Yuhan Wu*
Peking University & Peng Cheng

Windows

Zhuochen Fan*
Peking University, China

SHE: A Generic Framework for Data Stream Mining over Sliding

Qilong Shi*
Peking University, China
stallone@pku.edu.cn

Cheng Chen”
Peking University, China
chen.cheng@pku.edu.cn

Ariel Shtul
Redis Labs, Israel
ariel.shtul@redislabs.com

Laboratory, China fanzc@pku.edu.cn
yuhan.wu@pku.edu.cn
Yixin Zhang" Tong Yang'
Peking University, China Peking University & Peng Cheng
yxzh@stu.pku.edu.cn Laboratory, China
yangtongemail@gmail.com
Zheng Zhong" Junnan Li
Peking University, China National University of Defense
zheng.zhong@pku.edu.cn Technology, China
nudt_ljn@163.com
Yaofeng Tu
ZTE Corporation, China
tu.yaofeng@zte.com.cn
ABSTRACT

IData stream mining over a sliding window is a fundamental prob-
lem in many applications, such as financial data trackers, intrusion
detection and QoS. To meet the demand for high throughput of
high speed data streams, sliding window algorithms turn to hard-
ware platforms including FPGA/ASIC and programmable switches.
These hardware platforms have three constraints for algorithms
running on, which are 1) small memory usage 2) single stage mem-
ory access and 3) limited concurrent memory access. Algorithms
perfectly fit in with these constraints will enable a highest uti-
lization of these hardware platforms. However, no existing sliding
window algorithm is specifically designed for hardware platforms.
In this paper, we propose the Sliding Hardware Estimator (SHE),
which is a generic framework that extends existing fixed window
algorithms to sliding windows on hardware platforms. The key
idea of SHE is that, during insertions we approximately delete out-
dated information with little time and space overhead, while during
queries we design sophisticated techniques to minimize error. We

*School of Computer Science, and National Engineering Laboratory for Big Data
Analysis Technology and Application, Peking University, China.

TPCL Research Center of Networks and Communications, Peng Cheng Laboratory,
Shenzhen, China

1Co-primary authors: Yuhan Wu and Zhuochen Fan. Corresponding author: Yaofeng
Tu (tu.yaofeng@zte.com.cn) and Tong Yang (yangtongemail@gmail.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9733-9/22/08...$15.00
https://doi.org/10.1145/3545008.3545009

have fully implemented our SHE on FPGA, achieving a through-
put of 544 Mips. We apply SHE to four typical data stream mining
tasks. Experimental results show that, when compared with the
state-of-the-art which cannot be implemented in hardware, SHE
reduces the error by up to 100 times in membership queries. All
related source codes are released at Github.

ACM Reference Format:

Yuhan Wu, Zhuochen Fan, Qilong Shi, Yixin Zhang, Tong Yang, Cheng
Chen, Zheng Zhong, Junnan Li, Ariel Shtul, and Yaofeng Tu. 2022. SHE:
A Generic Framework for Data Stream Mining over Sliding Windows. In
51st International Conference on Parallel Processing (ICPP °22), August 29-
September 1, 2022, Bordeaux, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3545008.3545009

1 INTRODUCTION
1.1 Background and Motivations

Data stream measurement over sliding windows provides funda-
mental information for data management and analyses [37]. It col-
lects information of recent data arrivals (e.g., data updates over the
last second or the most recent 1,000,000 items) while expiring obso-
lete data, thus can more accurately describe the current status of
the data stream than the fixed window measurement?. Fundamen-
tal measurement tasks include cardinality® [15, 31], membership
[24, 25], frequency [17], similarity [16], etc. These tasks play im-
portant roles in various real world applications of sliding window
measurements, such as in financial data trackers [7, 23], intrusion
or anomaly detector [20, 29], improving Quality of Service (QoS)
[37], etc.

2The fixed window measurement divides the data stream into multiple fix-sized win-
dows, measures each pieces independently, and reports the measurement result only
at the end of each window.

