built in the most recent period

BFs to be deleted before the next period

Deleted BFs

P
h

a
s
e
 I

P
h

a
s
e
 I
I

D
e
ta

il

time

time

Fig. 3: The basic version of the Stair sketch (m = 4).
Each square is a sketch (a Bloom filter) with a number in it
indicating when it was built. This figure shows the structure
of the Stair sketch after the first 7 time periods.

Suppose that we want to keep the data stream information
of the latest m periods in memory. The Stair Bloom filter
consists of m(m+1)

2 Bloom filters of the same memory size w.
Therefore, the total memory consumption is m(m+1)

2 w. Given
a fixed memory size, we can adjust the parameters w and m to
meet the limits. As shown in Figure 3, the Stair Bloom filter
is dynamically constructed and updated.
Construction Phase I: In the very first few periods when the
space consumption of the Stair Bloom filter has not reached
the memory limit, we fill the memories with new Bloom filters
(line 5-8 in Algorithm 1 and phase I in Figure 3). For the k-th
period where k ≤ m, we create k Bloom filters. Each Bloom
filter uses d pairwise-independent hash functions.
Insertion: For each incoming item e in the k-th period, we
perform a standard Bloom filter insertion of e in all the k new
Bloom filters (line 13-17 in 1 and Figure 3). Let Ak(i) be the
i-th Bloom filter of the k-th period, and Ak(i).hj be the j-th
hash function of Ak(i). We set the bit Ak(i).hj(e) in Ak(i) to
1, for all i ∈ {1, 2 · · · k} and j ∈ {1, 2 · · · d}.
Construction Phase II: When the Stair Bloom filter has
reached its memory limit, we enter the second phase (line
9-12 in Algorithm 1 and phase II in Figure 3). In this phase,
when the k-th period begins (k > m), we delete one Bloom
filter for each i-th period (i ∈ {k−m, k−m+1, · · · , k−1}),
and use the released memory block obtained to construct m
new Bloom filters for the k-th period.
Insertion: To insert an incoming item e in the k-th period,
we perform a standard Bloom filter insertion for each of the
m new Bloom filters.



Algorithm 1: Construction of the Stair, basic version
1 foreach time period k arrives do
2 Initialization(k);
3 foreach 〈e, k〉 ∈ S do
4 Insertion(〈e, k〉);
5 Function Initialization(k):
6 if k 6 m then
7 for i = 1→ k do
8 Ak(i) ← new Bloom Filter(w, d);
9 else

10 for i = 1→ m do
11 delete A{k−(m+1)+i}(i);
12 Ak(i) ← new Bloom Filter(w, d);
13 Function Insertion(〈e, k〉):
14 m′ ← min(k,m);
15 for i = 1→ m′ do
16 for j = 1→ d do
17 Ak(i)

[
Ak(i).hj(e)

]
= 1;

Query (Algorithm 2): To query the occurrence of one item
e in the k′-th period, we perform a query for each Bloom
filter associated with the k′-th period. Specifically, if it is
currently in the k-th period (k ≥ k′), we can derive the
number m′′ of Bloom filters recording the period k′ (line 2-7 in
Algorithm 2). For each Bloom filter Ak′(i), i ∈ {1, 2 · · ·m′′},
we check the mapped bits of item e, namely Ak′(i).hj(e) for
j ∈ {1, 2, · · · d}. If all these m′′d bits have been set to 1,
then we report that item e occurred in the k′-th period.

Algorithm 2: Query of the Stair, basic version
1 Function Query(k, 〈e, k′〉):
2 if k′ 6 k −m then
3 return Unknown;
4 else if k 6 m then
5 m′′ ← k′;
6 else
7 m′′ ← k′ +m− k;
8 occurrence← 1;
9 for i = 1→ m′′ do

10 for j = 1→ d do
11 occurrence & = Ak′(i)

[
Ak′(i).hj(e)

]
;

12 return occurrence;

Analysis: In the Stair Bloom filter, false positives are in-
evitable due to the use of Bloom filters. Assuming that the
number of incoming items in a period is below a constant
upper bound, the false positive rate of each Bloom filter of
the same size is expected to have a constant upper bound
P . Since we essentially query m′′ Bloom filters and take
the bit-wise AND of their results, the false positive rate of
the Stair Bloom filter is bounded by Pm′′ . As m′′ is larger
for larger k′, the information of more recent periods is more
accurate, which suggests the Stair Bloom filter satisfies error
gradualness (defined in Section III.). Similarly, if we query
the information of the latest period k, as we have m Bloom
filters for period k, the false positive rate is bounded by Pm,
which is fairly small. Therefore, the Stair Bloom filter also
satisfies time stability.

B. Stair Bloom Filter: Optimized Version
The basic version of the Stair Bloom filter already satisfies

the two aspects of time gradualness: error gradualness and
time stability, but it still has two limitations. We propose two
optimization techniques to address them.
Vertical Sampling: For a fixed fast memory size M, the
parameters m and w satisfy m(m+1)

2 · w 6 M. If we want
to record a longer history (i.e., increase the parameter m), the
number of the needed Bloom filters increases quadratically,
so we have to significantly reduce w, leading to a severe loss
of accuracy. If the number of the needed Bloom filters only
increases linearly with the increase of m, we may more easily
keep a long and relatively accurate history.

Therefore, we propose the vertical sampling technique. In
Figure 3, we call a set of Bloom filters in a horizontal line a
layer. In the example of this figure, from top to bottom, four
layers have 1, 2, 3 and 4 Bloom filters, respectively. We find
that in order to keep the relatively accurate information as
well as meet the requirements of time gradualness, it suffices
to only keep those layers whose ID is a power of two. For
example, if m = 8, instead of keeping all 8 layers, we can
sample only the layers numbered 1, 2, 4 and 8 (Figure 4).
In this way, if we keep the size of each one Bloom filter
unchanged, the total space consumption of the Stair Bloom
filter only grows linearly with m, so that we can record a
longer history with accuracy.
Horizontal Sharing: The basic version of Stair Bloom filter
suffers from load imbalance easily. For one specific Bloom
filter, we call the number of items inserted into it as its load.
Ideally, the load of Bloom filters is balanced in the Stair Bloom
filter, (i.e., all Bloom filters have the same load), so that the
memory for each Bloom filter is made full use of. However,
as suggested in [11], the data stream is “bursty” in most cases,
leading to the severe problem of load imbalance. For example,
there might be very few items in the k-th period, but in the
basic version we still create m Bloom filters for this period
(in phase II). Consequently, these m ·w memories record very
little information and cause waste.

Though the data stream may be “bursty”, according to the
Law of Large Numbers, the average number of items in a
number of periods has a much less variation and is more
stable than the number of items in one period. This inspires
us to use the sharing technique. Instead of recording only one
period in a fixed-size Bloom filter, we can combine several
Bloom filters to a larger compound Bloom filter and record
many periods in it. In this compound Bloom filter, we use the
shifting technique proposed by [51] to distinguish the item e
in different periods (line 13-16 in Algorithm 3 and Figure 5).
Simply put, shifting is to add an offset of k (the ID of the
period) to the original hash value of item e for both insertion
and query operation. For example, to insert an item e in period
k to a Bloom filter A with hash function h and size w, instead
of setting the bit h(e) to 1, we set the bit (h(e)+ k)%w to 1.
When querying the membership of an item e in period k′, we
also add an offset of k′, so that we can distinguish the item
occurrences in different periods.



