
MimoSketch: A Framework to Mine Item Frequency on Multiple
Nodes with Sketches

Yuchen Xu
Peking University

xu.yuchen@pku.edu.cn

Wenfei Wu∗
Peking University

wenfeiwu@pku.edu.cn

Bohan Zhao
Tsinghua University

zbh20@mails.tsinghua.edu.cn

Tong Yang
Peking University

yangtongemail@gmail.com

Yikai Zhao
Peking University
zyk@pku.edu.cn

ABSTRACT
We abstract a MIMO scenario in distributed data stream mining,
where a stream of multiple items is mined by multiple nodes. We
design a framework named MimoSketch for the MIMO-specific
scenario, which improves the fundamental mining task of item
frequency estimation. MimoSketch consists of an algorithm design
and a policy to schedule items to nodes. MimoSketch’s algorithm
applies random counting to preserve a mathematically proven un-
biasedness property, which makes it friendly to the aggregate query
on multiple nodes; its memory layout is dynamically adaptive to
the runtime item size distribution, which maximizes the estimation
accuracy by storing more items. MimoSketch’s scheduling policy
balances items among nodes, avoiding nodes being overloaded or
underloaded, which improves the overall mining accuracy. Our
prototype and evaluation show that our algorithm can improve
the item frequency estimation accuracy by an order of magnitude
compared with the state-of-the-art solutions, and the scheduling
policy further promotes the performance in MIMO scenarios.

CCS CONCEPTS
• Information systems → Data stream mining; Data streams; •
Theory of computation → Sketching and sampling.

KEYWORDS
distributed data stream mining; unbiased sketch; scheduling policy

ACM Reference Format:
Yuchen Xu, Wenfei Wu, Bohan Zhao, Tong Yang, and Yikai Zhao. 2023.
MimoSketch: A Framework to Mine Item Frequency on Multiple Nodes with
Sketches. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3580305.
3599433

∗Wenfei Wu is the corresponding author, and is with the School of Computer Science
at Peking University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599433

𝐷𝑎𝑡𝑎	𝑆𝑡𝑟𝑒𝑎𝑚⋯

𝑀𝑖𝑛𝑖𝑛𝑔	𝑁𝑜𝑑𝑒𝑠

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑄𝑢𝑒𝑟𝑦 				 = 5

𝑠𝑘𝑒𝑡𝑐ℎ!

𝑄𝑢𝑒𝑟𝑦! 					 = 2 𝑄𝑢𝑒𝑟𝑦" 					 = 5 𝑄𝑢𝑒𝑟𝑦# 					 = 7

𝑠𝑘𝑒𝑡𝑐ℎ$ 𝑠𝑘𝑒𝑡𝑐ℎ" 𝑠𝑘𝑒𝑡𝑐ℎ% 𝑠𝑘𝑒𝑡𝑐ℎ&

Figure 1: A schematic diagram of the MIMO scenario.

1 INTRODUCTION
Sketches, are broadly investigated in the context of high-velocity
data streams and limited memory resources [24, 25, 39, 40, 47, 49].
They are proven to provide accurate (approximate) item frequency
estimation, a fundamental task in data stream mining; and demon-
strate their effectiveness on other typical mining tasks: item size
distribution estimation, heavy hitter detection, heavy change de-
tection, and entropy estimation [4, 16, 18, 26, 43, 48].

For distributed data stream mining, we abstract a scenario where
there are multiple items in a data stream and each item is mined
consistently at multiple nodes, described in Figure 1. We name
the setting of Multiple Item mined on Multiple nOdes as “MIMO”1.
MIMO differs from traditional distributed scenarios where each
partitioned data stream is mined by a single node, and then local
results are aggregated (e.g., by summation) for a global estimation.
In the MIMO scenario, an aggregator aggregates data collected from
all the candidate mining nodes (e.g., by mean or median), which
may gain an accuracy upgrade.

TheMIMO abstraction occurs in numerous application scenarios,
such as distributed data analytics [36], distributed machine learn-
ing [21], network telemetry [19], and IoT sensing [6], etc. We would
further demonstrate MIMO’s rationality and generality in various
application use cases in Section 2.2. The MIMO pattern not only
introduces redundancy for fault tolerance, but can also improve the
mining accuracy to some extent (shown in Section 6.3.2).

Unfortunately, most existing sketch solutions do not show satis-
factory performance in the MIMO scenario, even some applicable

1Coincidentally, such a scenario is also similar to the Multiple-Input-Multiple-Output
(MIMO) antenna architecture in wireless networks, where each data stream is trans-
mitted to multiple receivers simultaneously through multiple antennas.

https://orcid.org/0000-0002-5765-3825
https://doi.org/10.1145/3580305.3599433
https://doi.org/10.1145/3580305.3599433
https://doi.org/10.1145/3580305.3599433

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuchen Xu, Wenfei Wu, Bohan Zhao, Tong Yang, and Yikai Zhao

 M I M O W S C S D H S C C

1 3 5 7 9

0 . 5
1

2

5

1 0

AA
E

N o d e (s) (M e m o r y = 4 0 0 K B)
(a) AAE (CAIDA)

1 3 5 7 9

0 . 1

0 . 5
1

2

AR
E

N o d e (s) (M e m o r y = 4 0 0 K B)
(b) ARE (CAIDA)

1 3 5 7 9
0 . 5

1
2

5

1 0

2 0

AA
E

N o d e (s) (M e m o r y = 1 2 0 0 K B)
(c) AAE (WebDocs)

1 3 5 7 9

0 . 5
1

2

5

1 0

AR
E

N o d e (s) (M e m o r y = 1 2 0 0 K B)
(d) ARE (WebDocs)

Figure 2: Unbiased MimoSketch outperforms baseline algorithms with more nodes.2

to traditional distributed scenarios [34, 41, 50]. There are two main
reasons. First, most recent well-crafted sketch algorithms are bi-
ased [14, 32, 42, 46, 47], i.e., lack of the mathematical guarantee of
unbiasedness, which makes them unsuitable for distributed data
stream mining. The unbiasedness means the expectation of each
item’s frequency estimation equal to its real occurrence. Without
such theoretical property, the estimation error of biased sketches
would be preserved or accumulated when multiple mining nodes’
results are aggregated. There are few unbiased sketch algorithms
proposed [7, 22, 24, 25]. However, they typically have larger the-
oretical variance and error bounds; thus, they show less accurate
estimation than the biased ones empirically. Figure 2 shows an
experimental example. As the number of mining nodes increases,
the estimation error (AAE and ARE in the figure) of biased algo-
rithms preserves (Cuckoo Counter [32]) or accumulates (DHS [47]);
but that of unbiased ones (WavingSketch [25], Count Sketch [7],
and MimoSketch in this paper) decreases in different convergence
trends, taking advantage of the aggregate query on multiple nodes.

Second, when applying a sketch algorithm tomultiple distributed
nodes, little attention has been paid to the policy design yet. On the
one hand, duplicating the stream to all nodes may cause most nodes
overloaded, which could lead to non-optimal results [29]; on the
other hand, making all streams recorded on a single node degrades
to traditional single-node mining, which could not leverage the
MIMO setting. The above two naïve methods are not acceptable,
and a dedicated scheduling policy assigning items to nodes may
further improve the performance in MIMO scenarios.

This paper presents a framework for item frequency estimation
under the MIMO scenario, including the algorithm design of an
unbiased sketch which can be deployed on each mining node and
the policy design to schedule data streams to a set of nodes. The
framework is named MimoSketch for its MIMO-friendly property.
Both the algorithm and policy design aim to promote the accuracy
of item frequency estimation.

MimoSketch organizes its memory space as an array of buckets
and hashes each item to one for frequency counting. Inside each
bucket, the memory layout is dynamically organized as several slots
and a sharing counter in the runtime, with each slot adaptive to

2We exploit all 1 ∼ 9 candidate nodes to mine the same data stream, respectively,
and take the average as the aggregated result. Experimental workloads, metrics, and
baselines are described in Section 6.1.

its items’ frequency, i.e., large space for hot (frequent) items and
small space for cold (infrequent) ones. Thus, the limited memory
can be maximally utilized to store more items, and the overall
estimation accuracy is improved. On the basis of dynamic memory
management, MimoSketch preserves the property of unbiasedness
by randomly counting each item positively or negatively, i.e., +1 or
−1. Thus, a queried item’s collided items are expected to be counted
as 0, not affecting the queried one. Meanwhile, dynamic memory
transformation is carefully designed to ensure each item in the
same slot consistently moves (expands or expelled), avoiding being
split into different slots and consequently underestimated.

MimoSketch formulates the scheduling policy as an optimiza-
tion problem. It is a Mixed Integer Programming (MIP) problem,
with the objective of minimizing the collision rate at the most
overloaded node and the constraints of assigning each item to its
candidate nodes. The MIP problem can be approximated by a Linear
Programming (LP) problem with random rounding, which gives a
near-optimal solution within a polynomial time. In this paper, we
make the following contributions.

• We propose a framework MimoSketch to perform item fre-
quency estimation in MIMO scenarios, including a sketch
mechanism deployed on each node and a policy to schedule
streams to distributed mining nodes.

• MimoSketch’s algorithm offers unbiased and accurate esti-
mation which suits for MIMO scenarios, and we also mathe-
matically prove the unbiasedness ofMimoSketch and provide
its error bounds.

• MimoSketch’s scheduling policy balances the mining work-
load of distributed nodes and improves overall accuracy.

• We conduct extensive experiments on both single-node and
MIMO settings. Experimental results show thatMimoSketch’s
algorithm outperforms unbiased sketches by 8.13 ∼ 38.27
times for a single node in terms of estimation accuracy, and
MimoSketch’s policy could further improve the performance
by up to 169% than baselines for MIMO scenarios.

2 MOTIVATION AND BACKGROUND
In this section, we first elaborate on the problem formulation and
application scenarios forMIMO. Then, we review prior work related
to MimoSketch. Lastly, we highlight the goal, intuitions, and pitfalls
of MimoSketch.

