arXiv:2510.14686v1 [cs.DC] 16 Oct 2025

»LLV

xLLM Technical Report

Tongxuan Liu™, Tao Peng, Peijun Yang, Xiaoyang Zhao, Xiusheng Lu*, Weizhe Huang,
Zirui LiufT, Xiaoyu Chen, Zhiwei Liang, Jun Xiong, Donghe Jin, Minchao Zhang,
Jinrong Guo, Yingxu Deng, Xu Zhang, Xianzhe Dong', Sigi Wang*, Siyu Wu?, Yu Wu,
Zihan Tang*, Yuting Zeng', Yanshu Wang '™, Jinguang Liu, Meng Kang, Menxin Li,
Yunlong Wang, Yiming Liu*, Xiaolong Ma, Yifan Wang, Yichen Zhang*, Jinrun Yin'T,
Keyang Zheng'T, Jiawei Yin', Jun Zhang', Ziyue Wang®, Xiaobo Lin, Liangyu Liuf,
Liwei Lan*, Yang Liuf, Chunhua Peng, Han Liu, Songcheng Ren'', Xuezhu Wangi,
Yunheng Shen*, Yi Wang, Guyue Liut"™, Hui Chen*™, Tong Yang™, Hailong Yang*™,
Jing Li"®, Guiguang Ding**, Ke Zhang™

JD.com THU* USTC' BUAAY PKU T

Abstract

We introduce xXLLM, an intelligent and efficient Large Language Model (LLM) inference frame-
work designed for high-performance, large-scale enterprise-grade serving, with deep optimizations
for diverse Al accelerators. Current mainstream inference frameworks face practical challenges. On
the one hand, enterprise-grade serving struggles with hybrid and dynamic workloads, strict demand
for high availability of services, and distributed storage management. On the other hand, infer-
ence execution is bottlenecked by underutilized Al accelerators due to new paradigms of hardwares,
model architectures and inference algorithms.

To address these challenges, XLLM builds a novel decoupled service-engine architecture. At
the service layer, XLLM-Service features an intelligent scheduling module that efficiently processes
multimodal requests and co-locates online and offline tasks through unified elastic scheduling to
maximize cluster utilization. This module also relies on a workload-adaptive dynamic Prefill-
Decode (PD) disaggregation policy for instance scheduling and a novel Encode-Prefill-Decode
(EPD) disaggregation policy designed for multimodal inputs. Furthermore, it incorporates a dis-
tributed architecture to provide global KV Cache management for efficient Al accelerator memory
handling and robust fault-tolerant capabilities for high availability. At the engine layer, xXLLM-
Engine co-optimizes system and algorithm designs to fully saturate computing resources. This is
achieved through comprehensive multi-layer execution pipeline optimizations, including overlap-
ping CPU scheduling with Al accelerator operations to minimize computational bubbles, employing
dual-stream parallelism to overlap computation with communication, and fine-grained overlapping
of various computational units to maximize hardware utilization. These are complemented by an
adaptive graph mode that drastically reduces kernel launch overhead, alongside the innovative "log-
ically contiguous, physically discrete" xTensor memory management which resolves memory allo-
cation conflicts. xXLLM-Engine also further integrates algorithmic enhancements such as optimized
speculative decoding and dynamic Expert Parallel Load Balance (EPLB), collectively serving to
substantially boost throughput and inference efficiency.

Extensive evaluations demonstrate that xXLLM delivers significantly superior performance and
resource efficiency. Under identical TPOT constraints, XLLM achieves throughput up to 1.7 x that
of MindIE and 2.2 x that of vLLM-Ascend with Qwen-series models, while maintaining an average
throughput of 1.7x that of MindIE with Deepseek-series models. We have deployed xLLLM in
production to support a range of core business scenarios at JD.com, covering areas including LLM,
Multimodal Large Language Model (MLLM), and generative recommendation. These applications
encompass the JingYan Al chatbot, marketing recommendations, product understanding, customer
service assistants, and more. XLLM framework is publicly available at https://github.com/
jd-opensource/x11lm and https://github.com/jd-opensource/x1llm-service.

®Corresponding authors: {liutongxuanl, zhangke323}@jd.com, {guyue, yangtong}@pku.edu.cn, hai-
long.yang @buaa.edu.cn, lj@ustc.edu.cn, {dinggg, huichen} @tsinghua.edu.cn.


https://github.com/jd-opensource/xllm
https://github.com/jd-opensource/xllm
https://github.com/jd-opensource/xllm-service
https://arxiv.org/abs/2510.14686v1

xLLM Technical Report

Contents
1 Introduction

2 System Overview
2.1 XLLM-Service . . . . . o o v i i e
22 xLLM-Engine . . . . . . . . . e

3 xLLM-Service Designs
3.1 Online-Offline Co-location Scheduler Policy . . . . . . . ... ... ........
3.2 Dynamic PD Disaggregation Scheduler Policy . . . . . ... ... ... ......
3.3 Hybrid EPD Disaggregation Scheduler Policy . . . . ... ... ..........
3.4 Global KV Cache Management . . . . . . . . ... ... ... ...........
3.5 Fast Fault Recovery Architecture . . . . . . .. .. ... ... ... ........

4 xLLM-Engine Designs
4.1 Multi-layer Pipeline Execution Engine . . . . . . . ... ... ... ... ... .
4.2 Adaptive Graph Mode . . . . . . ...
4.3 Efficient Memory Management . . . . . . . . ... ..o
4.4  Algorithm Optimizations . . . . . . . . . . . . . v vttt
4.4.1 Optimized Speculative Decoding . . . . . .. ... ... ... .......
4.42 Dynamic EPLoadBalance . . . . . ... ... ... ............
443 Hierarchical DPLoad Balance . . . . . . . ... ... ... ... .....
4.5 Generative Recommendation . . . . . .. . ... L. Lo
4.5.1 Host-side Optimization . . . . . . . . . . . v v v it

4.5.2 Device-side Optimization . . . . . . . . . . ... ... ...

5 Evaluations
5.1 MainResults . . . .. . .
5.1.1 Benchmarking Performance . . . .. ... ... .. .. ..........
5.1.2  Business Serving Scenarios . . . . . ... ... e
52 Ablation Study . . . ...

6 Future Work
6.1 Fostering an Open and Diverse Hardware Ecosystem . . . . . .. ... ... ...
6.2 Cultivating a Vibrant and Responsive Model Ecosystem . . . . . . .. .. ... ..

6.3 Evolving into an Al-Native Application Framework . . . . . . . ... ... .. ..

7 Conclusion

10
12
13

13
13
15
17
19
19
20
21
22
23
24

24
24
25
26
28

30
31
31
32

32



xLLM Technical Report

1 Introduction

In recent years, large language models (LLMs) with parameters ranging from billions to trillions
(GPT [1], Claude [2], DeepSeek [3], LLaMA [4], etc.) have achieved breakthrough progress in the
fields of natural language processing and multimodal interaction, which drives an urgent demand
in the industry for efficient inference engines and service systems. These models are being rapidly
deployed in core business scenarios such as intelligent customer service [5], real-time recommen-
dation [6], and content generation [7]. However, how to reduce the cost of model inference and
improve computing efficiency remains a key challenge for large-scale commercial serving.

Current mainstream LLM inference frameworks (vLLM [8], SGLang [9], TensorRT-LLM [10], etc.)
face four key challenges in enterprise-level serving scenarios: First, in an inference cluster with hy-
brid deployment, online inference requests exhibit significant tidal characteristics [11, 12]. Current
scheduling systems fail to meet the service level objective (SLO) for online services while fully
leveraging idle periods of online services to increase the throughput of offline tasks. Second, ex-
isting Prefill-Decode (PD) disaggregation architecture [13—15] assumes static resource allocation
for the two phases, which cannot adapt to the dynamically changing request loads (i.e., input/output
lengths fluctuate) in real-world applications, resulting in low Al accelerator utilization and increased
SLO violation risks. Third, there is a lack of strategy to efficiently service multimodal requests
(i.e., image, voice and text input [16, 17]), including parallel processing for the encode phase and
fine-grained resource allocation accordingly. Fourth, as the scale of the inference cluster increases,
ensuring fast fault detection and service recovery for nodes or instances is critical to maintaining the
stability of inference services.

The evolving computing paradigms also present significant performance challenges on existing LLM
inference engines: First, they struggle to fully utilize the computing units of modern Al accelera-
tors [18, 19]. Second, the All-to-All communication overhead [20] and expert parallel (EP) load
imbalance in the Mixture of Experts (MoE) architecture [21, 22] restrict the scalability of the sys-
tem. Third, as the model context window continues to expand, efficient KV Cache management
becomes critical to inference performance [23]. Forth, Due to the unpredictable nature of infer-
ence requests, conventional static scheduling and operator strategies face difficulties in effectively
balancing workloads across computing units in Data Parallelism (DP).

To address above challenges , we propose XLLM, an efficient and intelligent LLM inference frame-
work featuring a service-engine decoupled design. XLLM achieves efficient support for enterprise-
level inference through the following innovations: at the service layer, XLLM has made ground-
breaking achievements in 1) unified elastic scheduling for online/offline requests, 2) workload-
adaptive dynamic PD disaggregated architecture, 3) novel Encode-Prefill-Decode (EPD) disaggrega-
tion for multimodal requests, and 4) a distributed cache management and fault-tolerance framework;
at the engine layer, xLLM enhances the resource efficiency across the full-stack of “communication-
computation-storage”, including 1) a multi-layer pipeline execution mechanism, 2) efficient comput-
ing and memory optimization, and 3) intelligent algorithm designs.

Specifically, xLLM-Service schedules online requests with preemptive execution and offline re-
quests in a best effort manner, to maximize resource utilization while strictly ensuring SLOs for
online services. To address the inherent limitations of the static PD configuration, xLLM incorpo-
rates an adaptive scheduler to dynamically adjust the proportion of PD instances for each request
and supports fast role reversal for instances, by monitoring key metrics such as Time to First Token
(TTFT) and Time Per Output Token (TPOT) [24]. For multimodal visual requests, xLLM auto-
matically selects the optimal EPD phase-disaggregation strategy based on pre-profiling, for the best
performance trade-off between throughput and latency. To handle failures such as hardware prob-
lems, network faults, or software errors [25], XLLM collects node error information, evaluates KV
recomputation or migration costs of interrupted requests, and makes optimal global rescheduling
decisions. Across multiple instances, XLLM supports KV offloading and routing migration within a
hybrid storage architecture, improving KV storage capacity and cache hit rates.

xLLM-Engine employs a multi-layer execution pipeline that incorporates hardware-specific op-
timizations: (i) at the framework scheduling layer, it implements asynchronous CPU-accelerator
scheduling to minimize computational idle time; (ii) at the model graph layer, it utilizes dual-stream
micro-batch parallelism to overlap computation with communication; (iii) at the operator level, it
achieves kernel computation and memory access overlapping. For computational efficiency, xLLM-



xLLM Technical Report

1 XLLM Engine {é}

[+ Prefill Instance System-level Designs

Iy = e
. Local KV | . !
xLLM Service (r—-::‘:. : &2 Adaptive Graph )i
s Lo e '
“Requess e
€~ TFault Recovery J Transfer [ - i

1
@ @ > L — drive ! g xTensor Memory J :
Global Scheduler L S i

z - . o
I Y I —O -
G @ > Hybrid EPD Disagg. manage ! : I =9 Multi-layer Pipeline J:
—( T 0l Eemmmmmmmm—r
i i schedule ——————_ @w-opﬁmize
Dynamic PD Disagg. :
@ @ — n g8 | drive [P seme sl o == ]
On/Offline Co-location | Decode Instance ' m Hierarchical DPLB J '
1 1
Local KV 1oy . 1
[=) BN

6_1'3_6 Global Cache Mgr J : @ Speculative InferenceJ :
1 1
1y Chie 1 l Dynamic EPLB J 1
Transfer ] ]
1 1
|| — ' Batching Scheduler J '
— i 4

Algorithm-driven Tech.

Figure 1: Overview of XLLM’s capabilities, with decoupled service-engine architecture.

Engine automatically fuses small kernels into a unified computation graph and dispatches them to the
accelerator in a single operation, significantly reducing kernel launch overhead. Regarding memory
management efficiency, xLLM-Engine introduces the xTensor memory management scheme, which
employs a “logically contiguous, physically discrete"" KV cache storage structure that resolves the
conflict between memory contiguity requirements and dynamic allocation needs. To further enhance
performance, xXLLM-Engine incorporates an adaptive speculative decoding mechanism, a redundant
expert-based load balancing algorithm for EP, and a hierarchical load balancing algorithm for DP.
Additionally, xLLM-Engine provides scenario-specific optimizations, such as for generative recom-
mendation — one of JD.com’s core businesses — where it achieves 23% performance improvement
through host-kernel operation overlapping.

In summary, we make the following contributions when developing xLLM:

xLLM Intelligent Service Capabilities

* We design a unified scheduling algorithm for online/offline workloads (§3.1).

* We implement a workload-adaptive PD disaggregation policy to address scenarios with rapidly
changing traffic load and request input/output lengths (§3.2).

* We propose a hybrid EPD disaggregation policy for multimodal requests, achieving intelligent
resource allocation across different phases (§3.3).

* We leverage multi-level KV Cache management and global KV Cache routing strategy to expand
KV Cache capacity and improve cache hit rates (§3.4).

* We design a multi-node fault tolerance architecture to ensure high service availability (§3.5).
xLLM Intelligent Engine Capabilities

* We achieve intelligent and efficient inference, through hardware-software co-design to improve
hardware computing efficiency, including pipeline execution (§4.1), graph optimization (§4.2),
and memory optimization (§4.3).

* We enhance inference performance through algorithmic optimizations (§4.4), including optimized
speculative decoding (§4.4.1), dynamic expert parallel load balance (§4.4.2), and hierarchical data
parallel load balance (§4.4.3).

* We optimize online inference for generative recommendation scenarios (§4.5).



xLLM Technical Report

I:' I:' I:l I:l Online Requests Offline Requests

|_ ___________________ 1
. I
Pre-Processing | Predictor Profiler !

Layer I Jl
Fm————————— 1 ———————————————————— 1
| |

. I Dynamic PD Hybrid EPD On/Offline |1
Scheduling 1 . o " q 5 |
La , Disaggregation = Disaggregation Co-locatiom | |
yer | I
" |dynamicpp disaggregate | online” "
allocation preempt

RN S PN -

Prefill Pool :

1

D D D D Encode Pool :

I

@ eao . |

Resource 1

B U

Global Cache Management

1

1

Decod 1 I
ecode poo 7 B g :

1

1

1

Fault Recovery Framework

Figure 2: System workflow of xLLM-Service.

2 System Overview

The overall architecture of XLLM is depicted in Figure 1. Upon request arrival, xLLM-Service
performs intelligent scheduling to distribute each request to one of three elastic instance pools and
manages instance migration across these pools during runtime. xLLM-Engine then drives efficient
request inference by orchestrating system- and algorithm-level optimizations.

2.1 xLLM-Service

We describe the workflow of xLLM-Service in Figure 2. The system comprises three primary lay-
ers: 1) a preprocessing layer consisting predictor and profiler, 2) a scheduling layer integrating
three policies (Dynamic PD Disaggregation Policy, Hybrid EPD Disaggregation Policy, and Online-
Offline Co-location Policy), and 3) a resource layer consisting of three heterogeneous instance pools.
Specifically, the Dynamic PD Disaggregation Policy leverages information from the predictor to
dynamically convert PD instances based on the workload status of the two instance types. The Hy-
brid EPD Disaggregation Policy utilizes the profiler to determine the optimal EPD disaggregation
strategy for multimodal requests. Concurrently, the Online-Offline Co-location Policy dispatches re-
quests according to their online or offline attributes. KV and image caches are offloaded and routed
among distributed instances, while the fault recovery framework ensures the high availability of the
entire service.

Elastic Instance Pools. Instances in a cluster are partitioned into three elastic pools:
> Prefill Instance Pool: This pool handles the prefill phase of text requests.
> Decode Instance Pool: This pool handles the decode phase of text requests.

