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ABSTRACT
Network measurement is important to data center operators. Most

existing efforts focus on developing new implementation schemes

for measurement tasks. Little attention is paid to on-the-fly task

reconfiguration. Due to resource constraints, it is impossible to

configure all needed tasks at start-up and dynamically turn on/off

them. To support real-time reconfiguration of many different tasks,

a key observation is that it is unnecessary to bind a task and its

implementation at the compilation phase. We design FlyMon, the

first sketch-based measurement system that can make on-the-fly

reconfigurations on a large set of measurement tasks. FlyMon in-

troduces the concept of Composable Measurement Units (CMUs),

which are general operation units that support reconfigurable im-

plementation for measurement tasks combined from different flow

keys and flow attributes. FlyMon maps the design of CMUs to pro-

grammable switches’ data planes so that the number of compacted

CMUs can be maximized. FlyMon also provides dynamic memory

management. We prototype FlyMon on Tofino and currently en-

able four frequently used flow attributes. Each CMU Group (with 3

CMUs) can concurrently perform up to 96 isolated measurement

tasks with less than 8.3% hardware resources. The tasks can be de-

ployed with configurable memory size at the millisecond level. By

cross-stacking, FlyMon can deploy up to 27 CMUs in one pipeline

of Tofino.
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1 INTRODUCTION
Network measurement is important to data center operators. Many

management tasks (e.g., troubleshooting [8]) and scheduling de-

cisions (e.g., traffic engineering [3]) rely on monitoring real-time

traffic events/statistics sensed by underlying measurements. To

monitor a specific event or collect a particular statistic, an operator

issues a measurement task, defined as a combination of a given flow

key (e.g., SrcIP, SrcIP/24, IP-pair, 5-tuple) and a targeted attribute
(e.g., frequency [61], distinct [54]). The measurement system then

feeds qualified flow packets as input to an arithmetical operation

unit, which outputs values for the attribute of the task.

Most existing efforts focus on developing new implementation

schemes for measurement tasks [34, 54, 60]. Such a scheme com-

bines dedicated data structures to store attribute values and the

corresponding arithmetical operations over the data structures [68].

Nowadays, sketches are the most popular measurement schemes as

they can achieve a good balance between accuracy and resource us-

age [63]. Running on the data plane, a sketch summarizes traffic sta-

tistics of observed packets into a form of lossy compression. Recent

works have made significant progress on result accuracy [25, 52, 69],

resource efficiency [24, 33], and functionality [48, 64] of various

measurement tasks.

Little attention is paid to on-the-fly task reconfiguration. For
a practical data center, an ideal measurement system should flexibly

switch among different measurement tasks without interrupting

network traffic [51]. There are tens of common measurement tasks,

which could have different keys and attributes [68]. Currently, a

switch can usually support only a few tasks (e.g., 3 or 4) simultane-

ously [34, 60, 65]. Suppose a tenant complains that the performance

of their network service is abnormally degraded. The operator needs

to switch among various measurement tasks such as flow cardinal-

ity [49], DDoS detection [58], and flow congestion detection [55] of

all related devices to locate the root cause of the problem gradually.

Suppose the problem is eventually pinpointed as their flows con-

gested in a particular switch. The operator then measures the heavy

hitters in this switch to detect if any elephant flows dominate this

device and then evenly schedules these flows to eliminate the con-

gestion. Such task-switching requirements are common in practical

data centers, and thus it is highly desired to design a measurement

system that can achieve on-the-fly task reconfiguration.

Due to resource constraints, it is impossible to configure all

needed tasks at start-up and turn on/off them on the fly. Currently,

the task implementations on programmable switches are hardwired

at the compilation phase. Suppose an operator needs to reconfigure

tasks with𝑚 different flow keys and 𝑛 different attributes. In the

worst case, the hardware resource usage can be as large as O(𝑚 · 𝑛).
Given the limited hardware resources at programmable switches,

https://doi.org/10.1145/3544216.3544239
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it is impractical to pre-allocate exclusive computing and memory

resources for every task [12]. It is reported that a Tofino [27] switch

cannot support more than four single-key sketches in a typical

scenario [65].

To support on-the-fly reconfiguration of a large number of dif-

ferent tasks, a critical observation is that it is unnecessary to bind a

task and its implementation at the compilation phase. Instead, we

can dynamically compose the implementation when a new task is

assigned. The basic idea is: (i) decomposes task execution into a

key-selection phase and an attribute-operation phase, (ii) separately
minimizes each phase’s resource consumption for supporting dif-

ferent tasks, and (iii) at runtime reconfigures two phases for a given

task and links them together. Thus, different tasks could share key-

selection/attribute-operation resources. The resource occupancy

could be reduced from O(𝑚 · 𝑛) to near-constant.

We design FlyMon, the first sketch-based measurement sys-

tem that can make on-the-fly reconfigurations on a large set of

measurement tasks. Unlike existing efforts [2, 43, 50, 65] that de-

velop novel measurement algorithms with programmable hardware,

FlyMon explores how to efficiently extend the compilation-phase

programmability to runtime to cope with the diverse measure-

ment tasks. Without reloading the data-plane program, FlyMon can

switch the data-plane measurement tasks by installing runtime

rules using southbound APIs (e.g., P4 Runtime [45]). Our contribu-

tions are listed below.

Firstly, FlyMon introduces the concept of Composable Mea-
surement Units (CMUs). By adding a front-placed match-action

table, a key can be dynamically selected and copied from packet

header fields according to the matched task. FlyMon further adopts

a less-copy strategy that only copies a compressed key to reduce

the copy burden. We propose a reduced operation set, which can

support most attributes with only a few stateful operations. Thus,

both the key-selection and attribute-operation phases are recon-

figurable at runtime, and their resource occupancy is minimized.

Putting them together, we define the CMUs as general operation

units that support reconfigurable implementation for multiple con-

current measurement tasks combined from different flow keys and

flow attributes.

Secondly, FlyMonmaps the CMUdesign to programmable switches’

data plane so that the number of compacted CMUs can be maxi-

mized. Inspired by the Instruction Pipeline [15] in the CPU, FlyMon im-

plements CMUs in a grouped fashion called a CMU Group and

expands the CMU-Group pipeline into four independent stages.

Each stage has a different dominant resource demand. FlyMon can

arrange multiple CMU Groups in a cross-stacking view to signifi-

cantly improve hardware resources utilization.

Thirdly, FlyMon provides dynamic memory management. The

configuration of the stateful memory (i.e., size and bit-width) can-

not be changed at runtime, which poses a significant challenge

to allocate resources flexibly for different tasks and adapt to the

changing network conditions [16]. To realize dynamic memory

management on the fixed stateful memory, FlyMon introduces an

address translation mechanism to convert the dynamic allocation

of measurement tasks to the dynamic mapping of the address range.

We propose two strategies for implementing the address transla-

tion mechanism in programmable switches and analyzing their

respective resource overheads.

Table 1: Abstraction of measurement tasks. The ‘FlowID’ is
an abstract identifier that can be any combination or part of
protocol fields.

Task Key Attr. Param. Sketch
DDoS

Victim [58]

DstIP

Distinct

SrcIP HLL [20]

BeauCoup [12]

UnivMon [34]

LC [57]

Worm [29] SrcIP DstIP

Port Scan [21] IPpair DstPort

Cardinality [49] N/A FlowID

Per-flow

Size [60]

FlowID Frequency

Const(1)

or

Pkt Bytes

CMS [14]

UnivMon

MRAC [30]

Counter

Braids [36]

Heavy

Hitter [37]

Heavy

Changer [53]

Black List [38] N/A Existence FlowID B.F [6]

Congestion [55] FlowID

Max

Queue

Length

SuMax [66]

HOL [47] FlowID

Queue

Delay

Maximum

Interval [66]

FlowID

Packet

Interval

We prototype FlyMon on Tofino [27] and currently enable four

frequently used attributes (see Table 1). Each CMU Group can con-

currently perform up to 96 isolated measurement tasks composed

of different keys and attributes with less than 8.3% hardware re-

sources. By cross-stacking, FlyMon can deploy up to 9 CMU Groups

(including 27 CMUs) in one pipeline of Tofino. Besides, network

operators can dynamically deploy the measurement tasks with

configurable memory space at the millisecond level. Our reference

implementation of FlyMon is available at [67].

This work does not raise any ethical issues.

2 BACKGROUND
We start by providing some background on measurement tasks and

associated sketching algorithms (§2.1). We then present the conven-

tional way to implement sketches on reconfigurable match-action

tables (RMT [7]) and discuss why it is not scalable for covering all

measurement tasks (§2.2).

2.1 Measurement Tasks and Sketches
At a high level, a measurement task can be abstracted as a flow key

and a flow attribute. The flow key can be a specific protocol field (e.g.,
SrcIP), its subset (e.g., SrcIP/16, SrcIP/24), or combinations of several

fields (e.g., SrcIP-DstIP, SrcIP-SrcPort, 5-tuple). The flow attribute

can be frequency, distinct, etc. According to the flow attribute, the

measurement system uses specific algorithms to perform a single

pass over the packets and group the statistics according to the flow

key. As shown in Table 1, the different combinations of flow keys

and the attributes with associated parameters cause the diversity

of measurement tasks.

