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Abstract—In this paper, we propose a generic sketch algorithm
capable of achieving more accuracy in the following five tasks:
finding top-k frequent items, finding heavy hitters, per-item fre-
quency estimation, and heavy changes in the time and spatial di-
mension. The state-of-the-art (SOTA) sketch solution for multiple
measurement tasks is ElasticSketch (ES). However, the accuracy
of its frequency estimation has room for improvement. The reason
for this is that ES suffers from overestimation errors in the light
part, which introduces errors when querying both frequent and
infrequent items. To address these problems, we propose a generic
sketch, OneSketch, designed to minimize overestimation errors.
To achieve the design goal, we propose four key techniques, which
embrace hash collisions and minimize possible errors by handling
highly recurrent item replacements well. Experimental results
show that OneSketch clearly outperforms 12 SOTA schemes. For
example, compared with ES, OneSketch achieves more than 10×
lower Average Absolute Error on finding top-k frequent items
and heavy hitters, as well as 48.3% and 38.4% higher F1 Scores
on two heavy changes under 200KB memory, respectively.

Index Terms—Data streams, sketch, frequency estimation, top-
k, heavy hitters, per-item, heavy changes

I. INTRODUCTION

A. Background and Motivation

Approximate stream processing has always been a popular
topic in various areas such as databases [1]–[4], data mining
[5]–[7], artificial intelligence [8]–[11], network measurement
[12]–[14] and security [15]–[17]. One of its most important
and fundamental tasks is frequency estimation, which aims
to accurately estimate the number of occurrences of a given
item in data streams. Frequency estimation can generally
be divided into estimation for frequent-item and per-item.
Among them, frequent-item estimation can be further sum-
marized as finding top-k items (Task 1) and heavy hitters
(Task 2). The former finds the k items with the largest
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frequency, and the latter finds items whose frequency exceeds
a predefined threshold. Per-item estimation (Task 3) on the
other hand focuses on estimating the frequencies of all items.
Two other tasks, the time dimension heavy changes and the
spatial dimension heavy changes, are also important and are
related to frequency estimation. Heavy changes in the time
dimension (Task 4) refers to items whose frequencies in two
adjacent time windows increase/decrease beyond a predefined
threshold. Heavy changes in the spatial dimension (Task 5)
is a new problem that we define for the first time, which
refers to items whose frequencies in two adjacent physical
nodes increase/decrease beyond a predefined threshold. It can
be used for packet loss detection in networks, but has rarely
been formally studied. Sketch, a compact data structure with
small memory footprint and error, has been widely recognized
by the research community [18]–[21], especially in addressing
the above tasks 1 to 4. Thus, our design goal is to propose a
generic sketch algorithm that can more accurately perform the
above five tasks.

B. Prior Art and Limitations

The distribution of data streams is highly skewed [22]–[24],
i.e., only a few items appear frequently (called frequent items),
while most items appear only once or a few times (called
infrequent items). Thus, researchers naturally pay more atten-
tion to frequent items and put forward many excellent works.
The key idea of the most state-of-the-art (SOTA) sketch-based
solutions, such as ElasticSketch (ES) [14], [25], MV-Sketch
[26], Cold filter (CF) [27] and its successor LogLog Filter
(LLF) [28], etc., is to separate frequent items from infrequent
items, and accurately record frequent items. Among them, ES
is the most compelling: it handles multiple measurement tasks,
including tasks 1 to 4, and offers a high level of accuracy.

While ES performs well, it has two obvious problems
that cause inaccurate recording of frequent and infrequent
items. ES has a heavy part and a light part, which record
the frequencies of frequent and infrequent items, respectively.
The heavy part records the support votes and negative votes
for each item, representing the frequency of the item and
the frequency of other items (i.e., caused by hash collisions),
respectively. Once a new item arrives and the ratio of negative
votes exceeds a threshold, the original item is expelled to the
light part, i.e., an item replacement occurs. When querying
the item frequency, for any item that is not in the heavy part,
its frequency is reported by the light part. For any item in
the heavy part, if item replacement has occurred in the past,
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the sum of the frequencies of two parts is reported. However,
since the frequency of frequent items recorded in the light part
is likely to introduce errors due to hash collisions, the final
reported frequency must also have errors. Further, coupled
with the fact that the light part uses a large-size counter to
record infrequent items, it leads to a large memory overhead
and serious overestimation errors in the light part.

C. Our Proposed Solution

To achieve higher accuracy, we propose a novel sketch
algorithm called OneSketch, whose name ONE is inspired by
two aspects: the measurement of five tasks can be realized
using just one sketch, and the design philosophy is one-sided
approaching (explain later). The accuracy of OneSketch in
these five tasks is better than that of ES and other SOTA
schemes: 1) For Task 1, the Average Relative Error (ARE) of
OneSketch is on average 10.9× and 56.0× lower than that of
ES and LLF, respectively. 2) For Task 2, the Average Relative
Error (ARE) of OneSketch is on average 5.3× and 17.4×
lower than that of ES and LLF, respectively. 3) For Task 3,
OneSketch achieves 36.0% and 82.3% higher F1 Score than
that of ES and LLF under 200KB of memory, respectively.
4) For Task 4, OneSketch achieves 48.3% and 72.4% higher
F1 Score than that of ES and LLF under 200KB of memory,
respectively. 5) For Task 5, OneSketch achieves 38.4% and
67.9% higher F1 Score than that of ES and LLF under 200KB
of memory, respectively.

OneSketch inherits the ES idea of separating frequent and
infrequent items, and its data structure also consists of two
parts, a heavy part and a light part, which are used to
accurately record the frequencies of frequent items and other
infrequent items, respectively. The key design philosophy of
OneSketch is Overestimation Control: reduce the overesti-
mated frequency of items, by approaching the true frequency
on one side. We propose four techniques around the above
design philosophy that embrace the reality of hash collisions
and minimize overestimation errors in terms of extremely
recurrent item replacements.

The key technique for the light part is called Fine-Grained
Control, which replaces the light part of ES from CM [29] to
a tailored TowerSketch [30], exploiting its small-size counters
to record infrequent items at a finer granularity and reduce
memory overhead. This technique optimizes the accuracy of
ES light part from the data structure.

The key technique of interaction between the light part and
the heavy part is called Frequency Read/Write Control and
Repeat Control. 1) The key idea of the former is that after
each item replacement in the heavy part, the new challenger
item that succeeds in the item replacement should immediately
read its frequency recorded in the light part. The goal is
to avoid possible overestimation errors in the light part due
to hash collisions in the future. This is the main strength of
OneSketch to address the overestimation errors generated by
ES mentioned in Section I-B. Similarly, the light part should
also write the frequency of the kicked item. 2) Whenever
Frequency Read/Write Control occurs, the item frequency is
recorded in the heavy/light part, but this process is reversible,

i.e., an item may be transferred repeatedly between heavy and
light parts. As a result, if the process of Frequency Read/Write
Control happens to an item many times, its estimated value in
the light part will be accumulated repeatedly. Thus, our Repeat
Control reduces the overestimation errors caused by above-
mentioned issue, to further optimize Frequency Read/Write
Control again.