> Encode Instance Pool: This pool handles the encode phase of multimodal requests.



xLLM Technical Report

We design the instances in Prefill and Decode pools as stateless, i.e., instances do not require phys-
ical migration between instance pools. Instead, they achieve flexible switching between Prefill-
Decode roles based on the type of request being processed.

Request Preprocessing. xLLM-Service implements unified resource management for both online
and offline requests. Online requests are submitted in a preemptive and deadline-prioritized manner,
and are co-deployed with best-effort offline tasks within the shared resource pool. During the run-
time of an offline request, the Unified-Scheduler dynamically scales it up/down based on the tidal
traffic characteristics of online requests. When an online request is submitted, it first passes through
the pre-processing layer, which consists of two modules:

> TTFT Predictor: A TTFT prediction model built for text requests. It evaluates SLO fulfillment
by analyzing queueing delays from each prefill instance queue and request input lengths, thereby
guiding instance allocation for the Dynamic PD Disaggregation Policy in the scheduling layer.

> EPD Profiler: A profiler for multimodal requests that uses binary search to identify optimal
deployment configurations: (1) EPD separation strategy, choosing from three approaches: EP-D
(i.e., aggregated execution of Encode and Prefill phases, with Decode phase executed separately),
ED-P, or E-P-D; (2) The maximum batch size for the Encoder phase; (3) The maximum number of
tokens for Prefill/Decode’s inputs. The Hybrid EPD Disaggregation Policy in the scheduling layer
will use the optimal configuration determined for phase disaggregation and task dispatching.

Intelligent Scheduling. The intelligent scheduling layer adjusts resource allocation for requests
across their full lifecycles. It contains three major scheduling policies designed for various scenarios:

> Online-Offline Co-location Policy: This policy implements a preemptive scheduler for managing
online and offline requests. When the load of online requests reaches the peak, they preempt some
offline requests on PD instances. To surrender resources to offline requests, when the load on P
instances decreases (usually earlier than on D instances), P instances continue to process offline
prefill requests and also migrate decode offline requests from D instances to P instances.

> Dynamic PD Disaggregation Policy: This adaptive scheduling policy is responsible for dynam-
ically managing P and D instance allocation. It intelligently assigns requests to suitable instances
using a heuristic algorithm guided by the TTFT Predictor. Furthermore, it implements a feedback
mechanism by continuously collecting performance data from computing instances, enabling run-
time monitoring and adjustment of allocation decisions to maintain system efficiency.

> Hybrid EPD Disaggregation Policy: This multimodal policy executes the three-phase disaggre-
gation based on strategies searched by the EPD Profiler. For the EP-D disaggregation, the fused EP
phase executes in the P instance pool; for the ED-P disaggregation, the fused ED phase executes in
the D instance pool; for the E-P-D disaggregation, the three phases execute separately in the three
instance pools. This deployment also enables multimodal requests to benefit from the adjustment of
Dynamic PD Disaggregation Policy.

KV-centric Storage Architecture. The instance storage employs a hybrid architecture (HBM-
DRAM-SSD) to cache KV values and image tokens. At the global level, XLLM takes the idea from
Mooncake Store [23] and extends it to domestic accelerators with specific optimizations. Routing
and reuse of caches across instances are determined by embedded intelligent routing strategies.

Efficient Fault-tolerant. The fault recovery framework of xXLLLM-Service supports fault detection
and fast recovery of instances from the three elastic pools (E, P, D). For requests on failed instances,
the architecture manages the migration of image caches between instances, and automatically de-
cides the optimal KV recomputation or migration strategy for handling affected KV caches.

2.2 xLLM-Engine

During request execution, the xLLM-Engine layer provides intelligent computing capabilities. We
achieve various joint inference accelerations between the computing system layer and the algorithm-
driven layer in the following ways:

Computing System Layer



xLLM Technical Report

Control Plane On-dema.nd Offline I'{equest Offlil.le Re'quest Mix dec()ding _______
Preemption Gating Migration Selection
Latency-relaxed instance Latency-strict instance
Online Prefill |
Resource Plane e Online / Offline

Mixed Decode

t-e Offline Prefill J—‘ Offline Decode J'__ >

Figure 3: Overview design of Online-Offline Co-location Scheduler Policy.

> Multi-layer Pipeline Execution Engine: In the framework layer, CPU tasks are scheduled asyn-
chronously to create a pipeline with inference computation, reducing computational bubbles; in the
model graph layer, a single batch is split to form a pipeline between two micro-batches, effectively
overlapping computation and communication; in the operator kernel layer, operations are pipelined
across different computational units, enabling computation and memory access to overlap.

> Graph Optimization for Dynamic Inputs: Small kernels in the decoding stage are fused into a
single computational graph. To handle variable sequence lengths and batch sizes, we parameterize
the input dimensions, and employ a multi-graph caching scheme to reduce compilation overhead.

> xTensor Memory Management: It uses a “logically continuous, physically discrete” KV storage
structure. It allocates physical memory space on-demand during token generation for each request,
while asynchronously predicting and intelligently mapping the physical pages required for the next
token. When a request completes, the existing physical memory will be reused to execute the next
request.

Algorithm-Driven Layer

> Speculative Decoding: xLLM-Engine incorporates an optimized speculative inference algorithm
that generates multiple tokens at once to boost throughput [26]. It further optimizes the computing
architecture through ways like asynchronous CPU processing and reduced data transfer.

> EP Load Balance: For MoE models, xLLM implements expert weight updates based on historical
expert load statistics, enabling effective dynamic load balancing during inference.

> DP Load Balance: For data parallel (DP) deployment, XLLM achieves fine-grained load balance
by kvcache-aware instance allocation, inter-DP requests migration, and intra-DP computing units
allocation.

We will elaborate on the detailed design of xLLM-Service in §3 and outline the optimizations within
the xLLM-Engine in §4. A comprehensive evaluation of XLLM will be presented in §5.

3 xLLM-Service Designs

3.1 Online-Offline Co-location Scheduler Policy

Online/Offline Request Characteristic. LLM services can be categorized into two types based
on their service modes: online and offline requests. Online requests, including those from chat-
bots [1, 2, 27], code completion [28-30], and recommendation systems [31, 32], constitute latency-
sensitive workloads. These services must respond immediately upon request arrival, often returning
each generated token in real time via streaming output. Consequently, they impose strict SLO re-
quirements on TTFT or TPOT to ensure a satisfactory user experience. In contrast, offline services,
such as document analysis [33] and intelligent data annotation [34], are non-real-time workloads
with minimal latency constraints and thus no stringent SLO requirements.

Furthermore, we observe that the request traffic for online services typically exhibits significant
volatility, including tidal variations at hourly or daily scales and sudden bursts at minute-level inter-
vals [11, 12]. While cluster auto-scaling [35] could theoretically mitigate resource underutilization
caused by tidal patterns, the slow cold-start latency of instances—involving model loading and com-



xLLM Technical Report

plex initialization—renders it ineffective for responding to rapid traffic spikes [36], increasing the
risk of service-level agreement violations.

Online/Offline Request Co-location Deployment. To address these practical challenges, we
adopt a hybrid deployment strategy that co-locates online and offline requests. In such a system,
offline requests can utilize idle resources during off-peak periods of online traffic. Conversely, dur-
ing online traffic peaks, offline tasks can be preempted, as they are not bound by strict SLOs. This
approach significantly enhances aggregate resource utilization and mitigates idleness during traffic
troughs. Although some recent work [37-39] also attempts to co-locate offline requests, they have
not explored the multi-instance scenario, especially for PD disaggregation.

Actually, the PD disaggregation architecture has demonstrated superior latency performance and is
increasingly becoming a mainstream design paradigm in industry [13, 23]. However, directly apply-
ing online-offline co-location to PD-disaggregated systems introduces critical PD load imbalance
issues: (1) such systems require the load ratio between prefill and decoding stages to align with their
respective resource allocation ratios; otherwise, one stage may become a bottleneck, causing block-
ing or resource underutilization in the other. (2) Furthermore, as these PD load variations exhibit
high volatility and burstiness similar to online traffic patterns, existing PD disaggregation techniques
struggle to effectively address this challenge.

Latency-Constrained Decoupled Architecture. We rethink the design of PD disaggregation ar-
chitecture under online-offline co-location deployment. The latency advantage of PD disaggregation
essentially stems from the separation of latency constraints: the decoding phase is highly sensitive
to per-step latency and cannot be blocked by long-duration operations, thus necessitating decou-
pling from the prefill phase. Inspired by this insight, we propose a latency-constrained decoupled
architecture, as illstrated in Figure 3. This design regards cluster resources as two pools: a latency-
relaxed pool (corresponding to original Prefill instances) and a latency-strict pool (corresponding to
original Decode instances). All tasks are then reassigned to one of the two resource pools based on
their inherent latency characteristics and requirements. Within this architecture, the decoding phase
of offline requests can be executed in either resource pool. This flexibility allows us to dynamically
adjust the load ratio between the two pools, thereby maximizing the overall resource utilization of
the cluster.

However, it also introduces another two challenges: (1) Complex Scheduling Space: since the de-
coding of offline requests can be performed on either type of instance, how to leverage this flexibility
to design new intelligent scheduling remains unknown. (2) Strict SLO Guarantee: the execution of
offline requests consumes resources, their prefill phase may block newly arrived online requests,
and their decode phase on latency-strict nodes may slow down the overall response speed. Both
scenarios can compromise the SLO satisfaction of online requests.

Solution 1 - Performance Bottleneck Analysis. We construct an LLM inference performance
model based on the Roofline Model [40] and online factor learning. This model is designed to
predict the latency, computation utilization, and memory utilization of both the prefill and decode
phases. Since decoding operations executed on /atency-strict instances typically account for a large
proportion of workloads and are highly performance-sensitive, we set balancing computational and
memory resources as the optimization objective. By analyzing performance bottlenecks through
this model, we can select more appropriate offline requests to merge into decoding batches, thereby
improving resource utilization efficiency.

Solution 2 - Efficient Preemption Mechanism. To strictly ensure that the SLO of online requests
remains unaffected, we introduce a preemption mechanism that allows online requests to preempt
offline requests. For offline prefill tasks running on latency-relax nodes, we propose a model execu-
tion interruption technique, which enables preemption within an acceptable latency range without
incurring additional model maintenance overhead. For decoding tasks running on latency-strict
nodes, we leverage the performance model to dynamically select requests for decoding batching,
ensuring that decoding latency always meets SLO constraints.



xLLM Technical Report

prefill Global Scheduler
unfinished
— > P*D - Instance Scheduler \
decod schedule \
ecode
finished Request Scheduler

-—

prefill

finished Instance Monitor
schedule

decode

D ————D~»P TTFT / TPOT, Req Len, Memory Util., etc. J
unfinished

report status

= 3

Stateless Instance

Local Scheduler Schedule Request

& Cache Migration . y
(T request queue Execution
Engine
(] migration queue

Figure 4: Overview design of Dynamic PD Disaggregation Scheduler Policy.

3.2 Dynamic PD Disaggregation Scheduler Policy

Inefficiency of Existing PD Disaggregation Policy under Workload Fluctuations. The Prefill-
Decode (PD) disaggregated inference architecture [13, 24, 23, 41] partitions computing instances
into dedicated prefill and decode instances, each handling their respective processing phases. This
design mitigates interference between prefill and decode requests, achieving superior performance
compared to PD co-located architectures [13].

However, we observe that most existing PD disaggregated systems employing static instance parti-
tioning schemes suffer from low hardware utilization and inadequate responsiveness to traffic bursts.
On one hand, existing analysis-based methods [13, 24, 23, 41] typically determine the PD ratio using
profiling or simulator data. These approaches remain effective only when request arrival patterns and
length distributions remain relatively stable. Under significant workload fluctuations, pre-collected
analysis data often fails to accurately capture real-time request characteristics, leading to mismatches
between preset load-balancing ratios and actual load requirements. On the other hand, when con-
fronting substantial variations in input/output lengths within production workloads, existing PD dis-
aggregation architectures [13, 42] generally adopt dynamic instance type adjustment strategies [43].
Nevertheless, online switching between prefill and decode instances typically involves multiple
steps—including monitoring, waiting for flip conditions, and instance restarting—which introduces
substantial latency overhead [15]. To address these limitations, we propose a Dynamic PD Dis-
aggregation Policy that adaptively adjusts resource allocation in response to real-time workload
characteristics.

Runtime Instance Monitor. Performance indicators such as TTFT and TPOT directly reflect the
capability of instances to process requests in the prefill and decode phases, respectively. They serve
as the core basis for evaluating whether an inference system can meet SLO requirements. Ideally,
prediction-based methods could be adopted to dynamically assess these indicators. However, while
TTFT exhibits relatively predictable characteristics (as its computation time is proportional to the
square of the input sequence length [44, 41]), due to the uncertainty in the length of output tokens
and transfer overhead, TPOT is difficult to accurately predict using traditional input/output features
and cluster load metrics. To address this issue, we deploy additional instance monitors to collect
real-time performance data from each computing instance. This data includes metrics such as the
number and length of prefill and decode requests, memory usage, TTFT, TPOT, and token generation
intervals. The system can further use these real-time performance indicators to dynamically evaluate
instance loads and adjust scheduling strategies.

Stateless Instance and Elastic Pool. As illustrated in Figure 3, Dynamic PD Disaggregation Pol-
icy adopts a design of stateless instances and elastic instance pools to enable fast and dynamic
switching of instance roles. First, it treats prefill or decode phase as the request attribute rather than
instance attribute. Instances are designed to be stateless, allowing each instance to process both
prefill and decode requests simultaneously. Additionally, to facilitate the management of multiple
instances, we further extend PD pools to four elastic instance pools (i.e., P, D, P—D, D—P) as de-



xLLM Technical Report

scribed in §2.1. When flipping an instance (switching its role), we only needs to remove the instance
from its original pool and move it to the new pool. This achieves zero-wait-time instance scheduling,
avoiding the overhead of instance restart or model reloading incurred in traditional systems.

SLO-aware Instance Role Switching. The instance scheduling strategy is dynamically adjusted
strictly based on SLO objectives: during the prefill phase, if it is predicted that existing instances
cannot meet the TTFT requirements, the conversion of decode instances is triggered; while during
the decode phase, when resource shortage occurs, the average token generation interval exceeds the
TPOT threshold, or prefill instances are idle, the conversion of prefill instances to decode instances
will be initiated to cope with sudden traffic surges. Specifically, when decode instances are reallo-
cated to prefill instances, the scheduler prioritizes selecting the instance with the lightest load (i.e.,
the fewest tokens being processed) from the P—D pool for role conversion, and always ensures
that at least two decode instances are available; conversely, when prefill instances are reallocated
to decode instances, the scheduler prioritizes scheduling from the D—P pool, which avoids local
overload and maximizes resource utilization.

SLO-aware Request Scheduling. The request scheduling scheme adopts a two-level architecture:

> Global Request Scheduler: The scheduler implements a greedy strategy of prioritizing the light-
est load, while being strictly restricted by SLO constraints. For prefill requests, the scheduler first
evaluates the estimated queuing latency of each instance in the Prefill pool, selects the candidate in-
stance with the smallest latency, and then invokes the TTFT prediction model for verification: if the
estimated TTFT can still meet the SLO requirements after assigning the request to this instance, the
request is allocated immediately; otherwise, it continues to find a suitable instance in the D—P pool.
If no instance can meet the TTFT requirements, the instance scheduling mechanism is triggered to
allocate resources from the decode side. For decode requests, the scheduler gives priority to having
the original prefill instance continue processing (to avoid KV Cache transfer overhead); secondly,
it selects the instance with the fewest running tokens in the Decode pool, and checks whether the
total number of tokens in its current batch is below the memory capacity upper limit and comput-
ing throughput limit determined by pre-analysis, so as to ensure that the new request will not cause
TPOT to exceed the standard.

> Local Request Scheduler: Each instance adopts a refined queue management strategy internally.
KV Cache transfer events are placed in an independent migration queue and processed sequen-
tially in accordance with the FCFS principle; for forward requests, an innovative scheme combining
Chunked Prefill [45] and Continuous Batching [8] is adopted: on the premise of ensuring that de-
code requests are prioritized to enter the running batch, the remaining computing resources are used
to process chunked prefill requests in parallel [46].