Inspired by BeauCoup [12], we define a measurement task as

two parts: a key, and an attribute with associated parameters. The

key indicates how to group the packets into multiple flows (e.g.,
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Figure 1: Sketch Implementation on RMT switches

by SrcIP, SrcIP/24, 5-tuple). The attribute with specific parameters

indicates what kind of flow statistics to be measured among each

flow’s packets. We focus on four frequently used flow attributes in

Table 1:

• Distinct(param) counts different numbers of the parameter

for each key.

• Frequency(param) accumulates the parameter for each

key.

• Existence(param) checks if the parameter exists in a given

set for each key.

• Max(param) finds the maximum parameter for each key.

BeauCoup focuses on the Distinct attribute in this definition. For

example, DDoS victim detection needs to count the different num-

bers of SrcIP for each DstIP. The task can be abstracted into taking

DstIP as the key and Distinct(SrcIP) as the attribute. In the data

plane, we maintain a distinct counter for each DstIP. When a packet

arrives, DstIP (i.e., the key) is used to locate a distinct counter, and

we add 1 to the counter if the packet’s SrcIP (i.e., the parameter) is

a new value not seen before.

Sketching algorithms summarize traffic statistics of all observed

packets into a form of lossy compression on the original traffic data.

Although the sketches lose some accuracy, they make a great trade-

off between accuracy and resource usage [63]. As shown in Table 1,

we can use existing sketching algorithms [68] to efficiently perform

the above attributes. For example, Count-Min Sketch (CMS) [14]

is suitable for performing the Frequency attribute. As shown in

Figure 1a, it maintains 𝑑×𝑤 array of counters with 𝑑 hash functions

ℎ1, ℎ2, · · · , ℎ𝑑 . For each key 𝑘𝑖 with parameter 𝑝𝑖 , CMS adds 𝑝𝑖 to

the counters𝐶 [ 𝑗, ℎ 𝑗 (𝑘𝑖 )] for all rows 𝑗 . The estimation result is the

minimum count among 𝐶 [ 𝑗, ℎ 𝑗 (𝑖)].

2.2 Sketch Implementation on RMT Hardware
Programmable switches (e.g., Tofino [26]) based on the RMT par-

adigm support implementing various sketching algorithms [43].

The switches consist of several Match-Action Unit (MAU) stages ar-

ranged in a pipeline. Each MAU stage contains the same hardware

resources for implementing network functions (e.g., L3 forward-
ing). The key hardware resources used to implement sketches are

BloomFilter CMS HLL MRAC Sum0%

10%

20%

30%

40%

Hash Unit
Logical Table ID

Stateful ALU
Stateful Memory

Figure 2: The resource footprint of four single-key sketching
algorithms and their coexistence (denoted as Sum).

Packet Header Vector (PHV), hash units
1
, stateful ALUs (SALU),

and stateful memory (i.e., static random access memory (SRAM)

used to reserve states between packets).

Figure 1 shows how to implement Count-Min Sketch (CMS)

and Bloom Filter (B.F [6]) in the RMT-based switches. Specifically,

we need to allocate a set of buckets in SRAM for the algorithms

to store frequency attributes (CMS) or existence attributes (B.F),

respectively. The buckets for the CMS are configured to 32 bits,

while the buckets in the B.F are configured to 1 bit. We can input

a flow key (SrcIP-DstIP pair) stored in PHV into the hash unit to

get the address of a corresponding bucket in SRAM. Then, the

SALU performs a particular stateful operation to update the bucket

according to the address. In particular, the CMS needs to perform

the𝐴𝐷𝐷 operation to update the counter. The B.F needs to perform

the 𝑂𝑅 operation for inserting an item.

Limitation of RMT Hardware.With the RMT hardware, users

can customize the header fields input into the hash units, the stateful

operations on the SALUs, and the bit width and length of the buckets

in SRAM. However, once the switch is ready to forward packets, it

requires interrupting the traffic to reconfigure the functionality of

the hardware. It is not scalable to support on-the-fly reconfiguration

of measurement tasks by deploying them in advance with exclusive

hardware resources. We evaluate the critical resource footprint of

four sketches and their coexistence (denoted as Sum) in Figure 2.

We find that the solution can not support more than four different

keys.

3 FLYMON DESIGN
Overview. FlyMon is a measurement system that realizes on-the-

fly reconfiguration of measurement tasks combined from various

keys and attributes. As shown in Figure 3, when a new measure-

ment task is issued, FlyMon only needs to install runtime rules

(e.g., P4 Runtime interfaces [45]) from the control plane according

to the task’s key and attribute. Then the measurement task can

be deployed on the hardware data plane with specified memory

space. The design of FlyMon consists of four parts. We first propose

the Composable Measurement Unit (CMU) to accommodate more

measurement tasks (§3.1). We then discuss how to map CMUs on

RMT Hardware (§3.2) efficiently. In §3.3, we introduce how to re-

alize dynamic memory management based on CMUs. Finally, we

introduce the control plane of FlyMon in §3.4.

1
There are multiple types of hash resources (e.g., hash bits, hash calculation units,

hash distribution units) in the data plane. For the convenience of discussion, we refer

to them collectively as hash units and consider the bottleneck resources (usually, the

hash distribution units) as the main optimization target.
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Figure 3: Overview of FlyMon.

3.1 Composable Measurement Unit
To support the on-the-fly reconfiguration of a large number of tasks,

we decompose the task execution into a key-selection phase and an

attribute-operation phase. The composition of the two phases con-

stitutes the concept of a Composable Measurement Unit, a general

operation unit to accommodate more kinds of measurement tasks.

3.1.1 The Key-selection Phase
The static task deployment cannot dynamically set the key for

different tasks’ packets because the hash units in RMT hardware

cannot change the input PHV fields to other fields at run time.

Fortunately, we have the opportunity to modify the value of the

input PHV fields in advance [4, 70]. As shown in the top half of

Figure 4, we can allocate an extra PHV field named ‘Dynamic Key,’

which is used as the fixed input of the hash unit. When a packet

arrives, we can use a front-placed match-action table (denoted as

‘Select Key’) to dynamically select a key from the candidate key set

according to the task to be performed. The hash unit then calculates

the ‘Dynamic Key’ to get a memory address and passes this memory

address to the attribute-operation phase.

Challenge: PHV Copy. The dynamic selection of the key needs

to allocate extra PHV memory and copy the original header fields

to this memory. PHV resources are statically allocated in the data

plane and cannot be changed at runtime. This means that if we want

to support 5-tuple (i.e., SrcIP, DstIP, SrcPort, DstPort, and Protocol)

as a key, we must statically allocate extra 104 bits in PHV for each

SALU, even though a measurement task may only need to set SrcIP

as the key. However, the PHV memory is a precious resource in

RMT switches. Most data-plane behaviors in RMT switches are

closely related to the PHV [7]. As the number of deployed SALUs

increases, there will be a significant overhead on PHV occupancy.

The situation worsens if we additionally consider other protocols’

fields (e.g., IPv6 addresses) as candidate keys.
Optimization: Less-copy Strategy. To enable the per-packet dy-

namical key selection according to the task type, the PHV Copy

operation is unavoidable. We try to reduce the PHV occupancy by

adopting a ‘less-copy’ strategy: setting a compressed key for each

SALU. As shown at the bottom of Figure 4, we use several hash

units to produce a set of compressed keys (e.g.,𝐶 (𝑘1),𝐶 (𝑘2)) in one

Dynamic KeyCandidate Key Set

addr

PHV

𝐶𝐶(𝑘𝑘1)

𝐶𝐶(𝑘𝑘2)

Hash Unit

Attribute-operation 
Phase

���SrcIP DstIP ���DstIP

Select Key
SrcIP DstIP ...IP-Pair

PHV
Copy

Dynamic KeyCandidate Key Set

���SrcIP DstIP 𝐶𝐶(𝑘𝑘2)

PHV

Hash UnitM1

M2 Hash Unit
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𝐶𝐶 𝑘𝑘1 𝐶𝐶 𝑘𝑘2 𝐶𝐶(𝑘𝑘1)⊕ 𝐶𝐶(𝑘𝑘2)

Attribute-
Operation

Phaseaddr

Compressed Keys

Less-copy Strategy

Figure 4: The key-selection phase and its optimization.

MAU stage. Although the one-way compression
2
will lead to hash

collisions among different flows, it has little effect on the accuracy

of network measurements.