The key technique for the heavy part is called Replace-
ment Control, and the main idea is that we should control
meaningless item replacement by comparing the minimum
frequency of the mapped bucket in the heavy part with the
read value of the new challenger item in the light part. This
conservative technique eliminates the errors caused by the
possible overflow of infrequent items in the light part, to
further improve Frequency Read/Write Control.

The above techniques significantly reduce the overestima-
tion errors of ES. More details are provided in Section III.
Further, we develop a rigorous mathematical analysis for
OneSketch to theoretically derive its error bounds in Section
IV. Finally, we conduct extensive experiments, comparing
OneSketch with 12 sketch-based SOTA schemes in Section
V to verify its effectiveness. The experimental results show
that OneSketch enables more accurate measurements in five
important tasks in data streams. All related codes of OneSketch
are provided open-source and available at GitHub [31]1.
Main Contributions:

1) We propose a new measurement task called heavy
changes in the spatial dimension, which has important
applications but has rarely been studied.

2) We propose OneSketch, which is generic for five tasks
and more accurate than other SOTA solutions.

3) We theoretically derive the error bound for OneSketch
through rigorous mathematical analysis.

4) We perform extensive experiments, and the results vali-
date that OneSketch is generic and more accurate.

II. RELATED WORK

In this section, we divide sketches for frequency estimation
into per-item estimation and frequent-item estimation.

A. Per-Item Estimation

These sketches are designed to record the frequencies of all
items. Typical algorithms include Count-Min sketch (CM) [29]
and Conservative Update sketch (CU) [32]. A CM consists of
d arrays Ai(1 ≤ i ≤ d), where Ai is associated with a hash
function hi(.), and each array has w counters. When inserting
an item e, it increments the d hashed counter Ai[hi(e)] by
1. To report the frequency of e, it only reports the smallest
one among the d hashed counters Ai[hi(e)]. The CU is
very similar to the CM, except that it only increments the
minimum counter(s) among the d hashed counters for each
insertion. They both suffer from overestimation errors due to
hash collisions. Other well-known schemes include sketches
of Count (C) [33] and CSM [34].

1https://github.com/pkufzc/OneSketch
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SALSA [20] first uses small counters and accurately indi-
cates the merging of adjacent counters when they overflow
by complex operations with an additional bitmap, achieving
high accuracy but sacrificing speed. It can be extended in
CM, CU, and C versions. FCM-Sketch (FCMS) [35] and
TowerSketch [30] both consist of several counter arrays. They
use different-sized counters for different arrays, but each array
is allocated the same amount of memory. Hence, the higher-
level arrays have fewer counters, but their counters are larger.
In this way, frequent items overflow in lower-level counters,
so their frequencies are kept in higher-level/large counters,
whereas the frequencies of infrequent items are kept in lower-
level/small counters. FCMS tries its best to avoid counter
overflow, and must rely on the existing schemes (e.g., ES
[14]) to achieve high accuracy in finding top-k frequent items.
TowerSketch handles overflow well and can achieve high
accuracy without requiring the cooperation of existing SOTA
scheme. TowerSketch supports both CM and CU insertion,
and we utilize the CU version of TowerSketch (denoted as
Tower CU) and redesign its insertion strategy in this paper.

B. Frequent-Item Estimation

Typical sketches include Misra-Gries sketch (MG) [36],
Space-Saving (SS) [37], Unbiased Space-Saving (USS) [38],
and ASketch (AS) [39]. As a pioneering work, when a
new/non-recorded item arrives but the data structure is full,
MG directly decrements the frequency of all recorded items
by 1. It inspires many works such as SS and FD [40], but its
replacement strategy will lose a lot of infrequent items and
lead to a very low recall rate. SS and USS both use a data
structure named Stream-Summary to record frequent items.
Unlike MG, SS directly replaces the least frequent item with
this new item, while USS utilizes probabilistic replacement
to achieve unbiased estimation. AS uses a small array to
record only a few frequent items and a sketch (e.g., CM, C,
FCM [41]) to record infrequent items, without guaranteeing
the actual demand in terms of the total number of frequent
items or the processing speed.

SOTA sketches include UnivMon (UM) [42], ElasticSketch
(ES) [14], [25], MV-Sketch (MV) [26], [43], Cold filter (CF)
[27] and its successor LogLog Filter (LLF) [28], etc. UM
is the first universal sketch to address multiple measurement
tasks with a single data structure, based on the key idea
of universal streaming [44] It first recursively samples the
data stream to obtain several sub-streams, and uses C and
heap to record each sub-stream. However, its actual accuracy
is not satisfactory enough, and its sampling results in slow
processing speed.

ES separates frequent items from infrequent items through a
voting expulsion mechanism. ES consists of two parts: a heavy
part records frequent items, and a light part records infrequent
items. The heavy part is a hash table, where each bucket
records the following item information: item ID, support vote,
negative vote, and flag. Support vote records the frequency of
this item. Negative vote records the frequency of other items.
The flag indicates whether the light part is likely to contain
support votes for this item, where the light part is a CM. When

inserting an new item, if it differs from the item in the mapped
bucket, it increments the negative vote, and calculates whether
the ratio of the negative votes exceeds a predefined threshold.
If so, the recorded item in the bucket is evicted to the light
part. When querying an item, for any item that is not in the
heavy part, its frequency is reported by the light part. For any
item in the heavy part, there are two cases: 1) if the flag is
false, then its frequency is the corresponding support vote; 2)
if the flag is true, then its frequency is the sum of support vote
and query result in the light part.

CF first uses a two-layer CU to record the frequency of
all items, and then sets a predefined threshold to separate
frequent items from infrequent items. When inserting an item,
CF first inserts it into the CU and queries its frequency. If
the frequency exceeds the threshold, the item will be reported
as a frequent item. To expand the filtering range of CF, LLF
replaces CU with the LogLog structure [45]–[47], which is
originally used for cardinality (i.e., the number of distinct
items) estimation. Its data structure is an array of registers
associated with a random generator and several hash functions.
When inserting an item, LLF first calculates the hash functions
to map the corresponding register, and determines whether it
is an infrequent item. If the answer is positive, LLF generates
random numbers, which follow a geometric distribution, and
then updates the associated registers.

The structure of MV-Sketch (MV) [26], [43] is similar to
that of CM. The three fields recorded in each bucket are: the
sum of all item hashed to this bucket, the heavy (our Task
2&4) item candidates (candidates for short) in the current
bucket, and the count value of the candidates in the current
bucket. When an item is mapped to a bucket, MV uses MJRTY
algorithm [48] to update the candidate. When querying an
item, MV determines the estimated value based on whether
the new item is consistent with the candidate, and returns the
minimum estimated value. Finally, MV reports heavy items
based on whether they are greater than the set threshold.