3.3 Hybrid EPD Disaggregation Scheduler Policy

Challenges of Multi-modal Inference. The inference process of multimodal large language mod-
els (MLLMs) [47-52] typically consists of three phases: the image encoding phase (for extracting
image features), the prefill phase (for encoding images and text prompts, feeding them into the
language model to generate the first output token, and caching intermediate states), and the de-
code phase (for iteratively generating subsequent tokens based on the cached data). Existing main-
stream inference engines, such as VLLM [8], Text-Generation-Inference [53], SGLang [9], and Dist-
Serve [13] are all tailored for LLMs, and thus face several challenges in handling inference tasks for
MLLMs:

> Insufficient Parallelism: For example, the inference of visual models and language models can
be executed in parallel, thus improving the utilization of computing resources. However, most ex-
isting inference engines [54] adopt a serial strategy, failing to exploit the inter-request parallelism
effectively.

> Coarse-grained Scheduling: The decode phase is a memory-intensive task, which is suitable
for batch processing to improve throughput [55]; the prefill phase is computationally intensive,
and it is appropriate to adopt the chunked prefill [45] together with the decode phase to balance
latency and throughput [56]. The computation and memory access overhead of the encode phase
lies between the two, and it can also benefit from independent scheduling and batch processing.
Nevertheless, existing engines process encode and prefill in a combined manner, failing to perform

10



xLLM Technical Report

TPOT & TTFT SLO Target

Hybrid EPD Disaggregation

EPD Profiler Encode Instance Prefill Instance Decode Instance
l Vision Model asynd transfer Language Model J aSY“L transfer Language Model J
ED + P Image Cache KV Cache | Image Cache | KV Cache
+
12 v Batch Mlgralc Batch Migrate Batch Migrate
Schcdu]u Schuiulcr Scheduler Scheduler Scheduler Scheduler
E+ P + D ”

Figure 5: Overview design of Hybrid EPD Disaggregation Policy.

phase-specific batch processing and lacking support for chunked prefill. Coarse-grained scheduling
makes it difficult to finely control the execution time.

> Disaggregation Strategy: Existing architectures such as DistServe [13] reduce resource interfer-
ence by decoupling the prefill and decode phases. However, in multimodal inference, encoding and
prefill jointly affect TTFT, while prefill and decode jointly determine TPOT. Under different loads,
how to select the optimal decoupling strategy remains a challenge [57]. For example, the perfor-
mance of strategies such as E+P+D, EP+D, and ED+P in different tasks has not yet been evaluated,
and in-depth analysis is required to guide system design.

Dual-stream Parallel. As illustrated in Figure 5, we adopt a dual-stream parallel mode, where the
visual model and language model are assigned to separate execution streams: the visual stream is
dedicated to performing computationally intensive image encoding tasks, while the language stream
handles the prefill and decode operations for language generation. By isolating workloads into
distinct streams, our system achieves concurrent execution of heterogeneous phases from different
requests.

Three-Phase Disaggregation. To address the differences in computation and memory access
characteristics among tasks in each phase of multimodal inference, we propose a phase-aware
scheduling strategy. Requests are subdivided into three phases within an instance: encode, prefill,
and decode. Batch processing and scheduling optimizations are performed for each phase respec-
tively:

> Optimized Batch Processing: The maximum batch size for image encoding and the token budget
for the language model are set according to the user’s SLO. Specifically, during system startup,
we use a binary search method to profile the maximum encoding batch size and the model’s token
budget, ensuring that the execution time of subsequent batch processing tasks in each iteration is
less than the TPOT SLO. In each iteration, we (i) first add all running decode requests to the current
batch; (ii) then check for any chunked prefill tasks that have been partially computed. If such tasks
exist, we add them to the batch; (iii) if there are no chunked prefill tasks, we check for pending
encoding tasks and add them if any exist. This approach aims to complete requests in the prefill
phase as quickly as possible, reducing their TTFT. New requests’ encoding phases are processed
only when no requests are in the prefill phase.

> Phase-aware Scheduling: To address the difficulty in selecting decoupling strategies for mul-
timodal inference tasks, XLLM proposes the Hybrid Encode-Prefill-Decode Disaggregation archi-
tecture, an innovative multi-instance collaborative inference framework. In this architecture, each
instance only executes part of the subtasks among the three phases, while the remaining phases are
processed by migrating requests to other instances, thereby avoiding resource waste and interfer-
ence. During runtime, our system automatically selects the optimal disaggregation strategy based
on historical request profiling (via EPD Profiler) to dynamically balance throughput and latency ob-
jectives. Compared with the traditional approach of binding instances to single-phase or full-phase
tasks, this architecture significantly improves the overall system processing capability and resource
utilization efficiency while meeting SLO requirements.

11



xLLM Technical Report

ETCD Global Multi-Level KV Cache Management
Master Select Master Master
=
Election
E‘Glbl &2 Global Stave
=2 Global v obal
(2 Cache & Load Write Cache & Schedul KVCache Mgr i —
' Metric Sync Load Metrics (o o
J )
=  Service Watch & Notifs I R Report Cache & R
] Discovery z € I Load Metrics esp
| Prefill Instance 1| Decode Instance
HeartBeat (Lease) Local KV

R
=

Local KV
Cache
KV Cache
Transfer

Cache

KV Cache
Transfer

Figure 6: The framework of Global Multi-Level KV Cache Management.

3.4 Global KV Cache Management

During the decode phase of LLMs, subsequent tokens are generated autoregressively one by one. Al-
though the computational cost per step is relatively low, frequent access to the historical KV Cache
is required, making memory bandwidth the primary bottleneck. As model size expands and con-
text window grows, the memory consumption of the KV Cache exhibits an exponentially increasing
trend. For instance, a context of 128K tokens may consume over 40GB of memory, severely strain-
ing the memory resources of single-GPU devices [3].

Although current mainstream optimization solutions like vLLM [8] and FasterTransformer [58] have
made significant progress in single-instance environments, many critical issues remain unresolved.
In long-context scenarios, the time required for the prefill phase increases dramatically, while the
decode phase suffers from intense competition for memory bandwidth. To meet stringent SLO
requirements (e.g., TTFT < 2s, TBT < 100ms), one instance often has to reserve excessive re-
sources, instead of leveraging resources in other instances. This significantly restricts the overall
cluster resource utilization. To address these challenges, we propose a global multi-level KV Cache
management system with a memory-compute integrated architecture, as illustrated in Figure 6.

Distributed Storage and KV Transfer. We adopt the Mooncake Store [23], a KV cache-centric
storage engine, as the underlying storage infrastructure for XLLM’s KV Cache, along with the Moon-
cake Transfer Engine as the transmission component. Mooncake Store leverages striping and paral-
lel I/O techniques to fully utilize the aggregated bandwidth of multiple network cards. It provides
three persistence strategies—Eager, Lazy, and None—to meet data durability requirements across
various scenarios. Additionally, Mooncake Store offers flexible object storage capabilities, support-
ing multiple replicas and eventual consistency, which effectively mitigates hot-spot access pressure.
As the core transmission engine of the system, Mooncake Transfer Engine [23] automatically selects
the optimal transmission path based on data location and abstracts low-level complexities through a
unified Segment and BatchTransfer interface.

Multi-Level KV Cache Management. At the global level, the system employs ETCD [59] as a
metadata service middleware to achieve cluster service registration, load information synchroniza-
tion, and global cache state management. Each computing instance maintains a local multi-level
KV Cache pool (HBM > DRAM > SSD) adhering to the strict consistency rule: “if data resides in
HBM, it must also be present in DRAM?”. Specifically, when local operations involving KV cache
(including prefix cache [8]) loading and offloading occur, these operational events are aggregated at
regular intervals and transmitted to the xLLM-Service via ETCD heartbeat mechanisms, enabling
unified global monitoring and management.

12



xLLM Technical Report

KV Cache-aware Scheduling. In terms of scheduling strategy, the system implements a decision-
making mechanism based on KV cache utilization, which operates through three key steps: (1)
Prefix Matching Detection: calculating the KV cache reuse rate for each candidate node via prefix
matching analysis; (2) Performance Estimation: estimating the expected latency for different nodes
according to current load conditions and cache hit rates; (3) Optimal Node Selection: identifying
the node with the optimal overall performance for request processing, thereby enabling dynamic
offloading and migration of KV cache.

3.5 Fast Fault Recovery Architecture

Current fault handling mechanisms are mainly designed for model training [60—62] and cannot be
directly applied to large model inference due to its low-latency requirements. Specifically, existing
approaches primarily adopt a checkpoint-then-recovery method [63-65] for fault handling, which
periodically stores model data as checkpoints in distributed storage and reloads the most recent
checkpoint after a failure occurs [66]. As model parameters increase, the overhead of storage and
loading gradually grows. This is still acceptable in training since there are no strict latency require-
ments [67], but in inference, it may cause all high-priority requests on the failed instance to time
out, resulting in severe losses.

To address this issue, we propose an efficient failover architecture specifically for large model infer-
ence, with targeted optimizations in two aspects: fast request migration and fast instance recovery.
Fast request migration ensures the SLO of high-priority tasks mainly through an efficient kv cache
quick recovery strategy, while fast instance recovery achieves low-overhead recovery through effi-
cient masking of computation and communication. Through the above optimization methods, we
achieve fast fault recovery, greatly reducing the performance and economic losses caused by faults.

4 xLLM-Engine Designs

4.1 Multi-layer Pipeline Execution Engine

Traditional autoregressive LLM inference relies on single-stream sequential execution. This conven-
tional approach fails to fully exploit the parallelism capabilities of modern hardware, often leading
to computational resource underutilization, communication stalls, and cascading blocking delays in
heterogeneous computing environments [68, 69]. As illustrated in Figure 7, the system’s perfor-
mance is hindered by three primary sources of inefficiency: (1) CPU-Accelerator Dependency: At
the framework level, a rigid dependency between the CPU and the accelerator forces the accelerator
to remain idle during task scheduling and data processing phases, creating significant “computation
bubbles” [68, 3]. (2) Communication Latency: In both distributed workloads and complex model
layers, communication delays interrupt continuous computation, preventing the full utilization of
available hardware resources [69, 70]. (3) Architectural Bottlenecks: On certain Al accelerators,
the compute-focused (tensor cores) and general-purpose (vector cores) computation units lack a
shared high-level cache (e.g., L1 or SRAM). This architectural separation necessitates additional
data transfers between them, which introduces latency and leads to the underutilization of the spe-
cialized computation units.

To address these challenges, we propose a three-tier asynchronous pipeline parallelism design span-
ning the framework scheduling layer, the model graph layer, and the operator layer, as shown in
Figure 7, with the goal of maximizing hardware efficiency.

Framework-Layer Scheduling-Execution Overlap. In a typical sequential execution procedure,
the accelerator remains idle while the CPU performs scheduling to prepare the input data batch for
the next computation cycle. This serial dependency creates significant latency and underutilizes the
accelerator.

To eliminate this bottleneck, we introduce an asynchronous pipelined scheduling mechanism that
decouples CPU scheduling from accelerator execution. The core idea is to overlap these two stages:
while the accelerator is executing the forward pass for the current batch, the CPU concurrently
assembles the batch and prepares the metadata for the next batch. This parallel workflow effectively
hides the latency of CPU-side scheduling and data preparation. The process is as follows: (1)
Accelerator Compute: The accelerator is busy executing the forward pass for the current iteration,

13



xLLM Technical Report

CPU

w/o Overlap Schedule 0 Forward 0 Schedule 1 Forward1 = ...... Schedule N Forward N
A Al Accelerator
Al accelerator bubble Al accelerator bubble
CPU hedule 0 hedule 1 hedule 2 hedule 3 000 Schedule N
w/ Overlap T T
Al Accelerator Forward 0 Forward 1 Forward 2 e Forward N
lmulllzle Framework Layer
£ . q q . Batch 0
Stream 0 Attn0 Dispatch 0 |  MoE 0 Combine 0 | «+++-- Attn 1 Dispatch 1 MoE 1 Combine 1

w/o Overlap

& Communication

Stream

Batch 1

Computation resource waste Computation resource waste

1 |

I Dispatch 0 | Dispatch 0 | Combine 0 | Combine 0  Dispatch 1 | Dispatch 1 | Combine 1 | Combine 1
1 |

1

1

1

Stream - 2

w/ Overlap - " 1
L“‘;‘t"“‘“‘“’“ Attn 0 Attn0 | MoE0 MoE 0 Attn 1 Attn 1 MoE 1 MoE 1
Stream 1 -
——y Ve
Full utilization Model La)er
" . N . . Matri . it
wio Overlap Al Comp. Unit Vector Matrix Vector Matrix Vector Matrix Vector Matrix atrix Cogp. Uni
S NI 3 A 3 A Vector Comp. Unit
Matrix Comp. Unit idle Matrix Comp. Unit idle Matrix Comp. Unit idle
{./I. i ] 1
Computation 4y, | Atnl, { Atnl,  Attnly  MoEL, | MoEl, | MoEl, | MoE Ly
Stream - 1 P [ — } ¥ " [ } }
w/ Overlap f g
Computation | Amly b A | Attn 1 Attn 1y MoE 1 MoELl, | MoEl, | MoEly
} } b ¥ 3 I ¥ F

e
Full utilization Operator Layer

Figure 7: Multi-layer pipeline execution engine.

which will eventually produce output. (2) CPU Schedule: Instead of waiting, the CPU immediately
begins scheduling the batch for the next iteration. To do so, it uses a set of placeholder tokens that
stand in for the yet-to-be-computed output. This allows all CPU-side batch preparations to occur
concurrently with the accelerator’s computation. (3) Seamless Transition: Once the accelerator
completes the forward pass and the real output is generated, a fast replacement operation swaps the
placeholder tokens with the real generated tokens. Since all scheduling is already complete, the
accelerator can begin the next forward pass with minimal delay.

nn

By transforming the conventional serial “prepare-then-compute"" workflow into a parallelized
pipeline, our method effectively masks scheduling latency behind accelerator computation time.
This design eliminates idle execution “bubbles"" in the accelerator timeline, thereby maximizing
hardware utilization and enhancing overall system throughput.

Model-Layer Computation-Communication Overlap. Maximizing the overlap between com-
putation and communication is a critical design principle in recent LLM frameworks [3, 71]. This
strategy is essential for hiding the significant latency of data transfers and achieving high hard-
ware utilization. However, architectural constraints can make this challenging. For instance, on a
typical GPU, compute-focused units (Tensor Cores) are tightly coupled with general-purpose units
(CUDA Cores) within a Streaming Multiprocessor (SM). Consequently, when an SM is allocated
to a communication-related task, its powerful Tensor Cores often sit idle, leading to wasted com-
pute potential. In contrast, our target accelerator architecture allows for more flexible, independent
allocation of its Cube (matrix) and Vector (general-purpose) units. We leverage this flexibility to
address the aforementioned challenges by introducing a dual-stream pipeline architecture that uses
micro-batch splitting to effectively overlap computation and communication.

Specifically, our architecture consists of a Computation Stream for compute-bound tasks (Attention,
ExpertForward, efc.) and a Communication Stream for data distribution and collection tasks (MoE
Dispatch and Combine). To enable pipelining and maximize overall pipeline throughput, we parti-
tion a macro-batch B into n micro-batches [68] {b1, b, - - - , b, }. The two streams asynchronously
execute tasks for different micro-batches. On the one hand, our scheduling policy dynamically deter-
mines the optimal execution order of the micro-batches. On the other hand, our resource scheduling
policy adaptively allocates an appropriate number of Al Cores (Vector Cores and Cube Cores) to
the Communication Stream and Computation Stream respectively. Figure 7 illustrates the case of
n = 2, where the Communication Stream performs the Dispatch operation for micro-batch b, while
the Computation Stream executes the ExpertForward pass for the preceding micro-batch by, 1.

14



xLLM Technical Report

Operator-Layer Matrix-Vector Units Overlap. On heterogeneous Al accelerators, the serial
scheduling of matrix and vector computation units often results in significant underutilization, as
one class of units remains idle while the other is active. This inefficiency motivates a strategy of
operator-level matrix-vector overlap to fully exploit the hardware’s parallel capabilities. However,
a naive implementation via coarse-grained parallel scheduling, without a systemic resource coordi-
nation mechanism, is also problematic. This approach frequently leads to disordered contention for
limited compute units, causing resource fragmentation and access conflicts that ultimately degrade
overall performance.