MimoSketch: A Framework to Mine Item Frequency on Multiple Nodes with Sketches KDD ’23, August 6–10, 2023, Long Beach, CA, USA

2.1 Problem Formulation
Let S be a data stream containing 𝑛 items 𝑒1, . . . , 𝑒𝑛 , adding up to 𝑁
appearances. Each distinct item 𝑒𝑖 can appear several times. Let 𝑓𝑖
be 𝑒𝑖 ’s frequency, then 𝑓𝑖 ≥ 1, and

∑𝑛
𝑖=1 𝑓𝑖 = 𝑁 . Different items are

identified by their unique IDs, and algorithms Insert and Query
each 𝑒𝑖 according to its ID. When the stream S ends, 𝑒𝑖 ’s queried
frequency 𝑓𝑖 is an estimation of 𝑓𝑖 .

In the MIMO setting, assume there are𝑚 nodes 𝑛1, . . . , 𝑛𝑚 . Each
item can be mined by a subset of distributed nodes, called its candi-
date nodes (𝐶𝑎𝑛𝑑𝑖). When processing, multiple nodes Insert dif-
ferent items to its local mining digest independently. Querying the
frequency estimation of an item is performed by AggregateQuery,
an operation to Query the item’s mining nodes (𝑀𝑖𝑛𝑒𝑖) and to re-
turn the aggregated value of the results, i.e., 𝑓𝑖 = 𝐴𝑔𝑔𝑟

𝑛 𝑗 ∈𝑀𝑖𝑛𝑒𝑖

𝑓𝑖
(𝑗) ,

where 𝑓𝑖
(𝑗) represents the estimated occurrence of item 𝑒𝑖 at node

𝑛 𝑗 and the aggregation method can be mean or median.
Besides, MIMO scenarios also need a scheduling policy to select

each item’s mining nodes from its candidate nodes (𝑀𝑖𝑛𝑒𝑖 ⊆ 𝐶𝑎𝑛𝑑𝑖).
Carefully scheduling each item to its candidate nodes can improve
the mining quality notably.

2.2 Application Scenarios
The MIMO scenario is an abstraction of many applications, e.g.,
distributed data analytics, distributed machine learning, network
telemetry, distributed IoT, etc, where our proposed solution MimoS-
ketch can be applied to improve their performance.
Distributed data analytics. Distributed data analytic systems
partition a dataset onto distributed servers (e.g., HDFS), and there
are several workers following a MapReduce scheme [10] to per-
form jobs. Sketches can be applied to data analytic jobs such as
WordCount to get approximate but fast frequency estimation of
words [36]. By allowing a partition mined by multiple workers
with sketches and aggregating their query results, the overall query
accuracy can be improved, which matches the MIMO abstraction.
Distributed machine learning. In data-parallel distributed model
training, the dataset is partitioned to multiple workers. Iteratively,
each worker trains the model locally to obtain a gradient, and all
workers’ gradients are aggregated (averaged) in the model update.
In the Parameter Server (PS) system, one or multiple PSs perform
the gradient aggregation. Researchers propose to apply sketches
to compress the gradients [20, 21, 30], which reduces the system
communication overhead but sacrifices precision. The MIMO ab-
straction can further improve the accuracy of these sketch-based
gradient aggregation systems by assigning gradient partitions to
PSs according to their processing capacity, and aggregating each
partition’s sketches from its assigned PS(s).
Network-wide telemetry.Anetwork consists ofmultiple switches
and hosts, with massive data streams traversing the switches be-
tween hosts. Network telemetry monitors multiple data streams on
multiple devices, which assists the operator in network manage-
ment. Sketches are demonstrated to be a powerful tool to measure
network flows [19, 32]. By measuring a flow on one or several of
its on-path switches, the flow estimation accuracy can be improved
with the aggregation of sketches on the assigned switches, which
matches the MIMO abstraction.

Multi-spot sensing in the Internet of Things (IoT). Nowadays,
ubiquitous IoT devices are increasingly deployed. These devices in-
dividually sense the environment and collaboratively provide data
stream statistics to abundant atop applications, such as anomaly
detection [6]. One data stream (e.g., temperature and humidity) can
be measured by multiple devices in the same sensing range, and
their results can be aggregated (averaged) to achieve an improved
accuracy. This is a MIMO scenario where MimoSketch can be ap-
plied to promote measurement accuracy, eliminate noises/outliers,
and consequently improve the application performance.

2.3 Related Work
Existing methods mainly design data structures to improve mining
accuracy or efficiency, with less consideration for distributed sce-
narios, especially the MIMO scenario. Among the frequency estima-
tion algorithms, the family of sketch-based algorithms are usually
accurate and outperforms the counter-based ones [27, 28, 35] in
terms of accuracy and memory efficiency. Thus, we mainly dis-
cuss sketch-based algorithms. In addition, the policy to schedule
data streams among multiple mining nodes has not been widely
discussed. Table 1 lists the feature comparisons between the repre-
sentative algorithms and our solution MimoSketch.

2.3.1 Sketch-based Algorithms. As a probabilistic data structure,
sketch has been extensively studied and applied in many data min-
ing works [3, 7, 9, 11, 31, 37]. They can achieve𝑂 (1) memory access
by hash functions, i.e., high throughput [41]; through complicated
adaptive strategy, they can improve accuracy by orders of mag-
nitude compared to counter-based ones, i.e., high accuracy [32].
However, few sketch-based algorithms have elegant mathematical
guarantees such as unbiasedness, which is a necessity for MIMO.
Unbiased sketches. As mentioned above, few sketches have the
good theoretical property of unbiasedness. Count Sketch [7] is
a basic unbiased sketch solution. It contains 𝑑 arrays of buck-
ets (𝐵 𝑗 [], 𝑗 = 0, . . . , 𝑑 − 1). When an item 𝑒𝑖 comes, it computes
𝑑 pairwise-independent hash functions (ℎ 𝑗 (.)) to index a bucket
(𝐵 𝑗 [ℎ 𝑗 (𝑒𝑖)]) and updates the corresponding counter by 𝑠 (𝑒𝑖) ∈
{1,−1}. The estimated frequency of 𝑒𝑖 is the mean or median of
𝐵 𝑗 [ℎ 𝑗 (𝑒𝑖)] ×𝑠 (𝑒𝑖) (𝑗 = 0, . . . , 𝑑−1). Its unbiasedness is intuitive, but
accuracy is severely sacrificed due to a higher variance. WavingS-
ketch [25], another sketch algorithm based on unbiased estimation,
provides better accuracy than Count Sketch by filtering out hot and
cold items within each bucket.
Biased sketches. There are also many sketch algorithms achieving
superb accuracy but sacrificing unbiasedness [40–42, 46, 49]. To
our best knowledge, two state-of-the-art sketch algorithms provide
impressive accuracy, Cuckoo Counter [32] and DHS [47]. They both
hash item IDs as shorter fingerprints to save storage and adapt data
structures to item actual frequency for efficient space utilization. In
addition, Cuckoo Counter uses partial-key cuckoo hashing [12] to
partly address the hash collision problem; DHS dynamically adjusts
the structure according to the actual item size distribution to store
more items. However, due to hash collision or fingerprint collision,
Cuckoo Counter always returns a value of overestimation; while
DHS simply drops cold items when memory is tight, it does not
have the property of either one-sided error or unbiasedness. In
addition, these biased algorithms do not adapt to MIMO scenarios.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuchen Xu, Wenfei Wu, Bohan Zhao, Tong Yang, and Yikai Zhao

Table 1: Comparison of MimoSketch and the State-of-the-art Algorithms

Property
Algorithm MimoSketch WavingSketch Count Sketch DHS Cuckoo Counter

Unbiasedness ✓ ✓∖3 ✓ × ×
Hot/Cold Item Friendliness Both Hot Hot Both Both

Frequency Estimation Accuracy ★★★★★ ★★★ ★★ ★★★★★ ★★★★

MIMO-scenario Elasticity ★★★★★ ★★★★ ★★★★★ ★★ ★★★

The rankings (the number of stars ★) on “Frequency Estimation Accuracy” and “MIMO-scenario Elasticity” are based on the experiments.

2.3.2 MIMO-scheduling Algorithms. A class of work discusses the
scheduling policy for sketches in distributed data stream measure-
ment in the network application [15, 38, 45], where each flow tra-
verses multiple switches, in accordance with the MIMO scenario.
For example, the scheme in [29] aims to reduce redundant statis-
tics collected by sketches in the network: it selects the measure-
ment node(s) in a topology by the graph coloring algorithm; Count-
Max [44] co-designs a sketch with a coordination algorithm, where
it hashes an item to an ingress switch or egress switch. Different
from these two works which try to avoid redundant counting, Om-
niMon [19] designs heterogeneous measurement methods on end
hosts and switches, and deploys an instance on each node.

Differently, MimoSketch provides a new observation that (when
the memory is not extremely tight) mining each item on multiple
nodes with moderate redundancy could provide a better accuracy,
and MimoSketch’s policy in Section 5 tries to make a trade-off
between per-node workload and the aggregate query’s gain. In
addition,MimoSketch specifically designs an unbiased sketchwhich
is suitable for aggregate query in MIMO scenarios.

2.4 Goal, Intuitions, and Pitfalls
Goal and intuitions. Our goal is to design a mining framework
providing accurate item frequency estimation to the best extent for
the MIMO-specific scenario. The framework involves the design of
a sketch algorithm on each node and a policy to schedule streams
to nodes. Hopefully, the algorithm should be unbiased and accurate
so that the frequency estimation of an item would be closer to its
actual size in MIMO. The policy design should balance the use of
multiple nodes, avoiding any node being overloaded or underloaded
so as to maximize the overall accuracy.

The intuition for achieving unbiasedness is to apply the ran-
dom counting method, i.e., updating item frequency by +1 or −1
randomly. In sketch algorithms, a hash collision would cause two
items to be counted in the same slot, and thus be overestimated. In
MimoSketch, instead of simply counting an item occurrence as +1,
one item’s occurrence is counted as +1 or −1 (consistent among the
item’s all occurrences). MimoSketch uses a hash function to map
each item’s update to +1/−1. For collided items, the expectation of
their total counts would be 0, meaning unbiased.

The intuition for improving the accuracy is to improve the mem-
ory efficiency: storing more items with limited memory. The random
counting method increases the variance of the estimation, which
is why traditional unbiased solutions have inferior performance

3WavingSketch is partly unbiased because its top-𝑘 query cannot prove the unbiased-
ness [25].