3Cardinality refers to the number of different items in a data stream.


https://doi.org/10.1145/3545008.3545009
https://doi.org/10.1145/3545008.3545009

ICPP °22, August 29-September 1, 2022, Bordeaux, France

At present, as the amount of data grows tremendously, high-
speed data transmission has become a new challenge. In order to
meet the demand for high-speed data streams, a variety of ded-
icated hardware platforms have been designed, including FPGA
[5], high-speed commodity ASIC (Application Specific Integrated
Circuit), and programmable switches [11, 12]. For example, ASIC is
a microchip designed for a special application, such as a specific
transmission protocol or a hand-held computer. In order to achieve
high performance for specific tasks, algorithms are required to meet
the following constraints of these dedicated hardware platforms:
1) small memory usage which can be implemented in SRAM
(e.g., a Virtex FPGA has less than 30MB of memory available on-chip
[5]); 2) single stage memory access (two stages are not allowed
to visit the same memory region simultaneously [8]); 3) limited
concurrent memory access (Each stage can access one memory
address with limited size [8, 19, 32]). Because algorithms violating
any of the three constrains will either degrade performance or be
incompatible to hardware platforms, the design goal of this paper is
to propose a generic algorithm over sliding window measurement
while supporting the three constraints.

1.2 Our Solution

In this paper, we propose Sliding Hardware Estimator (SHE). It
is a generic framework which can adapt common fixed window
algorithms (e.g., Bloom filter [10], Bitmap [34], HyperLogLog [21],
Count-Min Sketch [22], MinHash [13]) to sliding window scenarios.
SHE not only meets the above three constraints of special hard-
ware platforms, but also can achieve higher measurement accuracy
compared with the state-of-the-art works.

In aspect of memory constraint, we propose the key idea of ap-
proximate cleaning. For sliding window measurements, the key
challenge lies in handling out-dated information. One typical strat-
egy is to accurately clean out-dated cells (i.e., counters/bits) by
additional data structures for precise timestamp records (usually
64-bits). However, the large memory overhead hinders implemen-
tation on dedicated hardware platforms. We, on the other hand,
use approximate cleaning, which abandons timestamps and allows
tolerable error in kicking out out-dated information. Specifically,
we use an additional process to circularly clean the cells in the
data structure, and thus information in any cell will be cleaned
within a cycle. The circular cleaning method also gives each cell an
age, denoting the age of information stored in this cell. We set the
cleaning cycle larger than the size of sliding window, so that there
will be both younger cells (age smaller than a window) and aged
cells (age larger than a window). With the help of this, we can pick
cells with proper age for specific measurement tasks.

In aspect of single stage memory access, we choose to extend
five fixed window algorithms (i.e. Bloom filter [10], Bitmap [34],
HyperLogLog [21], Count-Min Sketch [22], MinHash [13]). The
reason is that, in these fixed window algorithms, the processing of
certain memory region can be finished in one stage. Our SHE frame-
work preserved this fine characteristic and can be implemented on
dedicated hardware platforms such as FPGA.

In aspect of limited concurrent memory access, we implement
two techniques in SHE: group cleaning and on-demand cleaning.
Group cleaning means updating several continuous cells (e.g., 128

Yuhan Wu, Zhuochen Fan, Qilong Shi, et al.

bits) in the data structure, rather than updating 1 bit at a time. Be-
cause hardware devices fetch a continuous memory fragment at a
time (e.g., FPGA reads 1024 bits at one memory access), the cost
of updating a single bit is about the same for updating a group.
Therefore, group cleaning technique can profoundly reduce the
frequency of memory accesses, thus accelerating the hardware pro-
cession. However, both circular bit cleaning and group cleaning
require another process to perform circular memory access. There-
fore, we propose on-demand cleaning: we clean a group only when
a new item is mapped into this group and this group needs to be
cleaned. Otherwise, if a group does not undergo any insertion after
its original cleaning time, it remains unchanged.

Main Experimental Results: We implemented our SHE frame-
work on FPGA, a representative of dedicated hardware platforms.
Results of SHE-Bloom filter and SHE-Bitmap show that it requires
only limited resources while achieving a throughput of 544 Mips
(million items per second). Additionally, SHE framework also achieves
higher accuracy than the state-of-the-art: 1) For membership task,
our algorithm can achieve about 100 times smaller false positive
error rate compared to SWAMP. 2) For cardinality task, to achieve
the same relative error of 1%, our algorithm requires only 1% of
memory used by SWAMP. 3) For frequency task, our algorithm is 10
times more accurate than its competitors when memory resources
are scarce. 4) For similarity task, our algorithm is 10 times more
accurate than a straw-man solution.