To address these challenges, we propose a dynamic resource allocation mechanism for computa-
tion units (Cube and Vector Units) based on real-time load monitoring. This mechanism enables
a deep pipeline across heterogeneous compute units by dynamically and adaptively assigning the
precise type and quantity of resources required for each concurrent operator. By doing so, it miti-
gates resource contention and ensures that parallel operators execute within highly overlapping time
windows, achieving precise computational overlap and maximizing hardware utilization.

We formulate the dynamic resource allocation as an optimization problem. Let C and V be the sets
of matrix and vector operators, respectively. Let z; be the number of matrix units (Cube) allocated
to the i, matrix operator (¢ € C), and y; be the number of vector units (Vector) allocated to the 7y,
vector operator (j € V). For simplicity, we assume all operators begin execution simultaneously,
without considering data dependencies or communication latency. Based on the known computa-
tional workload of each operator, our mechanism seeks to find an optimal resource allocation that
minimizes the maximum difference in execution times between any two operators. This objective,
which we term the alignment loss (Li4»), effectively synchronizes the completion time of all par-
allel kernels. The optimization problem is defined as:

argmin,,, ., Lalign = hax |T; — T,
W W. 0
T=—"*+ Ti=—"2 le < Ncube, § Y; < Nvectors
“YCube * T3

J .

YVector * Yj ieC jev
where T’ is the operator execution time, W is its computational workload, v.upe and vyector are the
peak performance per unit, and N.,pe and Nycctor are the total available matrix and vector units.
The meaning of this optimization objective is to minimize the maximum difference in execution
time between any pair of concurrent matrix and vector operators.

4.2 Adaptive Graph Mode

The performance of LLM inference deployment is often impeded by Host-side CPU overhead, par-
ticularly when the computation graph is composed of many fine-grained operators [72]. This bottle-
neck manifests as both significant CPU-Accelerator synchronization latency, measured at 5 ~ 5045
per invocation from frequent kernel launches, and suboptimal hardware utilization due to idle accel-
erator cycles between these intermittent operator executions.

Mainstream Al accelerators such as NVIDIA GPUs (with CUDAGraph) [73] and Ascend NPUs
(with ACLGraph) [74] employ computation graphs to try to handle above issues and enhance host-
side scheduling performance. As illustrated in Figure 8, traditional Eager Mode relies on the CPU
to submit a multitude of small, intensive tasks, leading to frequent launches of small kernels on the
accelerator. In contrast, the Graph Mode enables the CPU to submit one large task, after which the
accelerator internally executes the small kernels in a streamlined fashion. This method significantly
reduces both launch overhead and “accelerator bubbles” (idle cycles). Specifically, the Graph Mode,
such as ACLGraph [74], comprises two distinct phases: graph capture and graph execution. During
the graph capture phase, the entire computation flow is recorded to capture the sequence of kernel
calls and their dependencies, including kernel launch parameters. This recorded workflow is then
pre-compiled into a replayable directed acyclic graph (DAG) object. It is important to note that
during this phase, tasks are merely staged within the model’s runtime instance and are not actually
executed. In the subsequent graph execution phase, the entire graph is launched via a single CPU
call. The accelerator then follows the pre-defined process autonomously, without real-time interven-
tion from the CPU. This effectively consolidates many individual kernel launches into one single
graph launch.

15



xLLM Technical Report

S S S
@ 1|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

w/ Graph -l / ,,,,,,,,,,,,,,,,,,,,,,,,, j: ,,,,,,,,,,,,,,, -

Launch Overhead

cudaGraphExecKernelNodeSetParams ! Speed Up

Figure 8: Pipeline comparison between Eager Mode and Graph Mode.

Building upon this foundation, we further advance the practical implementation of the ACL-
Graph [74] and propose our Adaptive Graph Mode through addressing key challenges including
dynamic shape adaptation, memory reuse conflicts across multiple graphs, and compatibility with
custom operators. This enables the pre-compilation of kernel sequences, memory copy operations,
and synchronization points into a single computational graph, which is then dispatched to the Al ac-
celerator in one execution. Consequently, our approach significantly reduces kernel launch overhead
and minimizes accelerator idle periods, maximizing overall hardware efficiency.

Dynamic Shape Adaptation via Partial Graph and Dimension Parameterization. ACL-
Graph [74] fixes kernel parameters and memory sizes during the graph capturing phase. However,
in real-world scenarios, LLMs typically process inputs with variable sequence lengths and batch
sizes, making this static capturing characteristic difficult to adapt to dynamic input requirements.
To address this issue, dimension parameterization can be employed, treating key dynamic dimen-
sions—such as batch size and sequence length—as input parameters to the entire graph, thereby
enhancing flexibility. During memory allocation and kernel configuration, these dynamic param-
eters are used to compute actual required values; for example, the memory size can be calculated
using the formula: alloc_size = batch_size X seq_len x hidden_size. At the graph launch stage,
the actual batch size and sequence length are passed as parameters to ensure the graph adapts to
varying input dimensions.

Although parameterization can handle variations in dynamic dimensions, certain operator imple-
mentations on different hardware may not support dynamic dimension parameterization. To over-
come this, we propose the Partial Graph Mode: the model is partitioned into modules with simple
dynamic shapes (such as FFN and LayerNorm, which only have the num_tokens dimension as dy-
namic) and modules with complex dynamic shapes (such as Multi-Head Attention, which involves
multiple dynamic dimensions like batch_size, kv_seq_len, and g_seq_len). Modules with simple
dynamic shapes are extracted and compiled for execution using Partial Graph Mode, while those
with complex dynamic shapes are executed in Eager mode. Our Adaptive Graph Mode dynamically
selects the most appropriate mode above based on the current input shapes. This intelligent selection
ensures optimal performance across varying workload conditions.

Table 1 compares the key characteristics of three dynamic shape processing mode. The traditional
Eager Mode requires no pre-compilation but incurs high scheduling overhead at runtime due to N
kernel launches (where N is the number of operators). The Full Graph Mode, by fixing shapes,
allows single compilation and very low launch overhead, yet its lack of dynamic adaptability limits
its applicability. In contrast, the proposed parameterized and multi-caching Partial Graph Mode
strikes an optimal balance. It achieves execution performance comparable to that of a full graph
while maintaining high flexibility, by trading a manageable number of pre-compilations (M <
Nyeq, where M is the number of cached graphs and N, is the number of actual requests) for the
high efficiency of a single graph launch.

16



xLLM Technical Report

Method | Eager Mode | Full Graph Mode | Partial Graph Mode
Compilation Times | 0 | 1 | M
Low Launch Overhead ‘ X ‘ ‘
Low Memory Usage ‘ ‘ X ‘ /x
High Flexibility | | X |

Table 1: Comparison of different shape handling solutions. Our Adaptive Graph Mode dynamically
selects the most appropriate mode above based on dynamic shapes.

Efficient and Reusable HBM Memory Pool.  During the graph capture process, the specific
virtual addresses of input, output, and intermediate tensors are recorded. To prevent illegal memory
access, which can occur when the address of an input tensor changes during an actual inference
request, we develop a shared HBM memory pool. First, during graph initialization, a sufficiently
large, contiguous block of HBM memory is pre-allocated to serve as the graph’s memory pool.
Subsequently, for internal address management, computation graph intercepts all tensor memory
operations and re-describes them using offsets relative to the pool’s base address, rather than absolute
virtual addresses.

Before the graph is launched, the user-provided input tensor is copied into the HBM memory pool at
the offset pre-defined for the graph’s input. After graph execution is complete, the data from the out-
put tensor is copied to the user-specified output buffer address. Furthermore, internal tensors within
the graph are also managed using fixed offsets within the pool, ensuring safe reuse and efficient
memory management. This managed memory pool guarantees that all addresses used internally by
the graph are known and safe, which adapts to external address changes with only the overhead of
memory copies before and after launch.

Integrating Custom Operators. Integrating performance-critical custom operators, such as
PageAttention and AllReduce, into the Adaptive Graph Mode presents a unique challenge. The
internal implementation of these operators often relies on CPU to perform just-in-time shape calcu-
lations and kernel configurations based on runtime inputs. This dynamic behavior conflicts with the
pre-compiled nature of computation graph.

To resolve this, we modified the implementation of such operators. The first step is to identify
custom operators within the graph that have dynamic shape dependencies. We then refactor these
operators to accept shape-related parameters (e.g., dimension sizes or loop counts, which can only
be determined at runtime) directly as kernel arguments. This approach avoids hard-coding these
values on the host side during the graph capture phase. As a result of this modification, these custom
operators can be successfully captured by our computation graph. By leveraging the graph’s param-
eterization mechanism, the required dynamic arguments for these kernels can be derived from the
graph’s main input parameters and passed along during execution. This method achieves seamless
integration of essential custom operators within the Adaptive Graph Mode framework.

4.3 Efficient Memory Management

LLM inference deployment faces a critical balance between memory utilization and computational
efficiency, particularly in autoregressive generation tasks where efficient KV Cache management
has become a key challenge. Traditional solutions fall into two categories: First, contiguous mem-
ory allocation approaches that statically pre-allocate memory space based on maximum sequence
length before inference, ensuring physical contiguity of KV Cache. While this improves compu-
tational efficiency, it results in low memory utilization. Second, PagedAttention [75] approaches
that support larger batch sizes through paging mechanisms, but frequent access to block tables sac-
rifices computational efficiency, and the increased parameters complicate operator development and
debugging. To address this challenge, inspired by virtual memory management in operating sys-
tem field [76, 77], we propose the xTensor memory management scheme, which adopts a "logically
contiguous, physically discrete" KV Cache storage structure that resolves the contradiction between

17



xLLM Technical Report

= .
Virtual Address Space 9 Scheduler & Physical Page Pool

On-demand Mapping

Request R1:  Virt_start ... Virt_end Addr Mapping Pagel: Page2:
S Scheduli —_— -PagelD: P1 -PagelD: P2
Request R2: Virt start ... Virt end mart Scheduling; -Status: Reusable -Status: Mapped
4 ’ = = Gt LD LaTke -Owner: R1 -Owner: R2

Async Pre-mapping

Req T

Request R1: I am a 25-year-old woman. Please give some recommendations for moderately priced clothes.

MaxSeqLen

% Inference
Requests

Request R2: Write a short story about a young explorer discovering a hidden ancient civilization.

Figure 9: The framework of xTensor memory management.

Features | Contiguous Allocation | Paged Attention | xTensor (Ours)
Efficient Memory Usage ‘ X ‘ ‘
Efficient Computation ‘ ‘ X ‘
Large Batch Support ‘ X ‘ ‘
Operator Development Complexity ‘ ‘ X ‘

Table 2: Comparison of memory management strategies.

memory contiguity and dynamic allocation, thereby achieving both high computational efficiency
and high memory utilization (as shown in Table 2).

Physical Memory Page Management and Virtual Memory Tensor Management. Figure 9 il-
lustrates the xTensor memory management framework. During service initialization, based on the
available memory size for KV Cache, a large number of fixed-size discrete physical memory pages
are pre-allocated. Each physical page maintains a triple state (Pagel D, Status, OwnerSession),
where Pagel D represents the page identifier, OwnerSession indicates the service owning the
page, and Status € {F'ree, Allocated, M apped, Reusable} represents states of free, allocated,
mapped, and reusable to dynamically track physical page usage. Subsequently, each inference re-
quest is pre-allocated with a logically contiguous virtual address space with an address range equal
to MaxSeqLen, where this virtual address space is not actually associated with physical pages dur-
ing allocation. This decoupled design provides operators with a virtual view of KV Cache stored in
contiguous memory, thereby masking the discrete nature of underlying physical pages [78, 79].

On-demand Memory Mapping. During actual allocation, the scheduler dynamically maps phys-
ical memory pages on-demand based on the actual sequence length of requests. When a sequence
generates new tokens and KV Cache needs expansion, the scheduler retrieves one or more free
pages from the pre-allocated physical page pool and maps these physical pages to the next available
contiguous address location in the request’s virtual address space. Since physical memory is gradu-
ally mapped as sequences grow, short sequences only require a small amount of physical memory,
thus avoiding the memory waste of contiguous allocation strategies that still require reserving space
according to maximum sequence length for short sequences.

After memory mapping is completed, kernel access to virtual addresses can automatically locate the
corresponding physical page phypage;q, and of fset:

virt_addr — virt_start
phypageid. ;

page_size

2

of fset = (virt_addr — virt_start) mod page_size,

where virt_addr and virt_start represent the current virtual address and starting virtual address
respectively, and page_size represents the physical page size.

18



xLLM Technical Report

CPU Requests Schedule Input Input Output Schedule Input
w/o Overlap Draft model Target model . Draft model Target model,
NP
v Forward Forward Vel Forward Forward
CPU threadl Requests Schedule Input Input Requests Schedule Input Input
w/ Overla 000
P NPU Draft model Target model Validate Draft model Target model Validate
Forward Forward Forward Forward
CPU thread2 Output

Figure 10: Comparison between original and our optimized speculative decoding.

Low Overhead Allocation. If virtual address to physical page mapping is immediately released
upon request completion, new requests require remapping physical pages, but the Unmap oper-
ations on accelerators incur significant overhead. Therefore, under high load conditions, frequent
M ap/Unmap operations become performance bottlenecks, especially for numerous short-term con-
current requests. We adopt request ID reuse and asynchronous pre-mapping designs to reduce la-
tency from M ap/Unmap operations.

» Physical Page Reuse. Upon request completion, physical pages are not immediately released
but marked as Reusable. When new requests arrive, if their required KV Cache size matches
some Reusable physical page set, that page set is remapped to the new request’s virtual address
space. This saves expensive M ap and Unmap operations through fast virtual address remapping,
particularly suitable for scenarios with concentrated request length distributions.

* Asynchronous Pre-mapping. During current token decoding, the next token’s required physical
pages are asynchronously predicted and mapped. Since new token writes to KV Cache occur
after current token decoding computation, this design can partially hide physical page mapping
operations, significantly reducing page mapping latency.

Operator Adaptation. The decoupled design of xTensor’s physical memory pages and virtual
contiguous memory requires the adaptation of existing operators. On one hand, to accommodate
KV Cache contiguity in virtual address space, operators no longer require block_table parameter
input. Whether for attention operators or write_kvcache operators responsible for writing KV
Cache during Prefill and Decode phases, only the starting virtual address and related offsets need to
be passed in, with the system automatically associating virtual addresses to corresponding physical
pages during operation. On the other hand, accelerators lack native contiguous KV FlashMLA [80]
operators and only support PagedFlashMLA [80] operators optimized for paging. Therefore, by
reconstructing the PagedMLAttention operator in the accelerator operator library, removing Block
Table-related logic such as block table queries and cross-page boundary judgments, and adding
functionality for direct computation based on input virtual addresses, we implement FlashMLA
operators supporting contiguous virtual address input on accelerators.

4.4 Algorithm Optimizations

4.4.1 Optimized Speculative Decoding

Traditional autoregressive inference requires LLMs to generate tokens sequentially one by one, re-
sulting in high computational latency and limited throughput. Speculative decoding technology the-
oretically breaks through this performance bottleneck through a paradigm of parallelly predicting
candidate token sequences and quickly verifying them [81, 82, 26]. However, in distributed de-
ployment environments, this technology faces some core challenges: First, synchronous scheduling
between CPUs and accelerators in traditional multi-step inference frameworks results in insufficient
utilization of computing resources, with accelerators often remaining idle while waiting for data
preparation and processing. Second, existing attention mechanisms are not optimized for the char-
acteristics of speculative inference, causing a large amount of redundant data movement. To address
these challenges, XLLM proposes a systematic optimization scheme based on existing frameworks.