Firstly, there is a small percentage of collisions in a compressed

key since the number of flows is limited within a measurement

epoch. Existing work [1] reports that there are up to 8K concurrent

flows (identified by 5-tuples) over 1 ms intervals in a heavily loaded

leaf switch. Based on this, there are around 400K distinct 5-tuples

during a 50 ms measurement epoch. Theoretically, the mapping

from 𝑛 distinct flows to a log𝑚-bit compression domain will re-

sult in a hash collision probability approximating 1 − 𝑒−𝑛/𝑚 for

each flow (see more details in Appendix B). Given a 24-bit com-

pressed key, the percentage of collision flows among all flows is

about 2.35% in the above scenario. Secondly, a compressed key or

its subparts can be directly used for memory updating of sketching

algorithms. Therefore, the accuracy is still directly related to the al-

located memory space of the algorithms. The sketching algorithms

(e.g., CMS [14], Bloom Filter [38]) are insensitive to hash colli-

sions because they usually use multiple hash functions to reduce

the impact of collisions [10]. Thirdly, in some extreme scenarios,

FlyMon supports separating a heavy task into multiple subtasks

by task filters (e.g., separate a task with 𝑓 𝑖𝑙𝑡𝑒𝑟 [𝑆𝑟𝑐𝐼𝑃 : 10.0.0.0/8]
to subtask 1 with 𝑓 𝑖𝑙𝑡𝑒𝑟 [𝑆𝑟𝑐𝐼𝑃 : 10.0.0.0/9] and subtask 2 with

𝑓 𝑖𝑙𝑡𝑒𝑟 [𝑆𝑟𝑐𝐼𝑃 : 10.128.0.0/9]), which can reduce the probability of

collisions in each subtask while taking more hardware resources.

However, few keys can be compressed since the number of hash

units in the data plane is limited. We address this limitation by using

the latest feature of RMT switches named dynamic hashing
3
, which

supports changing the hash units’ parameters to mask portions of

fields at runtime. We can set the input of the hash unit as the whole

2
The one-way compression, also known as a message digest, fingerprint, is not related

to conventional data compression, which instead can be inverted exactly (lossless

compression) or approximately (lossy compression) to the original data [17].

3
The corresponding control plane functions and example codes (i.e., tna_dyn_hashing)
appear in SDE version 9.7.0
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candidate key set (i.e., any partial key of 5-tuple). Thenwe can install
hash-masking rules (denoted as ‘M1’ and ‘M2’) from the control

plane to configure which keys to be compressed by the hash units.

In addition, we support performing bit-wise exclusive or (XOR)

operations between the compressed keys to increase the number of

available keys. For example, if we generate two compressed keys

𝐶 (𝑆𝑟𝑐𝐼𝑃) and𝐶 (𝐷𝑠𝑡𝐼𝑃) with two hash units, we can set IP-pair as a

key by performing𝐶 (𝑆𝑟𝑐𝐼𝑃) ⊕𝐶 (𝐷𝑠𝑡𝐼𝑃). Currently, RMT switches

can only perform binary XOR in one match-action stage. Therefore,

we can select at most
𝑘 (𝑘+1)

2
different keys with𝑘 hash units. In §3.2,

We will discuss how to save hashing resources by sharing hash

units among multiple CMUs.

3.1.2 The Attribute-operation Phase
FlyMon supports attribute measurement by implementing several

built-in algorithms. At a high level, measurement algorithms can

be abstracted into one or several building blocks [63]. A SALU and

corresponding SRAM can implement one of the building blocks. In

RMT-based programmable switches, a SALU is bound to a fixed-size

memory, collectively called a register. To realize the dynamic selec-

tion of attributes, FlyMon uses the feature of RMT switches that

each register can have several pre-loaded operations (i.e., register
actions). As shown in Figure 5, we can dynamically choose different

operations with a ‘Select Operation’ table to implement the register

as the building block of various algorithms. For example, suppose

we choose the ‘ADD’ operation. In that case, we regard the regis-

ter as a building block of CMS, which can be used to measure the

Frequency attribute.

Challenge: Limited Stateful Operations. Although SALUs can

dynamically select a specific operation to execute, the number of

stateful operations that can be pre-loaded is limited. With the ab-

straction of measurement tasks in Table 1, only one algorithm is

required for each attribute. However, to deal with different sce-

narios flexibly, it’s better to support multiple algorithms for each

attribute. In particular, BeauCoup [12] is more resource-efficient

than HyperLogLog [20] for multi-key distinct counting (e.g., de-
tecting DDoS victims). For the Frequency attribute, MRAC [30]

is dedicated to estimating flow size distribution and flow entropy.

Under the same memory size, TowerSketch [59], SuMax [66], and

Counter Braids [36] can replace CMS to obtain higher accuracy at

the cost of more other resources (e.g., MAU stages). Currently, each

SALU in Tofino can only pre-load four different operations [26].

Therefore, implementing various algorithms for an extensible set

of flow attributes is a potential challenge.
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Figure 6: Generation process of the reduced operation set.

Optimization: Reduced Operation Set. As shown in Figure 6,

we use a reduced operation set to implement various sketching

algorithms. The generation process of the reduced operation set

includes two steps:

• Decomposition. We decompose the measurement algo-

rithms into data-plane operations and control-plane analysis.

Only the data-plane operations need to be implemented with

the stateful operations. We find some algorithms share some

joint data-plane operations, which means we can let multiple

measurement algorithms multiplex some stateful operations.

For example, counter-based algorithms such as CMS [14]

and MRAC [31] can share the unconditional ADD (UnCond-

ADD) operation.

• Aggregation. The computing power of SALU is usually

larger than the operations required by some measurement

algorithms. In particular, SALUs can make a conditional

judgment, but some algorithms (i.e., Bloom Filter) do not

utilize this resource. We can aggregate two simple operations

into one stateful operation. For example, the bit-wise AND

and bit-wise OR can be aggregated into a bit-wise AND-OR

operation, and the SALU can decide which to run by the

conditional judgment.

In the current implementation, we implement 10 algorithms

(in Figure 6) with the reduced operation set, covering all the flow

attributes listed in Table 1. The details of these operations can be

found in Appendix A. In addition, we introduce a preparation stage

to assist in implementing these algorithms (see §3.2). We discuss the

detailed implementation of these algorithms in §4. We only occupy

three stateful operations, which means FlyMon has expansion room

to support more attributes or algorithms (see §6).

3.2 Mapping CMUs on RMT Hardware
Compared to the static deployment method, a significant problem

introduced by CMU is that it always needs multiple MAU stages to

perform a measurement task. However, the number of MAU stages

in the data plane is limited (i.e., only 12 in Tofino [27]). A straight-

forward implementation could easily lead to the underutilization

of various hardware resources (e.g., Hash, SALU). In this subsec-

tion, we first introduce how CMUs are mapped in RMT switches.

We then discuss why such a design can efficiently utilize various

hardware resources in the MAU stages.
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Figure 7: Composable Measurement Unit Group.

CMU Groups.We implement multiple CMUs in a grouped fashion,

called a CMU Group. As shown in Figure 7, a CMU Group con-

sists of four stages: a compression stage, an initialization stage, a

preparation stage, and an operation stage. The functions of the four

stages are listed in Table 2. Each CMU completes the key-selection

phase through the compression and initialization stages, while the

attribute-operation phase is completed through the preparation

and operation stages. To make full use of hash resources while

ensuring the flexibility of the key-selection phase. We let multiple

CMUs in the same Group share a compression stage. Therefore,

each CMU can select
𝑘 (𝑘+1)

2
different keys with 𝑘 hash units (as

discussed in §3.1)). Usually, CMUs need to perform independent

hash calculations in some sketches to reduce the impact of hash

collisions (e.g., Bloom Filter, CMS). Inspired by SketchLib [43], we

let CMUs in the same CMU Group select different sub-parts of the

compressed key to simulate the independent hash calculations. For

example, given a 32-bit compressed key, we select 0-15 bits for CMU

1, 8-24 bits for CMU 2, and 16-32 bits for CMU 3. Our experimental

results demonstrate that the strategy has a negligible impact on

measurement accuracy (see §5).

CMUs also set one or two parameters in their initialization stage.

The parameters are used to distinguish the concrete measurement

tasks for an attribute (see Table 1). Take the Frequency attribute as

an example. If we want to count the number of packets for each

flow, we need to set the parameter to 1. If we want to count per-

flow bytes, we must set the parameter to the size of the packet. The

parameters can be constant values or standard metadata such as

packet size, timestamp, queue length, and delay. Besides, CMUs can

also set parameters as the compressed keys to support the Distinct

and Existence attributes (see §4).

The preparation stage processes the key and parameters set in

the initialization stage separately. The processing of the key (i.e.,
Address Translation in Figure 7) is for realizing dynamic memory

management (see §3.3). The processing of the parameters is to en-

able CMUs to implement more sketching algorithms flexibly. With

Table 2: Functions of the four stages in CMU Group and their
key resource occupancy.

Stage Function
Key

Resource

Compression

(C)

Generates multiple compressed

keys according to hash masks

installed from the control plane

Hash Unit

Initialization

(I)

Selects the key and parameters

according to the matched task

VLIW

Instruction

Preparation

(P)

Performs address translation

and parameter preprocessing

TCAM

Operation

(O)

Selects a stateful operation to

update the flow attributes based

on the key and parameters

SALU, SRAM,

Hash Unit
4

a TCAM-based table, a CMU can dynamically establish a mapping

function between the input and output parameters, bringing great

flexibility in memory updating. For example, some algorithms like

Bloom Filter [6] and BeauCoup [12] operate on a bit-level rather

than a whole counter. However, CMUs need to use a uniform mem-

ory configuration (e.g., all SRAM buckets are 16-bit) for generality.