(accuracy) than biased ones. MimoSketch adds two techniques to
improve memory efficiency and complement the accuracy loss: (1)
within each bucket, instead of using fixed-length slots (like existing
unbiased algorithms [7, 25]) which wastes space for cold items,
MimoSketch dynamically organizes the memory layout of the slots,
adaptive to the item size characteristics (distribution). (2) Each slot
is supposed to store an item ID to identify collisions and record
item frequency. MimoSketch compresses the item ID as a shorter
fingerprint, also saving storage space. As the stream proceeds, hot
items would eventually evict cold items into the sharing counter
without fingerprints; eventually, a cold itemwould seldom be falsely
recognized as hot (except only when their fingerprints collide).

The intuition for balancing the mining workload is to schedule
streams to multiple nodes. MimoSketch formulates a mixed integer
programming (MIP) model. The constraints are that (1) each stream
can be mined by its candidate nodes and (2) each stream is mined at
least a few times (avoiding underload). The objective is to minimize
the workload of the most loaded node (avoiding overload).
Pitfalls and approaches. The synthetic framework of the methods
above should be carefully devised; otherwise, the dynamic memory
organization could violate the unbiasedness requirements. There
are two subtle pitfalls.

First, dynamic memory organization involves expelling cold
items when adaptively allocating more space to hot ones. Dropping
cold items would incur bias. Thus, an extra counter is needed for
these expelled items, and it should also be unbiased.

Second, dynamic memory organization involves expanding the
space of slots with hot items. But a slot could contain several
fingerprint-collided items, and the expansion should never split
an item into different locations, which would cause the eventual
counting to be partial. Thus, items belonging to a slot with a fixed-
length fingerprint would be consistently stored and counted at the
same place in all cases of memory re-organization, whether the slot
expands, stays unchanged, or is expelled to the sharing counter.

3 MIMOSKETCH’S ALGORITHM
Section 3.1 presents MimoSketch’s data structure. Section 3.2 and
Section 3.3 describe MimoSketch’s workflow on a single node and
distributed nodes, respectively. Table 2 lists all the symbols and
their meanings in the algorithm description.

3.1 Data Structure
MimoSketch organizes the memory as an array of 𝑙 buckets. Each
bucket contains two parts, a sharing counter and 𝑑 slots, attached
with a metadata recording the layout inside the bucket, such as

MimoSketch: A Framework to Mine Item Frequency on Multiple Nodes with Sketches KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: List of Symbols to Use and their Meanings

Notation Meaning

S a data stream
𝑒𝑖 𝑖𝑡ℎ distinct item in S
𝑙 number of buckets in MimoSketch
𝑑 number of slots in a bucket
𝑘 number of levels within slots

𝐵 [𝑖] 𝑖𝑡ℎ bucket of MimoSketch
𝐵 [𝑖] .𝑐𝑜𝑢𝑛𝑡 sharing counter of 𝐵 [𝑖]
𝐵 [𝑖] .𝑓 [𝑒𝑖] slot where 𝑒𝑖 is stored

𝐵 [𝑖] .𝑓 [𝑒𝑖] .𝑓 𝑝 fingerprint stored in 𝐵 [𝑖] .𝑓 [𝑒𝑖]
𝐵 [𝑖] .𝑓 [𝑒𝑖] .𝑓 𝑞 frequency stored in 𝐵 [𝑖] .𝑓 [𝑒𝑖]

ℎ(.) hash function mapping items to {0, · · · , 𝑙 − 1}
𝑠 (.) hash function mapping items to {1,−1}
𝑓 𝑝 (.) hash function computing fingerprint of an item

levels and boundaries of slots. Each slot is a key-value pair of <fin-
gerprint, frequency>, where the fingerprint records an identification
based on item ID, and the frequency records items’ estimated size.

Slots in a bucket can be hierarchically adjusted into 𝑘 different
levels, and the fingerprints in each level have the same 𝑉 bits. The
lengths of the frequency field are different, ranging from𝑊1 to
𝑊𝑘 bits. With a 𝑈 -bit sharing counter, a 𝑇 -bit metadata, and 𝑁𝑖

slots for each level-𝑖 , the total space for a bucket is
∑𝑘
𝑖=1 𝑁𝑖 · (𝑊𝑖 +

𝑉) +𝑈 +𝑇 bits. In each bucket, slots can dynamically adapt to the
item characteristics; that is, a bucket starts with many level-1 slots,
each with the minimum space, and gradually increases to fewer
higher-level slots, each with more space to accommodate hot items.

3.2 MimoSketch on a Single Node
3.2.1 Initialization. Figure 3 shows the data structure of MimoS-
ketch. At the beginning of stream processing, all fields in MimoS-
ketch are initialized to zero, and each slot is at the lowest level-1.

3.2.2 Insertion. Algorithm 1 in Appendix A shows the pseudo-
code of the insertion workflow of MimoSketch. When a data stream
comes, each item 𝑒𝑖 is mapped to the bucket 𝐵 [ℎ(𝑒𝑖)] through one
hash function ℎ(.). All slots within the bucket are iterated to find
one with a matched fingerprint. MimoSketch computes another
hash function 𝑠 (.) to decide whether to count the item’s occurrence
as +1 or−1, i.e., increasing or decreasing one to the item’s frequency
field. There are the following three cases:
Case 1: If 𝑒𝑖 ’s fingerprint is already recorded in a certain slot, Mi-
moSketch updates the slot frequency by 𝑠 (𝑒𝑖) (i.e., +1 or −1). How-
ever, since slot sizes are limited, the slot may overflow. In such a
circumstance, MimoSketch makes three attempts.

Case 1.1: MimoSketch attempts to find whether any higher-level
slot’s frequency is less than the capacity of 𝑒𝑖 ’s slot in the same
bucket. If there is one, MimoSketch swaps the contents of the two
slots. The overflow problem is addressed without cost.

Case 1.2: If the first attempt fails, MimoSketch will conduct a
LevelUp operation. It first tries to put 𝑒𝑖 into an empty higher-level
slot if exists. If not, MimoSketch will adjust the 𝐵 [ℎ(𝑒𝑖)]’s structure,
making room for level-(𝑡 + 1) slots (assuming 𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖]’s level

𝐵[ℎ 𝑒!]

𝐵[ℎ 𝑒"]

𝐵[ℎ 𝑒#]

𝑙	𝑏𝑢𝑐𝑘𝑒𝑡𝑠

𝑒!
ℎ 𝑒!

𝑒"
ℎ 𝑒"

𝑒#
ℎ 𝑒#

𝑒! …

𝑙𝑒𝑣𝑒𝑙	1 𝑙𝑒𝑣𝑒𝑙	2 𝑙𝑒𝑣𝑒𝑙	3 𝑙𝑒𝑣𝑒𝑙	𝑘…
𝑠ℎ𝑎𝑟𝑖𝑛𝑔
𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝐿𝑒𝑣𝑒𝑙𝑈𝑝

𝑓𝑝 𝑒!
𝑠 𝑒!

𝑓𝑝(𝑒!) 𝑠(𝑒!)

𝑓𝑝 𝑒" 𝑒$ 𝑒% 𝑒& 𝑒' 𝑒()𝑒(

𝑠 𝑒" = 1

𝑓𝑝 𝑒" : 4095			

+1

𝑒$ 𝑒% 𝑒' 𝑒() 𝑒& 𝑓𝑝 𝑒" : 4096

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤

𝑓𝑝 𝑒#
𝑒* 𝑒+ 𝑓𝑝 𝑒# : −128

𝑠 𝑒# = −1
−1𝐿𝑒𝑣𝑒𝑙𝑈𝑝	𝐹𝑎𝑖𝑙𝑠

12

−117

𝑒((𝑒(" 𝑒($ 𝑒(*
𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤

𝑒* 𝑒+ 𝑛𝑢𝑙𝑙 𝑒((𝑒(" 𝑒($ 𝑒(* 12 − 129 =

𝐿𝑒𝑣𝑒𝑙𝑈𝑝

𝐶𝑎𝑠𝑒	1.2

𝐶𝑎𝑠𝑒	1.3

𝐷𝑎𝑡𝑎	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒	&	𝐺𝑒𝑛𝑒𝑟𝑎𝑙	𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

𝑒(

Figure 3: Data structure and workflow of MimoSketch.

is 𝑡 now). MimoSketch iterates on levels from level-1 to level-𝑡 to
find one level with enough slots to deallocate for new slots.

For example, if fingerprint occupies 8 bits, 𝑑 = 8, 𝑘 = 3, frequency
field for each level is 8, 12, and 16 bits, respectively, the LevelUp
operation could reallocate five level-1 slots for four level-2 slots for
5 × (8 + 8) = 4 × (8 + 12), or three level-1 ones for two level-3 ones
for 3 × (8 + 8) = 2 × (8 + 16).

If the attempt succeeds, the LevelUp will create 𝑛2 level-(𝑡 + 1)
slots from𝑛1 lower-level slots. Then (𝑛1−𝑛2) of the lower-level slots
with minimum frequency are expelled to the sharing counter, and
all the other old slots are moved towards the same or higher-level
slots. The expelled items cannot be reallocated with new empty slots
in later processing for unbiasedness (further explained in Case 2).
The slot boundaries are adjusted to keep the memory compact,
which is recorded in the metadata.

Case 1.3: If the aforementioned two attempts fail, indicating no
room to address the overflow, MimoSketch straightforwardly clears
𝑒𝑖 ’s slot and evicts it to the sharing counter. Moreover, the status is
set 𝑓 𝑎𝑙𝑠𝑒 , meaning the slot is “deprecated”. Note that a deprecated
slot is not cleared, and its fingerprint is kept: if the deprecated slot’s
item appears in the future, MimoSketch could tell that the item is
stored in the sharing counter and would not allocate a new slot for
the item (i.e., Case 2), not incurring bias.
Case 2: If 𝑒𝑖 ’s fingerprint is not found but there is an empty usable
slot in 𝐵 [ℎ(𝑒𝑖)], MimoSketch fills in the slot with <𝑓 𝑝 (𝑒𝑖), 𝑠 (𝑒𝑖)>.