2 RELATED WORK
2.1 Fundamental Measurement Tasks and
Algorithms

Here we demonstrate the four basic measurement tasks of the data
stream (i.e., membership query, frequency, cardinality and similarity
estimation) and their representative algorithms. These algorithms
are widely used when dealing with data steam measurement tasks,
because these tasks value more on processing speed and can accept
relatively low errors in query. These representative algorithms do
not give an accurate report of data stream queries, but gives an
estimated result instead.

Membership query asks whether an item is a member of the past
data stream. Bloom filter (BF) [10] is a representative algorithm for
membership query. It is an n — bit array. All n bits are initially set
as 0. In the insertion process, for each coming item x, it computes k
hash values of x, which are hq(x), ha(x), . . ., hx(x). It sets the bits
in these k locations to 1, no matter whether they were 0. Figure
1 gives an example of insertion with k = 4. As for query, it refers
to the same k locations. The BF reports true if all k bits are 1 and
reports false if there is at least one bit being 0.

insert: x

Figure 1: Insertion of Bloom filter with k = 4 hash functions.
Cardinality estimation asks the number of different items in the
past data stream. Bitmap and HyperLogLog are two representative
algorithms for cardinality estimation. Bitmap [34] is a n-bit vector.
All bits are initially set to 0. To insert an item x, it computes a hash




SHE: A Generic Framework for Data Stream Mining over Sliding Windows

value h(x), then sets the h(x)* h it to 1. As for query, it counts
the number of 0s in the vector, denoted as u. The bitmap gives
the maximum likelihood estimation of data stream cardinality as:
—-nln £ HyperLogLog [21] is an m-counter array. The counters
are denoted as C[0], C[1], . . ., C[m—1]. There are two hash functions,
H, and H. To insert an item x, we first use H.(x)%m to select a
counter, denoted as C[i], and count the number of the leading 0 bits
in H,(x), which is denoted as ¢;¢ro. When the insertion is over, we
compute the largest {;¢, value for each counter C[i] and denote it
as {; As for query, HyperLogLog gives the estimation of cardinality
asC = ck(Zj?:1 270)"Im, where c is a constant.

Frequency estimation asks the number of items with the same
item ID in the past data stream. Count-Min Sketch (CM Sketch)
[17] is a representative algorithm for frequency estimation. It is an
n-counter array. All counters are initially set to 0. Just like the BF,
for each incoming item x, it computes k hash values of x, which are
h1(x), ha(x),..., h(x). It adds 1 to these k counters. As for query, it
refers to the same k locations and reports the smallest value among
all k counters as the estimation of the frequency of item x.
Similarity estimation asks the similarity of items between two
data streams, regardless of their time order. We use Jaccard index to

= Iﬁgg} , where A and B
are two multisets. The Jaccard index equals to 0 when two sets are
disjoint and equals to 1 when they are identical. MinHash [13] is a
representative algorithm for similarity estimation. It uses n hash
functions. For each hash function, MinHash checks whether the
minimal hash values of all items in the two sets are equal. If there
are m minimal hash values that are equal, the Jaccard similarity of
the two sets is estimated at 7}

measure similarity. It is defined as J(A, B)

2.2 Prior Work for Measurements over Sliding
Windows
We divide the probabilistic statistical algorithms for sliding window
measurements into two categories: 1) specialized algorithms for
single task 2) generic algorithms supporting multiple tasks.
1) Specialized Algorithms
The Sliding HyperLogLog (SHLL) [14] is used for cardinality
estimation based on HyperLogLog. For each counter, it adopts a
monotone priority queue to maintain the possible extreme values
within the time range. The query step of SHLL is exactly the same
as HyperLogLog. The advantage is that the queues can perfectly
delete out-dated information. In certain cases, however, the queues
may be undesirably long, thus breaking memory limits.
The Counter Vector Sketch (CVS) [33] is used for cardinality
estimation based on Bitmap. It is an array of counters with maximal
value of ¢ and minimal value of 0. When inserting an item, it updates
all hashed counters to c. After that, it randomly choose several
counters and decrease them by 1. For query, CVS counts the number
of non-zero counters and estimate the cardinality by maximum
likelihood estimation same as Bitmap 2.1. CVS falls short in the
error induced by the randomness in picking counters to decrease.
The Timestamp-Vector algorithm (TSV) [26], is used for cardi-
nality estimation based on Bitmap. It uses an array of timestamps.
For insertion, it sets the hashed counters to the arriving time of
the item. For query, it counts the number of active timestamps
(i.e., timestamps within the latest sliding window) in the array and

ICPP °22, August 29-September 1, 2022, Bordeaux, France

estimate the cardinality by maximum likelihood estimation same
as Bitmap 2.1.