8 9 A B

7 8 9 A B

5 6 7 8 9 A B

1 2 3 4 5 6 7 8 9 A B

B

8 9

7 8 9

5 6 7 8 9

1 2 3 4 5 6 7 8 9

8

7 8

5 6 7 8

1 2 3 4 5 6 7 8

8 9 A

7 8 9 A

5 6 7 8 9 A

1 2 3 4 5 6 7 8 9 A

8 9

A

period 8 period 9

period A period B

Fig. 4: A Stair sketch (m = 4) using the optimizations
of vertical sampling and horizontal sharing. Each square is
a sketch (a shifting Bloom filter), and each rectangle is a
compound sketch (a combination of several shifting Bloom
filters). A compound sketch contains several numbers, which
indicate the time periods it records.

1

8 1

7 8 1

5 6 7 8 1

(𝒆, 𝟗)ℎ 0,1 ∶ 1 𝑒 + 9 𝒎𝒐𝒅 4

ℎ 1,1 ∶ 1 𝑒 + 9 𝒎𝒐𝒅 4

ℎ 2,1 ∶ 1 𝑒 + 9 𝒎𝒐𝒅 8

ℎ 3,1 ∶ 1 𝑒 + 9 𝒎𝒐𝒅 16

D
e

ta
il

Fig. 5: The detailed process of inserting an item into a
shifting Bloom filter. The positions of the mapped bits are
the hashes plus the time period number 9 as offsets.

Data Structure (Figure 4): The optimized version of the
Stair Bloom filter is summarized in Figure 4 and Algorithm 3-
4. We have m layers. In the first layer (from top to bottom in
Figure 4), we have one Bloom filter of size w1 named A(1,1)

which have d1 hash functions. At the i-th layer, we have two
Bloom filters of size wi namely A(i,0) and A(i,1), both of
which have di hash functions and record 2(i−2) periods. In
the pseudo code, A(i,j).begin and A(i,j).end represent that
the Bloom filter A(i,j) records the data stream from period
A(i,j).begin to A(i,j).end.

Algorithm 3: Construction of the Stair, optimized
1 foreach time period k arrives do
2 Initialization(k);
3 foreach 〈e, k〉 ∈ S do
4 Insertion(〈e, k〉);
5 Function Initialization(k):
6 clear A(1,1);
7 for i = 2→ m do
8 if k > A(i,1).end then
9 delete A(i,0);

10 A(i,0) ← A(i,1);
11 clear A(i,1);
12 A(i,1).begin← k;
13 A(i,1).end← k + 2(i−2)-1;
14 Function Insertion(〈e, k〉):
15 for i = 1→ m do
16 for j = 1→ di do
17 A(i,1)

[(
A(i,1).hj(e) + k

)
mod wi

]
= 1;

Insertion: To insert an item e in the k-th period, we insert
tuple 〈e, k〉 to Bloom filter A(i,1) in each layer (the right
one in Figure 5) with shifting technique. When a new period
begins, if for some i, A(i,1) is full (i.e., it has recorded 2i−1

periods), we then reset its left Bloom filter A(i,0) and swap
their positions (line 5-12 in Algorithm 3).
Query: To query the occurrence of an item e in period k′,
we can derive an interval [m′,m], so that ∀i ∈ [m′,m] , k′ ∈[
A(i,pi).begin,A(i,pi).end

]
. We query these (m−m′ + 1)

relevant Bloom filters and take the bit-wise AND of their
results (see Algorithm 4). Since we still have more Bloom
filters for more recent periods, and a constant number of
Bloom filters for the latest period, time gradualness still holds
for the Stair Bloom filter.

Algorithm 4: Query of the Stair, optimized
1 Function Query(k, 〈e, k′〉):
2 if k′ < A(m,0).begin then
3 return Unknown;
4 occurrence← 1;
5 if k’=k then
6 for j = 1→ di do
7 occurrence & =

A(1,1)

[(
A(1,1).hj(e) + k′

)
mod w1

]
;

8 for i = 2→ m do
9 if k′ > A(i,0).begin then

10 if k′ > A(i,1).begin then
11 pi ← 1;
12 else
13 pi ← 0;
14 for j = 1→ di do
15 occurrence & =

A(i,pi)

[(
A(i,pi).hj(e) + k′

)
mod wi

]
;

16 return occurrence;

The remaining issue is how to configure the parameters of
the data structure. In general, larger wi and di (2 6 i 6 m)
can improve query accuracy about the last time period, while
larger wm and dm can improve query accuracy about earlier
time periods, and we advise that users configure reasonable
parameters in practice. We also give a recommended parameter
configuration method in the mathematical analysis section.
C. The Stair Sketch Usage in Other Typical Sketches

The Stair Sketch is a generic structure, and can be applied
to many other typical sketches besides the Bloom filter. To
illustrate that, we first introduce the abstract concept of atomic
sketch which depicts the key properties of various existing
sketches such as Bloom filters [3], CM sketches [4], CU
sketches [5], and [6]–[8]. Then we show in more detail how
the Stair Sketch applies to CM and CU sketches.

An atomic sketch has an array of w cells, and d independent
hash functions hi(·). Each hash function maps an item into one
of w cells uniformly, and the atomic sketch maps an item to
d cells through these hash functions. Atomic sketches have
two operators. The updater(·) takes an item, maps it to d
cells with hash functions, and updates each of these cells. The
aggregator(·) summarizes the statistic of an item according
to its mapped cells. The updater is used to insert an item, and
the aggregator is used for queries.

Many existing sketches are essentially atomic sketches with
concrete updater and aggregator. For example, cells in the



Bloom filters are bits. For an incoming item, the updater of
the Bloom filter is to set those mapped bits as 1, and the
aggregator of it is the bit-wise AND result of all mapped bits.
We have seen how the Stair Bloom filter works, now by just
changing the insertion and query process, the Stair Sketch can
apply to other sketches featuring the atomic sketch. We show
the Stair CM sketch and the Stair CU sketch for example.

The Stair CM Sketch : For CM sketches as atomic sketches,
the cells are essentially counters. For an incoming item, the
updater increments all its mapped counters by 1, and the
aggregator gets the minimum value of its mapped counters.
The Stair CM sketch has a set of CM sketches, and manip-
ulates them with the same approach as the Stair Bloom filter
manipulates Bloom filters. To insert an item e in the period
k, the Stair CM sketch performs a CM sketch insertion with
shifting for each CM sketch that records the k-th period. To
query the frequency of an item e in the period k′, the Stair
CM sketch query each CM sketch that records the k′-th period
with the aggregator, and take the minimum result of them.

The Stair CU Sketch : For CU sketches as atomic sketches,
the only difference from the CM sketches is that the updater
performs conservative updates. More specifically, for an in-
coming item, the updater of the CU sketch only increments
those counters that have the minimum value among all its
mapped counters. The Stair CU sketch consists of a set of
CU sketches. The query process is the same as the Stair
CM sketch. To insert an item e in the period k, instead of
performing a conservative update for each CU sketch locally,
the Stair CU sketch performs global conservative update for
all relevant CU sketches. That is, for an incoming item, the
Stair CU sketch first performs a query process to get the
minimum value of all counters it is mapped to in all CU
sketches, and increment those counters with the minimum
value. In this way, the frequency estimation will be more
accurate.

We do not change the way the Stair Sketch manipulates
the atomic sketches. The more atomic sketches we use for
recording a period, the more accurate the estimation will be.
Therefore, by similar analysis as we do for the Stair Bloom
filter, the Stair Sketch in general is a time gradual estimation
structure. We shall present our experiment data to further show
that in the experiment section.