It is worth noting that once an item is expelled from a slot to
the sharing counter, it should never be allocated to a new slot;
otherwise, the item is counted in two places, hurting unbiasedness.
Case 1.3 circumvents this issue by deprecating the slot and keeping
the fingerprint. In Case 1.2, MimoSketch adds a flag indicating no
reallocation in the bucket metadata: once the eviction in Case 1.2
happens, MimoSketch sets the flag and disables Case 2 (in this case,
the algorithm proceeds to Case 3).
Case 3: If the former two cases can not complete the insertion,
the sharing counter will handle the current item. MimoSketch up-
dates the sharing counter by 𝑠 (𝑒𝑖), which also complies with the
unbiasedness guarantee.

3.2.3 Query. When querying an item 𝑒𝑖 ’s estimated frequency, Mi-
moSketch first computesℎ(𝑒𝑖) and 𝑓 𝑝 (𝑒𝑖), and then locates a bucket
𝐵 [ℎ(𝑒𝑖)] and iterates slots in the bucket to match the fingerprint.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuchen Xu, Wenfei Wu, Bohan Zhao, Tong Yang, and Yikai Zhao

If 𝑓 𝑝 (𝑒𝑖) matches a slot’s fingerprint 𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖] .𝑓 𝑝 , Query will
return the estimated frequency (𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖] .𝑓 𝑞) × 𝑠 (𝑒𝑖). Other-
wise, MimoSketch reads the sharing counter and returns its value
𝐵 [ℎ(𝑒𝑖)] .𝑐𝑜𝑢𝑛𝑡 × 𝑠 (𝑒𝑖) as the answer to the query.

Note that if the frequency of an item 𝑒𝑖 ’s slot or sharing counter
has a contrary sign to 𝑠 (𝑒𝑖), we can assert that fingerprint collision
must have happened, and multiple items are updated in the same
frequency field or counter. Because negative estimated frequencies
contradict the fact of data stream processing, we can thus return
those estimated frequencies as zero in practice.

3.2.4 Examples. Figure 3 shows three examples of insertion. The
general 𝑒𝑖 ’s insertion has two steps. MimoSketch first computes
ℎ(𝑒𝑖) to locate the bucket and then computes 𝑓 𝑝 (𝑒𝑖) and 𝑠 (𝑒𝑖) to
locate the slot and decide update direction (+1 or −1).

The insertion of 𝑒2 is an example of Case 1.2. After the update,
the level-2 slot for 𝑒2 is to overflow, and there are no higher-level
slots for swapping, then MimoSketch successfully operates LevelUp
by deallocating three level-1 slots to create two level-3 ones. 𝑒2 can
fit in a level-3 slot, other items are also shifted, and the victim 𝑒1
is expelled to the sharing counter. Then the flag in metadata is set,
disabling Case 2.

The insertion of 𝑒9 is an example of Case 1.3. Because all the slots
in the bucket are already occupied, and there are not enough level-1
slots to deallocate (at least 5 level-1 ones for 4 level-2), Exchange
and LevelUp attempts fail. Owing to 𝑒9’s overflow, it is expelled to
the sharing counter, with the slot frequency accumulated to the
sharing counter. The original slot’s location is marked as false to
deprecate the slot, and the fingerprint remains there.

For queries, the result of Query(𝑒2) is 4096 × (+1) = 4096, re-
trieved by iterating the slots to find a matched fingerprint. That of
𝑒9 is (−117) × (−1) = 117, because there is no matched fingerprint
and thus returns the frequency in the sharing counter.

3.3 MimoSketch on Distributed Nodes
In distributed data stream mining, each node installs an instance of
MimoSketch. The hash functions ℎ(.), 𝑠 (.), and 𝑓 𝑝 (.) differ among
nodes, which could introduce randomness and reduce the estima-
tion errors when aggregating multi-node queries. In the MIMO
scenario, MimoSketch applies a scheduling policy to assign which
nodes to monitor each item, which is discussed in Section 5.

During processing, a data stream can be mined by a subset of
nodes, and the items are recorded by the assigned nodes. The in-
sertion operation on each mining node is the same as that in the
single-node MimoSketch’s algorithm.

As for item query, MimoSketch queries all mining nodes of the
item and aggregates the queried results. The final return is the
aggregate query result, which can be the mean or median value
of the results from all mining node(s). For example, if aggregating
by average, i.e., 1

𝑚

∑𝑚
𝑗=1Query𝑗 (𝑒𝑖), when there are three nodes

with 𝐵1 [ℎ1 (𝑒𝑖)] .𝑓 [𝑒𝑖] .𝑓 𝑞 = 5, 𝑠1 (𝑒𝑖) = 1, 𝐵2 [ℎ2 (𝑒𝑖)] .𝑐𝑜𝑢𝑛𝑡 = −3,
𝑠2 (𝑒𝑖) = −1, and 𝐵3 [ℎ3 (𝑒𝑖)] .𝑓 [𝑒𝑖] .𝑓 𝑞 = 7, 𝑠3 (𝑒𝑖) = 1, the final result
of AggregateQuery(𝑒𝑖) is (5 × 1 + (−3) × (−1) + 7 × 1)/3 = 5.

The mean taken in the aggregate query is a simple but reasonable
estimator, as the expectation is unbiased. As the scale of distributed
nodes increases, the aggregate query is likely to converge to the
unbiased expectation with lower variance, and thus achieves superb

accuracy. And the median aggregation behaves better in experi-
ments (the same as [7]), for the median is more robust to outliers.

4 THEORETICAL PROPERTIES
In this section, we show the theoretical properties of MimoSketch,
including unbiasedness, variance, and error bounds.

4.1 Unbiasedness
MimoSketch’s unbiasedness property is defined as that for each
item 𝑒𝑖 inserted, the frequency estimation 𝑓𝑖 is unbiased, equal to
its real frequency 𝑓𝑖 . The intuition comes from Count Sketch [7].
For an item 𝑒𝑖 and its collided item 𝑒 𝑗 (𝑖 ≠ 𝑗), if their counting
functions 𝑠 (𝑒𝑖) and 𝑠 (𝑒 𝑗) are independent, we have 𝐸 (𝑠 (𝑒𝑖) ·𝑠 (𝑒 𝑗)) =
0. And thus, as the item 𝑒𝑖 is counted in its slot/counter, its collided
items would accumulate the frequency with an expectation of 0,
i.e., 𝐸 (∑𝑒 𝑗≠𝑒𝑖 𝑓𝑗 · 𝑠 (𝑒 𝑗) · 𝑠 (𝑒𝑖)) = 0. We give the formal proof in
Appendix B.1.

4.2 Variance and Error Bounds
We show MimoSketch’s variance and error bounds of Query and
analysis of AggregateQuery. Detailed proofs are given in Appen-
dix B.2.
Variance. Let 𝑒1, 𝑒2, . . . , 𝑒𝑛 be the items hashed into 𝐵 [ℎ(𝑒𝑖)], the
bound of the variance of MimoSketch’s estimation is that

𝑉𝑎𝑟

(
𝑓𝑖

)
≤

∑︁
𝑒 𝑗≠𝑒𝑖

(𝑓𝑗)2 .

Error bound based on ∥ 𝑓 ∥2. Let 𝑙 = 𝑒
𝜖2
, where 𝑙 is the total number

of buckets in MimoSketch, and 𝑒 is the total number of distinct items.

Based on 2-norm ∥ 𝑓 ∥2 (i.e.,
√︃∑

𝑒𝑖 ∈S (𝑓𝑖)2),

𝑃

(���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝜖 ∥ 𝑓 ∥2
)
≤ 1

𝑒
.

Error bound based on ∥ 𝑓 ∥1. Let 𝑙 = 𝑒
𝜖 , ∥ 𝑓 ∥1 =

∑
𝑒𝑖 ∈S |𝑓𝑖 |,

𝑃

(���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝜖 ∥ 𝑓 ∥1
)
≤ 1

𝑒
.

AggregateQuery’s accuracy. Considering the mean aggregation,
by the law of large numbers [17], an item’s AggregateQuerywould
return the item frequency estimation with an unbiased expectation
and a lower variance.

Assume there are𝑚 distributed mining nodes, and the 𝑗𝑡ℎ node

returns an estimation 𝑓𝑖
(𝑗)

. Then

𝐸
©­« 1𝑚

𝑚∑︁
𝑗=1

𝑓𝑖
(𝑗)ª®¬ = 1

𝑚

𝑚∑︁
𝑗=1

𝐸

(
𝑓𝑖
(𝑗))

= 0,

and

𝑉𝑎𝑟
©­« 1𝑚

𝑚∑︁
𝑗=1

𝑓𝑖
(𝑗)ª®¬ = 1

𝑚2𝑉𝑎𝑟
©­«
𝑚∑︁
𝑗=1

𝑓𝑖
(𝑗)ª®¬ ≤ 1

𝑚

∑︁
𝑒 𝑗≠𝑒𝑖

(𝑓𝑗)2 . (1)

5 MIMOSKETCH’S SCHEDULING POLICY
This section builds the model of scheduling policy to optimize the
utilization of multiple mining nodes in a MIMO-modeled system.
Problem statement. In the MIMO scenario, an item may be in the
measurement range of a subset of nodes. Each subset is the candidate

MimoSketch: A Framework to Mine Item Frequency on Multiple Nodes with Sketches KDD ’23, August 6–10, 2023, Long Beach, CA, USA

1

2
3

5 6

7

4

𝐷𝑎𝑡𝑎	𝑆𝑡𝑟𝑒𝑎𝑚

𝑀𝑖𝑛𝑖𝑛𝑔	𝑁𝑜𝑑𝑒𝑠

𝑒!𝑒"𝑒#𝑒!

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑆𝑒𝑡𝑠:
𝐶𝑎𝑛𝑑! = 𝑛$
𝐶𝑎𝑛𝑑" = 𝑛", 𝑛#, 𝑛%, 𝑛&, 𝑛'
𝐶𝑎𝑛𝑑# = 𝑛!, 𝑛", 𝑛%

Figure 4: An example MIMO scenario.

set of each item inside a data stream. An item can be recorded by
one or several nodes in its candidate set. Deciding the mining
nodes of each item is critical to the overall accuracy: if an item
is measured by too few nodes, its frequency estimation accuracy
cannot gain the benefit of the aggregate query (see Equation (1));
if too many items are monitored by too many nodes, nodes would
be overloaded and items collide on nodes, decreasing per-node
accuracy. MimoSketch designs a policy to schedule items to its
mining nodes, which improves the overall accuracy.