19



xLLM Technical Report

EPLB Controller

' Planner
DB Policy-#

Expert

. Vorker-0 Ter
Routing Map Worker All Worker-0 All

Ready Ready Ready Ready

Global Expert Mapping

Expert Expert
Load Load Layer-0 Loader Layer-0 Rebalance
I v : Layer-1 Layer-1
! Layer-0 ! Layer-0
Compute Compute | 4 K Y | Loader Rebalance
. — ; : T )
/ Load Load : Weight — Welght T
{ Thread-0 ' o New || | old New || Lol }
1 Worker-0  Buffer Buffer |, |, Buffer Buffer |,
] ! Double Buffer | ! Double Buffer !
\Thread-1-~  ~777TTTToooT mmom oo
“\ d d — d d > d d > d d > qd q — qd d

Figure 11: Overview design of EPLB.

Asynchronous Decoding. Inspired by [83], XLLM implements a lightweight asynchronous frame-
work. For timing overlap optimization, while the accelerator executes the main model inference for
the current batch, the CPU processes the output decoding of the previous batch and the input prepa-
ration for the next batch in parallel—thereby minimizing the idle time of the CPU and accelerator
as much as possible.

MLA Optimization. xLLM focuses on improving the MLA [84, 3] computation process. Based
on the characteristic that speculative inference needs to process multiple tokens simultaneously on
a single sequence, we conducted in-depth optimizations on the self-attention computation in MLA.
Specifically, when speculatively inferring m tokens, the self-attention computation of MLA involves
product operations between m+1 Q matrices and the same K matrix. By reconstructing the compu-
tation process and optimizing the tiling strategy, we effectively reduced the data movement overhead
of Q/K matrices. The main optimization measures include:

> Optimization of K matrix loading times: By adjusting the L1 cache allocation scheme to enable
parallel loading of multiple Q matrices, and adopting a sliding window-based K matrix loading
method that allows consecutive rows of the K matrix to multiply with multiple Q matrices, the
number of K matrix loading operations is significantly reduced.

> Q matrix cache residency mechanism: Since there are m+1 Q matrices in speculative infer-
ence scenarios, the time to move Q matrices to L1 accounts for a larger proportion of the matrix
multiplication process. XLLM redesign the computing scheme to prevent softmax-V product opera-
tions from overwriting Q matrices in the L1 cache, enabling Q matrices to remain in the cache and
significantly reducing the overhead of repeated data movement, thereby effectively improving the
utilization of the tensor core’s arithmetic logic units.

4.4.2 Dynamic EP Load Balance

With the large-scale application of MoE models [85-88] in production environments, their efficient
inference capability relies on a expert routing mechanism, which allocates input tokens to differ-
ent experts for computation [3, 18, 89]. However, in practical deployment, due to the distribution
characteristics of input data and the influence of the model’s own structure, there may be significant
differences in the number of tokens received by different experts [90, 91]. This imbalance leads
to low computing resource utilization: some devices are overloaded due to processing too many
tokens, while others remain idle, affecting the overall inference efficiency.

To optimize resource utilization, the industry has proposed the Expert Redundancy strategy, which
means replicating hot experts and deploying replicas on multiple devices to distribute computing
loads. Currently, DeepSeek [3] adopts two load balancing strategies: group-limited load balance
and global load balance, which are optimized respectively for the characteristics of the prefill and
decode phases. Adjustments to expert redundancy (such as adding/deleting replicas) require ad-

20



xLLM Technical Report

DP-1
(seq-1) Preprocess MLA IK tokens

w/o DP Load A

DP-2
Balance (seq2) Preprocess MLA  MLA  MLA  MLA  MLA  MLA  MLA
DP-1  Preprocess MLA ~ MLA  MLA | MLA
(seq-1)

w/o DP Load T3K tokens transfer

Balance l 3K tokens
DP-2 transfer

(seq-2) ~ Preprocess =~ MLA MLA MLA MLA  Aggregate

Figure 12: Inter-DP group load migration at MLA block granularity.

ditional memory and may affect inference latency due to weight migration. How to achieve such
adjustments efficiently and smoothly is a major challenge. We have made some adaptive improve-
ments based on DeepSeek, realizing dynamic EP load balance.

Expert Load Statistics. When the Router distributes tokens, it records the load status of each
expert in real time and returns the statistical results through the model output. Each Worker asyn-
chronously starts a thread to periodically aggregate expert loads and report them to the Controller of
the Master. The Controller calculates a new routing table based on the load data and then distributes
the updated routing table to each Worker.

Double Buffer Mechanism for Weight Update. In general, each Worker starts an asynchronous
thread to update the weights of single-layer experts during each decoding process. Specifically, after
a Device completes the preparation of new weights, it proactively sends a readiness notification to
the Controller. The Controller then verifies the weight readiness status of all Worker nodes to ensure
global consistency before broadcasting an update instruction, upon which each Worker executes the
weight update immediately. Here, we adopt a Double Buffer mechanism, meaning that the old and
new expert weights are stored in two separate buffers respectively. The new expert weights are
preloaded in the spare memory space, and after the preloading is completed, the address switching
is performed to realize the unperceived update of experts.

4.4.3 Hierarchical DP Load Balance

In typical MoE model architectures like DeepSeek [3], the MoE layers use expert parallelism (EP),
while the attention layers use data parallel (DP). This model requires all DP groups to synchronously
complete their attention calculations in a single inference step before initiating the MoE all-to-all
dispatch operation. This synchronization barrier means the total time for the attention phase is
determined by the slowest DP group (the “straggler”). Faster DP groups cannot immediately proceed
to the next stage after finishing their tasks; instead, they are forced into an idle state, waiting for the
straggler to complete [92]. This waiting directly translates into wasted computational resources and
an increase in overall inference latency.

In practical scenarios, due to the dynamic and unpredictable nature of inference requests, the load
within different DP groups is often difficult to balance. Particularly in the decoding phase with
large-scale DP (e.g., 80 groups), the load difference between DP groups can reach tens of thousands
of tokens, causing fast DP groups to wait for slow ones and wasting approximately 5 milliseconds of
delay [93]. Experimental data shows that although the difference in the number of requests processed
between DP groups may be as small as four, the corresponding difference in KV Cache token count
during the decoding phase can be as high as 20,000. The actual computational workload is directly
related to the total number of tokens the system needs to process, as this determines the memory
footprint of the KV Cache and the scale of matrix operations in the attention mechanism. This
further establishes DP load balancing as a critical factor in determining overall system efficiency.

Current mainstream frameworks like vVLLM [8] and SGLang [9] use a simple static round-robin
scheduling strategy. Once a request is assigned, its subsequent computations are fixed to a specific

21



xLLM Technical Report

DP group, making it unable to adapt to dynamic load changes. Furthermore, at the hardware level,
the implementation of operators like the MLA on certain accelerators employs a “one request per
tensor compute core” partitioning strategy. This can lead to idle compute cores within the same DP
group due to differences in request lengths.

To address these challenges, xLLM proposes a hierarchical “defense-in-depth” strategy to tackle DP
load imbalance issues across different time scales and granularities. The first layer is preventative,
KV Cache-aware request scheduling; the second layer performs macroscopic correction through
inter-DP group load balancing; and the third layer carries out microscopic correction via intra-DP
group load balancing. This layered design enables the system to flexibly address the root causes of
various performance degradations, thereby building a robust and efficient inference service.

Layer 1: KV Cache-Aware Scheduling. xLLM’s first-layer strategy implements request load dis-
tribution through KV Cache-aware scheduling. This mechanism moves beyond simple round-robin
methods. When a new request arrives, the scheduler comprehensively checks the status of all DP
groups, paying special attention to the remaining KV Cache capacity in each. It then preferentially
assigns the new request to the group with the most available space. By balancing the total token load
and its memory footprint at the system level over the long term, this strategy prevents the formation
of severe load imbalances, thereby achieving intelligent resource allocation.

Layer 2: Reactive Inter-DP Group Workload Migration. xLLM’s second-layer strategy
achieves reactive balancing through workload migration between DP groups. During the decoding
process, the varying prompt and KV Cache lengths of selected requests cause different computa-
tion latencies among DP groups. To counter this, XLLM’s central scheduler evaluates the current
computational load of each DP group during every inference round. If a significant imbalance is
detected, it initiates a workload migration process, moving tasks from overloaded to under-loaded
groups. The scheduler also determines the migration granularity — whether to move an entire batch,
a single sequence, or a partial MLA block of a sequence.

Figure 12 illustrates this process at the MLA block granularity. First, xXLLM dispatches the input
tokens for the migration to both the source and destination DP groups. Then, as all groups execute
the MLA Preprocess operation, the request’s KV Cache is transferred asynchronously, overlapping
communication with computation. Next, all groups begin the attention calculation. The underloaded
group prioritizes the migrated attention task, allowing it to immediately send the resulting token
back to the source group upon completion while concurrently processing its own native attention
operations, further overlapping overhead. Finally, all DP groups use an aggregation operator to
gather the external computation results.

Layer 3: Fine-Grained Kernel-Level Optimization. xLLM’s third-layer strategy achieves fine-
grained optimization through kernel-level migration within a DP group. This optimization is per-
formed inside the matrix computation kernels of a single DP group. On one hand, during scheduling,
it reorders requests based on their load, replacing the original compute core’s round-robin alloca-
tion strategy. This aims to keep the total number of computation tokens assigned to each matrix
computation unit as consistent as possible. On the other hand, for requests with extremely long
sequences, it explicitly splits their computation sequence, migrating parts of the long-sequence re-
quest’s computation to be calculated with other short-sequence computation units. Through this
fine-grained request splitting, it directly resolves the issue of idle compute cores caused by load
imbalance within the DP group.

4.5 Generative Recommendation

Recent advancements in generative models have spurred significant interest in generative recom-
mendation [31, 94-98]. Beyond enhancing the retrieval and ranking stages of traditional multi-stage
pipelines [98, 94], single-stage generative recommendation frameworks directly generate a candi-
date item list in an auto-regressive manner [31]. These frameworks usually utilize beam search
decoding to directly produce diverse recommendation results, and xLLM implements extensive op-
timizations for these single-stage frameworks. As shown in Figure 13, in the generative recommen-
dation scenario, XLLM is dedicated to overlapping host and device operations as much as possible to
improve overall execution efficiency. When a request arrives, xXLLM preemptively prepares the in-
formation required during the forward process on the CPU side. After the preparation is completed,

22



xLLM Technical Report

w/o Overlap Pre-allocate Schedule Beam  Pre-allocate Schedule Beam
Pre-allocate Pre-allocate | Beam Beam
w/ Overlap
Schedule Schedule
. Scheduler
Prefill Beam Decode Beam = Decode
‘ Engine
w/o Overlap Filter Mask Forward Logits = Add @ Sampler
Filter Mask
w/ Overlap Add  Sampler
Forward Logits ‘

Worker

Figure 13: Overview design of generative recommendation process.

relevant tasks are handed over to the engine for processing. The Engine executes three forward
passes in one go. During this process, the intermediate beam search is a host operation, which by
its nature cannot be overlapped with device operations. To optimize the processing pipeline, xLLM
internally employs a multi-micro-batch, multi-stream approach. During the Worker’s execution, the
CPU operation for generating the filter mask is overlapped with the device operation for logits com-
putation. Through an addition operation, a masked logits is generated before the sampler, thereby
achieving data filtering and improving the accuracy and effectiveness of the recommendation results.

4.5.1 Host-side Optimization

In scenarios with large beam_width and top_k parameters, the significant increase in the number
of candidate sequences results in substantial sorting and filtering operations on the host side. This
shifts the computational bottleneck of the beam search algorithm from the Al accelerator to the CPU,
ultimately leading to a severe CPU-bound issue. The following outlines XLLM’s efforts to optimize
the beam search process in generative recommendation scenario.

Beam Search Optimization. In many fields such as natural language processing, beam search
optimization is an efficient algorithm widely used in sequence generation tasks [99]. When process-
ing a large number of candidate sequences, one of the core operations of beam search is to select
beam_width sequences from numerous candidates. This process is essentially a partial sorting op-
eration, with the unique characteristic that it only needs to identify the top beam_width elements
without fully sorting all candidate sequences, thereby significantly reducing computational com-
plexity. In another key step of beam search, generating beam_width x top_k candidate sequences
from the existing beam_width sequences, there exists an important property: log_probs of each se-
quence are arranged in descending order. Leveraging this property, an optimized early termination
mechanism can be adopted, where computations are halted prematurely if log_probs does not meet
specific criteria, further enhancing computational efficiency. The specific operational procedure is
as follows:

First, the existing beam_width sequences are accessed in order. For each accessed sequence, we
create a small min-heap of size beam_width, which is used to dynamically maintain the set of
locally optimal elements currently selected. Next, the subsequent sequences are traversed. During
this process, if the subsequent log_probs of a sequence is smaller than the top element of the min-
heap, it implies that, based on the current filtering criteria, the subsequent elements of this sequence
cannot enter the current optimal set. At this point, the filtering operation for the current sequence
can be terminated directly, and the next existing sequence processed. Conversely, if the subsequent
log_probs is larger than the top element of the min-heap, the element is inserted into the min-heap,

23



xLLM Technical Report

and the heap structure is adjusted according to the properties of the min-heap to maintain its order.
After the traversal of all relevant sequences is completed, the top elements are sequentially extracted
from the min-heap. These elements, in the order of extraction, form the beam_width candidate
sequences sorted in descending order. Through this procedure, the approach ensures the selection of
high-quality candidate sequences while significantly reducing unnecessary computational overhead,
thereby improving the operational efficiency of the beam search algorithm in practical applications.

Resource Reuse and Pre-allocation. During the beam search process, the beam_wzidth is pre-
determined and fixed for each forward pass of the model, which implies that the computational
resources required per forward propagation remains relatively constant. However, an excessively
large beam_width can lead to significant wastage of both CPU computational and memory re-
sources. To effectively mitigate this issue, XLLM incorporates a carefully designed resource reuse
strategy. Specifically, during the generation of new candidate sequences, the system reuses resources
previously occupied by older sequences without allocating new space for each candidate. This ap-
proach avoids the overhead associated with frequently creating new data structures. Based on the
final search results, the system then updates the storage areas for the old sequences with the content
of the newly generated ones upon completion of the beam search algorithm. By doing so, xLLM
not only reduces memory usage but also minimizes the additional overhead on the CPU for resource
management and allocation, significantly improving the efficiency of computational resource usage.

4.5.2 Device-side Optimization

Valid Item Filtering. In typical single-stage generative recommendation frameworks, the valid
item filtering mechanism plays a crucial role. For example, OneRec [31] framework uses an ordered
combination of three token IDs to uniquely represent a valid product item ID. However, due to
the vast number of possible token ID combinations, not all of them correspond to actual and valid
items [100, 101]. To ensure that the results generated by the model are all valid product items, the
system generates a valid mask asynchronously during the forward pass of the model. This mask is
based on a pre-constructed vocabulary of valid items, which is then element-wise added to the logits
output by the model. Through this clever design, the logits corresponding to invalid token IDs are
adjusted, ensuring that these invalid token IDs are almost never selected in subsequent calculations.
This effectively filters out invalid token IDs, thereby guaranteeing the validity and accuracy of the
final recommendation results.

5 Evaluations

In §5.1, we evaluate the full implementation of our xXLLM framework against several base-
line inference systems, specifically vLLM-Ascend(v0.10.rc1) and MindIE*(v2.1.rc1), on Ascend
910B/910C [18] instances across a range of scenarios. XLLM, MindIE, and vLLM-Ascend refer
to the default deployments on Ascend 910B. Additionally, we denote the deployments of xLLLM,
MindIE and vLLLM-Ascend on Ascend 910C as xLLM?, MindIE* and vLLM-Ascendi, respectively.
The testing scenarios are organized into multiple categories reflecting diverse online serving appli-
cations, such as the JingYan Al chatbot, customer service assistants, merchant assistants, product
understanding and marketing recommendation systems. Additionally, in §5.2, we conduct a detailed
ablation study to assess the individual contributions of each optimized module.