III. ONESKETCH DESIGN

TABLE I: Symbols frequently used in this paper.
Notation Meaning

e A distinct item in the data stream
B[i][j] The jth cell of the ith bucket in the heavy part

d Number of cells per bucket in the heavy part
h(.) Hash function of the heavy part
CH Count value of item recorded in the heavy part

⟨ID,CH⟩ The two fields of the item recorded in the heavy part
B[h(e)] The hashed/mapped bucket of e in the heavy part
C′

H Count value of the least frequent item e′ in B[h(e)]
gs(.) sth hash function of the light part

A[s][gs(e)] Hashed/mapped counters of e in the light part
CL Query value of the item in the light part
δ the number of bits in the light part counter

In this section, we first present the data structure of OneS-
ketch in Section III-A. Then, we introduce the design philoso-
phy and four techniques of OneSketch in Section III-B. Next,
we introduce the operations of the Light Part in Section III-C,
as a prerequisite for the subsequent OneSketch operations.
Finally, we describe the specific operations of OneSketch for
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Fig. 1: Data structure and examples of OneSketch.

finding top-k frequent items and per-item frequency estimation
in Section III-D and Section III-E, respectively. The symbols
frequently used in this paper are shown in Table I.

A. The OneSketch Structure

As shown in Fig. 1, OneSketch consists of two part: a
Heavy Part and a Light Part, which are designed to accurately
record the frequencies of top-k items and infrequent items,
respectively.

The Heavy Part is a hash table with n buckets B[1], B[2],
· · · , B[n], and associated with the hash function h(.). Each
bucket consists of d cells, each of which stores two fields:
item ID (key) and its count CH . For convenience, we use
B[i][j] to represent the jth cell in the ith bucket.

The Light Part is a tailored Tower CU [30] (see Section
II-A). Each Tower CU has two arrays: A[1] with 2 ∗ w 2-bit
counters and A[2] with w 4-bit counters, each of which is
associated with a pair-wisely independent hash function gs(.)
(s = 1 or 2). Each counter only records the count value of the
item. Therefore, the 2-bit counter will overflow if the count
exceeds 3, and the 4-bit counter will overflow if the count
exceeds 15. For convenience, we use A[s][t] to represent the
tth counter in the sth array.

B. Design Philosophy and Techniques

The design philosophy of OneSketch is Overestimation
Control, i.e., reducing the overestimated frequency as much
as possible to approach the real frequency on the premise of
ensuring overestimation. Towards the design goal, we propose
four key techniques as follows.

1) Fine-Grained Control (Light). We find that the 8-bit
counters used in ES can be further compressed to 2-bit
or 4-bit, resulting in 2 ∼ 4 times more counters with
the same space, which means 2 ∼ 4 times fewer hash
collisions and errors. By combining the lower half of
TowerSketch [30] with our proposed techniques, we achieve

the aforementioned counter compression without significant
additional overflow errors.

2) Frequency Read/Write Control (Heavy&Light). When
each item replacement occurs in the Heavy Part, the new
item that succeeds in the item replacement should imme-
diately Read (merge) its frequency recorded in the Light
Part and set it as the original value in the Heavy Part. This
technique avoids possible overestimation errors in the Light
Part due to hash collisions as soon as possible in the future,
and essentially addresses well the sources of error in ES as
described in Section I-B. Accordingly, the Light Part should
also be written with the frequency of the least frequent
item that is kicked from the Heavy Part.

3) Repeat Control (Heavy&Light). Followed by the above
Frequency Read/Write Control technique, the item may go
through the process of being written/kicked to the Light Part
firstly, read back to the Heavy Part and then written/kicked
to the Light Part again, which will cause the issue of
repeated accumulations in the Light Part. Therefore, we
improve the insertion algorithm of the Light Part, which
only records the maximum value between written/kicked
value and counter value to avoid repeated writing in the
Light Part in order to further reduce overestimation errors
when using the Frequency Read/Write Control technique.

4) Replacement Control (Heavy). We observe that, if the
Read value of the Light Part does not overflow and is less
than the least frequent item in the Heavy Part, replacement
is meaningless and wasteful. Thereafter, unlike the one-step
replacement decision in SOTA scheme, we propose the first
double-check replacement strategy.

C. Design of Light Part

1) Insertion of Light Part:
Rationale: Thanks to our Frequency Read/Write Control
technique (detailed later), an item ends up only in the
Heavy Part or in the Light Part, not both. When Frequency
Read/Write Control occurs, although the estimated value in
the Light Part is merged to the Heavy Part, there is still
a backup in the Light Part. It means that the estimated
value in the Light Part will be repeatedly accumulated if
item replacement and further Frequency Read/Write Control
occur several times for an item. For example, assuming
that the replacement path of item e is Heavy Part →
Light Part → Heavy Part → Light Part, when the
second time Heavy Part → Light Part (item replace-
ment) occurs, CH of item e includes CL queried in the last
Light Part→ Heavy Part (Frequency Read/Write Control)
procedure. Thus the second occurrence of Heavy Part →
Light Part will result in twice repeated accumulations for
CL. As a consequence, N occurrences of item replacements
will result in N times repeated accumulations, leading to large
overestimation in the Light Part.

To address this problem effectively, we propose a new
technique called Repeat Control. The goal is to reduce the
overestimation of OneSketch by optimizing the traditional
insertion strategy of Tower CU, which updates the count
value of each counter to min{max{A[i][gi(e)], CL+C}, 2δ−
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1}(i = 1, 2). Our optimized insertion strategy works as
follows: when inserting an item e with the count value C,
if C is equal to 1, we just increment the smallest counter(s)
that are not overflowed by 1 using CU [32] insertion strat-
egy. Otherwise, we update the count value of each counter
to min{max{A[i][gi(e)],max{CL, C}}, 2δ − 1}(i = 1, 2).
Using max{CL, C} instead of CL+C means that there is no
need to update if the count value C is less than CL, which
will lead to a more tightly overestimated value.

It should be noted that, if a δ-bit counter overflows after
the update, we will set its value to 2δ − 1 and regard it as an
overflowed counter. For an overflowed counter, we consider its
count value as +∞, which cannot be incremented. It means
that the maximum value of a δ-bit counter is 2δ − 2.

2) Query of Light Part:
The query procedure of the Light Part returns the minimum

value of the hashed counters A[s][gs(e)]. Note that the value
of an overflowed counter is +∞. If all counters in the Light
Part are overflowed, it will return 15 and the query value CL

will be regarded as an overflowed value.

D. Operations (Top-K Version)

1) Insertion of OneSketch :
The pseudo-code of the insertion procedure is shown in

Algorithm 1. Note that ReplaceforTopK(e) (Algorithm
2) is the top-k version of the item replacement procedure
shown in this section, while ReplaceforPerItem(e)
(Algorithm 3) is the per-item version in Section III-E.

Initially, all ID fields are set to null, and all count fields are
set to 0. Given an incoming item with ID e, it is first mapped
to the bucket B[h(e)] in the Heavy Part by computing the hash
function h(e) (1 ≤ h(e) ≤ n). According to the information
of B[h(e)], there are three cases as follows.

Case 1: e is in one cell of B[h(e)]. OneSketch increments
the count field CH in the cell by 1.