Figure 4 shows an example of a MIMO scenario, which is com-
mon in various applications, e.g., big data, IoT and networks. There
are seven mining nodes in all. Each item can use 1, 3, or 5 nodes as
candidate nodes. For example, node 𝑛4 is responsible for item 𝑒1,
and item 𝑒2 can be mined by five nodes 𝑛2, 𝑛3, 𝑛5, 𝑛6, and 𝑛7.
Modeling.We use notations in Table 3 in the optimization problem
modeling. Although there are several accuracy metrics for sketches,
its inaccuracy comes from items’ hash collisions in essence, and the
probability of hash collision on a node is positively correlated to its
mining load (

∑
𝑖 𝑥𝑖 𝑗). Thus, an unbalanced load among nodes would

cause the overloaded nodes to have more collisions. Therefore, the
objective function of MimoSketch’s policy prefers to reduce the load
of the most loaded node to achieve load balancing, i.e., Equation (2).

As for the constraints, first, each item can only be mined at its
candidate set (Equation (3)); second, each item should be monitored
by a moderate amount of nodes (Equation (4)); and finally, whether
a node monitors an item is binary (Equation (5)).

minimize max
𝑗

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 . (2)

s.t. 𝑥𝑖 𝑗 = 0,∀𝑗 ∉ 𝐶𝑎𝑛𝑑𝑖 ,∀𝑖, (3)
𝑚∑︁
𝑗=1

𝑥𝑖 𝑗 = 𝐶𝑖 ,∀𝑖, (4)

𝑥𝑖 𝑗 ∈ {0, 1},∀𝑖, 𝑗 . (5)

Discussions. Approximation. The max-min problem above (Equa-
tion (2)∼ (5)) is aMixed Integer Programming (MIP) problem, which
can be solved directly by solvers. When the problem scale grows
drastically large, Equation (5) can be relaxed to a linear constraint,

0 ≤ 𝑥𝑖 𝑗 ≤ 1,∀𝑖, 𝑗 . (6)

The problem then becomes a Linear Programming (LP) problem
(Equation (2)∼(4), and (6)). The LP solution gives 𝑥𝑖 𝑗 in the real num-
ber domain, and we further round it randomly: rounding to 1 with

Table 3: List of Symbols for Modeling and their Meanings

Notation Type Meaning

𝑚 const number of nodes in the system
𝑛 const number of distinct items
𝑥𝑖 𝑗 variable whether 𝑒𝑖 is monitored on node 𝑛 𝑗

𝐶𝑎𝑛𝑑𝑖 const item 𝑒𝑖 ’s candidate set
𝐶𝑖 const number of item 𝑒𝑖 ’s mining nodes

the probability of 𝑥𝑖 𝑗 and 0 otherwise. Theoretically, the LP approx-
imation gives a result whose expectation equals the optimal MIP
result [33], i.e., 𝐸 (Random-Rounded LP’s Result) = MIP’s Result.

Online algorithm. The policy algorithm is offline with the prior
knowledge of data streams’ candidate sets. This is a reasonable
assumption in many scenarios, e.g., multiple workers or mappers in
big data, switches on the flow paths in a network, and IoT devices
inside a sensing range. If there is no prior knowledge of data stream
items, the algorithm can be periodically executed, each period based
on the stream statistics from the previous period. Designing an
online algorithm is our future work.

6 EVALUATION
This section shows extensive experimental results and demonstrates
MimoSketch’s excellent performance compared with baselines.

• MimoSketch’s efficientmemory utilization improves themin-
ing accuracy by at least one order of magnitude compared
to other unbiased algorithms, catching up or surpassing that
of biased ones (Section 6.2).

• MimoSketch’s counting method achieves unbiasedness, and
in the MIMO scenario, the AggreateQuery with multiple
MimoSketch instances benefits from the unbiasedness, out-
performing all the baselines (Section 6.3.1).

• MimoSketch’s scheduling policy makes better use of the
global resources, which further improves overall frequency
estimation accuracy with little solving cost (Section 6.3.2).

6.1 Experiment Setup
Details of the experiment settings are in Appendix C and our
codes are open-sourced [2]. We perform experiments on 3.6GHz
CPU with 32GB memory. We use CAIDA [5] and WebDocs [13]
as datasets. We compare MimoSketch (MIMO) with four baselines:
Count Sketch (CS) [7] and WavingSketch (WS) [25] to represent
unbiased sketches, Dynamic Hierarchical Sketch (DHS) [47] and
Cuckoo Counter (CC) [32] to represent biased ones. These algo-
rithms may be mentioned in abbreviations for convenience. All al-
gorithms are implemented in C++ and open-sourced anonymously
at GitHub [2], and their parameters are tuned for the best per-
formance. We evaluate each algorithm’s performance on the item
frequency estimation task, with metrics of Average Absolute Error
(AAE) and Average Relative Error (ARE) indicating estimation error,
and throughput indicating efficiency. The formal definitions of the
task, metrics, and parameter settings are also in Appendix C.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuchen Xu, Wenfei Wu, Bohan Zhao, Tong Yang, and Yikai Zhao

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 02 0

3 0

4 0

5 0
1 0 0
1 1 0

Th
rou

gh
pu

t (m
ps)

M e m o r y (K B)

 M I M O
 W S
 C S
 D H S
 C C

(a) CAIDA

7 0 0 9 0 0 1 1 0 0 1 3 0 0 1 5 0 0
2 0

3 0

4 0

5 0

6 0

7 0

Th
rou

gh
pu

t (m
ps)

M e m o r y (K B)

 M I M O
 W S
 C S
 D H S
 C C

(b) WebDocs

Figure 5: Throughput of insertion on CAIDA and WebDocs,
varying memory.

6.2 Performance on a Single Node
First, Figure 5 shows the throughput of five sketches. Except that
Count Sketch has much faster speed (at the expense of poor accu-
racy), MimoSketch and the other three algorithms’ throughput are
all satisfactory, around 25 ∼ 45 Mps.

As shown in Figure 6, the AAE and ARE ofMimoSketch could not
only outperform unbiased algorithms, but catch up or exceed biased
but accurate adaptive methods under some circumstances. For the
CAIDA dataset, when memory varies from 200KB to 1000KB, the
AAE ofMimoSketch is atmost 8.13, 28.98, 1.03, 1.70 times lower than
that of WS, CS, DHS, and CC, respectively; the ARE of MimoSketch
is at most 10.78, 38.27, 1.39, 1.98 times lower, respectively. We can
observe that MimoSketch has a faster convergence speed and finally
outperforms most algorithms, which is quite impressive because
previous unbiased algorithms almost lag behind well-designed bi-
ased ones by at least one order of magnitude. MimoSketch achieves
such accuracy while keeping the unbiased property, benefiting from
its dynamic adaptive memory organization.

6.3 Performance on Distributed Nodes
MimoSketch’s unbiasedness makes it more applicable in distributed
data stream mining, the MIMO scenario particularly. To test the
improvement of the MimoSketch’s algorithm and policy in the
MIMO scenario, we conduct extensive experiments on a prototype
whose detailed settings are shown in Appendix C.

6.3.1 Comparison of Sketches in the MIMO Scenario. The exper-
iment in Figure 2 already confirms that MimoSketch on multiple
devices could leverage the law of large numbers [17], and therefore
reduce variance and gain better accuracy. Note that in distributed
settings, “memory” refers to space usage of each node.

In Figure 7, when the candidate set of an item 𝑒𝑖 contains 3 or 5
nodes, we set 𝐶𝑖 to 2. We apply the same MimoSketch’s scheduling
policy but install different sketch algorithms on nodes. MimoSketch
could perform better than all other algorithms when integrated
with the policy, at most outperforming WS, CS, DHS, and CC by
13.28, 24.95, 1.31, 1.55 times in CAIDA, and 12.33, 17.41, 1.45, 1.71
times in WebDocs.

6.3.2 Impact of MimoSketch’s Policy. We then testify to the effec-
tiveness of the MimoSketch’s scheduling policy.

Table 4: Load-Balancing Performance ofMimoSketch’s Policy

Variation random MimoSketch

CAIDA 2.11e+10 3.97e+9
WebDocs 1.67e+10 3.08e+9

First of all, considering solving efficiency, our prototype spends
6.1 ∼ 9.9 seconds in each MimoSketch’s policy experiment, where
there are seven mining nodes and up to 1.8M item occurrences,
indicating the fast solving velocity and low delay cost.

Then we take the variation of workloads on different nodes
(𝑉𝑎𝑟 𝑗 (

∑
𝑖 𝑥𝑖 𝑗)) as a metric to evaluate the load-balancing perfor-

mance of MimoSketch’s policy compared to the random policy.
Both policies set 𝐶𝑖 to 3, and the random policy randomly chooses
the same amount of nodes for each item. Table 4 shows a 5.32 5.42
times lower variation of MimoSketch’s policy than that of random
policy, proving its more balanced performance. Hence the policy
achieves the target of balancing workloads.

Figure 8 comparesMimoSketch’s policy and naïve policies, where
“1 node” means randomly choosing one node enabled for an item,
and “5 nodes” means choosing all the candidate nodes for an item.
We observe that MimoSketch’s policy compared to the one-node
policy has up to 100% accuracy improvement, and 169% compared
to the five-node policy. Note that the one-node policy could outper-
form MimoSketch when the memory is extremely tight, because
multi-node policies increase per-node hash collisions in this case,
which is the dominant factor, but all three solutions show impracti-
cal large errors. When memory is not so tight, multi-node policies
show more advantages than one-node policy, and MimoSketch fur-
ther outperforms the five-node policy due to its scheduling design.

Figure 9 shows the accuracy of the framework with MimoS-
ketch’s policy and random policy. Both policies have the same
parameters, i.e., 𝐶𝑖 is 2 or 3. MimoSketch’s policy outperforms the
random policy by up to 74%.

Experimental results manifest that, three mining nodes with the
median query achieve the most accurate result in our prototype. We
have proved the effectiveness of MimoSketch’s scheduling policy.