The Time-Out Bloom Filter (TOBF) [27] is used for membership
estimation based on Bloom filter. It uses an array of timestamps.
For insertion, it sets the hashed counters to the arriving time of the
item. For query, if there are any out-dated counters among several
hash positions, it reports the queried item does not appear in the
latest sliding window. Otherwise, it returns true.

The Timing Bloom filter (TBF) [36] is also used for member-
ship estimation based on Bloom filter. TBF is similar to TOBF but
uses a wraparound counter array to record arrival time instead of
recording timestamps directly. Every time an item is inserted, TBF
scans a piece of the array to remove the out-dated time records. The
disadvantage of the above three algorithms based on timestamp
array (TSV, TOBF, and TBF) is memory inefficiency. The timestamp
is large and could be stored for many times.

2) Generic Algorithms

SWAMP [6] is currently the best generic algorithm for sliding win-
dow measurements. In SWAMP, there is a cyclic queue, whose size
w equals to the size of the sliding window, to record the fingerprints
of the latest w items. In addition, there is a Tiny Table [18] used to
record the frequency of distinct items in the latest w items. Upon an
item arriving, the oldest fingerprint in the queue is replaced by the
fingerprint of the item, and the frequencies of the oldest fingerprint
and the newly arrived fingerprint are updated in the Tiny Table.
Using SWAMP, we can easily get the statistics of cardinality, mem-
bership and frequency in a sliding window. In practice, SWAMP
is versatile and accurate when the memory is sufficient. In order
to maintain the diversity of algorithm functions, SWAMP is not
memory efficient enough because the space complexity of SWAMP
is O(W) where W is the number of items in a sliding window. Be-
sides, SWAMP can not be implemented on hardware devices like P4
switches or FPGA. We explain the reason in the next part. Unlike
SWAMP which is an algorithm supporting multiple sliding window
measurement-tasks, we propose a generic framework to enhance
the existing algorithms designed for fixed windows so that they can
be applied to measurement tasks over sliding windows. In that case,
the algorithms enhanced by our framework can play their own
expertise in different tasks. Therefore, we can achieve significantly
better performance in each task.

2.3 Constraints for Hardware Implementations
Although the circuits on some advanced programmable ASICs can
be designed as complex as the microprocessor, the pipeline archi-
tecture is usually preferred in order to achieve high processing
speed with limited hardware resources. Therefore, when process-
ing data streams, a hardware-friendly algorithm is supposed to
be implemented as a series of pipeline stages with the following
constraints:

(1) Limited size of SRAM memory. Memory access is usually
the limitation of the processing speed on most hardware
platforms. SRAM provides faster memory access but it is
more expensive and therefore the memory size of SRAM is
typically small.



ICPP °22, August 29-September 1, 2022, Bordeaux, France

(2) Single stage memory access. A read-write hazard may be
caused when two stages access the same memory region si-
multaneously. Therefore, each memory region is supposed to
be accessed once when an item is going through the pipeline.

(3) Limited concurrent memory access. Each stage can ac-
cess one memory address with limited size. In the other word,
it is not suitable to access the entire memory block or a large
amount of memory in a single stage.

The constraints mentioned above are not met when using SWAMP
to process data streams. First, the Tiny Table used by SWAMP
records the fingerprints of all the arriving items, and thus the
memory usage is not affordable when dealing with a large slid-
ing window. Meanwhile, buckets, of which the Tiny Table consists,
are somehow tied together. When an item is inserted into a filled
bucket, the bucket will expand to its adjacent buckets, and the
domino effect may occur, which leads to an unlimited concurrent
memory access. Even if the domino effect is constrained, the opera-
tion of the Tiny Table is still too complex to be finished within one
memory access. There are three fields in a bucket, each of which is
probably modified during one single insertion. However, an extra
deletion occurs when the space of the bucket is fully used and it is
not allowed to expand to other buckets. Therefore, the changes of
the three distinct fields may affect each other and therefore they
can not be modified sequentially.