D. The Stair Sketch for Range Query
In the optimized Stair Sketch, we can also perform range

query with little time overhead. The range query is to ask the
aggregate information of item e in a number of consecutive
periods. For example, for membership query, the range query
is to ask questions like whether the item e has occurred
between l-th period and r-th period (l ≤ r). For frequency
estimation, the range query is to ask the frequency of an item
e between l-th period and r-th period. We can see that range
query is a generalized version of single-period query.

Since we use the shifting technique, the information of
an item e in consecutive periods is stored in a sequence of
consecutive cells. By memory locality, it would rarely cause

more overhead to access some consecutive cells than to access
just one cell. Therefore, we only need to select the atomic
sketches that record the information of the period range, then
we can answer range queries relatively fast.

V. MATHEMATICAL ANALYSIS

In this section, we continue to use Bloom filters, CM
sketches, and CU sketches as case studies, and analyze the
error bounds of the Stair sketch when applied to them. We
first introduce some preliminaries.

A. Preliminary
Given a data stream S . Let f(e,k) be the statistic of item e in

the k-th period, and f̂(e,k) be the estimate of f(e,k) given by the
data stream processing algorithms. In addition, let f(e,[kl,kr])

be the statistic of item e within periods kl to kr, and f̂(e,[kl,kr])

its estimate. For a membership query, f(e,k) indicates whether
item e occurs in the k-th period, and f(e,[kl,kr]) indicates
whether an item e occurs in periods from kl to kr. Formally,

f(e,k) =

n∨
i=1

1{ei=e∧ti=k}; f(e,[kl,kr]) =

kr∨
k=kl

f(e,k). (4)

For frequency estimation, f(e,k) indicates the number of times
the item e occurs in the k-th period, and f(e,[kl,kr]) indicates
the number of times item e occurs in periods from kl to kr.
Formally,

f(e,k) =

n∑
i=1

1{ei=e∧ti=k}; f(e,[kl,kr]) =

kr∑
k=kl

f(e,k). (5)

B. The Stair Bloom Filter
We first give the probability that the estimation f̂(e,k) of

f(e,k) is a false positive when using the shifting Bloom filter
as the compound sketch.

Theorem 1. Given a data stream S and a compound sketch M
(i.e., a shifting Bloom filter) with w bits and d hash functions,
M records the data from the L-th to the R-th period. Given
a query 〈e, k〉, where e ∈ U and k ∈ [L,R], we have

Pr
{
f̂(e,k) 6= f(e,k)

}
6
(
1− e−

d
w ·(
∑R

k′=L

∑N
e′=1

f(e′,k′))
)d

.

(6)

Proof. Since only false positives will occur in the query when
using the Bloom filter as the compound sketch, we have

Pr
{
f̂(e,k) 6= f(e,k) | f(e,k) = 1

}
= 0. (7)

When item e does not occur in the k-th period, i.e., f(e,k) = 0,
∀1 6 i 6 d, we have

Pr
{
M [(hi(e) + k) mod w] = 0 | f(e,k) = 0

}
=

N∏
e′=1

(
w −

∑R
k′=L f(e′,k′)

w

)d

=

N∏
e′=1

e−
d
w ·(
∑R

k′=L
f(e′,k′)) = e−

d
w ·(
∑N

e′=1

∑R
k′=L

f(e′,k′)). (8)



To simplify the form, we follow the convention [3] to write
≈ to = in the above formula. Since f̂(e,k) = 1 requires all d
mapped bits to be 1, we have

Pr
{
f̂(e,k) 6= f(e,k) | f(e,k) = 0

}
=Pr

{
f̂(e,k) = 1 | f(e,k) = 0

}
=

d∏
i=1

Pr
{
M [(hi(e) + k) mod w] = 1 | f(e,k) = 0

}
=
(
1− e−

d
w ·(
∑N

e′=1

∑R
k′=L

f(e′,k′))
)d

. (9)

To sum up, we have

Pr
{
f̂(e,k) 6= f(e,k)

}
=

Pr
{
f̂(e,k) 6= f(e,k) | f(e,k) = 0

}
· Pr

{
f(e,k) = 0

}
+Pr

{
f̂(e,k) 6= f(e,k) | f(e,k) = 1

}
· Pr

{
f(e,k) = 1

}
6
(
1− e−

d
w ·(
∑N

e′=1

∑R
k′=L

f(e′,k′))
)d

. (10)

Considering that
∑N

e′=1 f(e′,k′) has an upper bound N , we can

derive a looser error bound
(
1− e−

d
w ·(R−L+1)·N

)d
, which

can be minimized by setting d = w·ln 2
(R−L+1)·N . Then we give

the probability that the estimation f̂(e,[kl,kr]) is a false positive
when using the Bloom filter as the compound sketch.

Theorem 2. Given a data stream S and a compound sketch
M with w bits and d hash functions, M records the data from
the L-th to the R-th period. Given a range query (e, [kl, kr]),
where e ∈ U and [kl, kr] ⊂ [L,R], we have

Pr
{
f̂(e,[kl,kr]) 6= f(e,[kl,kr])

}
6
(
1− e−

d
w ·((R−L+kr−kl+1)·

∑N
e′=1

f(e′,[L,R]))
)d

. (11)

Proof. We first analyze the false positives of a range query.

Pr
{
f̂(e,[kl,kr]) = 1 | f(e,[kl,kr]) = 0

}
=Pr

{
∃ k ∈ [kl, kr], f̂(e,k) = 1 | ∀ k ∈ [kl, kr], f(e,k) = 0

}
=Pr


∃ k ∈ [kl, kr],∀ i ∈ [1, d],

M [(hi(e) + k) mod w] = 1

| ∀ k ∈ [kl, kr], f(e,k) = 0


6Pr


∀ i ∈ [1, d],∃ ki ∈ [kl, kr],

M [(hi(e) + ki) mod w] = 1

| ∀ k ∈ [kl, kr], f(e,k) = 0


=

d∏
i=1

Pr

{
∃ ki ∈ [kl, kr],M [(hi(e) + ki) mod w] = 1

| ∀ k ∈ [kl, kr], f(e,k) = 0

}

6
d∏

i=1

1−

(
N∏

e′=1

w − (R− L+ kr − kl + 1) · f(e′,[L,R])

w

)d


=
(
1− e−

d
w ·((R−L+kr−kl+1)·

∑N
e′=1

f(e′,[L,R]))
)d

. (12)

We can get the following inequality through the conditional
probability formula.

Pr
{
f̂(e,[kl,kr]) 6= f(e,[kl,kr])

}
=

Pr
{
f̂(e,[kl,kr]) = 0 | f(e,[kl,kr]) = 1

}
· Pr

{
f(e,[kl,kr]) = 1

}
+Pr

{
f̂(e,[kl,kr]) = 1 | f(e,[kl,kr]) = 0

}
· Pr

{
f(e,[kl,kr]) = 0

}
6
(
1− e−

d
w ·((R−L+kr−kl+1)·

∑N
e′=1

f(e′,[L,R]))
)d

. (13)

According to Theorem 1, we can derive the error probability
of the Stair Bloom filter when querying 〈e, k′〉 in the k-th time
period, and show that it satisfies the time gradualness.

Theorem 3. Given a data stream S and a Stair Bloom filter of
m layers. Given a query 〈e, k′〉, and assuming it is currently
in the k-th period. The compound sketch Ml,pl

in the l-th
(m′ 6 l 6 m) layer records the data from the Ll-th to the
Rl-th period, with m′ and pl as defined in Section IV-B. Its
parameters are {wl, dl}. We have

Pr
{
f̂BF 6= f

}
6

m∏
l=m′

(
1− e

− dl
wl
·
(∑Rl

k′′=Ll

∑N
e′=1

f(e′,k′′)

))dl

.