With the preparation stage, we can map a hashing parameter to a

one-hot encoding (i.e., only one bit is ‘1’ and the other bits are ‘0’)

used in these algorithms. We discuss the detailed implementation

of these algorithms in FlyMon with corresponding measurement

tasks in §4. After the preparation stage is completed, the operation

stage takes the key and parameters as inputs and perform specific

stateful operations for a given task.

Cross-stack CMU Groups in RMT Pipeline. As shown in Ta-

ble 2, we find that the four stages in the CMU Group have different

dominant resource demands. Specifically, the compression stage

occupies most hash units to generate compressed keys. The initial-

ization stage requires more very long instruction words (VLIWs [7])

to select different keys and parameters dynamically. The prepa-

ration stage occupies more ternary content-addressable memory

(TCAM [62]) resources to translate addresses (see §3.3) and process

parameters (e.g., one-hot encoding). The operation phase occu-

pies all SALU and SRAM resources. Therefore, deploying multiple

CMU Groups one by one will cause uneven utilization of various

resources on each MAU stage.

Our inspiration comes from the Instruction Pipeline [15] in the

CPU. To fully use the various components, the CPU divides an

instruction into several micro-instructions (e.g., instruction fetch,

memory access) and executes different micro-instructions of multi-

ple instructions simultaneously in each clock cycle. In FlyMon, a

match-action unit (MAU) stage is similar to a CPU clock. As shown

in Figure 8, we can make multiple CMU Groups cross-stacked to

maximize the number of deployed CMU Groups within given MAU

stages. The cross stacking means each stage of a CMU Group occu-

pies its dominant resource as much as possible, and the subsequent

CMU Groups are shift-one-stage placed to use various resources in

4
Note that SALUs of current RMT switches always use a hash distribution unit for

addressing, even thoughwe input a correctly-processedmemory address. In the current

implementation, we compromise to allocate half of the hash distribution units in the

compression stage and half in the operation stage. We expect future RMT hardware to

equip the SALUs with standalone memory access units.
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Stage Resource Usage
Hash VLIW TCAM SALU

Compression (C) 50% 6.25% 0.00% 0.00%

Initialization (I) 0.00% 25% 12.50% 0.00%

Preparation (P) 0.00% 6.25% 50.00% 0.00%

Operation (O) 50% (*) 25% 0.00% 75.00%

S1 S2 S3 S4 S5 S6 S7 ...
�0 �0 �0 �0 �4 �4 �4 ...

�1 �1 �1 �1 �5 �5 ...

�2 �2 �2 �2 �6 ...

�3 �3 �3 �3 ...

Compression 
Stage (C)

Initialization 
Stage (I)

Preparation 
Stage (P)

Operation 
Stage (O)

Hash Units

VLIW

TCAM

SALU

Figure 8: Cross-stacking view of CMUGroups. The 𝑆𝑖 denotes
the 𝑖-th MAU stage. The 𝐶 𝑗 , 𝐼 𝑗 , 𝑃 𝑗 , and 𝑂 𝑗 denote the four
stages of CMU Group 𝑗 listed in Table 2.

each MAU stage fully. There are two direct benefits of the cross

stacking. Firstly, for dedicated measurement equipment, maximiz-

ing the number of deployable CMUs will increase the number of

measurement tasks executed in parallel. Secondly, the cross stack-

ing costs fewer MAU stages and utilizes various resources evenly,

which is the main optimization goal in some network systems based

on RMT switches [56].

However, the cross-stacking will increase the occupation of PHV

resources because multiple CMU Groups are overlapped to share a

set of MAU stages. In FlyMon, such stacking is supported because

we reduce the PHV occupancy of CMUs with compression stages.

Since one CMU Group occupies 4 stages, a maximum of 9 CMU

Groups can be deployed in a 12-stage pipeline. We discuss how

to further utilize the remaining resources (i.e., triangle areas in

Figure 8) in §6 and Appendix E

3.3 Dynamic Memory Management
FlyMon provides two levels of memory management. Firstly, each

CMU can switch to any supported measurement tasks. Thus, we can

achieve unit-level memory management by adjusting the number

of CMUs for the measurement tasks. However, since the number of

CMUs is limited, it cannot achieve fine-grained memory manage-

ment only by the unit-level adjustment.

We implement fine-grained memory management inside the

CMUs through an address translationmechanism in the preparation

stage. Our basic idea is that while we cannot change the size of

memory allocations at runtime, we can modify the memory address

range for measurement tasks. During the initialization stage, we

select one key from the compressed keys. Suppose the CMU has

a total of𝑚 buckets. The selected key is an address representing

its range as [0,𝑚]. The address translation mechanism is that we

narrow this range down to a fixed sub-range, such as [0, 𝑚
4
), [𝑚

2
,𝑚),

according to the measurement task to be performed. We propose

two different address translation methods based on RMT hardware.

Shift-based address translation. After the key is selected, we can
right shift the key to modify the access range of the memory. By

right shifting, we can get an offset address of different sub-ranges,

such as [0, 𝑚
2
], [0, 𝑚

4
], [0, 𝑚

8
]. Further, we use another stage to add

a base address to this address to get the physical address of the task.

As shown in Figure 9, if we want to access the address space of

Task 2 (i.e., [𝑚
2
, 3𝑚

4
]), we need to shift two bits right and then add

𝑚
2
as the base address. This method requires two MAU stages to

complete the address translation. We can optimize it within one

MAU stage by pre-calculating all possible ranges of offsets in the

initialization stage while costing additional PHV resources.
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Figure 9: Two different Address Translation Mechanisms.

TCAM-based address translation. We can use the range match-

ing function of TCAM to complete the address translation within

a stage. To get the address range [𝑚
2
, 3𝑚

4
], We can use TCAM to

judge different cases. As shown in Figure 9, if the current address

range is already in [𝑚
2
, 3𝑚

4
], we do not need any processing. If

the current address range is in [0, 𝑚
4
], we can map it to the target

address range by adding
𝑚
2
to the original address. In other words,

we need to add three TCAM entries and a default entry for this task

in this case.

The above two methods use different types of resources. The

shift-based method requires an additional stage or PHV occupation,

while the TCAM-based method requires more TCAM resources.

Network operators can implement the address translation based on

currently available resources. We evaluate the resource overhead of

these two methods in §5. We find that 32 memory partitions can be

achieved using less than 15% TCAM resources within a single MAU

stage. In other words, we can realize the dynamic adjustment of

memory space size into𝑚,𝑚/2,𝑚/4, ...,𝑚/32. At the same time, up

to 32 isolated measurement tasks can be performed on one CMU.

Limitation of Address Translation. There are two limitations to

implementing dynamic memory allocation via the address transla-

tion. Firstly, only 2
𝑛
(𝑛 ≥ 0) partitions can be efficiently supported.

The shift-based address translation cannot realize memory parti-

tions that are not a power of two. And the TCAM-based address

translation requires more TCAM entries if the ranges are not a

power of two. Secondly, a SALU can only execute one measure-

ment task per packet since it can only access the memory once in

current RMT hardware. In other words, measurement tasks with

traffic intersections (e.g., a task with 𝑓 𝑖𝑙𝑡𝑒𝑟 [𝑆𝑟𝑐𝐼𝑃 = 10.0.0.0/24]
and another with 𝑓 𝑖𝑙𝑡𝑒𝑟 [𝑆𝑟𝑐𝐼𝑃 = 10.0.0.0/16]) cannot directly co-

exist in the same CMU. When deploying measurement tasks, we

avoid traffic intersections on the same CMU. We evaluate a proba-

bilistic execution approach to solve this limitation for heavy-hitter

detection (§5.3) and make a discussion in §6.
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3.4 Control Plane Implementation
Existing Software-defined Measurement (SDM) controllers (e.g.,
DREAM [42], SCREAM [41]) already realize rich control-plane

functions (e.g., memory management strategies, network-wide mea-

surements) based on software switches [23, 46] or simulations.

FlyMon fills the gap of the flexible hardware measurement data

plane for these SDM controllers. FlyMon provides two class inter-

faces for compatibility with existing SDM controllers: task manage-

ment interfaces and resource management interfaces.

The task management interfaces are used to define new mea-

surement tasks and modify running tasks’ configurations. The task

definition in FlyMon includes a filter, a key, an attribute, and a

memory size (i.e., number of buckets). A dedicated compiler selects

a built-in algorithm according to the attribute and translates the

task definition into runtime rules. The resource management in-

terfaces maintain the occupancy status of various resources (e.g.,
compressed keys, memory) and allocate or recycle these resources.

Since FlyMon can only allocate the memory discretely (i.e., power
of 2), the control plane provides two modes of memory allocation:

accurate and efficient. The accurate mode always allocates memory

greater than or equal to needed, while the efficient mode always

allocates memory closest to the required memory.