3 THE SHE FRAMEWORK

We propose our framework, Sliding Hardware Estimator (SHE) with
two versions, a basic software version for CPU platform (Sec. 3.2)
and the hardware version for FPGA and ASIC (Sec. 3.3). Our SHE
is a framework that can be combined with different algorithms. For
easier understanding, we will introduce SHE combined with the
Bloom filter (SHE-BF). Key notations are demonstrated in Table 1.

Table 1: Notations used in the rest of the paper.

Notation | Meaning
teur current time
N size of a sliding window
M number of cells in a data structure
Teycle time of a cleaning cycle
TcyclefN
a a constant parameter, & = ——g—
G number of groups
w number of cells in a group, w = %
dgia the time offset of the gid-th group,
Teycle gld
dgia = -5
m|gid] the time mark of the gid-th group

3.1 Preliminaries and Problem Statement

Sliding-window model: A data stream is an infinite sequence of
items. The sliding window includes the most recent items appearing
in a data stream. A sliding window with size N can be count-based
(contains the last N items) or time-based (contains the items in the

Yuhan Wu, Zhuochen Fan, Qilong Shi, et al.

last N time units). The items who leave the sliding window are out-
dated. In this paper, we only concern the fundamental measurement
tasks for the items within the sliding window.

insert: x

I Cell 1 I Cell 2 I Cell 3 I I y I I I Cellm |

Cell Type: bit/counter Update cell value y to F(x,y)

Algorithms C: Cell Type F: Update Function
it k

Bloom filer Bi Fx,y) =1

Bitmap Bit 1 Fix,y) =1

HyperLoglog  Counter 1 F(x,y) = Max{l,ero(x),y}
CM Sketch Counter k Fx,y)=y+1

MinHash Counter m F(x,y) = Min{hash(x),y}

Figure 2: Common Sketch Model for data stream.

Common Sketch Model (CSM) for data stream (Fig. 2): We
propose Common Sketch Model (CSM) by summarizing the five
algorithms for data stream in Sec 2.1. An algorithm of CSM can be
characterized by a triple (C, K, F). Each algorithm of CSM has an
array of m cells. The cell can be a bit or a counter, recorded by C.
When inserting an item x, the algorithm selects K cell(s) ( called
hashed/mapped cell(s)) by hash, and independently updates them
with the update function F. The function F sets the value in hashed
cell, y, to F(x,y). Our SHE can enhance any algorithm of CSM to
make them apply to the sliding window. For convenience, we call
the algorithms before enhancing original algorithms.

3.2 SHE Framework on Software Platforms

In this part, we introduce SHE framework for CPU platform (SHE, £+ ).
The SHE should complete two important tasks. One is cleaning
out-dated items with minimal additional structure (memory). The
other is extracting all useful information based on the limitation of
the data structure.

1) Structure and Operations

Structure: To avoid a larger additional structure than the original
algorithms. We use an additional cleaning process to delete the
out-dated items periodically without causing additional memory
consumption.

Cleaning: There is a cleaning process that cleans the cells in the
array from the left to the right one by one periodically. Specifically,
the cleaning process resets a cell to zero when scanning it. The
process starts from the leftmost cell in the array and ends at the
right most cell. The process spends Ty time from the left to
the right and it moves at a constant speed. T,y is larger than
the sliding window size N. When the process gets the rightmost
cell, it jumps back to the leftmost cell instantly and then repeat the
cleaning process.



SHE: A Generic Framework for Data Stream Mining over Sliding Windows

Insert: We insert an item by the same method as the fixed-window
algorithms. To insert an item x, we update all mapped cells. The
insertion is independent from the cleaning.

Query: Before introducing the detailed operations, we classify all
cells into three types, 1) perfect cells, 2) young cells, and 3) aged
cells. When querying at the current time t¢,,, a cell, whose latest
cleaning was at exactly N time units before ., is a perfect cell for
query, because it records the items within the sliding window, no
more and no less. The young cells are the cells who were cleaned
later than perfect cells. Many of them are cleaned recently and
furthermore they record the items in a smaller window. The aged
cells are the bits (cells) who were cleaned earlier than the perfect
bit and have not been cleaned again. They record more items and
furthermore they record the items in a larger window.