(14)

Using N instead of
∑N

e′=1 f(e′,k′′), we can derive a looser

error bound
∏m

l=m′

(
1− e

− dl
wl
·((Rl−Ll+1)·N )

)dl

, where m′ is

determined by k and k′. We can infer the following properties.
• error gradualness. The smaller k′ is, the larger m′ is, and

thus the larger the error bound.
• time stability. When k′ = k, there is m′ = 1, and thus the

error bound is only related to N rather than k.
Since the Stair Bloom filter satisfies both error gradualness
and time stability, it satisfies time gradualness.
Recommended parameter configuration: We first propose
the following two principles. 1) Let wl ∝ dl × (Ml,0.end −
Ml,0.begin+1), so that the bits in different compound sketch
will be set to 1 with approximately equal probability p. 2) Let
dl = 1 (1 6 l 6 m− 1), so that the estimation error E(k, k′)
is approximately proportional to the time interval (k−k′+1).
With the constraints of these two principles, we can set the
only variable parameter dm to make p ≈ 1

2 , so as to make the
best use of memory.
Comparison with the Hokusai: Suppose both data structures
record L = 2m−1 periods, and it is currently in the L-th
period. By setting memory budget M = m·L·N

ln 2 , according
to the recommendation, dm = m− 1 and p = 1

2 . So we have

E(L, k′) = 2−2·(m−1)+dlog (L−k
′+1)e (15)

For Hokusai Bloom filter (see Section VI-A for details) using
2 hash functions as recommended [10], we have

E ′(L, k′) =
(
1− 2−

m−1
m ·2−(m−2)+blog (L−k′+1)c)2

(16)

There is always E(L, k′) < E ′(L, k′) when m > 4, i.e., Stair
Bloom filter has a smaller error bound than Hokusai.



C. The Stair CM Sketch

We first give the probability that the estimation error ex-
ceeds a certain ε when using the shifting CM sketch as the
compound sketch.

Theorem 4. Given a data stream S and a compound sketch
M (i.e., a shifting CM sketch) with w counters and d hash
functions. M records the data from the L-th to the R-th period.
Given a query 〈e, k〉, where e ∈ U and k ∈ [L,R], we have

Pr
{∣∣∣f̂(e,k) − f(e,k)

∣∣∣ > ε
}
6

d ·
(∑R

k′=LNk′

)
w · ε

d

. (17)

Proof. Considering the expectation of the error in a mapped
counter, ∀1 6 i 6 d, we have

E
(
M [(hi(e) + k) mod w]− f(e,k)

)
=

N∑
e′=1,e′ 6=e

(
R∑

k′=L

1

w
· f(e′,k′)

)
· d

6
d ·
(∑N

e′=1

∑R
k′=L f(e′,k′)

)
w

. (18)

According to the Markov inequality, we have

Pr
{
M [(hi(e) + k) mod w]− f(e,k) > ε

}
6
E
(
M [(hi(e) + k) mod w]− f(e,k)

)
ε

6
d ·
(∑N

e′=1

∑R
k′=L f(e′,k′)

)
w · ε

. (19)

Considering that the CM sketch has only one-sided errors, in
summary, we have

Pr
{∣∣∣f̂(e,k) − f(e,k)

∣∣∣ > ε
}

=Pr

{(
min
16i6d

M [(hi(e) + k) mod w]

)
− f(e,k) > ε

}
=

d∏
i=1

Pr
{
M [(hi(e) + k) mod w]− f(e,k) > ε

}

6

d ·
(∑N

e′=1

∑R
k′=L f(e′,k′)

)
w · ε

d

. (20)

Considering that Nk′ has an upper bound N , we can also

derive a looser error bound
(

d·(R−L+1)·N
w·ε

)d
. Then we give

the probability that the range query error exceeds a certain ε
when using the shifting CM sketch as the compound sketch.

Theorem 5. Given a data stream S and a compound sketch
M with w cells and d hash functions. M records the data from
the L-th to the R-th period. Given a range query (e, [kl, kr]),
where e ∈ U and [kl, kr] ⊂ [L,R], we have

Pr
{∣∣∣f̂(e,[kl,kr]) − f(e,[kl,kr])

∣∣∣ > ε
}

6

d · (kr − kl + 1) ·
(∑R

k′=LNk′

)
w · ε

d

. (21)

Proof. We first find an upper bound of this probability, that is

Pr
{
f̂(e,[kl,kr]) − f(e,[kl,kr]) > ε

}
=Pr

{(
kr∑

k=kl

min
16i6d

M [(hi(e) + k) mod w]

)
− f(e,[kl,kr]) > ε

}

6Pr

{(
min
16i6d

kr∑
k=kl

M [(hi(e) + k) mod w]

)
− f(e,[kl,kr]) > ε

}

=

d∏
i=1

Pr

{
kr∑

k=kl

(
M [(hi(e) + k) mod w]− f(e,k)

)
> ε

}
(22)

According to Equation 18, we have

E

(
kr∑

k=kl

(
M [(hi(e) + k) mod w]− f(e,k)

))

=

kr∑
k=kl

E
(
M [(hi(e) + k) mod w]− f(e,k)

)

6(kr − kl + 1) ·

d ·
(∑N

e′=1

∑R
k′=L f(e′,k′)

)
w

 (23)

Through the Markov inequality, we have

Pr
{
f̂(e,[kl,kr]) − f(e,[kl,kr]) > ε

}
6

d∏
i=1

E
(∑kr

k=kl

(
M [(hi(e) + k) mod w]− f(e,k)

))
ε

6

d · (kr − kl + 1) ·
(∑N

e′=1

∑R
k′=L f(e′,k′)

)
w · ε

d

. (24)

According to Theorem 4, we can derive the error bound
of the frequency estimation of the Stair CM sketch when
querying 〈e, k′〉 in the k-th time period.

Theorem 6. Given a data stream S and a Stair CM sketch of
m layers. Given a query 〈e, k′〉, and assuming it is currently
in the k-th period. The compound sketch Ml,pl

in the l-th
(m′ 6 l 6 m) layer records the data from the Ll-th to the
Rl-th period, where m′ and pl are defined in Section IV-B.
The parameters of Ml,pl

are {wl, dl}. We have

Pr
{∣∣∣f̂CM − f

∣∣∣ > ε
}
6

m∏
l=m′

dl ·
(∑Rl

k′′=Ll
Nk′′

)
wl · ε

dl

.

(25)

By replacing Nk′′ with N , we can use the same analysis as
described in Section V-B to obtain that the Stair CM sketch



satisfies both error gradualness and time stability, thus having
time gradualness.
The Stair CU Sketch. Since the CU sketch is a conservative
version of the CM sketch, the error bound of the Stair CM
sketch is also applicable to the Stair CU sketch. This means
that the Stair CU sketch also has time gradualness.
Recommended parameter configuration: We follow the two
principles of parameter configuration proposed in Section V-B,
and we set the only variable parameter dm = 4, just as many
sketches recommend to achieve the best accuracy in practice.

VI. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to test the
properties of the Stair sketch and compare it with state-of-the-
art algorithms. Our comparison covers mainly three aspects:
time gradualness, estimation accuracy, and query delay.
A. Experimental Setup

We now describe our experimental setup, including the
state-of-the-art algorithms we compare against, the datasets
used, the evaluation metrics, and default settings.