FlyMon’s control plane takes a CMU Group as the basic unit to

manage the functions and resource allocations of the data plane.

A CMU Group can concurrently perform multiple different mea-

surement tasks. In particular, the three tasks in Figure 10 execute

(per-SrcIP) flow size estimation, DDoS victims, and congestion de-

tection, respectively. If a new measurement task arrives, the control

plane decomposes the task into the three parts (i.e., key, attribute,
memory size) and then installs the task to the CMU Group that

meets the resource requirements (e.g., compressed keys, memory).

We adopt a greedy strategy: prioritize deploying new tasks to the

CMU groups that already have (part of) the required compressed

keys. For the CMU Group in Figure 10, if the new task requires

SrcIP-SrcPort as the key, the control plane needs to configure the

third compressed key (i.e., H3) as SrcIP-SrcPort directly or config-

ures it as SrcPort and then sets SrcIP-SrcPort by performing XOR

between HASH 1 and HASH 3. If the task requires another 3∗16384
buckets in SRAM, the control plane will assign this task to other

CMU Groups because there is not enough memory in this CMU

Group.

4 FLYMON USAGE
In this section, we introduce how to use CMUs to implement parts of

built-in algorithms through several classic measurement tasks. We

use 𝑝1 and 𝑝2 to denote flow attributes’ first and second parameters,

respectively. Note that the tasks that FlyMon can perform are not

limited to the below use cases. We discuss FlyMon’s expressiveness

in §6 and present the implementation of the rest algorithms (e.g.,
Counter Braids [36]) in Appendix D.

Flow Cardinality [49] measures the number of distinct flows in

the network, which is a single-key distinct counting task. We use

HyperLogLog (HLL) to perform this task with a small memory

footprint. Given a flow key (e.g., 5-tuple), HLL uses a hash function

to generate a random binary string, which can be represented as the

pattern of 0
𝜌−1

1, where the 𝜌 denotes the position of the leftmost

1-bit in the binary string. By tracking the binary string with the
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Figure 10: The abstraction of one CMU Group in the control
plane. The ‘Mem’ in the figure denotes the number of buckets
in registers.

largest 𝜌 , the distinct count (i.e., cardinality) of a multi-set can be

estimated as at least 2
𝜌
. FlyMon simulates this process through the

MAX operation. We first change to track the leftmost ‘1’, equivalent

to leftmost ‘0’ tracking. In this way, we can track the largest 𝜌

by finding the maximum value of these binary strings. Besides,

HLL uses the technology called stochastic averaging to improve

the accuracy further. By randomly dividing the binary strings into

2
𝑏
buckets, HLL calculates the cardinality based on the harmonic

mean of the 2
𝑏
estimates. In FlyMon, we set both the key and 𝑝1 to

the flow key. The key is used to locate a bucket, and 𝑝1 is used to

track the largest 𝜌 . When a measurement epoch ends, we read the

measurement data and calculate the cardinality of the traffic in the

control plane. Existing RMT-based HLL implementations [11, 12]

track the largest 𝜌 with TCAM entries. FlyMon can also support this

implementation in the preparation stage. We prefer to implement

HLL with the Max operation to save TCAM entries.

DDoS Victim Detection [58] is a multi-key distinct counting task.

FlyMon can support the task with BeauCoup [12] algorithm. In the

initialization stage of CMUs, we can set the key and 𝑝1 to𝐶 (𝐷𝑠𝑡𝐼𝑃)
and𝐶 (𝑆𝑟𝑐𝐼𝑃), respectively. In the preparation stage, we can choose

different coupons (a one-hot encoding) according to 𝑝1 (i.e., the
hash value of SrcIP). Finally, we select the ‘OR’ in the AND-OR

operation in the operation stage with 𝑝2 (see Appendix A for detail).

In the original BeauCoup algorithm, additional checksum informa-

tion is maintained to detect hash collisions. In FlyMon, we adopt a

mechanism similar to Count-Min Sketch to reduce the impact of

hash collisions. We use multiple coupon tables (each with a CMU)

and report a victim when all coupons in the multiple tables have

been collected. This is reasonable because the algorithm overesti-

mates a particular key when hash collisions occur. We evaluate the

accuracy of our BeauCoup implementation (i.e., FlyMon-BeauCoup)

and the original BeauCoup algorithm in §5.3.

Heavy Hitter Detection [37] finds the flows whose total size

dominates the whole network traffic in a measurement epoch. In

FlyMon, we can use a Count-Min Sketch (CMS) or SuMax(Sum)

to implement the threshold-based heavy hitter detection (e.g., find
the flows with a frequency larger than 1024). The Cond-ADD op-

eration adds the value of 𝑝1 to the counter in SRAM if the value

of 𝑝2 is greater than the counter (see Appendix A for detail). We

can use the Cond-ADD operation with the second parameter as
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positive infinity to regard the operation as an Uncond-ADD oper-

ation required by CMS. FlyMon can use SuMax(Sum) [66] to im-

prove the measurement accuracy further. Unlike CMS, SuMax(Sum)

only updates the counters with the current minimum value (i.e.,
an approximate conservative updating strategy [19]). Therefore,

implementing SuMax(Sum) requires cooperation among CMUs in

non-overlap CMUGroups. We can store the current minimum value

in 𝑝2. The Cond-ADD operation will add 𝑝1 to the counter only

when the counter is less than the current minimum value.

Existence Check [6] detects the existence of specific flows (e.g.,
the flows in blacklist) in the network. FlyMon uses Bloom Filter to

perform this task. However, to support counter-based algorithms,

the CMU’s counters need to be set to a uniform memory configura-

tion (e.g., all SRAM buckets are 16-bit or 32-bit). Simply using 16

(or 32) bits as 1 bit is not memory-efficient. In FlyMon, we set both

the key and 𝑝1 to the compressed key that we want to check. In

the preparation stage, the key is used to locate a bucket, while 𝑝1 is

used to select one bit from the 16 (or 32) bits of the bucket. In this

way, we can make full use of all the bits in the CMUs to implement

Bloom Filter.

Maximum Inter-arrival Time checks the maximum packet in-

terval for each flow [66]. However, the packet interval time is not

directly available in the data plane. Thus we must record the arrival

time of each packet on each flow. We can record the arrival time

of each packet through a CMU (denoted as 𝐶𝑀𝑈1) using the Max

operation and calculate the packet interval in 𝐶𝑀𝑈1’s downstream

CMU (denoted as 𝐶𝑀𝑈2) by performing a subtract operation in

𝐶𝑀𝑈2’s preparation stage. Finally, the 𝐶𝑀𝑈2 performs another

Max operation in its operation stage to track the maximum packet

interval. However, the straightforward implementation will pro-

duce significant accuracy loss when a new flow reads the last arrival

time of an old flow (i.e., produces a large interval because of hash
collisions). We use a Bloom Filter (with another CMU) to detect if

the current flow is a new flow. If a new flow comes, we initialize the

interval to 0. To conclude, this is a combinatorial task that requires

three CMUs from three CMU Groups.

5 EVALUATION
Weprototype FlyMon on aWedge 100BF Tofino-based programmable

switch and generate traffic on two Intel Xeon CPU E5-2650 servers,

both with a Mellanox ConnectX-5 100 Gbps NIC. We conduct exten-

sive experiments to evaluate the performance and resource over-

head of FlyMon. We summarize the following experimental results:

• Functionality. FlyMon uses only one CMU Group to con-

currently perform up to 96 isolated measurement tasks com-

posed of all supported attributes with an extensive range of

keys. These tasks can be deployed at the millisecond level

with configurable memory space. The task reconfigurations

have no performance impairments on traffic forwarding and

the accuracy of existing measurement tasks.

• Resource Usage. FlyMon introduces less than 8.3% resource

overhead for each CMUGroup. By cross-stacking, FlyMon can

deploy 9 CMU Groups within 12 MAU stages. More than

3 CMU Groups can be integrated into the Tofino baseline

switch project.

Table 3: Built-in algorithms in FlyMon. ‘CMUG’ denotes CMU
Group. The ‘d’ denotes the number of buckets rows.

Algorithm
on CMU

Attribute
CMUG
Usage

Deployment
Delay (ms)

CMS (d=3) Frequency 1 16.93

BeauCoup (d=3)

Distinct

(multi-key)

1 40.18

Bloom Filter (d=3) Existence 1 13.67

SuMax(Max) (d=3) Max 1 19.68

HyperLogLog

Distinct

(single-key)

1 5.98

SuMax(Sum) (d=3) Frequency 3 19.47

MRAC

Frequency

(distribution)

1 6.51

• Accuracy. With dedicated algorithms for each attribute,

FlyMon can achieve higher or comparable accuracy to the

state-of-the-art algorithms.