7 CONCLUSION
MimoSketch is a framework for item frequency estimation in dis-
tributed data stream mining, especially the MIMO scenario. MimoS-
ketch consists of a sketch and a policy. MimoSketch’s algorithm
applies the random counting method to preserve the unbiased-
ness and item size self-adaptive dynamic memory organization to
promote accuracy. MimoSketch’s policy balances multi-item min-
ing workloads to multiple nodes, which improves overall accuracy.
We evaluate MimoSketch on the item frequency mining task with
CAIDA andWebDocs datasets. Experiments show that MimoSketch
can achieve an orders-of-magnitude lower error rate of item fre-
quency estimation, compared to Count Sketch, WavingSketch, DHS,
and Cuckoo Counter.

ACKNOWLEDGMENTS
Wenfei Wu is funded by the Faculty Startup Funding from the
School of Computer Science at Peking University.

MimoSketch: A Framework to Mine Item Frequency on Multiple Nodes with Sketches KDD ’23, August 6–10, 2023, Long Beach, CA, USA

 M I M O W S C S D H S C C

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00 . 1

0 . 5
1
2

5

1 0

2 0

AA
E

M e m o r y (K B)
(a) AAE (CAIDA)

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00 . 0 1

0 . 1

0 . 5
1
2

5
1 0

AR
E

M e m o r y (K B)
(b) ARE (CAIDA)

7 0 0 9 0 0 1 1 0 0 1 3 0 0 1 5 0 0
0 . 5

1
2

5
1 0

2 0
3 0

AA
E

M e m o r y (K B)
(c) AAE (WebDocs)

7 0 0 9 0 0 1 1 0 0 1 3 0 0 1 5 0 00 . 1

0 . 5
1
2

5

1 0

AR
E

M e m o r y (K B)
(d) ARE (WebDocs)

Figure 6: Accuracy of item frequency estimation on CAIDA and WebDocs, varying memory.

 M I M O W S C S D H S C C

5 0 1 0 0 2 0 0 3 0 0 4 0 0

0 . 1

0 . 5
1
2

5

1 0

AA
E

M e m o r y (K B)
(a) AAE (CAIDA)

5 0 1 0 0 2 0 0 3 0 0 4 0 00 . 0 1

0 . 1

0 . 5
1
2

5

AR
E

M e m o r y (K B)
(b) ARE (CAIDA)

3 0 5 0 1 0 0 2 0 0 3 0 0
0 . 1

0 . 5
1
2

5
1 0

AA
E

M e m o r y (K B)
(c) AAE (WebDocs)

3 0 5 0 1 0 0 2 0 0 3 0 0

0 . 1

0 . 5
1
2

5
1 0

AR
E

M e m o r y (K B)
(d) ARE (WebDocs)

Figure 7: Accuracy of distributed sketches with MimoSketch’s policy on CAIDA and WebDocs, varying memory.

5 0 1 0 0 2 0 0 3 0 0 4 0 00 . 0 1

0 . 1

0 . 5
1
2

5

AA
E

M e m o r y (K B)

 1 n o d e
 5 n o d e s
 o p t i m i z e d (3 n o d e s)

(a) AAE (CAIDA)

5 0 1 0 0 2 0 0 3 0 0 4 0 0

0 . 0 1

0 . 1

0 . 5
1
2

AR
E

M e m o r y (K B)

 1 n o d e
 5 n o d e s
 o p t i m i z e d (3 n o d e s)

(b) ARE (CAIDA)

3 0 5 0 1 0 0 2 0 0 3 0 00 . 0 1

0 . 1

0 . 5
1
2

5

AA
E

M e m o r y (K B)

 1 n o d e
 5 n o d e s
 o p t i m i z e d (3 n o d e s)

(c) AAE (WebDocs)

3 0 5 0 1 0 0 2 0 0 3 0 0
0 . 0 1

0 . 1

0 . 5
1
2

5

AR
E

M e m o r y (K B)

 1 n o d e
 5 n o d e s
 o p t i m i z e d (3 n o d e s)

(d) ARE (WebDocs)

Figure 8: Accuracy of the framework with MimoSketch’s policy and naïve policies on CAIDA and WebDocs, varying memory.

5 0 1 0 0 2 0 0 3 0 0 4 0 0

0 . 1

0 . 5

1

2

AA
E

M e m o r y (K B)

 2 n o d e s (r a n d o m)
 2 n o d e s (o p t i m i z e d)
 3 n o d e s (r a n d o m)
 3 n o d e s (o p t i m i z e d)

(a) AAE (CAIDA)

5 0 1 0 0 2 0 0 3 0 0 4 0 00 . 0 1

0 . 1

0 . 5
1

2

AR
E

M e m o r y (K B)

 2 n o d e s (r a n d o m)
 2 n o d e s (o p t i m i z e d)
 3 n o d e s (r a n d o m)
 3 n o d e s (o p t i m i z e d)

(b) ARE (CAIDA)

3 0 5 0 1 0 0 2 0 0 3 0 0

0 . 1

0 . 5

1

2

AA
E

M e m o r y (K B)

 2 n o d e s (r a n d o m)
 2 n o d e s (o p t i m i z e d)
 3 n o d e s (r a n d o m)
 3 n o d e s (o p t i m i z e d)

(c) AAE (WebDocs)

3 0 5 0 1 0 0 2 0 0 3 0 00 . 0 1

0 . 1

0 . 5
1
2

AR
E

M e m o r y (K B)

 2 n o d e s (r a n d o m)
 2 n o d e s (o p t i m i z e d)
 3 n o d e s (r a n d o m)
 3 n o d e s (o p t i m i z e d)

(d) ARE (WebDocs)

Figure 9: Accuracy of the framework with MimoSketch’s policy and random policy on CAIDA and WebDocs, varying memory.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuchen Xu, Wenfei Wu, Bohan Zhao, Tong Yang, and Yikai Zhao

REFERENCES
[1] aappleby. 2015. MurmurHash. https://github.com/aappleby/smhasher/blob/

master/src/MurmurHash3.cpp
[2] Anonymous Author(s). 2022. Source codes of MimoSketch and other baselines.

https://github.com/MimoSketch/MimoSketch
[3] MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. 2018. Opti-

mal distributed submodular optimization via sketching. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1138–1147.

[4] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. 2001. Towards Sensor
Database Systems. In Proceedings of the Second International Conference on Mobile
Data Management. 3–14.

[5] CAIDA. 2016. Anonymized Internet Traces. http://www.caida.org/data/overview
[6] Francesco Cauteruccio, Luca Cinelli, Enrico Corradini, Giorgio Terracina,

Domenico Ursino, Luca Virgili, Claudio Savaglio, Antonio Liotta, and Giancarlo
Fortino. 2021. A framework for anomaly detection and classification in Multiple
IoT scenarios. Future Generation Computer Systems 114 (2021), 322–335.

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent
Items in Data Streams. In Proceedings of the 29th International Colloquium on
Automata, Languages and Programming. 693–703.

[8] Lucchese Claudio, Orlando Salvatore, Perego Raffaele, and Silvestri Fabrizio. 2003.
WebDocs: a real-life huge transactional dataset. http://fimi.uantwerpen.be/data/
webdocs.pdf

[9] Graham Cormode and S Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[10] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[11] Cristian Estan and George Varghese. 2003. New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice. ACM Transactions
on Computer Systems (TOCS) 21, 3 (2003), 270–313.

[12] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
75–88.

[13] FIMI. 2003. Frequent Itemset Mining Dataset Repository. http://fimi.uantwerpen.
be/data/

[14] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai Liu, Tong Yang, Yi Wang,
and Bin Cui. 2020. Sliding sketches: A framework using time zones for data
stream processing in sliding windows. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1015–1025.

[15] Jiqing Gu, Chao Song, Haipeng Dai, Lei Shi, Jinqiu Wu, and Li Lu. 2022. ACM:
Accuracy-Aware Collaborative Monitoring for Software-Defined Network-Wide
Measurement. Sensors 22, 20 (2022), 7932.

[16] Şule Gündüz and M Tamer Özsu. 2003. A web page prediction model based on
click-stream tree representation of user behavior. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
535–540.

[17] Pao-Lu Hsu and Herbert Robbins. 1947. Complete convergence and the law of
large numbers. Proceedings of the national academy of sciences 33, 2 (1947), 25–31.

[18] Qun Huang and Patrick PC Lee. 2014. Ld-sketch: A distributed sketching design
for accurate and scalable anomaly detection in network data streams. In IEEE
INFOCOM 2014-IEEE Conference on Computer Communications. IEEE, 1420–1428.

[19] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and Yungang Bao.
2020. Omnimon: Re-architecting network telemetry with resource efficiency and
full accuracy. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication. 404–421.

[20] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and
Raman Arora. 2019. Communication-efficient distributed SGD with sketching. In
Proceedings of the 33rd International Conference on Neural Information Processing
Systems. 13142–13152.

[21] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. 2018. Sketchml: Accelerat-
ing distributed machine learning with data sketches. In Proceedings of the 2018
International Conference on Management of Data. 1269–1284.

[22] Lu Jie, Chen Hongchang, Sun Penghao, Hu Tao, and Zhang Zhen. 2021. OrderS-
ketch:: An Unbiased and Fast Sketch for Frequency Estimation of Data Streams.
Computer Networks 201 (2021), 108563.

[23] Brian W Kernighan and Dennis M Ritchie. 1978. The C Programming Language,
Prentice Hall. Englewood Cliffs, New Jersey (1978).

[24] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. 2022. Stingy sketch:
a sketch framework for accurate and fast frequency estimation. Proceedings of
the VLDB Endowment 15, 7 (2022), 1426–1438.

[25] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and
Gong Zhang. 2020. Wavingsketch: An unbiased and generic sketch for finding
top-k items in data streams. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1574–1584.

[26] Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca
Iannaccone, and Anukool Lakhina. 2006. Detection and identification of network
anomalies using sketch subspaces. In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement. 147–152.

[27] Gurmeet SinghManku and RajeevMotwani. 2002. Approximate frequency counts
over data streams. In Proceedings of the 28th international conference on Very Large
Data Bases. 346–357.

[28] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient com-
putation of frequent and top-k elements in data streams. In Proceedings of the
10th international conference on Database Theory. 398–412.