1) Comparison with State-of-the-art:
The Stair sketch can perform both membership queries and

frequency estimation, while state-of-the-art algorithms only
handle one of them. Therefore, for comparison, we select
specifically among the many state-of-the-art algorithms for
membership queries and frequency estimation.
Frequency Estimation: For frequency estimation, we choose
the Hokusai item aggregation CM sketch [9] (HCM) and
Time-Adaptive CM sketch [11] (ADA-CM). For ADA-CM,
we use the increasing sequence f(j) = j for the j-th time
period, which was proposed in the original paper. We compare
the Stair CM sketch (SCM) and the Stair CU sketch (SCU)
with them. We do not choose persistent data sketching in our
comparison since its memory consumption is dynamic when
running. We actually implemented and tested it, and found that
it can consume as much as 10 GB of memory on our datasets.
Membership Query: We implement PBF-2 [13] with a
minor optimization: checking more relevant Bloom Filters for
queries. This optimization greatly improves its accuracy at the
cost of a slightly lower query speed. Apart from PBF, few
algorithms deal with time-sensitive membership queries. As
claimed in Section I, only Hokusai satisfies the two aspects of
time gradualness, but it can only handle frequency estimation.
We find that the core operation of the item aggregation
Hokusai is the CM sketch compression, and the Bloom filter
can easily be compressed as well [10]. Therefore, by changing
the CM sketch in Hokusai into a Bloom filter, we can extend
the Hokusai algorithm to support membership queries, as one
of our baseline algorithms. We call this algorithm the Hokusai
Bloom filter (HBF). We compare the Stair Bloom filter (SBF)
with PBF and HBF.

2) Datasets:
We use the following datasets.

• CAIDA: We use CAIDA [52], a public dataset that includes
anonymous real-world network traces from high-speed In-
ternet Backbone links. More specifically, we use network

packets coming from an 16-minute consecutive trace from
CAIDA as the data stream. Consequently, there are 1.6×106
different items in the 4.2× 108 items in total.

• Web page: The Web page dataset is built from a number
of web HTML documents [53]. There are 1 × 106 distinct
items in a total of around 3.2× 107 items.

• Synthetic Datasets: Using open-source performance test-
ing tool Web Polygraph [54], we generate a number of
datasets following the Zipf [55] distribution. There are
952888 distinct items in a total of 3.2× 107 items.

Since the original Web page and synthetic datasets do not
include arrival timestamps of the items, we generate n (the
number of items) independent random variables uniformly
distributed on (0, 16), sort them in ascending order, and use
them as the arrival time of each item in turn. In this way,
these datasets cover exactly 16 minutes and can be treated as
timestamped data streams, just like the CAIDA dataset. Sorting
them in ascending order ensures that these timestamps have
the same distribution as n arrival times of a Poisson process
if the number of arrivals in the first 16 minutes is exactly n.

3) Evaluation Metrics:
Three typical metrics to measure the accuracy of data

streams estimation are shown below. In the following, we use
T to represent the total number of time periods, S to represent
the data stream, and 〈e, k〉 ∈ S means that item e arrived in
the k-th time period at least once.

• FPR (False Positive Rate): For each time period k, we define
the FPRk as 1

|Ek|
∑

e∈Ek
f̂(e,k). Where Ek = {e|〈e, k〉 /∈

S ∧ ∃k′, 〈e, k′〉 ∈ S} and f̂(e,k) represents the membership
query result of item e in the k-th time period.

• AAE (Average Absolute Error): For each period k, we
define the AAEk as 1

|Wk|
∑

e∈Wk
|f(e,k) − f̂(e,k)|. Where

Wk = {e|〈e, k〉 ∈ S}, and f(e,k) and f̂(e,k) represent the
actual and estimated frequency of item e in the k-th time
period respectively.

• ARE (Average Relative Error): For each period k, we define
the AREk as 1

|Wk|
∑

e∈Wk

|f(e,k)−f̂(e,k)|
f(e,k)

. Where Wk =

{e|〈e, k〉 ∈ S}, and f(e,k) and f̂(e,k) represent the actual
and estimated frequency of item e in the k-th time period
respectively.

To test accuracy as well as time gradualness of the algo-
rithms, besides typical metrics above, we also adopt weighted
error metrics, which add a penalty for estimation errors on
more recent time periods. We use two kinds of queries to
measure the performance, queries of a single time period and
multiple time periods. For the k-th time period, the weight is

1
T−k+1 . For a query of multiple times periods from l to r, its
weight is assigned as the summary of weights of time period
l, l + 1, · · · r.

Since weighted error metrics follow the same weighting
rule, we only give the formal definition of Weighted False
Positive Rate (WFPR) below due to space limitations. WAAE
and WARE are defined similarly as WFPR.



• WFPR (Weighted FPR, single time period): WFPR is
defined as

∑T
k=1

FPRk

T−k+1 .
• WFPR (Weighted FPR, multiple time periods): For

all 1 ≤ l ≤ r ≤ T , we define FPR[l,r] as
1

|E[l,r]|
∑

e∈E[l,r]
f̂(e,[l,r]). Where E[l,r] = {e|∀l ≤ k ≤

r, 〈e, k〉 /∈ S ∧ ∃k′, 〈e, k′〉 ∈ S}. WFPR is defined as∑T
l=1

∑T
r=l FPR[l,r]

∑r
k=l

1
T−k+1 .

• AMA (Average Memory Access): AMA is defined as
1
n

∑n
i=1 MA(ei, ki). Where n is the number of testing

samples and MA(ei, ki) denotes the number of memory
accesses required to query the information of item ei within
time period ki. We use AMA to evaluate the memory latency
of queries.
4) Default Settings:
By default, we split the data stream into 32 consecutive

time periods of equal length, and the parameters of all the
algorithms are set to maintain the information of 32 time
periods only. All the algorithms are implemented in C++. By
default, the SCM, SCU, and SBF have four layers. For SCM,
SCU, and SBF, the sketches in the bottom layer (according
to Fig. 4) use 4 hash functions while others use 1. For
other algorithms, each sketch uses 2 hash functions. The hash
function we adopted in these algorithms is the Bob hash [56].
To keep the error rate of the algorithms at a moderate level
(i.e., not too high or too low, suitable for practical usage
and comparison), we set a reasonable memory size for each
set of experiments, which we specify in the caption of the
corresponding figure. All programs are run on a server with
64 GB system memory and dual 6-core CPUs (24 threads,
Intel(R) Xeon(R) CPU E5-2620 @2.00GHz).

5 10 15 20 25 30
10-6

10-4

10-2

100

FP
R

#-th time period

 SBF(ours)
 PBF
 HBF

(a) CAIDA, 10 MB.

5 10 15 20 25 30
10-6

10-4

10-2

100

FP
R

#-th time period

 SBF(ours)
 PBF
 HBF

(b) Web page, 4 MB.
Fig. 6: Error gradualness for membership query task.

10 20 30 40 50 60
0

5x10-2

1x10-1

1.5x10-1

2x10-1

2.5x10-1

FP
R

#-th time period

 SBF(ours)
 PBF
 HBF

(a) CAIDA, 6 MB.

10 20 30 40 50 60
0

5x10-2

1x10-1

1.5x10-1

2x10-1

2.5x10-1

FP
R

#-th time period

 SBF(ours)
 PBF
 HBF

(b) Web page, 2 MB.
Fig. 7: Time stability for membership query task.

B. Evaluation of Time Gradualness
In this subsection, we evaluate time gradualness. As de-

scribed in Section I, time gradualness has two aspects: error
gradualness and time stability. To evaluate error gradualness,
we build the data structures over the whole data stream and
check their accuracy in estimating each time period. We expect
that an error gradual algorithm would have a more accurate

5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

AR
E

#-th time period

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(a) CAIDA, 160 MB.