Case 2: e is not in B[h(e)], but there is at least one empty
cell in B[h(e)]. OneSketch inserts e into an arbitrary empty
cell, and sets the ID field to e and sets CH to 1.

Case 3: e is not in B[h(e)], and there is no empty cell.
OneSketch tries to replace the item e′ with the minimum count
value C ′

H in B[h(e)] with probability P = 1
C′

H+1 (equation
from [49]). There are two sub-cases:

① If the probability condition does not hold, e no longer
replaces e′, but is inserted into the Light Part.

② If the probability condition holds, e successfully replaces
e′. OneSketch sets the ID field to e, and evicts e′. Then, we
propose a novel technique for the challenge-successful item
e called Frequency Read/Write Control, to avoid possible
overestimation errors in the Light Part due to hash collisions
in the future and accurately estimate the item e. OneSketch
queries the count of e in the Light Part: it reports CL among
the hashed counters A[s][gs(e)], then sets the CH of e in the
Heavy Part to CL+1. OneSketch also inserts the evicted item
e′ and its C ′

H into the Light Part.
Example 1 (Fig. 1): (1) For incoming item e1, OneSketch

maps it to bucket B[h(e1)]. Since there is a cell storing e1,
OneSketch increments its count from 6 to 7. (2) For incoming

Algorithm 1: Insertion of OneSketch
Input: Incoming item e
if e is in one cell of B[h(e)] then

CH ++;
return;

if B[h(e)] has an empty cell then
Set the empty cell to < e, 1 >;
return;

if we use the top-k version then
ReplaceforTopK(e);

else
ReplaceforPerItem(e);

Algorithm 2: ReplaceforTopK(e)
if the probability P = 1

C′
H+1 does not hold then

Insert < e, 1 > into the Light Part;
else

ID ← e;
CH ← CL + 1;
Insert < e′, C ′

H > into the Light Part;

item e3, OneSketch maps it to bucket B[h(e3)]. Since e3
does not exist in B[h(e3)], but there is still an empty cell
in B[h(e3)], OneSketch sets the ID field of the empty cell to
e3, and sets the count field to 1. (3) For incoming item e7,
OneSketch maps it to bucket B[h(e7)]. e7 does not exist in
B[h(e7)], and there is no empty cell. Therefore, OneSketch
tries to replace the least frequent item e6 with e7 with
probability P = 1

4+1 = 0.2. We assume that the probability
condition holds, so e7 successfully replaces e6. OneSketch sets
the ID field to e7 and the count field as follows: OneSketch
maps e7 to the counters A[1][g1(e7)] and A[2][g2(e7)], and
reports the minimum value of 2 between them. Thus, the count
field is set to 2 + 1 = 3.

2) Query of OneSketch :
Since the item ends up only in the Heavy Part or Light

Part, the error introduced by the back-and-forth passing of
the counts in the two parts as in ES is completely avoided,
and the procedure of insertion and query are simplified. To
query an item e, OneSketch first checks the Heavy Part in
bucket B[h(e)]. If e matches a cell in B[h(e)], it reports the
corresponding count CH . If e matches no cell, it reports CL

among the hashed counters A[s][gs(e)] in the light part.

E. Operations (Per-Item Version)

Note that the operations in this section are only applicable
to per-item frequency estimation, and we only show the
description of Case 3 (sub-case ②), which is different from the
operations of top-k version in Section III-D1. The pseudo-code
of the item replacement procedure optimized in this section is
shown in Algorithm 3.

② If the probability condition holds, OneSketch first applies
the partial Frequency Read/Write Control technique to query
the count of e in the Light Part: it reports CL among the
hashed counters A[s][gs(e)]. Then, we propose another novel
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technique, called Replacement Control, to avoid meaningless
item replacement. Specifically, OneSketch checks the value of
CL: if CL is not overflowed and less than C ′

H , it is considered
that e has not successfully replaced e′, and the remaining
operations are the same as Case 3 (sub-case ①) in Section
III-D1; otherwise, e successfully replaces e′. OneSketch sets
the ID field to e, and evicts e′: OneSketch sets the CH of e
in the Heavy Part to max{CL, C

′
H} + 1. Further, OneSketch

inserts the evicted item e′ and its C ′
H into the Light Part.

Algorithm 3: ReplaceforPerItem(e)
if the probability P = 1

C′
H+1 does not hold then

Insert < e, 1 > into the Light Part;
else

if CL is not overflowed and less than C ′
H then

Insert < e, 1 > into the Light Part;
else

ID ← e;
CH ← max{CL, C

′
H}+ 1;

Insert < e′, C ′
H > into the Light Part;

Example 2: This example is an extended version of Ex-
ample 1-(3) based on the above operations, and we still
assume that the probability condition holds. (1) We assume:
A[1][g1(e7)] = 2, A[2][g2(e7)] = 6 and C ′

H = 4. Since
CL, equal to 2, has not overflowed and is less than C ′

H ,
e7 will still not replace e6 although the probability condition
holds. Instead, we insert e7 into the Light Part directly. (2) We
assume: A[1][g1(e7)] = 3, A[2][g2(e7)] = 15 and C ′

H = 4.
Since A[s][gs(e7)] both overflow and CL is equal to 15, e7
successfully replaces e6. Then, OneSketch sets the ID field to
e7 and the count field to 15 + 1 = 16. Further, OneSketch
inserts the evicted item e6 and its C ′

H into the Light Part.

IV. MATHEMATICAL ANALYSIS

In this section, we propose the mathematical analysis of
OneSketch. We limit our results to the top-k version. First,
we present a theorem about the query results of the Light Part
in Section IV-B. We derive the formula of the error bound in
Section IV-C.

A. Preliminary

Let S = {e1, e2, . . . , eT } be a data stream that contains
T items, where et ∈ {1, 2, . . . ,m} appears at time t. Let fi
be the frequency of item i in the entire data stream S and
f(i,t) =

∑t
k=1 1{ek=i} be the frequency of item i at time t,

we have fi = f(i,T ). At time t, define τ(i, t) ∈ [0, t] as the last
time item i was not stored in the Heavy Part, i.e., τ(i, t) + 1
was the last time when item i successfully replaced another
item and was inserted into the Heavy Part or τ(i, t) = t if item
i was not stored in the Heavy Part. Here we let f(i,0) = 0 and
if the item was always stored in the Heavy Part, τ(i, t) = 0.
Then, we let H(i,t) = f(i,t)−f(i,τ(i,t)) be the number of items
inserted into the Heavy Part with ID i between τ(i, t) and t
(note that H(i,t) ̸= 0 if and only if item i is stored in the Heavy
Part at time t), let L(i,t) = f(i,t) − H(i,t) be the number of

items inserted into the Light Part with ID i at time t and let
L̂(i,t) be the query value of the light part. In the top-k version
of OneSketch, we have CH = H(i,t) + L̂(i,τ(i,t)), L(i,t) =
L(i,τ(i,t)). Therefore, let Hi = H(i,T ), ti = τ(i, T ), the true
frequency of item i can be written as

fi = Hi + L(i,ti)

and the estimated frequency can be written as

f̂i = Hi + L̂(i,ti)

Note that according to the above analysis, the estimation error
of OneSketch only comes from the Light Part.