5.1 Main Results

This section benchmarks xLLM against mainstream inference frameworks to demonstrate its
superior inference efficiency across diverse models, including Qwen2/3-series [102, 87] and
Deepseek [3] models, and datasets. §5.1.1 details a fair comparison using the ShareGPT? dataset.
To ensure an equitable comparison across all LLM inference frameworks, the key feature of our
experimental setup is that the input and output sequence lengths are fixed, while the request

"https://github.com/vllm-project/vllm-ascend

https://www.hiascend.com/en/software/mindie

*https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/
main/ShareGPT_V3_unfiltered_cleaned_split.json

24


https://github.com/vllm-project/vllm-ascend
https://www.hiascend.com/en/software/mindie
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split.json
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split.json

xLLM Technical Report

—~0— xLLM -®- xLLM* —®— MindIE —- MindIE* ~%¥— vLLM-Ascend ~¥- vLLM-Ascend*

Qwen3-0.6B Qwen3-1.7B Qwen3-4B
10000 6000
%\ 8000
£ 8000 5000
2
8
S 6000 6000 4000
2.
)
g 4000 4000 3000
£
2000
2000 2000
2 2 2
Number of Accelerators Number of Accelerators Number of Accelerators
Qwen3-8B Qwen3-14B Qwen3-32B
5000 4000
2 3000
z
% 4000 3000
< 2000
23000 2000
2
g 1000
2
£2000 1000
1000

2 2 4
Number of Accelerators Number of Accelerators Number of Accelerators

Figure 14: Throughput comparison of LLM inference frameworks evaluated on Qwen3-series mod-
els using the ShareGPT dataset, under the constraint of TPOT=50ms and input/output length=2048.

7] xutv - N xLLMf [0 MindlE [N MindIEf  [Z77] vLLM-Ascend

[2048,2048] TPOT:50ms [2048,2048] TPOT:100ms [2500,1500] TPOT:50ms [2500,1500] TPOT:100ms

g % 1500
400 1500 400
Ej 1250
Z 300 300
= 1000 1000
=
=3
£,200 7‘ 200 V% 750
H
E 500 500
E 100 100

250
L 0 0 — 0
16x910B 8x910C 16x910B 8x910C 16x910B 8x910C 16x910B 8x910C

Figure 15: Throughput comparison of LLM inference frameworks using DeepSeek-R1 on the
ShareGPT dataset constrained by given TPOT and input/output length, where /2500, 1500] means
input length=2500 and output length=1500. vLLM-Ascend on the 910C is excluded from the com-
parison, as its performance with Deepseek-R1 fails to meet the required TPOT threshold.

rate is dynamically adjusted to match the target SLO (e.g., TPOT) threshold for each frame-
work. We also evaluate this setup under different node configurations, including both single-node
and multi-node setups with PD disaggregation. In §5.1.2, we evaluate XLLM on various real-world
business scenarios from JD.com, where it is currently deployed, showcasing its performance under
practical deployment conditions.

5.1.1 Benchmarking Performance

Qwen3-series. As shown in Figure 14, we comprehensively compares the throughput performance
of four inference frameworks across the Qwen3-series (from 0.6B to 32B parameters) on the bench-
mark. All tests are conducted under uniform configuration with input/output lengths set to 2048
tokens and a TOPT constraint of 50 ms. The experimental results demonstrate that while all eval-
vated frameworks show improved throughput with additional accelerators, xLLM and its Ascend
910C implementation (xLLM?) consistently deliver superior performance, confirming near-linear
strong scalability across various model sizes. Specifically, XLLM achieves throughput improve-
ments of up to 1.9x and 1.7x compared to vLLM-Ascend and MindIE, respectively. Similarly,
xLLM* outperforms vLLM-Ascend* and MindIE?* by up to 2.2x and 1.5x, respectively. Further-

25



xLLM Technical Report

Method | Prompt Length | Output Length | Throughput (tokens/s) | Request Rate (req/s)
MindlE | 2048 | 2048 | 8476.44 | 4.14
XLLM | 2048 | 2048 | 1135158 | 5.54

Table 3: Comparison of DeepSeek-R1 with PD disaggregation on the ShareGPT dataset constrained
by TPOT=100ms.

xLLM -@®- xLLM* —®— MindIE vLLM-Ascend
Qwen2-7B TPOT:40ms Qwen2-14B TPOT:90ms Qwen3-8B TPOT:80ms Qwen3-32B TPOT:80ms
5000
] ® o
1400 2000 h y y
/ / 3000 /
U / /
1200 1500 / 4000 /, ;
1000 /

%
=]
S

Throughput (tokens/s)

>N
=]
S

'S
=]
S

0

/ ¢ 2000
10004, 3000
/
500 Il
2000 1000
\‘, 4

2 2 1 2 4 2 4
Number of Accelerators Number of Accelerators Number of Accelerators Number of Accelerators

Figure 16: Throughtput comparison of Qwen2-series and Qwen3-series models with various infer-
ence frameworks in the JingYan scenario.

more, XLLM* demonstrates steady performance improvements over the Ascend 910B-based xLLM
in most scenarios, validating the software stack’s effective utilization of the new hardware.

DeepSeek-R1. Figure 15 presents the throughput performance of various inference frameworks
for the DeepSeek-R1 model on the benchmark, using 16 accelerators for Ascend 910B and 8 accel-
erators for Ascend 910C, respectively. The results demonstrate that the proposed xLLM framework
achieves exceptional throughput on the Ascend 910 series. Quantitatively, XLLM on Ascend 910B
delivers an average throughput improvement of approximately 1.7 x over MindIE and a significant
12x enhancement over vLLM-Ascend. Furthermore, XLLM* achieves an average throughput in-
crease of approximately 1.4x compared to MindIE?.

PD Disaggregation Settings. Table 3 benchmarks the inference performance of the MindIE and
xLLM frameworks on the DeepSeek-R1 model using a PD disaggregation architecture. Under iden-
tical conditions with TPOT controlled at 100ms for 2048-length inputs/outputs, xLLM achieves
approximately 34% higher throughput (11,351.58 vs. 8,476.44 tokens/s) and request rate (5.54 vs.
4.14 req/s), marking a significant efficiency improvement.

5.1.2 Business Serving Scenarios

JingYan. JingYan is an Al shopping assistant designed to help users discover new products, find
inspiration, and get answers to their questions. The dataset for JingYan, consequently, consists of
conversational logs between the model and its users, capturing these rich interactions. As illustrated
in Figure 16, we systematically evaluate the inference throughput of four frameworks for serving
the Qwen2-series and Qwen3-series model in the JingYan scenario. The results demonstrate that
both xLLM and xLLM?* maintain superior throughput and exhibit better scaling efficiency across
all model sizes compared to MindIE and vLLM-Ascend. For instance, when serving the Qwen3-8B
model with 4 accelerators, XLLM delivers a throughput approximately 1.6 times that of vLLM-
Ascend and significantly surpasses MindIE. The robust performance of XLLM on the 910B, and its
enhanced results on the 910C hardware, highlight its effective adaptation to successive hardware
generations. As shown in Table 4, a similar trend is observed for the DeepSeek-V3 model, where
xLLM achieves a throughput that is over 9 times greater than vLLM-Ascend and surpasses MindIE
by 36%.

Customer Service. The Customer Service dataset comprises the interactive dialogues between
customers and support agents. Figure 17 details the performance differences among inference frame-

26



xLLM Technical Report

Method | Prompt Length | Output Length | Throughput (tokens/s) | Request Rate (req/s)

vLLM-Ascend | 6800 | 400 | 21.17 | 0.11
MindlE | 6800 | 400 | 144.40 | 0.67
xLLM | 6800 | 400 | 196.45 | 0.89

Table 4: Comparison of Deepseek-V3 model with various frameworks in the JingYan scenario con-
strained by TPOT=80ms.

XLLM =@ xLLM!  —@— MindIE vLLM-Ascend
Qwen3-8B Qwen3-32B
. s 80
%150 7
g /
2 7 60
51001 ®
b 40
=
& 50
=
= 20
1 2 4
Number of Accelerators Number of Accelerators

Figure 17: Throughtput comparison of Qwen3-series models with various inference frameworks in
the customer service scenario constrained by End-fo-End latency(E2E)=10s.

works for the Qwen-8B and Qwen-32B models in the customer service scenario. The results high-
light that our xXLLM, particularly the xLLM* running on Ascend 910C, provide significantly better
throughput across all tested configurations. For instance, with Qwen3-32B on 8 accelerators, the
throughput of xXLLM is 3.1 and 1.2 times greater than that of vLLM-Ascend and MindIE, respec-
tively. It is important to note that the vVLLM-Ascend framework shows a clear scaling bottleneck
as the number of accelerators increases, whereas XLLM maintains near-linear efficiency scaling.
This validates the high efficiency and superiority of the XLLM framework in managing distributed
inference for large-scale models.

Merchant Assistant. Table 18 benchmarks the throughput of various inference frameworks on
three tasks (i.e., search terms, arrangement, intent recognition) within the merchant assistant sce-
nario. The proposed xXLLM framework achieves better or comparable performance to MindIE and
demonstrates a significant lead over vVLLM-Ascend. Specifically, for the search terms task with four
accelerator cards, xLLM delivers 34% higher throughput than MindIE and roughly 3.4 x that of
vLLM-Ascend.

Product Understanding. For the product understanding scenario, the throughput comparison of
the Qwen2-7B model with several frameworks is shown in Table 5. The experimental results indicate
that XLLM outperforms MindIE and vLLM-Ascend by an average of 25% and 56%, respectively,
across different accelerator card counts. Moreover, the superiority of xLLM scales with the num-
ber of cards, demonstrating its effective utilization of large-scale parallel computing resources and
thereby offering a robust solution for high-performance LLM inference.

Generative Recommendation. As illustrated in Figure 19, the evaluation results on the Qwen-8B
model demonstrate that xLLM consistently achieves lower mean end-to-end latency than MindIE
across various request rates and beam widths, except under very low load condition. Notably, the
performance advantage of XLLM becomes increasingly pronounced as the beam width (from 4 to
128) and the request rate escalate. For instance, under the most challenging scenario with a beam
width of 128 and a request rate of 8, xLLM reduces latency by approximately 23% relative to
MindIE. This significant improvement validates that our XLLM’s host-side and device-side opti-
mizations effectively alleviate the computational bottlenecks in generative recommendation tasks,
markedly enhancing inference efficiency and scalability under heavy loads.

27



xLLM Technical Report

(%] w
=3 =3
S S

=)
S

Throughput (tokens/s)

Search Term Qwen2.5-14B

Arrangement Qwen2.5-14B

Intent Recognition Qwen3-14B

300

XLLM XLLM XLLM
=@~ MindIE 1251 =@~ MindIE =@~ MindIE
VvLLM-Ascend vLLM-Ascend 250 vLLM-Ascend
100 200
75 150
Y
< , 100 /
301§

2
Number of Accelerators

2
Number of Accelerators

1 2
Number of Accelerators

Figure 18: Throughtput comparison of Qwen-series models with various inference frameworks in
the merchant assistant scenario constrained by End-to-End latency(E2E)=1s.

Method ‘ Prompt Length ‘ Output Length ‘ Throughput (tokens/s)
‘ | | #accelerator=1 | #accelerator=2 | #accelerator=4
VLLM-Ascend | 1200 | 40 | 79577 | 87497 | 127252
MindlE | 1200 | 40 | 94481 | 105144 | 169345
xLLM | 1200 | 40 | 100191 | 132390 | 242513

Table 5: Throughtput comparison of Qwen2-7B model with various inference frameworks in the
product understanding scenario.

5.2 Ablation Study

Impact of MTP. As shown in Figure 20, under the configuration of 1500 input length and 2500
output length for the DeepSeek-R1 model, enabling Multi-Token Prediction (MTP) technology sig-
nificantly optimizes inference performance. As max concurrency increases, the MTP-enabled ver-
sion consistently exhibits lower TPOT compared to the baseline, indicating reduced generation la-
tency. Meanwhile, its throughput is markedly higher than the non-MTP version, with particularly
notable advantages beyond 32 concurrent requests. This demonstrates that MTP effectively en-
hances computational efficiency and system throughput under high concurrency conditions.

Impact of Dynamic PD Disaggregation Scheduler Policy. We evaluate our proposed SLO-aware
Dynamic PD Disaggregation Policy against the Minimal Load and Round Robin strategies, as illus-
trated in Figure 21. On the Azure Code dataset characterized significant bursty traffic, our SLO-
aware policy achieves a request serving rate 1.67 times that of the Minimal Load strategy. Mean-
while, relative to the Round Robin strategy, the Minimal Load strategy improves the SLO attainment
by up to 4.3%. For the Azure Conversation dataset with stable input/output length variations, our
SLO-aware policy results in a 1.1 times higher request serving rate compared to the Minimal Load
strategy. Although the Minimal Load strategy performs similarly to Round Robin, it still enhances
the SLO attainment by up to 2.4%. These results indicate that minimal-load scheduling is closer to
the optimal scheduling strategy than round-robin approach, while our adaptive instance scheduling
delivers the best overall performance.

Impact of Hybrid EPD Disaggregation Scheduler Policy. Figure 22 demonstrates the effective-
ness of the proposed Hybrid EPD Disaggregation Policy on the TextCaps dataset, specifically in
controlling TPOT and improving the SLO attainment rate. Under the configuration of 8 general-
purpose inference instances, the removal of the hybrid EPD disaggregation method results in a drop
in goodput from 9.5 req/s to 7.2 req/s, and a subsequent additional removal of stage-level scheduling
policy further decreases the goodput to 5.1 req/s. This indicates that a well-designed disaggregation
strategy can effectively mitigate inter-stage interference, while our stage-level scheduling policy
contributes to finer control over the execution time of each batch. The integration of both compo-
nents significantly enhances the overall performance and stability of the system, particularly under
high-concurrency scenarios.

Impact of Online-Offline Co-location Scheduler Policy. As shown in Figure 23, we evaluated
three scheduling strategies, namely the baseline P/D, online priority and our proposed Online-Offline

28



xLLM Technical Report

Beam Width:4 Top-k:4 Beam Width:32 Top-k:32 Beam Width:64 Top-k:64 Beam Width:128 Top-k:128
XLLM 140 XLLM 200 XLLM 350 XLLM
110 ~@- MindIE @~ MindIE @~ MindIE @~ MindIE
g 175 300
100 120
T 150 250
=
g
90 200
100 125
150
1 4 8 1 4 8 1 4 8 1 4
Request Rate (req/s) Request Rate (req/s) Request Rate (req/s) Request Rate (req/s)

Figure 19: Comparison of mean End-to-End latency(E2E) with various inference frameworks in the
generative recommendation scenario. Since vLLM-Ascend does not support beam width>10, the
corresponding results are not plotted in the figure. Even with beam width=4 and request rate=1, its
mean E2E far exceeds that of our framework.

DeepSeek-R1 [2500, 1500] DeepSeek-R1 [2500, 1500]

w/ MTP

=@~ w/o MTP

w/ MTP

=& w/o MTP

Ju—
wn
(=1

[\o3

(=3

S

w

(=}
—_
(=3
(=}

TPOT (ms)
=)
(=]
Throughput (tokens/s)

2 8 32 2 8 32
Max Concurrency Max Concurrency

Figure 20: Impact of MTP on the concurrent performance of DeepSeek-R1 model.

Co-location Scheduler Policy (denoted as xXLLM-OOC), to assess the maximum achievable through-
put for offline requests without violating the SLO of online requests. The green shaded region in the
figure indicates the sustainable range of offline request throughput that remains within the acceptable
online SLO violation threshold. When the offline query-per-second (QPS) exceeds a certain level,
both the baseline P/D and online priority strategies lead to a sharp increase in the online SLO viola-
tion rate, indicating interference caused by the offline workload. In contrast, xLLM-OOC maintains
stable SLO compliance even as offline QPS continues to rise. On our proprietary dataset, xLLM-
OOC achieves a throughput that is three times higher than the other two methods. Furthermore, it
demonstrates improvements of 75% and 17% over online priority and baseline P/D, respectively, on
the Azure Code dataset.

Impact of Multi-layer Pipeline Execution. As evidenced by the results in Table 6, our proposed
asynchronous scheduling mechanism delivers consistent throughput improvements across all evalu-
ated model scales. The most substantial relative gain of 17.4% is observed for the 1.5B parameter
model, highlighting the method’s particular efficacy for smaller architectures where scheduling over-
head constitutes a larger portion of total computation time. While relative improvements moderate
for larger models (reaching 0.6% for 7B, 3.7% for 14B, and 6.6% for 32B), all configurations exhibit
statistically significant absolute gains. These results robustly validate that our method successfully
masks scheduling latency and eliminates computational bubbles, through leveraging placeholder
tokens to decouple and overlap CPU scheduling with NPU execution.