5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

AR
E

#-th time period

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(b) Web page, 100 MB.
Fig. 8: Error gradualness for frequency estimation task.

10 20 30 40 50 60
0

4x10-2

8x10-2

1.2x10-1

1.6x10-1

2x10-1

AR
E

#-th time period

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(a) CAIDA, 160 MB.

10 20 30 40 50 60
0

1x10-2

2x10-2

3x10-2

4x10-2

5x10-2

AR
E

#-th time period

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(b) Web page, 60 MB.
Fig. 9: Time stability for frequency estimation task.

estimation in recent periods. To evaluate time stability, for
each algorithm, each time it finishes processing the items in
one period, we check its estimation accuracy for this period.
We expect that a time stable algorithm would have a bounded
error rate in estimating the latest period.
Error gradualness for membership queries (Fig. 6): After
letting the PBF, HBF, and SBF process the whole data stream,
we test their FPR (False Positive Rate) in estimating items
in 32 time periods respectively. We find that the HBF and
SBF have error gradualness, but the PBF does not. This result
corresponds with our previous expectation. Besides, the SBF
achieves the best result among them.
Time stability for membership queries (Fig. 7): We split
the datasets into 64 consecutive time periods of equal length.
After each time period comes to an end, we test the FPR
(False Positive Rate) of PBF, HBF, and SBF when estimating
the items in the latest time period. As expected, we find that
despite fluctuations, the FPR of the SBF and HBF stays below
a relatively small upper-bound, so they are time stable. The
FPR of the PBF increases over time, so it is time unstable.
The SBF achieves the best results among them.
Error gradualness for frequency estimation (Fig. 8): After
letting the HCM, ADA-CM, and our SCM and SCU process
the whole data stream, we test their ARE (Average Relative
Error) when estimating items in 32 time periods. As expected,
we find that the four algorithms all have error gradualness.
Besides, the SCM and SCU achieve the best results among
them.
Time stability for frequency estimation (Fig. 9): We split
the datasets into 64 consecutive time periods of equal length.
After each time period comes to an end, we test the ARE
(Average Relative Error) of the HCM, ADA-CM, SCM, and
SCU at estimating the items in the latest time period. As
expected, we find that the HCM, SCM, and SCU have time
stability, despite periodical fluctuations. The ARE of the SCM
and SCU stay below a relatively small upper-bound. ADA-
CM is not time stable, hence it would be difficult to deploy
ADA-CM in practice. Among the four algorithms, the SCM
and SCU achieve the best results.



4 6 8 10 12 14 16

10-3

10-2

10-1

100

W
FP
R

Memory Size(MB)

 SBF(ours)
 PBF
 HBF

(a) CAIDA dataset

4 6 8 10 12 14 16

10-4

10-3

10-2

10-1

W
FP
R

Memory Size(MB)

 SBF(ours)
 PBF
 HBF

(b) Web page dataset

8 12 16 20 24 28 32
10-3

10-2

10-1

100

W
FP
R

Memory Size(MB)

 SBF(ours)
 PBF
 HBF

(c) Synthetic dataset
Fig. 10: WFPR vs. memory for membership query task.

100 110 120 130 140 150 160 170 180
10-2

10-1

100

W
AR
E

Memory Size(MB)

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(a) CAIDA dataset

100 110 120 130 140 150 160 170 180
10-4

10-3

10-2

10-1

W
AR
E

Memory Size(MB)

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(b) Web page dataset

320 330 340 350 360 370 380 390 400
10-3

10-2

10-1

W
AR
E

Memory Size(MB)

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(c) Synthetic dataset
Fig. 11: WARE vs. memory for frequency estimation task.

8 1 6 3 2 6 4 1 2 8 2 5 61 0 - 6

1 0 - 4

1 0 - 2

1 0 0

WF
PR

T h e  n u m b e r  o f  t i m e  p e r i o d s

 S B F ( o u r s )
 P B F
 H B F

(a) Membership query, 20 MB.

8 1 6 3 2 6 4 1 2 8 2 5 61 0 - 5

1 0 - 3

1 0 - 1

1 0 1

WA
RE

T h e  n u m b e r  o f  t i m e  p e r i o d s

 S C M ( o u r s )
 S C U ( o u r s )
 H C M
 A D A - C M

(b) Frequency estimation, 300 MB.

8 1 6 3 2 6 4 1 2 8 2 5 61 0 - 5

1 0 - 3

1 0 - 1

1 0 1

WA
AE

T h e  n u m b e r  o f  t i m e  p e r i o d s

 S C M ( o u r s )
 S C U ( o u r s )
 H C M
 A D A - C M

(c) Frequency estimation, 300 MB.
Fig. 12: Weighted Error vs. the number of time periods.

10 20 30 40 50 60

10-3

10-2

10-1

W
FP
R

Length of Queries(periods)

 SBF(ours)
 PBF
 HBF

(a) Membership query, 10 MB.

10 20 30 40 50 60
10-4

10-3

10-2

10-1

W
AR
E

Length of Time Periods(s)

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(b) Frequency estimation, 300 MB.

10 20 30 40 50 60
10-4

10-3

10-2

10-1

100

W
AA
E

Length of Time Periods(s)

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(c) Frequency estimation, 300 MB.
Fig. 13: Weighted Error vs. length of time periods.

C. Evaluating Accuracy from The Perspective of Error Grad-
ualness

Now, we test and compare the estimation accuracy of
different algorithms. Since recent information is more valuable
as claimed in Section I, we want to test the accuracy of
the algorithms from the perspective of error gradualness.
Therefore, instead of common metrics such as the FPR for
membership queries and the AAE, the ARE for frequency
estimation, we use their weighted versions, defined earlier in
this section. The weighted error metric can be seen as the
aggregate error of algorithms in many time periods, adding
more weight to more recent time periods.

In the following three sets of experiments, we test the
weighted error of the algorithms with various memory sizes.
WFPR vs. memory (Fig. 10): We vary the total memory
size of the PBF, HBF and SBF, and test their WFPR on three
different datasets. We find that the SBF achieves the highest
accuracy for various total memory consumptions. Generally,
the WFPR of the SBF is two orders of magnitude lower than
the other algorithms.

WARE vs. memory (Fig. 11): We vary the total memory size
of the HCM, ADA-CM, SCM, and SCU, and test their WARE
on three different datasets. We find that the SCU and SCM
achieve the highest and the second highest accuracy across
the different amounts of total memory. Generally, the WARE
of the SCM is one to two orders of magnitude lower than that
of the ADA-CM and HCM, and the WARE of the SCU is
two orders of magnitude lower than that of the ADA-CM and
HCM.

In the following three sets of experiments, we vary either
the number or the length of the time periods, and test the
performance of the algorithms in these different scenarios1.
Furthermore, we try range queries across multiple time peri-
ods. Since the algorithms perform similarly for the different
datasets, we only use the CAIDA dataset in the following three
sets of experiments.

1The length of the whole input data stream may vary with the change of
one of the two parameters.



5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

W
FP
R

Length of Queries(periods)

 SBF(ours)
 PBF
 HBF

(a) Membership query, 30 MB.

5 10 15 20 25 30

10-3

10-2

10-1

100

101

W
AR
E

Length of Queries(periods)

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(b) Frequency estimation, 300 MB.

5 10 15 20 25 30

10-3

10-2

10-1

100

101

W
AA
E

Length of Queries(periods)

 SCM(ours)
 SCU(ours)
 AdaCM
 HCM

(c) Frequency estimation, 300 MB.
Fig. 14: Weighted Error vs. length of queries.