[29] Cheng-Chieh Peng, Kuo-Shiang Hsu, and Pi-Chung Wang. 2021. Collaborative
Traffic Measurement Using Sketches for Software Defined Networks. In 2021 IEEE
International Conference on Communication, Networks and Satellite (COMNETSAT).
IEEE, 81–87.

[30] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica,
Vladimir Braverman, Joseph Gonzalez, and Raman Arora. 2020. FetchSGD:
communication-efficient federated learning with sketching. In Proceedings of the
37th International Conference on Machine Learning. 8253–8265.

[31] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster
and more accurate stream processing. In Proceedings of the 2016 International
Conference on Management of Data. 1449–1463.

[32] Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang.
2023. Cuckoo Counter: Adaptive Structure of Counters for Accurate Frequency
and Top-k Estimation. IEEE/ACM Transactions on Networking (2023).

[33] Aravind Srinivasan. 1999. Approximation algorithms via randomized rounding:
a survey. Series in Advanced Topics in Mathematics, Polish Scientific Publishers
PWN (1999), 9–71.

[34] Lu Tang, Qun Huang, and Patrick PC Lee. 2019. MV-Sketch: A Fast and Compact
Invertible Sketch for Heavy Flow Detection in Network Data Streams. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2026–2034.

[35] Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on Management of
Data. 1129–1140.

[36] Daniel Ting, Jonathan Malkin, and Lee Rhodes. 2020. Data sketching for real
time analytics: Theory and practice. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 3567–3568.

[37] PinghuiWang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, ChenxuWang, John CS
Lui, and Xiaohong Guan. 2019. A memory-efficient sketch method for estimating
high similarities in streaming sets. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 25–33.

[38] Hongli Xu, Shigang Chen, Qianpiao Ma, and Liusheng Huang. 2019. Lightweight
Flow Distribution for Collaborative Traffic Measurement in Software Defined
Networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 1108–1116.

[39] Tong Yang, Siang Gao, Zhouyi Sun, Yufei Wang, Yulong Shen, and Xiaoming Li.
2019. Diamond sketch: Accurate per-flow measurement for big streaming data.
IEEE Transactions on Parallel and Distributed Systems 30, 12 (2019), 2650–2662.

[40] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li. 2018.
HeavyGuardian: Separate and guard hot items in data streams. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2584–2593.

[41] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 561–575.

[42] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. 2017. Pyramid
sketch: A sketch framework for frequency estimation of data streams. Proceedings
of the VLDB Endowment 10, 11 (2017), 1442–1453.

[43] Shanshan Ying, Flip Korn, Barna Saha, and Divesh Srivastava. 2015. Treescope:
finding structural anomalies in semi-structured data. Proceedings of the VLDB
Endowment 8, 12 (2015), 1904–1907.

[44] Xiwen Yu, Hongli Xu, Da Yao, Haibo Wang, and Liusheng Huang. 2018. Count-
Max: A Lightweight and Cooperative Sketch Measurement for Software-Defined
Networks. IEEE/ACM Transactions on Networking (TON) 26, 6 (2018), 2774–2786.

[45] Yutong Zhai, Hongli Xu, Haibo Wang, Zeyu Meng, and He Huang. 2020. Joint
Routing and Sketch Configuration in Software-Defined Networking. IEEE/ACM
Transactions on Networking 28, 5 (2020), 2092–2105.

[46] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin
Cui. 2020. On-off sketch: A fast and accurate sketch on persistence. Proceedings
of the VLDB Endowment 14, 2 (2020), 128–140.

[47] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. 2021. DHS:
Adaptive Memory Layout Organization of Sketch Slots for Fast and Accurate
Data Stream Processing. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 2285–2293.

[48] Yikai Zhao, Zheng Zhong, Yuanpeng Li, Yi Zhou, Yifan Zhu, Li Chen, Yi Wang,
and Tong Yang. 2021. Cluster-Reduce: Compressing Sketches for Distributed
Data Streams. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2316–2326.

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/MimoSketch/MimoSketch
http://www.caida.org/data/overview
http://fimi.uantwerpen.be/data/webdocs.pdf
http://fimi.uantwerpen.be/data/webdocs.pdf
http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/

MimoSketch: A Framework to Mine Item Frequency on Multiple Nodes with Sketches KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[49] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve
Uhlig. 2018. Cold filter: A meta-framework for faster and more accurate stream
processing. In Proceedings of the 2018 International Conference on Management of
Data. 741–756.

[50] You Zhou, Youlin Zhang, Chaoyi Ma, Shigang Chen, and Olufemi O Odegbile.
2019. Generalized sketch families for network traffic measurement. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 3, 3 (2019), 1–34.

A PSEUDO-CODE

Algorithm 1: Insertion of the MimoSketch algorithm.
Input: An item 𝑒𝑖

1 if 𝑓 𝑝 (𝑒𝑖) exists in 𝐵 [ℎ(𝑒𝑖)] then
2 𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖] .𝑓 𝑞 += 𝑠 (𝑒𝑖);
3 if 𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖] .𝑓 𝑞 overflows then
4 // find exchangeable higher-level slots
5 Exchange (𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖]);
6 if fails then
7 // adaptively adjust slot structure
8 LevelUp (𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖]);
9 if fails then
10 // expel the slot to sharing counter
11 𝐵 [ℎ(𝑒𝑖)] .𝑐𝑜𝑢𝑛𝑡 += 𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖] .𝑓 𝑞;
12 Set 𝑠𝑡𝑎𝑡𝑢𝑠 of 𝐵 [ℎ(𝑒𝑖)] .𝑓 [𝑒𝑖] false;

13 else if slots in 𝐵 [ℎ(𝑒𝑖)] are not full then
14 Insert it into an empty slot with <𝑓 𝑝 (𝑒𝑖), 𝑠 (𝑒𝑖)>;
15 else
16 𝐵 [ℎ(𝑒𝑖)] .𝑐𝑜𝑢𝑛𝑡 += 𝑠 (𝑒𝑖);
17 return;

B MATHEMATICAL PROOF AND ANALYSIS
In this section, we prove and analyze the mathematical properties
of MimoSketch listed in Section 4. The symbols which may be
frequently used in the mathematical analysis are shown in Table 5.

B.1 Proof of Unbiasedness
We prove the unbiasedness of MimoSketch algorithm as below.

Let Ω denote the set of all functions 𝒔 : E→ {+1,−1}, and 𝑠 (.)
is a random function from Ω. Then, 𝑠 (𝑒𝑖) and 𝑠 (𝑒 𝑗) (𝑖 ≠ 𝑗) are two
independent variables.

(1) An item is counted either in a slot or in the sharing counter,
and would not be counted at two places (proven by the discussion
in Section 3.2.2).

(2) If the item 𝑒𝑖 is eventually in a slot, then E = E𝑖 , and 𝑓𝑖 = 𝑓
E𝑖
𝑖

,

𝐸 (𝑓𝑖) = 𝐸

(
𝑓
E𝑖
𝑖

)
= 𝐸

©­«
∑︁
𝑒 𝑗 ∈E𝑖

𝑓𝑗 · 𝑠 (𝑒 𝑗) · 𝑠 (𝑒𝑖)ª®¬
= 𝐸

©­«
∑︁

𝑒 𝑗 ∈E𝑖 , 𝑗≠𝑖
𝑓𝑗 · 𝑠 (𝑒 𝑗) · 𝑠 (𝑒𝑖)ª®¬ + 𝐸

©­«
∑︁
𝑗=𝑖

𝑓𝑗 · 𝑠 (𝑒 𝑗) · 𝑠 (𝑒𝑖)ª®¬
= 0 + 𝑓𝑖 = 𝑓𝑖 .

(3) If the item 𝑒𝑖 is eventually in the sharing counter, it is stored
together with fingerprint-collided items E𝑖 and non-collided items

E𝑖 . Thus, 𝑓𝑖 = 𝑓
E𝑖
𝑖

+ 𝑓
E𝑖
𝑖

, and

𝐸 (𝑓𝑖) = 𝐸

(
𝑓
E𝑖
𝑖

+ 𝑓
E𝑖
𝑖

)
= 𝐸

(
𝑓
E𝑖
𝑖

)
+ 𝐸

©­­«
∑︁
𝑒 𝑗 ∈E𝑖

𝑓𝑗 · 𝑠 (𝑒 𝑗) · 𝑠 (𝑒𝑖)
ª®®¬ (7)

= 𝑓𝑖 + 0 = 𝑓𝑖 .

The second term in Equation (7) is zero because 𝑒𝑖 is different from
∀𝑒 𝑗 ∈ E𝑖 .

We conclude that the expected value equals the actual frequency
(i.e., 𝐸 (𝑓𝑖) = 𝑓𝑖) under any circumstance. Therefore, MimoSketch
achieves an unbiased estimation.

B.2 Analysis of Variance and Error Bound
Variance. Let 𝑒1, 𝑒2, . . . , 𝑒𝑛 be the items hashed into 𝐵 [ℎ(𝑒𝑖)], the
bound of the variance of MimoSketch’s estimation is that

𝑉𝑎𝑟

(
𝑓𝑖

)
≤

∑︁
𝑒 𝑗≠𝑒𝑖

(𝑓𝑗)2 .

Proof.Whether 𝑒𝑖 is stored in a slot with a fingerprint or sharing
counter, we both have 𝑓𝑖 = (∑𝑒 𝑗 ∈E 𝑓𝑗 · 𝑠 (𝑒 𝑗)) · 𝑠 (𝑒𝑖). The variance
of 𝑓𝑖 is that

𝑉𝑎𝑟

(
𝑓𝑖

)
= 𝐸

𝑠 (𝑒 𝑗) ∈{1,−1}
©­«©­«

∑︁
𝑒 𝑗 ∈E

𝑓𝑗 · 𝑠 (𝑒 𝑗)ª®¬ · 𝑠 (𝑒𝑖) − 𝐸

(
𝑓𝑖

)ª®¬
2

= 𝐸
𝑠 (𝑒 𝑗) ∈{1,−1}

©­«©­«
∑︁

𝑒 𝑗 ∈E∧𝑗≠𝑖
𝑓𝑗 · 𝑠 (𝑒 𝑗)

ª®¬ · 𝑠 (𝑒𝑖)ª®¬
2

(8)

= 𝐸
𝑠 (𝑒 𝑗) ∈{1,−1}

©­«
∑︁

𝑒 𝑗 ∈E∧𝑗≠𝑖
𝑓𝑗 · 𝑠 (𝑒 𝑗)ª®¬

2

=
∑︁

𝑒 𝑗 ∈E∧𝑗≠𝑖
𝐸

𝑠 (𝑒 𝑗) ∈{1,−1}

(
𝑓𝑗 · 𝑠 (𝑒 𝑗)

)2 (9)

≤
∑︁
𝑒 𝑗≠𝑒𝑖

(𝑓𝑗)2 .