B. Properties of the Light Part

Based on Section III, the Light Part is Tower CU. Suppose
that the Light Part contains l arrays. The ith array has wi

counters and each counter consists of δi bits. We have 0 =
δ0 < δ1 < . . . < δl, w1 > w2 > . . . > wl. Based on the
above definition, we have the following theorem about the
query result of the Light Part:

Theorem IV.1. In the top-k version of OneSketch, for ∀i, t,
if L(i,t) < 2δl − 1, then no under-estimation error oc-
curs at time t and ∀k ∈ [1, l], L(i,t) ⩽ A[k][gk(i)] ⩽∑m

j=1 Igk(i)=gk(j)L(j,t), (L̂(i,t) = minlk=1A[k][gk(i)]). Here,
we denote

∑m
j=1 Igk(i)=gk(j)L(j,t) as C.

Proof. For an arbitrary item i, assume that for ∀t <
Ti, L(i,t) < 2δl − 1. We prove that the theorem holds at any
point in time t < Ti through induction. Given a mapped
counter A[k][gk(i)], with some other items mapped to this
counter. Initially, item i is not in the Light Part and all
the corresponding expressions in the inequality are 0, so the
theorem holds. At any point in time t, there are five cases as
follows.

Case 1: An item was inserted into the Heavy Part. we
can deduce that L(i,t),A[k][gk(i)], C stays the same and the
theorem holds.

Case 2: An item j ̸= i was inserted into the Light Part.
If gk(i) ̸= gk(j), then as for Case 1, the theorem holds.
Otherwise, C = C + 1 and A[k][gk(i)] increases at most by
1, therefore the theorem holds.

Case 3: An item i was inserted into the Light Part. We have
L(i,t) = L(i,t−1) + 1, C = C + 1, according to the properties
of the CU insertion, A[k][gk(i)] increases by 1 or L(i,t−1) ⩽
minlk=1A[k][gk(i)] < A[k][gk(i)], so L(i,t) ⩽ A[k][gk(i)] and
the theorem holds.

Case 4: An item j ̸= i was evicted from the Heavy Part
after et ̸= j arrives. If gk(j) ̸= gk(i), the theorem holds,
otherwise the insertion in the Light Part is equivalent to
max(C ′

H−CL, 0), therefore L(i,t) stays the same, A[k][gk(i)]
becomes max(C ′

H ,A[k][gk(i)]) and C = C + H(j,t). Since
C ′

H = L̂(j,τ(j,t)) + H(j,t), A[k][gk(i)] = A[k][gk(j)] ⩾
L̂(j,t−1) ⩾ L̂(j,τ(j,t)) we can deduce that C ′

H −A[k][gk(i)] =
L̂(j,τ(j,t)) − A[k][gk(i)] + H(j,t) ⩽ H(j,t), and A[k][gk(i)]
increases at most by H(j,t). Therefore the theorem holds.

Case 5: Item i was evicted from the Heavy Part after
et ̸= j arrives. This case is similar to Case 4 except
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L(i,t) = L(i,t−1) + H(i,t). Since no item i was inserted into
the Light Part between τ(i, t) and t, we have C + H(i,t) ⩾
max(C ′

H ,A[k][gk(i)]) ⩾ C ′
H = L̂(i,τ(i,t−1)) + H(i,t) ⩾

L(i,τ(i,t−1)) + H(i,t) = L(i,t−1) + H(i,t) = L(i,t), therefore
the theorem holds.

In summary, the theorem holds at any point of time t <
Ti.

Note that based on the CU version of TowerSketch and our
insertion strategy, the Light Part reports better result than the
Tower CU. Also, at any time t for any item i, if Tower CU
does not overflow and we only consider those items inserted
into the Light Part, the query result is better than the CM
version of TowerSketch with the same amount of counters in
each layer.

C. Error Bound

Theorem IV.2. In the top-k version of OneSketch, for ∀i,
given an arbitrary positive number ϵ, suppose u satisfies
2δu−1 − 1 ⩽ L(i,ti) < 2δu − 1(1 ⩽ u ⩽ l, and u = l + 1
if L(i,ti) ⩾ 2δl − 1), we have

Pr{f̂i ⩽ fi + ϵ} ⩾ 1−Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ϵ)wk

Proof. According to Section IV-A, we have

Pr{f̂i ⩽ fi + ϵ} = Pr{L̂(i,ti) ⩽ L(i,ti) + ϵ}

If L(i,ti) ⩾ 2δl − 1, then L̂(i,ti) = 2δl − 1 and the above
probability becomes 1, therefore the theorem holds. Next we
assume that the Light Part does not overflow and ϵ satisfies
L(i,ti) + ϵ ⩽ 2δl − 1

We define an indicator variable Ii,k,j as

Ii,k,j =

{
1, gk(i) = gk(j) ∧ i ̸= j

0, otherwise

As the l hash functions are independent from each other, we
have:

E(Ii,k,j) = Pr{gk(i) = gk(j)} =
1

wk

Based on the analysis in Section IV-B, at time ti, we define
another variable Xi,k =

∑m
j=1 L(j,ti) · Ii,k,j indicating an

upper bound of the over-estimation error caused by hash col-
lisions in counter A[k][gk(i)]. Here we only need to consider
k ⩾ u since L(i,ti) ⩾ 2δu−1 − 1, and we have

A[k][gk(i)] ⩽ L(i,ti) +Xi,k

E(Xi,k) = E(

m∑
j=1

L(j,ti) · Ii,k,j)

=

m∑
j=1

L(j,ti) · E(Ii,k,j) =

∑m
j=1 L(j,ti)

wk

Therefore, according to the Markov inequality:

Pr{L̂(i,ti) ⩾ L(i,ti) + ϵ}
=Pr{∀k ⩾ u,A[k][gk(i)] ⩾ L(i,ti) + ϵ}
=Πl

k=u Pr{A[k][gk(i)] ⩾ min(2δk − 1, L(i,ti) + ϵ)}
⩽Πl

k=u Pr{Xi,k ⩾ min(2δk − L(i,ti) − 1, ϵ)}

⩽Πl
k=u

E(Xi,k)

min(2δk − L(i,ti) − 1, ϵ)