Weighted error vs. the number of time periods (Fig. 12):
We vary only the number of time periods, and test the weighted
error of all the algorithms above. We find that the estimation
error of the algorithms increases with the number of time
periods. This is because a larger number of time periods
considered increases the amount and the granularity of the
information recorded in the data structure. For a fixed memory
size, the accuracy naturally decreases for larger amounts of
information recorded in the data structure. For the number of
time periods considered, the weighted error of the Stair sketch
is always at least 9.5 times lower than other state-of-the-art
algorithms.
Weighted error vs. length of time periods (Fig. 13): We vary
only the length of the time periods, and test the weighted error
of all the algorithms. We find that generally, the estimation
error increases the longer the time period. Again, this is due
to the increased amount and granularity of the information
recorded in the data structure. For a fixed memory size, the
accuracy decreases as the amount of information recorded in
the data structure increases. For the considered time period
lengths, the weighted error of the Stair sketch is always at
least 7 times lower than other state-of-the-art algorithms.
Weighted error for range queries of multiple time periods
(Fig. 14): For different query lengths (i.e., the number of
time periods the range query covers), we test the weighted
error for multiple time periods (defined at the beginning of
this section). We find that the estimation error increases as the
number of time periods covered increases. This is because
the estimation error of each single time period contributes
to the total error of the query, both for membership queries
and frequency estimation. Across the different time periods
covered, the weighted error of the Stair sketch is always at
least 5 times lower than other state-of-the-art algorithms.

8 1 6 2 42 1

2 2

2 3

2 4

2 5

2 6

AM
A

L e n g t h  o f  Q u e r i e s  ( p e r i o d s )

 S B F ( o u r s )
 P B F
 H B F

(a) Membership query, 15 MB

8 1 6 2 4 3 22 1

2 3

2 5

AM
A

L e n g t h  o f  Q u e r i e s  ( p e r i o d s )

 S C M ( o u r s )
 S C U ( o u r s )
 H C M
 A D A - C M

(b) Frequency estimation, 120 MB
Fig. 15: AMA vs. length of queries.

D. Evaluation of Efficiency
Here, we compare the query delay of different algorithms.

We use the average number of memory accesses (AMA) as the
metric. Since the algorithms perform similarly across different

datasets, we only use the CAIDA dataset in the following
experiments.
AMA for range queries of multiple time periods2 (Fig. 15):
For different query lengths (i.e., the number of time periods the
range query covers), we test the AMA of different algorithms.
As expected, we find that the AMA increases as the number of
considered periods increases. Among the algorithms, the AMA
of the Stair sketch increases the least, and generally, the Stair
sketch needs fewer memory accesses than other algorithms.

1

4

1 6

6 4

Th
rou

gh
tpu

t (M
op

s)

 S B F ( o u r s )
 P B F
 H B F

(a) Membership query, 15 MB
1

4

1 6

6 4

Th
rou

gh
tpu

t (M
op

s)

 S C M ( o u r s )
 S C U ( o u r s )
 H C M
 A D A - C M

(b) Frequency estimation, 120 MB
Fig. 16: Throughput.

Throughput (Fig. 16): We find that the throughput of Stair
sketches is higher than that of the PBF, but lower than that
of Hokusai sketches and ADA-CM. This is because Stair
sketches and PBF focus on reducing range query delay. When
recording L time periods, the insertion complexity and range
query complexity of Stair sketches and PBF are both O(logL).
In contrast, the insertion complexity of Hokusai sketches and
the ADA-CM are O(1), but their range query complexity are
O(L).

VII. CONCLUSION

Memorizing when an item appears is an important task in
data stream processing. Also, one tends to pay more attention
to the recent appearance of items than to older ones. We
propose a novel data stream processing structure named the
Stair sketch to memorize recent events with more accuracy.
The key idea is to organize the memory in a stair shape.
We show that our scheme achieves time gradualness, which
provides both time stability and error gradualness. The Stair
sketch is also generic, in that it can be applied to different
types of sketches. We illustrate this by using the Stair sketch
with Bloom filters [3], CM sketches [4], and CU sketches [5].
We deploy the Stair sketch in two typical tasks, membership
queries, and frequency estimation, and derive theoretical error
bounds for both. Experiment results show that our approach
outperforms state-of-the-art algorithms by more than 5× in
accuracy while providing comparable efficiency.

2The curves of the SCM and SCU coincide, and the curves of the ADA-CM
and HCM coincide.



ACKNOWLEDGMENT

We thank Yuhan Wu for his helpful suggestions and
discussions. This work is supported by Key-Area Re-
search and Development Program of Guangdong Province
2020B0101390001, National Natural Science Foundation of
China (NSFC) (No. U20A20179, 61832001).

REFERENCES

[1] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor
Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake
Livingston, et al. The youtube video recommendation system. In
Proceedings of the fourth ACM conference on Recommender systems,
pages 293–296, 2010.

[2] Kleber Vieira, Alexandre Schulter, Carlos Westphall, and Carla West-
phall. Intrusion detection for grid and cloud computing. It Professional,
12(4):38–43, 2009.

[3] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[4] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1):58–75, 2005.

[5] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting. In Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 323–336, 2002.

[6] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary
cache: a scalable wide-area web cache sharing protocol. IEEE/ACM
transactions on networking, 8(3):281–293, 2000.

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding fre-
quent items in data streams. In International Colloquium on Automata,
Languages, and Programming, pages 693–703. Springer, 2002.

[8] Tao Li, Shigang Chen, and Yibei Ling. Per-flow traffic measurement
through randomized counter sharing. IEEE/ACM Transactions on
Networking, 20(5):1622–1634, 2012.

[9] Sergiy Matusevych, Alexander J Smola, and Amr Ahmed. Hoku-
sai—sketching streams in real time. In Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence, pages 594–603,
2012.

[10] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM transac-
tions on networking, 10(5):604–612, 2002.

[11] Anshumali Shrivastava, Arnd Christian Konig, and Mikhail Bilenko.
Time adaptive sketches (ada-sketches) for summarizing data streams.
In Proceedings of the 2016 International Conference on Management
of Data, pages 1417–1432, 2016.

[12] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent
data sketching. In Proceedings of the 2015 ACM SIGMOD international
conference on Management of Data, pages 795–810, 2015.

[13] Yanqing Peng, Jinwei Guo, Feifei Li, Weining Qian, and Aoying Zhou.
Persistent bloom filter: Membership testing for the entire history. In
Proceedings of the 2018 International Conference on Management of
Data, pages 1037–1052, 2018.

[14] Source code related to the Stair sketch. https://github.com/
Stair-Sketches/stair sketch.

[15] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and
fast network-wide measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, pages 561–
575, 2018.

[16] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch:
Faster and more accurate stream processing. In Proceedings of the 2016
International Conference on Management of Data, pages 1449–1463,
2016.

[17] Nan Tang, Qing Chen, and Prasenjit Mitra. Graph stream summarization:
From big bang to big crunch. In Proceedings of the 2016 International
Conference on Management of Data, pages 1481–1496, 2016.

[18] Daniel Ting. Count-min: Optimal estimation and tight error bounds
using empirical error distributions. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 2319–2328, 2018.

[19] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. Sketch-
ing linear classifiers over data streams. In Proceedings of the 2018
International Conference on Management of Data, pages 757–772, 2018.

[20] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li,
and Steve Uhlig. Cold filter: A meta-framework for faster and more
accurate stream processing. In Proceedings of the 2018 International
Conference on Management of Data, pages 741–756, 2018.