The Equation (8) holds because 𝐸 (𝑓𝑖) = 𝑓𝑖 according to Section 4.1,
and thus 𝑓𝑖 · 𝑠 (𝑒𝑖)2 can eliminate 𝐸 (𝑓𝑖). The Equation (9) stands
because different 𝑓𝑗 ·𝑠 (𝑒 𝑗) are independent, and thus the expectation
of the cross term 𝑠 (𝑒𝑖) · 𝑠 (𝑒 𝑗) (𝑖 ≠ 𝑗) is zero.

With the bound of the variance, we can derive the upper and
lower error bound.
Error bound based on ∥ 𝑓 ∥2. Let 𝑙 = 𝑒

𝜖2
, ∥ 𝑓 ∥2 =

√︃∑
𝑒𝑖 ∈S (𝑓𝑖)2,

𝑃

(���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝜖 ∥ 𝑓 ∥2
)
≤ 1

𝑒
.

Proof. Due to Chebyshev’s inequality,

𝑃
©­«
���𝑓𝑖 − 𝑓𝑖

��� ≥ √︄
𝑒
∑︁
𝑒 𝑗≠𝑒𝑖

(𝑓𝑗)2ª®¬ ≤
𝑉𝑎𝑟

(
𝑓𝑖

)
𝑒
∑
𝑒 𝑗≠𝑒𝑖 (𝑓𝑗)2

≤ 1
𝑒
.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuchen Xu, Wenfei Wu, Bohan Zhao, Tong Yang, and Yikai Zhao

Table 5: List of Symbols Used for Mathematical Analysis

Notation Meaning

𝑓𝑖 the actual frequency of 𝑒𝑖
𝑓𝑖 estimated frequency of 𝑒𝑖 from MimoSketch
E E = {𝑒1, 𝑒2, . . . , 𝑒𝑛𝑖 }, containing all the distinct

items stored in the same place as 𝑒𝑖
E𝑖 E𝑖 = {𝑒 𝑗 ∈ E | 𝑓 𝑝 (𝑒 𝑗) = 𝑓 𝑝 (𝑒𝑖)}, containing the

items whose fingerprint is the same as 𝑒𝑖 ’s
E𝑖 E𝑖 = E \ E𝑖 , containing the remaining items

𝑓
E𝑖
𝑖

𝑓
E𝑖
𝑖

=
∑
𝑒 𝑗 ∈E𝑖 𝑓𝑗 · 𝑠 (𝑒 𝑗) · 𝑠 (𝑒𝑖)

𝑓
E𝑖
𝑖

𝑓
E𝑖
𝑖

=
∑
𝑒 𝑗 ∈E𝑖 𝑓𝑗 · 𝑠 (𝑒 𝑗) · 𝑠 (𝑒𝑖)

𝑒 total number of distinct items

Moreover, considering items in 𝐵 [ℎ(𝑒𝑖)], we can have an estimation
that

∑
𝑒 𝑗 ∈𝑆𝑖 (𝑓𝑗)

2 = 1
𝑙
(∥ 𝑓 ∥2)2, thus

𝑃

(���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝜖 ∥ 𝑓 ∥2
)
≤ 𝑃

©­«
���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝜖

√︄
𝑙

∑︁
ℎ (𝑒 𝑗)=ℎ (𝑒𝑖)

(𝑓𝑗)2ª®¬
≤ 𝑃

©­«
���𝑓𝑖 − 𝑓𝑖

��� ≥ √︄
𝑒
∑︁
𝑒 𝑗≠𝑒𝑖

(𝑓𝑗)2ª®¬
≤ 1

𝑒
.

Also, we can derive an error bound based on ∥ 𝑓 ∥1 (i.e.,
∑
𝑒𝑖 ∈S |𝑓𝑖 |).

Error bound based on ∥ 𝑓 ∥1. Let 𝑙 = 𝑒
𝜖 , ∥ 𝑓 ∥1 =

∑
𝑒𝑖 ∈S |𝑓𝑖 |,

𝑃

(���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝜖 ∥ 𝑓 ∥1
)
≤ 1

𝑒
.

Proof. We have

𝐸

(���𝑓𝑖 − 𝑓𝑖

���) = 𝐸
©­«
������ ∑︁𝑒 𝑗≠𝑒𝑖 𝑓𝑗 · 𝑠 (𝑒 𝑗)

������ª®¬ ≤ 𝐸
©­«
������ ∑︁𝑒 𝑗≠𝑒𝑖 𝑓𝑗

������ª®¬ ≤ 𝜖

𝑒
∥ 𝑓 ∥1 .

By Markov’s inequality,

𝑃

(���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝜖 ∥ 𝑓 ∥1
)
≤ 𝑃

(���𝑓𝑖 − 𝑓𝑖

��� ≥ 𝑒𝐸

(���𝑓𝑖 − 𝑓𝑖

���)) ≤ 1
𝑒
.

C DETAILS ABOUT EXPERIMENT SETUP
We list the details of our experiments for reproducibility.
Implementation. All the five algorithms are implemented in C++
and open-sourced at GitHub [2].We deploy the previous work based
on the source codes by their authors and use best-tuned parameters
with the best performance for fairness. For Count Sketch, the hash
number is set to 3 as a trade-off between accuracy and speed, and
its query method is median-query which outperforms mean-query
according to [7]. For DHS, we set bucket𝑊 = 64 bits and decay
parameter 𝑏 = 1.08, which performs the best results as concluded

in [47]. For Cuckoo Counter, we set its𝑚𝑎𝑥𝑙𝑜𝑜𝑝 = 2 with better
accuracy. For MimoSketch, 𝑑 = 8, 𝑘 = 3, the fingerprint field is 8
bits, and the frequency field is 8, 12, and 16 bits, respectively. We
use efficient hash functions MurmurHash [1] and BKDRHash [23]
in each algorithm. The MimoSketch’s policy is a MIP model, and
we implement the policy based on Gurobi 9.5.2 optimization solver
(Linux64, C++).
Test platform. We perform all the experiments on a machine
with 2 Intel i7-11700K CPUs, each with 8 cores @ 3.60GHz, and 32
GB DRAM memory. In order to smooth the CPU jitter errors, we
conduct each experiment ten times and take the average.
Datasets.We use two real datasets for experiments. One is CAIDA
Internet Trace [5], collected by Equinix-Chicago monitor from
CAIDA. The item inside data streams of the traces are IP packets
identified by 5-tuple headers (i.e., Source IP, Destination IP, Source
Port, Destination Port, and Protocol). The dataset contains 1.6M
unique items with 25M occurrences in total. The other is WebDocs
Dataset, which is a real-life huge transactional dataset built from
a collection of web documents, downloaded from its website [13].
There are 1M distinct items with around 32M occurrences in total.
More details about the dataset can be obtained at its website [8].
Baselines. We compare our MimoSketch (MIMO) with four re-
lated algorithms. Among them, Count Sketch (CS) [7], WavingS-
ketch (WS) [25] are also unbiased algorithms; Dynamic Hierarchical
Sketch (DHS) [47], Cuckoo Counter (CC) [32] are biased ones. We
choose these algorithms because they have similar properties or
mechanisms to MimoSketch and show comparable or better perfor-
mance than other prior works.
Task. The main mining task of item frequency estimation is formu-
lated as follows. It offers the approximately estimated frequency
of each item, i.e., 𝑓1, . . . , 𝑓𝑛 . As the fundamental estimation task for
data stream mining, it is implemented by querying each item and
comparing the estimated size to the actual frequency, using AAE
and ARE as main metrics (defined as below).
Metrics. We choose the following metrics to evaluate the item
frequency estimation task.

Average Absolute Error (AAE): 1
|Ψ |

∑
𝑒𝑖 ∈Ψ |𝑓𝑖 − 𝑓𝑖 |, where Ψ is

the query set, 𝑓𝑖 is the actual frequency of item 𝑒𝑖 , and 𝑓𝑖 is the
estimated frequency of 𝑒𝑖 .

Average Relative Error (ARE): 1
|Ψ |

∑
𝑒𝑖 ∈Ψ |𝑓𝑖 − 𝑓𝑖 |/|𝑓𝑖 |, where the

parameters are the same as those in AAE.
Throughput: 𝑁𝐼 /𝑇 , normally in the unit of Mps, where 𝑁𝐼 is

the number of insertion operations, and 𝑇 is the total time. Dif-
ferent from the aforementioned metrics evaluating the accuracy,
throughput is used to measure the processing speed.
MIMO prototype. In the MIMO-scenario evaluation in Section 6.3,
we consider two datasets as data streams, and assume there are
seven nodes responsible for them. For each item, the subset of
candidate node(s) is randomly chosen and the cardinality of the set
is 1, 3, or 5, as described in Figure 4.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Problem Formulation
	2.2 Application Scenarios
	2.3 Related Work
	2.4 Goal, Intuitions, and Pitfalls

	3 MimoSketch's Algorithm
	3.1 Data Structure
	3.2 MimoSketch on a Single Node
	3.3 MimoSketch on Distributed Nodes

	4 Theoretical Properties
	4.1 Unbiasedness
	4.2 Variance and Error Bounds

	5 MimoSketch's Scheduling Policy
	6 Evaluation
	6.1 Experiment Setup
	6.2 Performance on a Single Node
	6.3 Performance on Distributed Nodes

	7 Conclusion
	Acknowledgments
	References
	A Pseudo-Code
	B Mathematical Proof and Analysis
	B.1 Proof of Unbiasedness
	B.2 Analysis of Variance and Error Bound

	C Details about Experiment Setup