Setting.We set the set of candidate keys as 5-tuple together with a

timestamp. Based on Tofino’s resource distribution, we configure

6 hash (distribution) units and 3 CMUs (i.e., 3 SALUs) for each

CMU Group. Currently, Tofino always uses a hash (distribution)

unit when accessing SRAM, even though FlyMon’s design does

not require the hashing calculation in the operation stage. We

compromise to allocate half of the hash (distribution) units in the

compression stage and half in the operation stage. We evaluate the

resource utilization of the setting in §5.2.

5.1 Functionality
Support for measurement tasks.We find that one CMU Group

is enough for supporting all different combinations of keys and

attributes. As shown in Table 3, most measurement algorithms can

be implemented with a single CMU Group except for SuMax(Sum),

which is optional for improving the accuracy of frequency attributes.

These algorithms can cover our focused attributes and can be input

with any partial key of the candidate-key set.

Task deployment delay. We find that all algorithms can be de-

ployed within 100 ms without interrupting network traffic (in Ta-

ble 3). FlyMon-BeauCoup introduces a higher delay because they

need to install multiple one-hot encoding entries in the preparation

stage. Specifically, it takes around 3 ms to install a common table

rule and about 16 ms to install a hash mask rule. Note that the above

delays include the software processing latency of FlyMon’s control

plane. Besides, the control plane supports batching multiple rules

to mask the deployment delay. Therefore, when multiple rules are

issued for a measurement task, the deployment latency does not

increase exponentially.

Dynamicmemory andmultitasking.We find that a CMU can be

split into 32 memory partitions with acceptable resource overhead,

which brings great flexibility to dynamic memory management

and multitasking parallelism. We evaluate the resource overhead of

TCAM-based and shift-based address translation in Figure 11. We

find only 12.5% of the TCAM is needed in the preparation stage to

split a CMU into 32memory partitions. It means that we can allocate

5 levels (i.e.,𝑚,𝑚/2, ...,𝑚/32) of memory space on a CMU for each

measurement task. More importantly, the memory partitions enable
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a CMU Group to concurrently perform up to 96 (i.e., 32*3) isolated
measurement tasks.
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Figure 11: Resource overhead of the two address translation
methods. The TCAM usage is based on one MAU stage.

Impacts on traffic forwarding. We connect two servers to a

Tofino switch and set up 12 server-client pairs with iPerf [28],

which generate 80-93 Gbps TCP traffic for 100 seconds. During

this period, we initiate 9 reconfiguration events in FlyMon every

10 seconds (labeled 𝑒1 to 𝑒9 in Figure 12a). We compare the server-

side throughput of FlyMon and the static deployment method (i.e.,
makes reconfigurations by reloading p4 codes). Since the static

deployment method (labeled ‘Static’) will interrupt the running traf-

fic, we make two optimizations on it: (i) no reconfiguration when

there is a task deletion event because it is not critical. (ii) batch

two critical events (i.e., add, reallocation) to a single reconfigura-

tion. Besides, to rule out the performance impact of FlyMon itself,

we add a data plane implementation without measurement func-

tions (labeled ‘Bare’). As shown in Figure 12a, we find that the

reconfigurations in FlyMon have no performance impairment on

traffic forwarding. In contrast, the reconfigurations in the static

deployment method interrupt the traffic for 4-8 seconds.

Impacts on measurement accuracy. We divide a 20 seconds

trace [13] into 20 discrete epochs. Each epoch has about 10K distinct

flows. We emulate a traffic spike by injecting an additional 30K

flows between epochs 6 and 15. We evaluate the average relative

error (ARE) of a frequency measurement task (task A in Figure 12b).

We compare the static deployment method and FlyMon without

reloading the data plane program (i.e., P4 codes). For FlyMon, we

insert and remove another measurement task (i.e., task B) in the

same CMU Group at epochs 3 and 10, respectively. We find that

the insertion and removal of measurement tasks in FlyMon don’t

impact the accuracy of the existing measurement task (i.e., task A).

Besides, we add and reduce memory for task A at epochs 6 and 16,

respectively, to adapt to the changes in the traffic scale. We find that

FlyMon maintains high accuracy through the on-the-fly memory

reallocations, while the static deployment method introduces 15x

higher ARE when facing the traffic surge.

5.2 Resource Usage and Scalability
Resource overhead. We evaluate the usage of 6 critical resources

by integrating CMU Groups into Tofino’s baseline switch project

(denoted as switch.p4) in Figure 13a. We find that the average

resource overhead of a single CMU Group is less than 8.3% (the

hash resources are the bottleneck). More than 3 CMU Groups can

be integrated into Tofino’s baseline switch project.

Cross-stacking. As shown in Figure 13b, we find that the more

MAUs are allocated, the higher the resource utilization ratio can

(a) Impacts on traffic forwarding.

(b) Impacts on measurement accuracy.

Figure 12: Impacts of reconfiguration events. The ‘Bare’ de-
notes no measurement functions in the data plane. The
‘Static’ denotes making reconfigurations by reloading P4
codes.

be achieved by stacking. When 12 MAU stages are allocated, the

utilization of Hash and SALU resources reaches 75% and 56.25%,

respectively. The reason for low SALU utilization is that current

programmable switches use a hash (distribution) unit to access

SRAM for SALU. We expect future RMT hardware to equip the

SALUs with separate memory access units.

Scalability for key size. As shown in Figure 13c, we find that

FlyMon is highly scalable to the size of candidate keys. With the

optimization of PHV less-copy (i.e., compression), FlyMon can de-

ploy 5x more CMUs when the candidate key size reaches 350 bits

(i.e., including IPv4 addresses, IPv6 addresses, src_port, dst_port,

and protocol).

5.3 Accuracy
We evaluate the measurement accuracy of FlyMon with six mea-

surement tasks, which cover four different attributes mentioned in

the paper. We use a real-world packet trace collected by the WIDE

Project in 2020 [13]. We use the trace with a monitoring interval

of 15 s and 30 s, which contains around 9M and 18M packets, re-

spectively. Our metrics include relative error (RE), average relative

error (ARE), F1 Score, and false positive. Their explanation can be

found in Appendix C.

Heavy Hitter Detection.We set threshold=1024 and compare the

accuracy of six algorithms. As shown in Figure 14a, we find that the
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Figure 13: Evaluation of resource usage.

counter-based measurement algorithms can achieve an F1 Score

over 0.99 with 100 KB memory and FlyMon-SuMax is the most

memory-efficient algorithm to achieve the accuracy. For BeauCoup-

based algorithms, we perform this task by counting the number of

different timestamps. FlyMon-BeauCoup can reach an F1 Score of

over 0.9 faster original BeauCoup algorithm. We also evaluate the

effect of probabilistic execution on the accuracy (Figure 14b). We

find that probabilistic execution has little effect on the accuracy of

heavy hitters.

DDoS Victim Detection. We use 30 seconds of traffic and set

the DDoS threshold to 512. We compare the FlyMon-BeauCoup

algorithm (see §4) with the original BeauCoup algorithm. As shown

in Figure 14c, we find that FlyMon-BeauCoup achieves a higher F1

Score when the memory allocation exceeds 100 KB.

Flow Cardinality. We compared BeauCoup with HyperLogLog

implemented on a CMU (denoted as FlyMon-HLL). As shown in

Figure 14d, we find that the RE of BeauCoup can be less than 0.2

with only 16 bytes of memory. The advantage of HLL is that it can

achieve a higher degree of accuracy (less than 0.1%) with more

memory usage (e.g., 8 KB). UnivMon cannot execute with such

small memory space [12].

FlowEntropy.We deploy theMRAC algorithm in FlyMon (denoted

as FlyMon-MRAC) for flow size distribution measurement, which

further can be used for calculating flow entropy. We compare the

results with UnivMon. As shown in Figure 14e, we find that the

MRAC algorithm can achieve the RE less than 0.2 with only 200 KB

of memory, while UnivMon needs 340 KB in our experiments.

Maximum inter-arrival time. We reduce the impact of hash col-

lisions by taking the minimum value from multiple such instances.

When setting d=3, we find that it can achieve an ARE of less than 4

with 5 MB of memory (Figure 14f). The result is similar to Light-

Guardian [66].

Existance Check.We compare the Bloom Filter before and after

fully utilizing all of the memory bits (see §4). We inject 20k keys

into the Bloom Filter and evaluate the performance of the Bloom

Filter with about 95k elements (75k of which do not belong to the

set). As shown in Figure 14g, we find that the optimized Bloom

Filter achieves a False Positive (FP) of less than 0.1% using 40 KB of

memory.

6 DISCUSSIONS
Expressiveness of FlyMon. FlyMon focuses on supporting mea-

surement tasks based on the task abstraction described in §2.1.

Given a candidate key set and a set of supported attributes, FlyMon

can support the measurement tasks composed of any partial key

of the candidate key set and the attributes. Although the less-copy

strategy limits the number of co-existing keys, the expressiveness

of FlyMon is unaffected since we introduce the dynamic hashing

feature of RMT hardware to generate reconfigurable compressed

keys.

In the current implementation, we do not occupy all stateful

operations, which means FlyMon has expansion room to support

more attributes or algorithms. For example, we can add an XOR

stateful operation to implement Odd Sketch [40] for evaluating the

similarity between two traffic sets. There are two ways to further in-

crease the number of supported attributes. First, enhance hardware

capabilities to allow a SALU to support more stateful operations.