To achieve a better accuracy, we use two techniques to select as
many proper cells as possible for estimation. The first technique is
called age sensitive selecting. When dealing with one-sided error
algorithms, we only choose the perfect cells and aged cells because
the young cells loose part of information within the sliding window
and is potential to violate the one-sided error feature. However,
when the original algorithm is two-sided error, selecting the young
cells whose age is close to N lets the result less biased and therefore
increases the accuracy. The second technique is called on-demand
cleaning. Since most of young cells are ignored due to age sensi-
tive selecting, we should guarantee the number of aged cells for
measurement. To achieve this, the time of a cleaning cycle T¢ycfe,
is set to larger than the size of sliding windows N. Even though the
preserved out-dated information caused by on-demand cleaning
occasionally leads to an estimation error, the enlarged number of
cells for measurement improves the average performance.

Although we use different query strategies for different original
algorithms, the common process to determine the cells not to be
ignored can be concluded as follows. For a cell, we first compute
its age (i.e., the length of time since its latest cleaning) according to
the distance from this cell to the current position of the cleaning
process, and the scanning speed of the cleaning process. Then we
classify the cell into the above three types by its age. Finally, we
determine whether it should be included/ignored by both its age
and its type.

2) SHE Works on the Bloom filter

Structure and common operations: For the Bloom filter, each
bit in the bit array is a cell. We combine it with our SHE and the
new algorithm is denoted by SHE-BF. When inserting, we set all
hashed bits to 1. There is an additional cleaning process.

Query: When querying, all young cells (bits) should be ignored
and the following operations only include the perfect cells and the
aged cells. The method that we check the cells is the same as the
original Bloom filter: We check whether there is any 0 bit in the
included cells. If so, we answer the item is not in the sliding window.
Otherwise, we answer the item is in the sliding window.

As shown in Fig. 3, we give an example to show how the software
version of SHE works on the Bloom filter. Suppose we insert an
item x; at time ¢t = 10 and we query another item x; at time ¢t = 16.
Let the sliding window size N be 6. The clean process cleans one
bit (cell) per time unit (i.e., Teycze = M). Let the number of hash
functions in the Bloom filter be 4. Let h;() denotes the i-th hash

ICPP °22, August 29-September 1, 2022, Bordeaux, France

insert: x4

cleaning process

query: x;

cleaning process

Figure 3: An example of SHE,r; applied on the Bloom filter.

function. To insert x; at t = 10, we set the 4 bits (cells), hj(x1), to
1. The clean process cleans one bit (cell) in each time unit. After 6
time units, there are 6 bits (marked by dark blue) that are cleaned
inrecent N = 6 window. These bits (cells) are young cells. To query
another item xy at current time (¢t = 16), we ignore those young
cells and we only check whether the remaining mapped cells are all
1. We answer x; did not appear because the cell mapped by h3(.)
replies false.

3) Discussion

Error classification: There are three sources of errors, 1) hash
collision, 2) aged error incurred by aged cells and 3) young error
incurred by younger cells. The hash collision is that different items
were hashed to a same cell and some errors occur. The aged error
is the error incurred by some items out of the sliding window. The
aged error will introduce false positives or over estimation. The
young error is the error incurred by the missing items, which are
cleaned too early, in the sliding window. The young error will
introduce false negatives or lower estimation. In the example of
the Bloom filter, the hash collision is that a bit (cell) was hashed by
multiple items so that each item cannot distinguish whether itself
has been inserted through the bit. For Bloom filter, we ignore young
cells to eliminate the false negative. The key idea of the query of a
Bloom filter is to find a zero bit. The aged cells can be used, because
a zero aged bit indicates that the item has not been inserted in a
larger window, which can conclude that it has not been inserted in
the sliding window.

Error control: There are two factors that influence the error, the
speed of cleaning and the strategy of ignoring cells when querying.
The speed of cleaning influences the ratio of young cells in total.
The total number of young cells and aged cells is approximately a

constant M. We use « to denote the ratio of T;y¢fe — N to window

. T -N . .
size N, & = ~¥%%"" The number of aged cells is a times of

the number of young cells. When a becomes larger, the speed of
cleaning becomes slower. As the result, there are less young cells.
For SHE-BF, less young cells mean lower possibility of ignoring cells.
Simultaneously, the slower clean will lead to more hash collisions
because many out-dated items cannot be cleaned in time.