[21] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A
general-purpose counting filter: Making every bit count. In Proceedings
of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, page 775–787, New York, NY, USA, 2017. Association
for Computing Machinery.

[22] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian. Vacuum
filters: More space-efficient and faster replacement for bloom and cuckoo
filters. Proc. VLDB Endow., 13(2):197–210, October 2019.

[23] Alex D. Breslow and Nuwan S. Jayasena. Morton filters: Faster, space-
efficient cuckoo filters via biasing, compression, and decoupled logical
sparsity. Proc. VLDB Endow., 11(9):1041–1055, May 2018.

[24] Florin Rusu and Alin Dobra. Statistical analysis of sketch estimators.
In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 187–198, 2007.

[25] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis.
Sketch-based querying of distributed sliding-window data streams. Pro-
ceedings of the VLDB Endowment, 5(10), 2012.

[26] Qi Zhao, Mitsunori Ogihara, Haixun Wang, and Jun Xu. Finding global
icebergs over distributed data sets. In Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 298–307, 2006.

[27] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan
Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-
ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, et al. Apache
hadoop goes realtime at facebook. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages
1071–1080, 2011.

[28] Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of data,
pages 25–36, 2011.

[29] Jose M Faleiro, Alexander Thomson, and Daniel J Abadi. Lazy
evaluation of transactions in database systems. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data,
pages 15–26, 2014.

[30] Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani,
and Walid G Aref. Locationspark: A distributed in-memory data
management system for big spatial data. Proceedings of the VLDB
Endowment, 9(13):1565–1568, 2016.

[31] Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and
Divesh Srivastava. Finding hierarchical heavy hitters in data streams. In
Proceedings 2003 VLDB Conference, pages 464–475. Elsevier, 2003.

[32] Amit Goyal, Hal Daumé III, and Graham Cormode. Sketch algorithms
for estimating point queries in nlp. In Proceedings of the 2012 joint
conference on empirical methods in natural language processing and
computational natural language learning, pages 1093–1103, 2012.

[33] Haipeng Dai, Muhammad Shahzad, Alex X Liu, and Yuankun Zhong.
Finding persistent items in data streams. Proceedings of the VLDB
Endowment, 10(4):289–300, 2016.

[34] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li.
Pyramid sketch: A sketch framework for frequency estimation of data
streams. Proceedings of the VLDB Endowment, 10(11):1442–1453,
2017.

[35] H Brendan McMahan, Gary Holt, David Sculley, Michael Young,
Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,
Daniel Golovin, et al. Ad click prediction: a view from the trenches.
In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1222–1230, 2013.

[36] Kaushik Chakrabarti, Surajit Chaudhuri, Venkatesh Ganti, and Dong
Xin. An efficient filter for approximate membership checking. In
Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 805–818, 2008.

[37] Thomas Neumann and Gerhard Weikum. Scalable join processing on
very large rdf graphs. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data, pages 627–640, 2009.

[38] Haiqin Liu, Yan Sun, and Min Sik Kim. Fine-grained ddos detection
scheme based on bidirectional count sketch. In 2011 Proceedings of 20th
International Conference on Computer Communications and Networks
(ICCCN), pages 1–6. IEEE, 2011.

https://github.com/Stair-Sketches/stair_sketch
https://github.com/Stair-Sketches/stair_sketch


[39] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity
is everything: A new approach to protecting passwords from statistical-
guessing attacks. In Proceedings of the 5th USENIX conference on Hot
topics in security, pages 1–8, 2010.

[40] Shahabeddin Geravand and Mahmood Ahmadi. Bloom filter applications
in network security: A state-of-the-art survey. Computer Networks,
57(18):4047–4064, 2013.

[41] Arwa Alrawais, Abdulrahman Alhothaily, Chunqiang Hu, and Xiuzhen
Cheng. Fog computing for the internet of things: Security and privacy
issues. IEEE Internet Computing, 21(2):34–42, 2017.

[42] Udi Manber and Sun Wu. An algorithm for approximate membership
checking with application to password security. Information Processing
Letters, 50(4):191–197, 1994.

[43] Rui Li, Alex X Liu, Ann L Wang, and Bezawada Bruhadeshwar.
Fast range query processing with strong privacy protection for cloud
computing. Proceedings of the VLDB Endowment, 7(14):1953–1964,
2014.

[44] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh,
and George Varghese. An improved construction for counting bloom
filters. In European Symposium on Algorithms, pages 684–695. Springer,
2006.

[45] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu,
Naiqian Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, et al. Lightguardian:
A full-visibility, lightweight, in-band telemetry system using sketchlets.
In NSDI, pages 991–1010, 2021.

[46] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting ac-
tive flows on high-speed links. IEEE/ACM Transactions on Networking,
14:p.925–937, 2006.

[47] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong
Zhang, and Bin Cui. On-off sketch: a fast and accurate sketch on
persistence. Proceedings of the VLDB Endowment, 14(2):128–140,
2020.

[48] Yuhan Wu, Jintao He, Shen Yan, Jianyu Wu, Tong Yang, Olivier
Ruas, Gong Zhang, and Bin Cui. Elastic bloom filter: Deletable
and expandablefilter using elastic fingerprints. IEEE Transactions on
Computers, 2021.

[49] Domenico Ficara, Stefano Giordano, Gregorio Procissi, and Fabio Vi-
tucci. Multilayer compressed counting bloom filters. In IEEE INFOCOM
2008-The 27th Conference on Computer Communications, pages 311–
315. IEEE, 2008.

[50] Saar Cohen and Yossi Matias. Spectral bloom filters. In Proceedings
of the 2003 ACM SIGMOD international conference on Management of
data, pages 241–252, 2003.

[51] Tong Yang, Alex X Liu, Muhammad Shahzad, Yuankun Zhong, Qiaobin
Fu, Zi Li, Gaogang Xie, and Xiaoming Li. A shifting bloom filter
framework for set queries. Proceedings of the VLDB Endowment, 9(5),
2016.

[52] The CAIDA Anonymized Internet Traces. http://www.caida.org/data/
overview/.

[53] Real-life transactional dataset. http://fimi.ua.ac.be/data/.
[54] Alex Rousskov and Duane Wessels. High-performance benchmarking

with web polygraph. Software, 34(2):p.187–211, 2004.
[55] David M. W. Powers. Applications and explanations of zipf’s law.

Advances in Neural Information Processing Systems, 5(4):595–599,
1998.

[56] Robert J. Jenkins Jr. Hash website. http://burtleburtle.net/bob/hash/
evahash.html Accessed July 21, 2021.

http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://fimi.ua.ac.be/data/
http://burtleburtle.net/bob/hash/evahash.html
http://burtleburtle.net/bob/hash/evahash.html

	Introduction
	Background and Motivation
	Prior Art and Their Limitations
	Our Solution

	Related Work
	Typical Sketches for Data Streams
	Time Sensitive Sketch Schemes

	Problem Statement
	The Stair Sketch
	Stair Bloom Filter: Basic Version
	Stair Bloom Filter: Optimized Version
	The Stair Sketch Usage in Other Typical Sketches
	The Stair Sketch for Range Query

	Mathematical Analysis
	Preliminary
	The Stair Bloom Filter
	The Stair CM Sketch

	Experimental Results
	Experimental Setup
	Comparison with State-of-the-art
	Datasets
	Evaluation Metrics
	Default Settings

	Evaluation of Time Gradualness
	Evaluating Accuracy from The Perspective of Error Gradualness
	Evaluation of Efficiency

	Conclusion
	References