Second, restrict each CMU to support a portion of the attributes

comes at the cost of reducing the expressiveness of the CMU.

Multitasking Parallelism. FlyMon supports the parallel execu-

tion of multiple measurement tasks running on different CMUs.

Since a CMU can only perform one measurement task for a packet,

only the tasks with no traffic intersection (e.g., SrcIP=10.0.0.0/8 and
SrcIP=20.0.0.0/8) can be performed on the same CMU. A straight-

forward method to solve this problem is through sampling among

the tasks (i.e., toss coins for each packet). In §5.3, we find that the

sampling had little effect on the accuracy of heavy hitters. How-

ever, this straightforward sampling approach results in varying

accuracy losses on other tasks in our preliminary experiments. The

research community already has many sampling recovery methods

on flow size distribution [18], distinct [9], etc. We leave a general

and accurate task-parallel approach in one CMU as future work.

Memory reallocation strategy. FlyMon’s built-in algorithms do

not support dynamic adjustment of the memory during a measure-

ment period without interfering with the accuracy. Our current

strategy is to allocate a new task and freeze the original task. We

divert the original traffic to the new task and reclaim the old task’s

resources.

Other optimizations. We also make some optimizations in the

implementation. Firstly, a task id is assigned after firstly matching

the task filter so that TCAM resources are not occupied in all CMU-

Group stages. Secondly, when performing the TCAM-based address

translation, we use only an ADD action to simultaneously support

the ADD and SUB of address offsets (the SUB can be done by ADD

overflow). Thirdly, the cross-stacking of CMU Groups cannot utilize

some resources at the beginning and end of the pipeline (i.e., triangle
areas in Figure 8). To utilize these resources, we can splice additional

three CMU groups by mirroring original packets and recirculating

them while introducing extra bandwidth overhead (see Appendix E

for details).
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Figure 14: Evaluation of measurement accuracy.

7 RELATEDWORK
Existing efforts propose generic or versatile algorithms which sup-

port multiple measurement tasks simultaneously. These algorithms

can be divided into two classes: multi-attribute algorithms and

multi-key algorithms. Themulti-attribute algorithms (e.g., FlowRadar
[32], UnivMon [34], Elastic [60]) can support the measurement of

multiple attributes for a given key (e.g., SrcIP). In opposite, the

multi-key algorithms (e.g., BeauCoup [12], CocoSketch [65]) can

support the measurement of multiple keys for a given flow attribute.

None of them can cover all measurement tasks combined from dif-

ferent keys and attributes. SketchLib [43] analyzes the resource

bottlenecks of sketching algorithms in RMT-based switches and

proposes an easy-to-use library to optimize resource occupancy

without impacting fidelity. However, it focuses on optimizing the

static deployment of measurement algorithms, which still allocates

exclusive hardware resources for specific measurement tasks (i.e.,
fixed keys and fixed attributes).

Unlike sketch-based measurements, Marple [44] and Sonata [22]

are novel systems that use data flow operators (e.g., map, filter,

reduce) to represent telemetry queries and compile the queries

into programmable switches. Unfortunately, the reconfiguration

of RMT hardware will interrupt the running network traffic [51].

Newton [70] and DynamiQ [5] make significant contributions to en-

able dynamic queries based on them. Despite having a similar goal

on dynamism, they focus on query-based monitoring rather than

sketches. Their designs introduce massive PHV overhead [5] and

do not consider the reduction of operations when accommodating

diverse sketches. In contrast, FlyMon is an extensible measurement

framework that focuses on the runtime reconfiguration of various

sketching algorithms, the algorithms’ inputs, and memory spaces.

DynATOS [39] proposes a clever time-division scheduling strategy

of dynamic telemetry queries to achieve higher accuracy and flexi-

bility. The efficient data plane implementation of the queries is not

their design goal.

Software-defined measurement (SDM) [41, 42, 63] is an architec-

ture that uses the control plane’s software to define the data plane’s

measurement functions. OpenSketch [63] proposes a novel data

plane design based on NetFPGA [35], which can be configured to

implement various sketching algorithms. However, OpenSketch fo-

cuses on the flexibility and resource efficiency of the measurement

data plane rather than dynamics. In other words, it still needs to

suspend the traffic to support undeployed measurement tasks [34].

DREAM [41] and SCREAM [42] are orthogonal works to FlyMon

which provide rich control-plane functions for SDM.

8 CONCLUSION
We present FlyMon, a system enabling on-the-fly monitoring for

versatile network measurements. FlyMon is implemented on RMT

hardware and enables dynamic change of measurement tasks and

resource allocations without interrupting running network traffic.

Our future work includes the following three parts. Firstly, we

intend to support more flow attributes in FlyMon. Secondly, we will

explore a general and accurate task parallelism method within a

CMU. Thirdly, we will enrich the functionality of FlyMon’s control

plane.
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APPENDIX
Appendices are supporting material that has not been peer-

reviewed.

A REDUCED STATEFUL OPERATIONS

Operation 1 The Cond-ADD stateful operation

Input: register, key, 𝑝1, 𝑝2
Output: result

1: function Cond-ADD(𝑝1, 𝑝2)

2: if 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] < 𝑝2 then
3: 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] ← 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] + 𝑝1
4: return 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦]
5: else
6: return 0

7: end if
8: end function

Operation 2 The MAX stateful operation

Input: register, key, 𝑝1, 𝑝2
Output: result

1: functionMAX(𝑝1, 𝑝2)

2: if 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] < 𝑝1 then
3: 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] ← 𝑝1
4: return 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦]
5: else
6: return 0

7: end if
8: end function

Operation 3 The AND-OR stateful operation

Input: register, key, 𝑝1, 𝑝2
Output: result

1: function AND-OR(𝑝1, 𝑝2)

2: if 𝑝2 == 0 then
3: 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] ← 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦]&𝑝1
4: else
5: 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] ← 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦] | 𝑝1
6: end if
7: return 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 [𝑘𝑒𝑦]
8: end function

B ACCURACY ANALYSIS
In this section, we prove that the mapping from 𝑛 distinct flows

to a log𝑚-bit compression domain will result in a hash collision

probability approximating 1 − 𝑒−𝑛/𝑚 for each flow.

Firstly, we look at the case where a key is hashed to𝑚 buckets.

The probability of one bucket being hashed to is 1/𝑚. Let 𝑃 (𝑋 = 𝑘)
be the probability density function of a bucket containing 𝑋 keys

after all 𝑛 keys are inserted into𝑚 buckets. Obviously 𝑃 (𝑋 = 𝑘)
obeys the binomial distribution 𝐵(𝑛, 1

𝑚 ), so we have

𝑃 (𝑋 = 𝑘) =
(𝑛
𝑘

)
( 1
𝑚
)𝑘 (1 − 1

𝑚
)𝑛−𝑘

Let 𝐶 denotes the event of a hash collision. The number of keys

that do not encounter any collision 𝑁 (¬𝐶) is equal to the number

of buckets that contain only one key. Therefore, the number of

non-collision keys is

𝑁 (¬𝐶) =𝑚𝑃 (𝑋 = 1) =𝑚
(𝑛
1

)
( 1
𝑚
) (1 − 1

𝑚
)𝑛−1

When 𝑛 and𝑚 are large enough, the above equation can be approx-

imated as

𝑁 (¬𝐶) = 𝑛(1 − 1

𝑚
)𝑚

𝑛−1
𝑚 ≈ 𝑛𝑒−(

𝑛
𝑚
)

So the number of collision keys is equal to the total number of

keys 𝑛 minus the number of non-collision keys 𝑛𝑒−(
𝑛
𝑚
)
. Finally, we

derive the probability of collision for each key as:

𝑃 (𝐶) = 𝑁 (𝐶)/𝑛 = (𝑛 − 𝑛𝑒−(
𝑛
𝑚
) )/𝑛 = 1 − 𝑒−(

𝑛
𝑚
)

C EVALUATION METRICS
Metrics.We use different metrics for different aspects of the per-

formance evaluation. To evaluate the measurement accuracy of

FlyMonin different measurement tasks. We use the following four

metrics:

(1) ARE (Average Relative Error): 1

𝑛 Σ
𝑛
𝑖=1

|𝑓𝑖− ˆ𝑓𝑖 |
𝑓𝑖

, where 𝑁 is the

number of distinct flows, 𝑓𝑖 and ˆ𝑓𝑖 are true and estimated

metrics for flow 𝑓𝑖 , respectively. We use ARE to evaluate the

accuracy of per-flow size estimation.

(2) F1-score: 2×𝑃𝑅×𝑅𝑅
𝑃𝑅+𝑅𝑅 , where PR (Precision Rate) denotes the

ratio of true instances reported and RR (Recall Rate) denotes

the ratio of reported true instances. We use F1-score to evalu-
ate the accuracy of heavy-hitter detection and DDoS victim

detection.