We further assess the effectiveness of the proposed dual-stream architecture for the DeepSeek-R1
model in Table 7. Experimental results from a single decoder layer show that the total communica-
tion time increases to 12.4ms in dual-stream mode, up from 9.3ms in single-stream mode. However,
the computation-communication overlap mechanism successfully hides 80% of the communication
time, which brings the exposed communication time down to just 2.5ms, saving 6.8ms per layer. De-
spite introducing a computational overhead of 4ms for each layer, the dual-stream strategy yields a
net performance gain of 172.0ms across the entire 61-layer model, clearly illustrating the capability
of our scheduling strategy in real-world workloads.

29



xLLM Technical Report

Our SLO Aware —— Minimal Load —e— Round Robin

Azure Code Azure Conversation

% o
IS S

SLO Attainment (%)
D
(=]

'S
S

10 30 40 50 25 75 100

20 50
Request Rate (req/s) Request Rate (req/s)

Figure 21: Performance of Dynamic PD Disaggregation Policy with different scheduling strategies.

Ours —A— w/o hybrid EPD —@— w/o hybrid EPD and sched

100

%
S

=N
S

I
(=)

.

SLO Attainment (%)
[*]
(=]

<o

4 5 6 7 8 9 10 11 12
Request Rate (req/s)

Figure 22: Impact of Hybrid EPD Disaggregation Scheduler Policy.

Impact of Adaptive Graph Mode. To validate the effectiveness of the Adaptive Graph Mode opti-
mization technique, we conduct controlled experiments on the Qwen3-1.7B and Qwen3-4B models.
As shown in Table 8, with both the prompt and output lengths set to 2048 tokens, enabling Adaptive
Graph Mode result in significant performance gains for both models. The throughput of Qwen3-
1.7B increases from 2385.58 to 3038.88 tokens/s (a 27.4% improvement), while its mean TPOT
decreases by 22.0%. Correspondingly, Qwen3-4B achieved an 8.5% increase in throughput and an
8.8% reduction in latency. These results robustly demonstrate the effectiveness of Adaptive Graph
Mode as a general-purpose inference acceleration technique, with more pronounced optimization
effects observed on the model with a smaller parameter size.

Impact of Hierarchical DP Load Balancing. Our proposed hierarchical DP load balancing
scheme is projected to increase total throughput by 5%. The kernel-level optimization yields the
most significant latency savings; for example, for an ultra-long 32k-token request, reordering and
splitting can reduce a single core’s computational load from 32k to 1.3k tokens, saving approxi-
mately 800 microseconds. In contrast, the latency savings from inter-DP group migration are more
modest. Even after balancing a 20k-token difference, the total time saved over 61 Transformer lay-
ers is only about 600 microseconds. This indicates that the greatest performance bottleneck and
optimization potential lie within the computation units themselves.

6 Future Work

Although proposed xLLM framework has demonstrated potential in enhancing LLM inference ef-
ficiency and reducing operational cost, achieving truly efficient and inclusive intelligent computing
infrastructure requires deeper collaborative innovation across Hardware, Model, and Application
Layers. Our future research will advance xLLM from a high-performance Inference Engine toward
a comprehensive Operating System for Al that supports next-generation intelligent applications. We
outline our planned efforts in three key directions:

30



xLLM Technical Report

" 00C on Qwen2.5-7B o Azure Code on Qwen2.5-7B
10% 10%
Y -
a0 - F3
Y 1 F2 -
o 5% _e—" 5% P [2
s 3% T 1 3% =T L=
R~ - 2— " _44( =
g o0 g v v v v —Lo0 [ ¥ i g g : . —0 £
= 10% 10% =
= - 3 " Ly &
S P P C =
> s ~- 2 o, - L, &0
5%  o— 5% Py *3
R ;_'/— L 3 s )\\J L, 8
= -~ - =
Z ] - . . 0 0 . T v v —Lo t
9 10% %
2 1% - 3 10% — é
= - T - 3 B.
- L, -
(S e 2 e 2
- e
3% e i 1 3% e = 1
_ - =
0 — T T T T T T 0 0 — T T T T T T 0
0.0 0.5 1.0 L5 2.0 25 3.0 0.0 05 1.0 L5 2.0 25 3.0 35
Offline Request QPS (req/s) Offline Request QPS (req/s)
- base P/D - Online SLOs Violation = online priority - Online SLOs Violation XLLM-0OC (ours) - Online SLOs Violation
~@- base P/D - Offline Throughput ~®- online priority - Offline Throughput ~@- xLLM-00C (ours) - Offline Throughput

Figure 23: Impact of our Online-Offline Co-location Scheduler Policy.

Model | Prompt Length | Output Length | Async Scheduling | Throughput (tokens/s)
DS-Distill-Qwen-1.5B }888 1888 * 180720293,9105
DS-Distill-Qwen-7B 1888 }888 ) i;ﬁigg
DS-Distill-Qwen-14B }888 }883 ) i‘s‘%i
DS-Distill-Qwen-32B iggg }888 ) }ﬁ},g;?g

Table 6: Impact of asynchronous scheduling mechanism in Multi-layer Pipeline Execution.

6.1 Fostering an Open and Diverse Hardware Ecosystem

Current Al infrastructure often suffers from tight coupling with specific hardware architectures,
introducing computational stability risks and limiting efficient deployment in heterogeneous envi-
ronments such as edge computing. To address this, the first pillar aims to cultivate an open and
diverse hardware ecosystem through the following initiatives:

Unified Hardware Abstraction Layer. We will develop a high-performance, hardware-agnostic
runtime abstraction layer that encapsulates instruction sets and memory architectures across compu-
tational units—from domestic cloud chips to edge-side accelerators. This layer will provide unified
operator interfaces and memory management APIs, enabling seamless migration and efficient ex-
ecution across heterogeneous hardware without code modifications, thereby significantly reducing
integration barriers for emerging hardware.

Software-Hardware Co-Design and Ecosystem Synergy. We will collaborate with hardware
partners to define more efficient and open interface standards. This co-design approach will not only
drive hardware innovation from the software perspective but also help establish a self-sustaining and
competitive computational supply ecosystem, ultimately providing users with optimized choices
across cost, performance, and security considerations.

6.2 Cultivating a Vibrant and Responsive Model Ecosystem

The system’s core value derives from its supported model diversity and integration efficiency. Our
future efforts will focus on building an inclusive and agile model ecosystem through:

Multi-Scenario Support. We will extend the platform’s optimization and deployment capabilities
beyond large language models to systematically support various generative Al scenarios, including
generative recommendation, text-to-image, and text-to-video generation. We will optimize execu-

31



xLLM Technical Report

Metric | Single-Stream (ms) | Dual-Stream (ms)
Total Communication Time 9.3 12.4
Overlapped Communication Ratio - 80%
Exposed Communication Time 9.3 2.5
Total Computation Time 13.0 17.0
Reduced Time per Layer - 2.8
Total Reduced Time (61 layers) - 172.0

Table 7: Communication and computation overheads in a single decoder layer of DeepSeek-R1
using Multi-layer Pipeline Execution.

Model | Prompt Length | Output Length | Adaptive Graph Mode | Throughput (tokens/s) | Mean TPOT (ms)

Qwen3-1.7B 2048 2048 x 2385.58 39.27
: 2048 2048 3038.88 30.63

2048 2048 x 1539.93 55.44

Qwen3-4B ‘ 2048 ‘ 2048 ‘ ‘ 1671.39 ‘ 50.58

Table 8: Impact of Adaptive Graph Mode.

tion engines, request scheduling, and memory management specifically for different workloads to
ensure optimal performance across diverse applications.

“Zero-Day” Model Integration. To accommodate rapidly evolving model architectures, we will
implement a unified framework combining model graph representation, an extensible operator li-
brary, and automated compilation optimization. This will enable rapid “zero-day” integration of
newly released models, reducing deployment cycles from weeks to hours.

6.3 Evolving into an AI-Native Application Framework

To democratize Al adoption and accelerate value delivery, we will evolve the system from an infer-
ence engine into a full-stack Al-native application framework by:

Framework-Native AI Middleware. We will design high-level, framework-native APIs and ab-
stractions that package complex distributed inference, multi-model orchestration, and stateful ses-
sion management capabilities into out-of-the-box middleware services. This will enable application
developers to build sophisticated Al applications (e.g., multimodal Al agents) without managing
underlying infrastructure complexities.

Rapid Application Integration and Deployment. Building upon this Al-native framework, we
will deliver a comprehensive toolchain — including encapsulated SDKs, application templates, and
integrated CI/CD pipelines — to streamline development and deployment processes. Our goal is
to enable application teams to integrate and deploy Al services within hours rather than weeks,
significantly enhancing business innovation agility and fully bridging the “last mile” from model
development to value creation.

7 Conclusion

We introduce xLLLLM, an intelligent and efficient LLM inference framework, featuring a service-
engine decoupled architecture. The framework consists of two main components: (1) xLLM-
Service, a versatile service layer designed for efficient instance and cluster management as well
as request scheduling. It incorporates unified elastic scheduling for co-located online and offline re-
quests to maximize cluster utilization, a workload-adaptive PD disaggregation architecture for SLO-
aware dynamic instance scheduling, a novel Encode-Prefill-Decode (EPD) disaggregation mecha-
nism for multimodal requests, a global KV Cache manager for efficient memory management in-
cluding KV Cache upload and offload and a distributed fault-tolerance design to ensure high avail-
ability. (2) xXLLM-Engine, a high-performance inference engine optimized for accelerating LLM

32



xLLM Technical Report

inference across various Al accelerators. xLLM-Engine employs full-stack multi-layer execution
pipeline optimizations through asynchronizing CPU-side scheduling and Al accelerator-side model
forwarding to minimize computational bubbles, utilizing dual-stream parallelism of micro-batches
to overlap computation with all-to-all communication, and further overlapping various Al compu-
tation units at the operator level. xXLLM-Engine also implements an adaptive graph mode which
pre-compiles kernel sequences, memory operations, and synchronization into a single computation
graph to drastically reduce launch overhead and accelerator idle time. Additionally, it adopts a
"logically contiguous, physically discrete” KV Cache storage strategy via proposed xTensor Mem-
ory Management, which resolves the tension between memory contiguity and dynamic allocation.
To further boost hardware utilization, xXLLM-Engine integrates algorithmic enhancements such as
asynchronous pipelined adaptive speculative decoding, KV cache-aware scheduling, reactive inter-
DP group workload migration for dynamic load balancing, and dynamic MoE load balancing based
on real-time expert workload statistics and transparent weight updates. We have further extended
xLLM to emerging generative recommendation scenarios, improving both recommendation accu-
racy and efficiency.

Extensive experiments demonstrate that XLLM achieves a consistent improvement compared to
leading inference systems such as MindIE and vLLM-Ascend, evaluated across mainstream Qwen-
series and Deepseek-series models as well as public and real-world industrial datasets. In partic-
ular, xXLLM outperforms MindIE by up to 1.7x and vLLM-Ascend by up to 2.2x in throughput.
Comprehensive ablation studies further validate the effectiveness of key components, including the
proposed scheduling modules, multi-layer execution pipeline, optimized model tensor parallelism,
adaptive graph mode, and others.

By releasing the xXLLM framework as an open-source project, we intend to stimulate further in-
novation in developing robust, enterprise-scale inference solutions, optimizing performance on a
diverse range of Al accelerators, and creating tightly integrated service and engine architectures for
next-generation Al applications.

33



xLLM Technical Report

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]
[10]
[11]

[12]

[13]

[14]
[15]

[16]

(7]

[18]

[19]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Anthropic claude. https://claude.ai/, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv
e-prints, pages arXiv—2407, 2024.

Cen Chen, Xiaolu Zhang, Sheng Ju, Chilin Fu, Caizhi Tang, Jun Zhou, and Xiaolong Li. Antprophet:
an intention mining system behind alipay’s intelligent customer service bot. In IJCAI, volume 8, pages
6497-6499, 2019.

Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, and Tat-Seng Chua. Generative recommendation:
Towards next-generation recommender paradigm. arXiv preprint arXiv:2304.03516, 2023.

Alexandre Agossah, Frédérique Krupa, Matthieu Perreira Da Silva, and Patrick Le Callet. Llm-based
interaction for content generation: A case study on the perception of employees in an it department.
In Proceedings of the 2023 ACM International Conference on Interactive Media Experiences, pages
237-241, 2023.

vllm. https://github.com/v1lm-project/v1lm, 2025.
Sglang. https://github.com/sgl-project/sglang, 2025.
Tensorrt. https://github.com/NVIDIA/TensorRT, 2025.

Diandian Gu, Yihao Zhao, Yinmin Zhong, Yifan Xiong, Zhenhua Han, Peng Cheng, Fan Yang, Gang
Huang, Xin Jin, and Xuanzhe Liu. Elasticflow: An elastic serverless training platform for distributed
deep learning. In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, pages 266-280, 2023.

Xiaoyang Zhao, Siran Yang, Jiamang Wang, Lansong Diao, Lin Qu, and Chuan Wu. Fapes: Enabling
efficient elastic scaling for serverless machine learning platforms. In Proceedings of the 2024 ACM
Symposium on Cloud Computing, pages 443-459, 2024.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
{DistServe}: Disaggregating prefill and decoding for goodput-optimized large language model serving.
In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages 193—
210, 2024.

Dynamo. https://github.com/ai-dynamo/dynamo, 2025.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng, Chenxi
Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate llm inference for
mixed downstream workloads. arXiv preprint arXiv:2401.11181, 2024.

Yiwu Zhong, Zhuoming Liu, Yin Li, and Liwei Wang. Aim: Adaptive inference of multi-modal llms via
token merging and pruning. arXiv preprint arXiv:2412.03248, 2024.

Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue
Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on
supervised semantic tokens. arXiv preprint arXiv:2407.05407, 2024.

Pengfei Zuo, Huimin Lin, Junbo Deng, Nan Zou, Xingkun Yang, Yingyu Diao, Weifeng Gao, Ke Xu,
Zhangyu Chen, Shirui Lu, et al. Serving large language models on huawei cloudmatrix384. arXiv
preprint arXiv:2506.12708, 2025.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay
Subramanian, Andy Swing, Brian Towles, et al. Tpu v4: An optically reconfigurable supercomputer for
machine learning with hardware support for embeddings. In Proceedings of the 50th annual interna-
tional symposium on computer architecture, pages 1-14, 2023.

34


https://claude.ai/
https://github.com/vllm-project/vllm
https://github.com/sgl-project/sglang
https://github.com/NVIDIA/TensorRT
https://github.com/ai-dynamo/dynamo

xLLM Technical Report

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li. Fastermoe:
modeling and optimizing training of large-scale dynamic pre-trained models. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 120-134, 2022.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation
and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Xin He, Shunkang Zhang, Yuxin Wang, Haiyan Yin, Zihao Zeng, Shaohuai Shi, Zhenheng Tang, Xi-
aowen Chu, Ivor Tsang, and Ong Yew Soon. Expertflow: Optimized expert activation and token alloca-
tion for efficient mixture-of-experts inference. arXiv preprint arXiv:2410.17954, 2024.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin
Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation—a {KVCache-centric}
architecture for serving {LLM} chatbot. In 23rd USENIX Conference on File and Storage Technologies
(FAST 25), pages 155-170, 2025.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, [fiigo Goiri, Saced Maleki, and Ricardo
Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA), pages 118—132. IEEE, 2024.

Borui Wan, Gaohong Liu, Zuquan Song, Jun Wang, Yun Zhang, Guangming Sheng, Shuguang Wang,
Houmin Wei, Chenyuan Wang, Weiqgiang Lou, Xi Yang, Mofan Zhang, Kaihua Jiang, Cheng Ren, Xi-
aoyun Zhi, Menghan Yu, Zhe Nan, Zhuolin Zheng, Baoquan Zhong, Qinlong Wang, Huan Yu, Jinxin
Chi, Wang Zhang, Yuhan Li, Zixian Du, Sida Zhao, Yongqiang Zhang, Jingzhe Tang, Zherui Liu, Chuan
Wu, Yanghua Peng, Haibin Lin, Wencong Xiao, Xin Liu, and Liang Xiang. Robust llm training infras-
tructure at bytedance, 2025.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161, 2023.