⩽Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ϵ)wk

Therefore, we have

Pr{f̂i ⩽ fi + ϵ} ⩾ 1−Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ϵ)wk

Note that according to Section III, in the Light Part of OneS-
ketch, we have l = 2, δ1 = 2, δ2 = 4, w1 = 2 ∗ w,w2 = w.
Then, based on the above theorem we can conclude that with
high probability, the over-estimation error of frequent items is
less than ϵ (at most 15). Therefore, the relative error is very
small, since the true frequency of a frequent item is usually
large. For example, the frequency of the top 2000 items in
the IP Trace Dataset we used for experiments in Section V is
greater than 1000.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Implementation: We implement OneSketch and all other
algorithms in C++. The hash functions are implemented using
the 32-bit Bob Hash (obtained from the open-source website
[50]) with different initial seeds. We list these 12 SOTA
schemes and number them as follows: [S1] ES [14], [25];
[S2] MV [26], [43]; [S3] USS [38]; [S4] SS [37]; [S5] CM
[29]; [S6] CU [32]; [S7] AS [39]; [S8] SALSA [20]; [S9] LLF
[28]; [S10] FCMS [35]; [S11] C [33]; [S12] UM [42].
Algorithm Configuration: For OneSketch, the Heavy Part
is array of buckets. Each bucket includes 8 cells and each
cell has ID field and count field. The memory ratio of the
Heavy Part and the Light Part is 4:1 for the top-k version
and 1:4 for the per-item version. We use the per-item version
for per-item frequency estimation and top-k version for the
other four tasks. For ES, the heavy part is an array of buckets.
Each bucket includes a vote- field and 8 cells. Each cell has
ID field, count field and flag field. The light part is an array
of 8-bit counters. The memory ratio of the heavy part and
the light part is 1:3. For MV, we fix r = 4 and vary w
according to the specified memory size. For USS and SS, the
storage memory of each bucket is 100B and the number of
buckets is determined by the memory size. For CM/CU/C,
the number of array is 3. We use single CM/CU/C for per-
item frequency estimation, and CM/CU/C with a minheap
(CM/CU/C+heap) for the other four tasks which allocates
25% memory for sketch and 75% memory for minheap. The
minheap is responsible for maintaining frequent items. For
each item in the insertion process, if its frequency in CM/CU/C
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Fig. 2: Effects of the parameter d on frequency estimation for top-k frequent items, where k = 2000.
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Fig. 3: Effects of the parameter r on frequency estimation for top-k frequent items, where k = 2000.
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Fig. 4: Effects of the parameter d on frequency estimation for per-item.
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Fig. 5: Effects of the parameter r on frequency estimation for per-item.

is larger than the minimum value of minheap, this item will be
inserted into minheap. For AS, the filter includes 32 buckets
and the rest of memory is for CM. Each bucket has ID field,
new count field and old count field. For SALSA, we use the
CM version. We set d = 4 and pick s = 8 bit counters
as the default configuration. For LLF, we leverage CU and
allocate 75% memory for it. We give 4 bits for each register,
set the number of hash functions as 3 and threshold as 5.
For FCMS, we use single FCM-Sketch (FCMS) for per-item
frequency estimation, and FCM-Sketch with ES (FCMS+ES)
for the other four tasks. We use configurations recommended
by authors. For UM, we set the number of levels to 2.

Computation Platform: We conduct all the experiments on a
18-core CPU server (Intel i9-10980XE) with 128GB memory
and 24.75MB L3 cache.
Datasets:
1) IP Trace Dataset. The IP Trace Dataset is streams of
anonymized IP packets collected from high-speed monitors
by CAIDA in 2018 [51]. We use the trace with a monitoring
interval of 60s. Each item consists of a 5-tuple (13 bytes).
There are around 27M items and 1.3M distinct items in this
dataset.
2) MAWI Dataset. The MAWI Dataset is a set of anonymized
traffic traces collected from trans-Pacific backbone link by
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Fig. 6: F1 Score of frequency estimation for top-k frequent items.
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Fig. 7: AAE of frequency estimation for top-k frequent items.
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Fig. 8: ARE of frequency estimation for top-k frequent items.

MAWI Working Group [52]. Each item consists of a source
IP (4 bytes) and a destination IP (4 bytes). There are around
17M items and 4.6M distinct items in this dataset.
3) Network Dataset. This dataset contains users’ posting
history on the stack exchange website [53]. Each item (4 bytes)
represents the ID of each user. There are around 10M items
and 0.7M distinct items in this dataset.
4) Web Page Dataset: The Web page Dataset is built from a
collection of web HTML documents [54]. Each item (8 bytes)
represents the number of distinct terms in a web page. There
are around 32M items and 0.9M distinct items in this dataset.
Metrics:
1) Average Absolute Error: AAE = 1

|Ψ|
∑

ei∈Ψ |fi − f̂i|,
where fi is the real frequency of item ei, f̂i is its estimated
frequency, and Ψ is the total number of distinct items.

2) Average Relative Error: ARE = 1
|Ψ|

∑
ei∈Ψ

|fi−f̂i|
fi

,
where fi is the real frequency of item ei, f̂i is its estimated
frequency, and Ψ is the total number of distinct items.

3) F1 Score: 2∗RR∗PR
RR+PR , where Precision Rate (PR) refers to

the ratio of true positive instances to all reported instances, and
Recall Rate (RR) refers to the ratio of true positive instances
to all actual instances.
4) Throughput: Million of operations (insertions) per second
(Mops). We use throughput to measure the speed.

B. Experiments on Parameter Settings
In this section, we measure the effects of the key parameters

of OneSketch based on the IP Trace Dataset, namely, the
number of cells d per bucket in the Heavy Part, and the ratio
r of the memory size of the Heavy Part to the memory size
of the whole OneSketch. We use F1 Score (only for top-k
items2), AAE, ARE, and Throughput to evaluate the effects.

1) Frequency Estimation for Top-K Items:
Effect of d (Fig. 2(a)-2(d)): We find that the optimal value

for d is 8. In this experiment, we fix the ratio r to 0.8, and

2For the frequency estimation for per-item, it is equivalent to taking the k
of the output top-k items as all items, so the F1 Score is all 1.
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Fig. 9: AAE of frequency estimation for per-item.
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Fig. 10: ARE of frequency estimation for per-item.

vary d from 8 to 64. The results show that, especially when the
memory size is relatively small, the F1 Score and throughput
decrease as d increases, while AAE and ARE increase as d
increases. Thus, we set d = 8.

Effect of the ratio r (Fig. 3(a)-3(d)): We find that the
optimal value for r is from 0.8 to 0.9. In this experiment, we fix
d to 8, and vary r from 0.5 to 0.9. The results show that the F1
Score and throughput increase as the ratio r increases, while
AAE and ARE decrease as the ratio r increases. Therefore,
the optimal value of the ratio r is from 0.8 to 0.9, and we set
r = 0.8.

2) Frequency Estimation for Per-Item:
Effect of d (Fig. 4(a)-4(c)): We find that the optimal value

for d is 8. In this experiment, we fix the ratio r to 0.2, and
vary d from 8 to 64. The results show that the throughput
decrease as d increases, while AAE and ARE do not change
as d increases. For simplicity, we set d = 8.

Effect of the ratio r (Fig. 5(a)-5(c)): We find that the
optimal value for r is 0.2. In this experiment, we fix d to 8,
and vary r from 0.1 to 0.5. The results show that the ARE
and throughput increase as the ratio r increases, and AAE
does not change with increasing ratio r except when AAE is
maximum at r = 0.1. To trade off ARE and throughput, we set
r = 0.2. Since infrequent items in data streams predominate,
the optimal value of the ratio r is different for top-k items and
per-item frequency estimation.