(3) RE (Relative Error): |𝑥−𝑥 |𝑥 , where 𝑥 and 𝑥 are true and es-

timated metrics, respectively. We use RE to evaluate the

accuracy of flow entropy and flow cardinality.

(4) FP (False Positive):
𝑁𝑓 𝑝

𝑁𝑓 𝑝+𝑁𝑡𝑛
, where 𝑁𝑓 𝑝 is the number of

negative events wrongly categorized as positive. The 𝑁𝑛𝑝 is

the number of true negatives.

D SKETCH IMPLEMENTATION
Since MRAC [30], TowerSketch [59], Counter Braids [36], and Lin-

ear Counting [57] are not described in detail in the paper, we add

their implementations in FlyMon here. MRAC and Count-Min

Sketch implementations are identical in the data plane and are

only differentiated in the control plane analysis. The same is true

for Linear Counting and Bloom Filter. Therefore, we focus on the

implementation of TowerSketch and Counter Braids here.

TowerSketch [59] adapts to high-skewed traffic by holding more

small bit-width counters for mice flows. There are two challenges

to implementing TowerSketch in FlyMon. The first challenge is

how to support bucket arrays of different sizes. FlyMon can over-

come this challenge with the address translation mechanism (i.e.,
dynamic memory). The second challenge is how to implement

different bit-width counters in different arrays under a uniform

memory configuration (e.g., all buckets are 16-bit). FlyMon solves

this challenge by considering part of the bucket bits as a counter.

As shown in Figure 15a, we can use several significant (i.e., left-side)
bits of a bucket to act as a flexible bit-width counter. To update the



SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zheng et al.

OperationPreparation

2ℎ2(𝑘𝑘𝑖𝑖)
Pkt i

ℎ1(𝑘𝑘𝑖𝑖)

ℎ3(𝑘𝑘𝑖𝑖)

Initialization

8-bit

16-bit buckets

4-bit

2-bit

C(SrcIP)

0001 0…
1111 0…

Key

𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐

Address
Translation

No
Action

0010 000…16-bit
CNT Unused

OperationPrep.

3
Pkt i

ℎ1(𝑘𝑘𝑖𝑖)

Initialization

4-bit

16-bit buckets

2-bit

C(SrcIP)

01 0…

11 0…

K

𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐

Addr.
Trans.

No
Action

16-bit

2ℎ2(𝑘𝑘𝑖𝑖)

Cond-ADD(𝑝𝑝1,𝑝𝑝2)

OperationInitialization
16-bit buckets

C(SrcIP)

0

1111 0…

Key

𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐

Address
Translation

If 𝑝𝑝1is 0:
𝑝𝑝1←0001 0…

else:
𝑝𝑝1←0

16-bit

Cond-ADD(𝑝𝑝1,𝑝𝑝2)

Overflow ?+1
+1

+1

CMU 1 CMU 2

result

Preparation

11 000…
CNT Unused

0010 000…
CNT Unused

Cond-ADD(𝑝𝑝1,𝑝𝑝2)

(a) TowerSketch

OperationPreparation

2ℎ2(𝑘𝑘𝑖𝑖)
Pkt i

ℎ1(𝑘𝑘𝑖𝑖)

ℎ3(𝑘𝑘𝑖𝑖)

Initialization

8-bit

16-bit buckets

4-bit

2-bit

C(SrcIP)

0001 0…
1111 0…

Key

𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐

Address
Translation

No
Action

0010 000…16-bit
CNT Unused

OperationPrep.

3
Pkt i

ℎ1(𝑘𝑘𝑖𝑖)

Initialization

4-bit

16-bit buckets

2-bit

C(SrcIP)

01 0…

11 0…

K

𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐

Addr.
Trans.

No
Action

16-bit

2ℎ2(𝑘𝑘𝑖𝑖)

Cond-ADD(𝑝𝑝1,𝑝𝑝2)

OperationInitialization

16-bit buckets
C(SrcIP)

0

1111 0…

Key

𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐

Address
Translation

If 𝑝𝑝1is 0:
𝑝𝑝1←0001 0…

else:
𝑝𝑝1←0

16-bit

Cond-ADD(𝑝𝑝1,𝑝𝑝2)

Overflow ?+1
+1

+1

CMU 1 CMU 2

result

Preparation

11 000…
CNT Unused 0010 000…

CNT Unused

Cond-ADD(𝑝𝑝1,𝑝𝑝2)

(b) Counter Braids (L=2)

Figure 15: Implementation of TowerSketch and Counter Braids in FlyMon.

counter, 𝑝1 is set to a value that represents ‘1’ under the bit range

of the flexible counter. For example, if we want to implement a 4-bit

counter, we need to use four left-side bits of the bucket. The 𝑝1 is

set to the binary number ‘00010...’. We use the Cond-ADD operation

and set 𝑝2 to the binary number ‘11110...’ to avoid overflow (i.e., the
counter is only increased when it is less than 𝑝2). The unused bits

(i.e., ‘Unused’ in Figure 15a) are not wasted because they can be

used by other measurement tasks (e.g., the tasks using Bloom Filter

or BeauCoup).

Counter Braids [36] is an accurate per-flow measurement archi-

tecture towards realizing zero-error measurement. Counter Braids

also use several different size arrays with different bit-width coun-

ters. The difference is that the arrays of Counter Braids are arranged

in multi-layer, and a high-layer counter is updated when the low-

layer counter is overflowed. Therefore, it introduces another chal-

lenge. That is how to judge the overflow in the low-layer counter

and update the high-layer counter accordingly. As shown in Fig-

ure 15b, we use the Cond-ADD operation to update the counters.

Note that the Cond-ADD will not update the counter and output ‘0’

if the counter is not less than 𝑝2 (see Appendix A). In CMU 1, we

can set 𝑝2 to the binary number ‘110...’ to judge if the 2-bit counter

is overflowed. In CMU 2, we set 𝑝1 as the result of CMU 1 and use

two TCAM entries in the preparation stage to judge different situa-

tions. If the 𝑝1 equals 0, we set 𝑝1 to the binary number ‘00010...’

to update the 4-bit counter in CMU 2. Otherwise, we set 𝑝1 to 0 to

avoid updating the counter in CMU 2, since the low-layer counter

(i.e., the counter in CMU 1) is not overflowed.

E OPTIMIZATION OF PIPELINE RESOURCES
There are two triangle areas at the beginning and end of the pipeline.

We cannot directly use these resources because the remaining MAU

resources cannot implement a complete CMU Group. As shown

in Figure 16, we can build 3 additional CMU Groups by splicing

these resources. If some packets need to perform the measurement

tasks on these spliced CMU Groups (labeled as 10, 11, and 12 in

Figure 16), we need to mirror the packets to a recirculate port.

Additional metadata must be carried on these mirrored packets to
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Figure 16: Fully utilize pipeline resources through mirror
and recirculation.

help complete the unfinished CMU-Group actions. Only packets

that need to perform the tasks on these spliced CMU Groups will

incur additional bandwidth overhead.

F ARTIFACT APPENDIX
Abstract
FlyMon is an on-the-fly measurement system that can accommo-

date many measurement tasks. Without reloading the P4 program

on RMT hardware switches, FlyMon can dynamically change mea-

surement tasks and resource allocations without interrupting run-

ning traffic. We have fully implemented FlyMon on Tofino, a pro-

grammable switch with extremely high throughput (i.e., 6.5 Tbps).

We have open-sourced the artifacts of FlyMon, which contains data

plane codes, an interactive control plane framework, and simula-

tions to evaluate built-in algorithms’ accuracy fast.

Scope
The hardware implementation can be used to validate the dynamic

nature of FlyMon, including making on-the-fly reconfigurations

on sketching algorithms, the algorithms’ inputs, and memory sizes

(i.e., by adding new tasks with specified memory sizes). The artifact

also supports validating the deployment delay of the algorithms
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and the resource usage of CMU Groups. With the simulation frame-

work, the artifact supports fast validate the accuracy of the built-in

algorithms.

This artifact serves as an early exploration for academics purpose.

This is not an implementation with industrial-grade reliability.

Contents
The artifact includes following four parts:

• A P416-based hardware implementation supporting four

flow attributes: Frequency, Max, Distinct, and Existence.

• An interactive control plane realizing task reconfiguration,

resource management, and data collection.

• A simulation framework to fast explore built-in algorithms’

accuracy.

• Some easy-to-follow manuals used to introduce how to use

our codes.

We consider FlyMon an extensible framework, and we will add the

support for more sketching algorithms and flow attributes in future

work. We will also improve the functionality and stability of the

control plane.

Hosting
Our reference implementation of FlyMon is located in the main

branch of the GitHub repository NASA-NJU/FlyMon [67].

Requirements
This artifact has strict hardware and software requirements. For

hardware requirements, a Tofino-based hardware switch or a Tofino

model are needed to deploy the P4 codes. At least one server with

QSFP28 connectors and wires if you need to generate packets to

a hardware switch. For the software requirements, the operating

system of our switch is OpenNetworkLinux 4.14.151.We use Python

version 3.8.10 and Intel SDE version 9.7.0.
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