Github. Github copilot. https://github.com/features/copilot, 2022.

Guorui Zhou, Jiaxin Deng, Jinghao Zhang, Kuo Cai, Lejian Ren, Qiang Luo, Qiangian Wang, Qigen Hu,
Rui Huang, Shiyao Wang, et al. Onerec technical report. arXiv preprint arXiv:2506.13695, 2025.

Zhen Yang, Haitao Lin, Ziji Zhang, et al. Gr-llms: Recent advances in generative recommendation based
on large language models. arXiv preprint arXiv:2507.06507, 2025.

Glenn A Bowen. Document analysis as a qualitative research method. Qualitative research journal,
9(2):27-40, 2009.

Md Monjurul Karim, Sangeen Khan, Dong Hoang Van, Xinyue Liu, Chunhui Wang, and Qiang Qu.
Transforming data annotation with ai agents: A review of architectures, reasoning, applications, and
impact. Future Internet, 17(8):353, 2025.

Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A review of auto-scaling techniques for
elastic applications in cloud environments. Journal of grid computing, 12(4):559-592, 2014.

Zhengian Chen, Xinkui Zhao, Chen Zhi, and Jianwei Yin. Deepboot: Dynamic scheduling system for
training and inference deep learning tasks in gpu cluster. IEEE transactions on parallel and distributed
systems, 34(9):2553-2567, 2023.

Ting Sun, Penghan Wang, and Fan Lai. Hygen: Efficient llm serving via elastic online-offline request
co-location. arXiv preprint arXiv:2501.14808, 2025.

35


https://github.com/features/copilot

xLLM Technical Report

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

(53]
[54]

[55]

[56]

[57]

Zhibin Wang, Shipeng Li, Xue Li, Yuhang Zhou, Zhonghui Zhang, Zibo Wang, Rong Gu, Chen Tian,
Kun Yang, and Sheng Zhong. Echo: Efficient co-scheduling of hybrid online-offline tasks for large
language model serving. arXiv preprint arXiv:2504.03651, 2025.

Wan Borui, Zhao Juntao, Jiang Chenyu, Guo Chuanxiong, and Wu Chuan. Efficient llm serving on
hybrid real-time and best-effort requests. arXiv preprint arXiv:2504.09590, 2025.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance
model for multicore architectures. Communications of the ACM, 52(4):65-76, 2009.

Yibo Jin, Tao Wang, Huimin Lin, Mingyang Song, Peiyang Li, Yipeng Ma, Yicheng Shan, Zhengfan
Yuan, Cailong Li, Yajing Sun, et al. P/d-serve: Serving disaggregated large language model at scale.
arXiv preprint arXiv:2408.08147, 2024.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, ffiigo Goiri, Saced Maleki, and Ricardo
Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA), pages 118-132. IEEE, 2024.

Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu, and Xin Jin. Loongserve: Effi-
ciently serving long-context large language models with elastic sequence parallelism. In Proceedings of
the ACM SIGOPS 30th Symposium on Operating Systems Principles, pages 640-654, 2024.

Jiangsu Du, Hongbin Zhang, Taosheng Wei, Zhenyi Zheng, Kaiyi Wu, Zhiguang Chen, and Yutong
Lu. Ecoserve: Enabling cost-effective 1lm serving with proactive intra-and inter-instance orchestration.
arXiv preprint arXiv:2504.18154, 2025.

Arney Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Efficient llm inference via chunked prefills. ACM
SIGOPS Operating Systems Review, 59(1):9-16, 2025.

vllm-v1-scheduler. https://github.com/v1lm-project/vllm/issues/8779, 2025.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. Qwen2.5-v1 technical report. arXiv preprint arXiv:2502.13923, 2025.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models with
scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding. arXiv
preprint arXiv:2403.05525, 2024.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. National Science Review, 11(12):nwae403, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892-34916, 2023.

Tgi. https://github.com/huggingface/text-generation-inference, 2025.

Zhenyu Ning, Jieru Zhao, Qihao Jin, Wenchao Ding, and Minyi Guo. Inf-mllm: Efficient streaming
inference of multimodal large language models on a single gpu. arXiv preprint arXiv:2409.09086, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th symposium on operating systems principles, pages 611-626,
2023.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), pages 521-538, 2022.

Gursimran Singh, Xinglu Wang, Yifan Hu, Timothy Yu, Linzi Xing, Wei Jiang, Zhefeng Wang, Xiaolong
Bai, Yi Li, Ying Xiong, et al. Efficiently serving large multimodal models using epd disaggregation.
arXiv preprint arXiv:2501.05460, 2024.

36


https://github.com/vllm-project/vllm/issues/8779
https://github.com/huggingface/text-generation-inference

xLLM Technical Report

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

NVIDIA. Fastertransformer. https://github.com/NVIDIA/FasterTransformer, 2023. Trans-
former related optimization, including BERT, GPT.

etcd Authors. etcd: A distributed, reliable key-value store for the most critical data of a distributed
system. https://etcd.io.

Borui Wan, Gaohong Liu, Zuquan Song, Jun Wang, Yun Zhang, Guangming Sheng, Shuguang Wang,
Houmin Wei, Chenyuan Wang, Weigiang Lou, et al. Robust llm training infrastructure at bytedance.
arXiv preprint arXiv:2509.16293, 2025.

Haijun Zhang, Jinxiang Wang, Zhenhua Yu, Yanyong Zhang, Xuejie Ji, Kaining Mao, Jun Zhang, Yaqing
Zhang, Ting Wu, Fei Jie, et al. Flashrecovery: Fast and low-cost recovery from failures for large-scale
training of llms. arXiv preprint arXiv:2509.03047, 2025.

Baodong Wu, Lei Xia, Qingping Li, Kangyu Li, Xu Chen, Yonggiang Guo, Tieyao Xiang, Yuheng
Chen, and Shigang Li. Transom: An efficient fault-tolerant system for training llms. arXiv preprint
arXiv:2310.10046, 2023.

Jiangfei Duan, Shuo Zhang, Zerui Wang, Lijuan Jiang, Wenwen Qu, Qinghao Hu, Guoteng Wang,
Qizhen Weng, Hang Yan, Xingcheng Zhang, et al. Efficient training of large language models on dis-
tributed infrastructures: a survey. arXiv preprint arXiv:2407.20018, 2024.

Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. {CheckFreq}: Frequent,{Fine-
Grained } {DNN} checkpointing. In /9th USENIX Conference on File and Storage Technologies (FAST
21), pages 203-216, 2021.

Menglei Chen, Yu Hua, Rong Bai, and Jianming Huang. A cost-efficient failure-tolerant scheme for
distributed dnn training. In 2023 IEEE 41st International Conference on Computer Design (ICCD),
pages 150-157. IEEE, 2023.

Ascend cluster infra recovery. https://gitcode.com/ascend-tribe/ascend-cluster-infra/
blob/main/HighAvailability/ascend-cluster-infra-infer-recovery.md, 2025.

Borui Wan, Mingji Han, Yiyao Sheng, Yanghua Peng, Haibin Lin, Mofan Zhang, Zhichao Lai, Meng-
han Yu, Junda Zhang, Zuquan Song, et al. {ByteCheckpoint}: A unified checkpointing system for
large foundation model development. In 22nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 25), pages 559-578, 2025.

Kan Zhu, Yufei Gao, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie, Zihao Ye, Keisuke
Kamabhori, Chien-Yu Lin, et al. {NanoFlow }: Towards optimal large language model serving through-
put. In /9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 25), pages
749-765, 2025.

Raja Gond, Nipun Kwatra, and Ramachandran Ramjee. Tokenweave: Efficient compute-communication
overlap for distributed llm inference. arXiv preprint arXiv:2505.11329, 2025.

Bin Xiao and Lei Su. Iso: Overlap of computation and communication within seqenence for llm infer-
ence. arXiv preprint arXiv:2409.11155, 2024.

Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. Accelerating distributed moe training and
inference with lina, 2024.

Vinh Nguyen, Michael Carilli, Sukru Burc Eryilmaz, Vartika Singh, Michelle Lin, Natalia Gimelshein,
Alban Desmaison, and Edward Yang. Accelerating pytorch with cuda graphs. https://pytorch.org/
blog/accelerating-pytorch-with-cuda-graphs/, 2021.

Alan Gray. Getting started with cuda graphs. https://developer.nvidia.com/blog/
cuda-graphs/, 2019.

Build models based on capture methods. https://www.hiascend.com/document/detail/zh/
CANNCommunityEdition/83RClalpha002/appdevg/acldevg/aclcppdevg_000519.html, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serv-
ing with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems
Principles, 2023.

Jiale Xu, Rui Zhang, Yi Xiong, Cong Guo, Zihan Liu, Yangjie Zhou, Weiming Hu, Hao Wu, Changxu

Shao, Ziqing Wang, et al. ellm: Elastic memory management framework for efficient llm serving. arXiv
preprint arXiv:2506.15155, 2025.

37


https://github.com/NVIDIA/FasterTransformer
https://etcd.io
https://gitcode.com/ascend-tribe/ascend-cluster-infra/blob/main/HighAvailability/ascend-cluster-infra-infer-recovery.md
https://gitcode.com/ascend-tribe/ascend-cluster-infra/blob/main/HighAvailability/ascend-cluster-infra-infer-recovery.md
https://pytorch.org/blog/ accelerating-pytorch-with-cuda-graphs/
https://pytorch.org/blog/ accelerating-pytorch-with-cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/83RC1alpha002/appdevg/acldevg/aclcppdevg_000519.html
https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/83RC1alpha002/appdevg/acldevg/aclcppdevg_000519.html

xLLM Technical Report

(771

(78]

[79]

[80]

(81]

(82]

[83]

[84]

(85]

[86]

[87]

[88]
[89]

[90]

[91]

[92]

(93]

[94]

[95]

Shan Yu, Jiarong Xing, Yifan Qiao, Mingyuan Ma, Yangmin Li, Yang Wang, Shuo Yang, Zhiqgiang Xie,
Shiyi Cao, Ke Bao, et al. Prism: Unleashing gpu sharing for cost-efficient multi-llm serving. arXiv
preprint arXiv:2505.04021, 2025.

Jiale Xu, Rui Zhang, Cong Guo, Weiming Hu, Zihan Liu, Feiyang Wu, Yu Feng, Shixuan Sun, Changxu
Shao, Yuhong Guo, et al. vtensor: Flexible virtual tensor management for efficient 1lm serving. arXiv
preprint arXiv:2407.15309, 2024.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vattention:
Dynamic memory management for serving llms without pagedattention. In Proceedings of the 30th
ACM International Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1, pages 1133-1150, 2025.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344-16359, 2022.

Yuxuan Cai, Xiaozhuan Liang, Xinghua Wang, Jin Ma, Haijin Liang, Jinwen Luo, Xinyu Zuo, Lisheng
Duan, Yuyang Yin, and Xi Chen. Fastmtp: Accelerating llm inference with enhanced multi-token pre-
diction. arXiv preprint arXiv:2509.18362, 2025.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Ascend inference cluster. https://gitcode.com/ascend-tribe/ascend-inference-cluster/
tree/main, 2025.

Fanxu Meng, Pingzhi Tang, Xiaojuan Tang, Zengwei Yao, Xing Sun, and Muhan Zhang. Transmla:
Multi-head latent attention is all you need. arXiv preprint arXiv:2502.07864, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39, 2022.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-
experts language models. arXiv preprint arXiv:2401.06066, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Ly, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Qwen Team. Qwen2.5 technical report, 2025.

Yan Zeng, Chengchuang Huang, Yipeng Mei, Lifu Zhang, Teng Su, Wei Ye, Wenqi Shi, and Shengnan
Wang. Efficientmoe: Optimizing mixture-of-experts model training with adaptive load balance. /EEE
Transactions on Parallel and Distributed Systems, 2025.

Yan Zeng, Chengchuang Huang, Yipeng Mei, Lifu Zhang, Teng Su, Wei Ye, Wenqi Shi, and Shengnan
Wang. Efficientmoe: Optimizing mixture-of-experts model training with adaptive load balance. IEEE
Transactions on Parallel and Distributed Systems, 2025.

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Offloading-efficient moe
model serving. arXiv preprint arXiv:2401.14361, 2024.

Ao Xiao, Bangzheng He, Baoquan Zhang, Baoxing Huai, Bingji Wang, Bo Wang, Bo Xu, Boyi Hou,
Chan Yang, Changhong Liu, et al. xdeepserve: Model-as-a-service on huawei cloudmatrix384. arXiv
preprint arXiv:2508.02520, 2025.

Bin Wang, Bojun Wang, Changyi Wan, Guanzhe Huang, Hanpeng Hu, Haonan Jia, Hao Nie, Mingliang
Li, Nuo Chen, Siyu Chen, et al. Step-3 is large yet affordable: Model-system co-design for cost-effective
decoding. arXiv preprint arXiv:2507.19427, 2025.

Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong, Fangda
Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential transducers for
generative recommendations. arXiv preprint arXiv:2402.17152, 2024.

Ye Wang, Jiahao Xun, Minjie Hong, Jieming Zhu, Tao Jin, Wang Lin, Haoyuan Li, Linjun Li, Yan Xia,
Zhou Zhao, et al. Eager: Two-stream generative recommender with behavior-semantic collaboration. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
3245-3254, 2024.

38


https://gitcode.com/ascend-tribe/ascend-inference-cluster/tree/main
https://gitcode.com/ascend-tribe/ascend-inference-cluster/tree/main

xLLM Technical Report

[96]

[97]

(98]

[99]

[100]

[101]

[102]

Ruidong Han, Bin Yin, Shangyu Chen, He Jiang, Fei Jiang, Xiang Li, Chi Ma, Mincong Huang, Xi-
aoguang Li, Chunzhen Jing, et al. Mtgr: Industrial-scale generative recommendation framework in
meituan. arXiv preprint arXiv:2505.18654, 2025.

Anirudhan Badrinath, Prabhat Agarwal, Laksh Bhasin, Jaewon Yang, Jiajing Xu, and Charles Rosen-
berg. Pinrec: Outcome-conditioned, multi-token generative retrieval for industry-scale recommendation
systems. arXiv preprint arXiv:2504.10507, 2025.

Junyi Chen, Lu Chi, Bingyue Peng, and Zehuan Yuan. Hllm: Enhancing sequential recommendations
via hierarchical large language models for item and user modeling. arXiv preprint arXiv:2409.12740,
2024.

Brian J Chan, Jui-Hung Cheng, Mao Xun Huang, Chao-Ting Chen, and Hen-Hsen Huang. Efficient
beam search for large language models using trie-based decoding. arXiv preprint arXiv:2502.00085,
2025.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with generative
retrieval. Advances in Neural Information Processing Systems, 36:10299-10315, 2023.

Yuhao Yang, Zhi Ji, Zhaopeng Li, Yi Li, Zhonglin Mo, Yue Ding, Kai Chen, Zijian Zhang, Jie Li,
Shuanglong Li, et al. Sparse meets dense: Unified generative recommendations with cascaded sparse-
dense representations. arXiv preprint arXiv:2503.02453, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

39



	Introduction
	System Overview
	xLLM-Service
	xLLM-Engine

	xLLM-Service Designs
	Online-Offline Co-location Scheduler Policy
	Dynamic PD Disaggregation Scheduler Policy
	Hybrid EPD Disaggregation Scheduler Policy
	Global KV Cache Management
	Fast Fault Recovery Architecture

	xLLM-Engine Designs
	Multi-layer Pipeline Execution Engine
	Adaptive Graph Mode
	Efficient Memory Management
	Algorithm Optimizations
	Optimized Speculative Decoding
	Dynamic EP Load Balance
	Hierarchical DP Load Balance

	Generative Recommendation
	Host-side Optimization
	Device-side Optimization


	Evaluations
	Main Results
	Benchmarking Performance
	Business Serving Scenarios

	Ablation Study

	Future Work
	Fostering an Open and Diverse Hardware Ecosystem
	Cultivating a Vibrant and Responsive Model Ecosystem
	Evolving into an AI-Native Application Framework

	Conclusion