C. Experiments on Five Measurement Tasks
In this section, we compare OneSketch with 12 SOTA

schemes on five important measurement tasks: frequency esti-

mation for top-k items (we default k = 2000) (Section V-C1),
frequency estimation for per-item (Section V-C2), heavy hitters
(Section V-C3), heavy changes in the time dimension (Section
V-C4), heavy changes in the spatial dimension (Section V-C5),
and throughput (Section V-C6). In summary, the results pre-
sented in Sections V-C1 to V-C5 are measured in terms of
accuracy, while those in Section V-C6 are measured in terms
of processing speed.

1) Frequency Estimation for Top-K Items:
F1 Score (Fig. 6(a)-6(d)): We find that, on the four datasets,

the F1 Score of OneSketch is 12.5%, 73.0%, 59.2%, 61.6%,
74.3%, 66.7%, 38.2%, 32.4%, 38.6%, 13.8%, 83.8%, and
92.0% higher than that of S1 to S12 on average under 200KB
of memory, respectively.

AAE (Fig. 7(a)-7(d)): We find that, on the four datasets,
the AAE of OneSketch is 13.1, 19.3, 1946.7, 2047.7, 2304.5,
28.3, 247.9, 353.4, 103.0, 16.8, 2210.5, and 14997.2 times
lower than that of S1 to S12 on average, respectively.

ARE (Fig. 8(a)-8(d)): We find that, on the four datasets,
the ARE of OneSketch is 10.9, 14.4, 1463.6, 1546.0, 769.3,
20.5, 131.5, 193.0, 56.0, 14.4, 632.5, and 5637.1 times lower
than that of S1 to S12 on average, respectively.

2) Frequency Estimation for Per-Item:
AAE (Fig. 9(a)-9(d)): We find that, on the four datasets,

the AAE of OneSketch is 2.9, 78.9, 338.9, 336.0, 18.7, 11.5,
16.3, 28.1, 10.0, 3.4, 12.4, and 1061.1 times lower than that
of S1 to S12 on average, respectively.

ARE (Fig. 10(a)-10(d)): we find that, on the four datasets,
the ARE of OneSketch is 5.3, 142.8, 101.5, 116.0, 33.2, 21.3,
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Fig. 11: F1 Score of heavy hitters.
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Fig. 12: AAE of heavy hitters.
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Fig. 13: ARE of heavy hitters.

33.3, 49.7, 17.4, 6.6, 24.8, and 1883.3 times lower than that
of S1 to S12 on average, respectively.

3) Heavy Hitters:
We set the threshold to be 2× 10−5 the total size of traffic.

As shown in Fig. 11-13, we find that the F1 Score, AAE,
and ARE of OneSketch are always better than those of the 12
SOTA schemes.

F1 Score (Fig. 11(a)-11(d)): We find that, on the four
datasets, the F1 Score of OneSketch is 36.0%, 90.2%, 65.4%,
67.2%, 75.0%, 71.8%, 86.1%, 88.4%, 82.3%, 28.4%, 79.6%,
and 84.1% higher than that of S1 to S12 on average under
200KB of memory, respectively.

AAE (Fig. 12(a)-12(d)): We find that, on the four datasets,
the AAE of OneSketch is 13.8, 114.8, 1194.0, 1202.2, 769.5,
86.6, 79.0, 116.5, 31.5, 16.7, 676.3, and 3024.3 times lower
than that of S1 to S12 on average, respectively.

ARE (Fig. 13(a)-13(d)): We find that, on the four datasets,
the ARE of OneSketch is 9.7, 144.2, 908.6, 863.3, 427.6, 89.1,
70.2, 103.6, 24.9, 11.6, 360.2, and 1386.2 times lower than that

of S1 to S12 on average, respectively.
4) Heavy Changes in the Time Dimension:
We set the threshold to be 1×10−4 of the total size of traffic.

The experimental results in Fig. 14 show that OneSketch
always achieves a better F1 Score than the 12 SOTA schemes.

F1 Score (Fig. 14(a)-14(d)): We find that, on the four
datasets, the F1 Score of OneSketch is 48.3%, 82.6%, 61.1%,
63.3%, 69.9%, 66.6%, 81.5%, 82.3%, 72.4%, 25.2%, 72.3%,
and 76.0% higher than that of S1 to S12 on average under
200KB of memory, respectively.

5) Heavy Changes in the Spatial Dimension:
In this section, we conduct experiments for the case where

the frequency decreases sharply between two adjacent physical
nodes as an example. The typical application is packet loss
detection in networks. For the first node, we set each of our
four datasets as the data streams which flow through it. For
the second node, we reconstruct our datasets in the following
steps: (1) We set the threshold to be 1×10−5 of the total size
of traffic and pick up frequent items from the original dataset.
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Fig. 14: F1 Score of heavy changes in the time dimension.
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Fig. 15: F1 Score of heavy changes in the spatial dimension.

(2) For any item in the original frequent items, we drop it
with 70% probability. Eventually, we set the threshold to be
1× 10−4 of the total size of traffic to detect heavy changes in
adjacent two nodes. The experimental results in Fig. 15 show
that OneSketch always achieves a better F1 Score than the 12
SOTA schemes.

F1 Score (Fig. 15(a)-15(d)): We find that, on the four
datasets, the F1 Score of OneSketch is 38.4%, 77.1%, 57.0%,
60.5%, 65.4%, 63.9%, 66.7%, 70.2%, 67.9%, 28.7%, 68.6%,
and 73.0% higher than that of S1 to S12 on average under
200KB of memory, respectively.

6) Throughput:
In this section, we show the throughput of 13 schemes

involving frequent-item frequency estimation tasks (Sections
V-C1, and V-C3 to V-C5) and per-item frequency estimation
tasks (Section V-C2). Because some of the schemes have two
versions for these two types of tasks (see Algorithm Config-
uration in Section V-A for details), while other schemes have
no distinction. The above results are shown as the average
throughput of 13 schemes in memory 200KB to 1000KB
stepping 200KB.

Throughput comparison of frequent-item versions (Fig.
16(a) - 16(d), orange part): We find that, on the four datasets,
the throughput of OneSketch is 0.80, 1.6, 5.5, 1.6, 2.9, 3.6,
2.0, 1.3, 2.4, 0.79, 2.9, and 4.2 times higher than that of
S1 to S12 on average, respectively. We can see that the
throughput of OneSketch is less than ES because Frequency
Read/Write Control technique will add extra operations when
item replacement occurs and the insert operation of the tailored
Tower CU is much more complex than the light part of ES.
What’s more, for CM/CU/C, they use minheap to maintain

top-k items so that their throughput decreases and is less than
that of OneSketch.

Throughput comparison of per-item versions (Fig. 16(a)
- 16(d), green part): We find that, on the four datasets,
the throughput of OneSketch is 0.61, 1.2, 4.2, 1.2, 0.72,
1.3, 1.6, 1.01, 1.9, 0.60, 0.69, and 3.2 times higher than
that of S1 to S12 on average, respectively. For OneSketch,
due to adding Replacement Control technique, the throughput
decreases sightly. For CM/CU/C, compared with the top-k
version, they implement without minheap so that throughput
increases and may larger than OneSketch.

VI. CONCLUSION

In this paper, we propose the OneSketch, which is generic
for five important tasks and more accurate than SOTA solu-
tions. One of the measurement tasks considered for OneSketch
has hardly been studied despite having interesting applications.
We call it heavy changes in the spatial dimension. The key
design philosophy of OneSketch is overestimation control,
around which we propose four techniques that embrace hash
collisions and minimise overestimation errors in terms of
extremely recurrent item replacements. Experimental results
show that OneSketch performs better in five measurement
tasks than ElasticSketch and the other 11 schemes.
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Fig. 16: Throughput of tasks involving frequent-item and per-
item frequency estimation for 13 schemes.
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[46] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Proc.
AofA, 2007, pp. 137–156.

[47] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algo-
rithmic engineering of a state of the art cardinality estimation algorithm,”
in Proc. EDBT, 2013, pp. 683–692.

[48] R. S. Boyer and J. S. Moore, “Mjrty—a fast majority vote algorithm,”
Automated Reasoning: Essays in Honor of Woody Bledsoe, pp. 105–117,
1991.

[49] R. Ben Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner, “Ran-
domized admission policy for efficient top-k, frequency, and volume
estimation,” IEEE/ACM Transactions on Networking, vol. 27, no. 4, pp.
1432–1445, 2019.

[50] “The source code of Bob Hash.” 1997. [Online]. Available: http://
burtleburtle.net/bob/hash/evahash.html

[51] “The CAIDA Anonymized Internet Traces.” 2018. [Online]. Available:
http://www.caida.org/data/overview/

[52] “MAWI Working Group Traffic Archive.” 2010. [Online]. Available:
http://mawi.wide.ad.jp/mawi/

[53] “The Network dataset Internet Traces,” 2014. [Online]. Available: http:
//snap.stanford.edu/data/

[54] “Real-life Transactional Dataset.” 2004. [Online]. Available: http:
//fimi.uantwerpen.be/data/

Zhuochen Fan received the Ph.D. degree in com-
puter science from Peking University in 2023, ad-
vised by Prof. Tong Yang. He is currently work-
ing as a Boya Post-Doctoral Fellow with the
School of Computer Science, Peking University.
His research interests include sketches, network
measurements, databases, and machine learning.
He published papers in IEEE/ACM TRANSAC-
TIONS ON NETWORKING, IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, ICDE,
RTSS, ICPP, ICNP, etc.

Ruixin Wang is a M.E. candidate in Software
Engineering from Peking University. His research
interests include network measurements, sketches
and machine learning.

Yalun Cai is an undergraduate student of Peking
University majoring in Computer Science. His re-
search interests include network measurements and
sketches.

Ruwen Zhang received the B.S. degree in mathe-
matics from Peking University in 2021. He is cur-
rently pursuing the master’s degree with Peking Uni-
versity, advised by Tong Yang. He has participated
several articles in network area. He is interested in
network and data stream processing.

Tong Yang (Member, IEEE) received the PhD de-
gree in computer science from Tsinghua University
in 2013. He visited the Institute of Computing Tech-
nology, Chinese Academy of Sciences (CAS). Now
he is an associate professor with School of Computer
Science, Peking University. His research interests in-
clude network measurements, sketches, IP lookups,
Bloom filters, and KV stores. He has served as a
TPC Member for several premier conferences such
as INFOCOM and ICNP. He is currently an Asso-
ciate Editor for Knowledge and Information Systems.

He published dozens of papers in IEEE/ACM TRANSACTIONS ON NET-
WORKING, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, VLDB Journal, SIGCOMM, SIGKDD, SIGMOD,
NSDI, USENIX ATC, ICDE, VLDB, INFOCOM, etc.

Yuhan Wu received his bachelor degree in the
Department of Electrical Engineering and Computer
Science at Peking University in 2021. Currently
he is a CS Ph.D. student in School of Computer
Science at Peking University, advised by Tong Yang.
His research interests lie in the fields of computer
network and database, including key-value stores,
network measurement, and sketches.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3278028

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on May 30,2023 at 08:15:31 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/pkufzc/OneSketch
http://burtleburtle.net/bob/hash/evahash.html
http://burtleburtle.net/bob/hash/evahash.html
http://www.caida.org/data/overview/
http://mawi.wide.ad.jp/mawi/
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/


15

Bin Cui (Senior Member, IEEE) is a professor and
Vice Dean in School of Computer Science at Peking
University. He obtained his Ph.D. from National
University of Singapore in 2004. His research inter-
ests include database system architectures, query and
index techniques, big data management and mining.
He is serving as Vice Chair of Technical Committee
on Database China Computer Federation (CCF) and
Trustee Board Member of VLDB Endowment. He
was awarded Microsoft Young Professorship award
(MSRA 2008), CCF Young Scientist award (2009),

and Second Prize of Natural Science Award of MOE China (2014), etc.

Steve Uhlig obtained a Ph.D. degree in Applied
Sciences from the University of Louvain, Belgium,
in 2004. From 2004 to 2006, he was a Post-Doctoral
Fellow of the Belgian National Fund for Scientific
Research (F.N.R.S.). From 2004 to 2006, he was
a visiting scientist at Intel Research Cambridge,
UK, and at the Applied Mathematics Department
of University of Adelaide, Australia. From 2006 to
2008, he was with Delft University of Technology,
the Netherlands. Prior to joining Queen Mary, he
was a Senior Research Scientist with Technische

Universität Berlin/Deutsche Telekom Laboratories, Berlin, Germany. Since
January 2012, he was the Professor of Networks and Head of the Networks
Research group at Queen Mary University of London. From 2012 to 2016,
he was a guest professor at the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China. He’s currently the Head of School of
Electronic Engineering and Computer Science, QMUL.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3278028

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on May 30,2023 at 08:15:31 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Background and Motivation
	Prior Art and Limitations
	Our Proposed Solution

	Related Work
	Per-Item Estimation
	Frequent-Item Estimation

	OneSketch Design
	The OneSketch Structure
	Design Philosophy and Techniques
	Design of Light Part
	Insertion of Light Part
	Query of Light Part

	Operations (Top-K Version)
	Insertion of OneSketch 
	Query of OneSketch 

	Operations (Per-Item Version)

	Mathematical Analysis
	Preliminary
	Properties of the Light Part
	Error Bound

	Experimental Results
	Experimental Setup
	Experiments on Parameter Settings
	Frequency Estimation for Top-K Items
	Frequency Estimation for Per-Item

	Experiments on Five Measurement Tasks
	Frequency Estimation for Top-K Items
	Frequency Estimation for Per-Item
	Heavy Hitters
	Heavy Changes in the Time Dimension
	Heavy Changes in the Spatial Dimension
	Throughput


	Conclusion
	References
	Biographies
	Zhuochen Fan
	Ruixin Wang
	Yalun Cai
	Ruwen Zhang
	Tong Yang
	Yuhan Wu
	Bin Cui
	Steve Uhlig