ICPP °22, August 29-September 1, 2022, Bordeaux, France

The strategy of ignoring cells depends on different original al-
gorithms. For SHE-BF, it has no false negative because it ignored
all young cells. The hash collision will not result in false negative.
Because the original Bloom filter has one-sided error (i.e., only reply
false positive answers), our SHE preserves this property. However,
ignoring all young cells is not the best choice for some original
algorithms with two-sided errors. If some false negative is accepted,
some young cells which are going to become perfect cells can also
be referred.

3.3 SHE Framework on Hardware Platforms

As the performance of additional cleaning process is limited on
hardware, we propose a new reset strategy to replace the process
completely. Firstly, we divide the cell array into groups and we reset
groups instead of cells. Next, we give each group a time offset to
simulate the operation of scanning and cleaning. Finally, we attach
our time mark to every group so that we can update each group by
lazy update strategy.

Structure: Based on the software version, we divide the cell array
into G groups equally, each of which has continuously w = %
(w > 1) cells. We attach one bit, called time mark, to every group.
Let m[gid] denotes the time markattached to the gid-th group. Let
dgiq be the time offset of the gid-th group, which is evenly spaced

_ ' Teyere-gid
in range [0, Teyere), i€ dgig = —| ayche gi 1

Algorithm 1: New operations in hardware version

Input: the index of a group gid, current time ¢4,

1 Procedure CheckGroup(gid, tcyr):

teur+d

2 CurMark « LT—gidJ mod 2;
cyc

le
3 if m[gid] # CurMark then
4 m[gid] « CurMark;

Reset all cells in group gid to 0.

¢ Function CheckMature(gid, tcyr):
7 CheckGroup(gid, teyur);
8 if (feyr + dgid mod Tcycle) > N then

9 ‘ return True;
10 else
11 L return False;

Cleaning and insertion: As the cleaning/insertion for each cells
is the same, we only describe the operation for one cell. Before
inserting into a cell, we additionally check whether the group that
the cell is in need to be cleaned. The pseudo-code(1) shows how we

check the group. We calculate the current time mark by mcy, =
tcur+d i . . .
LTI‘Z” mod 2, where t¢y, is the current time, dgid is the

time offset, and Ty, is the time of a cleaning cycle for every
group. Teycqe corresponds to the time of the cleaning cycle in the

software version of SHE. For each group, the current time mark
teur+dgi .
(iesmeur = [ 5—29| mod 2) flips every Teycle- Then we check

cycle

whether the current time mark is equal to the last time mark m[gid].
if not, we record the current time mark and clean all cells in the

group.

Yuhan Wu, Zhuochen Fan, Qilong Shi, et al.

?Virtual cleaning process

t=10 (record mark) m j j D
(current mark) m g,
_ insert: xq
\/
001011 | |
(record mark) m D D E D
t=13 (current mark) m g, 1

]

(record mark) m

O O 0O O

L (current mark) m g,

Figure 4: Cleaning and insertion of SHE in Bloom filter.

As shown in Fig. 4, we give an example to explain how the
hardware version of SHE works on the Bloom filter. We show the
details of the structure at time ¢ = 10. At time ¢t = 13, we insert an
item xj to the structure. For the bit hashed by h1, the current time
mark is the same as the recorded mark. We just set the bit to 1. For
hy, we find that the current time mark m¢y,, = 1 # m. So we update
m to 1 and clean all cells in the group. Then we set the bit to 1.
Query: We query each hashed cell one by one. When querying a
cell in the gid-th group whose time offset is dg;4 at time tcyr, we
check the group and compute its age (i.e., the length of time since
latest cleaning). If its age, fcur + dgjq mod T¢yce, is less than N,
itis a young cell If ey, +dgiq mod Teyepe = N, itis a perfect cell.
If teur +dgig mod Tpyere > N, it is an aged cell. The querying
strategy for a cell is the same as that can be used for query.

4 APPLICATIONS OF SHE

In this section, we apply SHE to five well-known data structures,
which are Bitmap, Count-Min Sketch, Bloom filter, HyperLogLog,
and MinHash. We show the insertion and the query procedure
of the five data structures, respectively. As mentioned above, N
denotes the sliding window size, T;y¢j denotes the time of the
cleaning cycle, and m[i] denotes the one-bit time mark of the i th
group.

4.1 Bitmap Using SHE (SHE-BM)

Data structure: In the bitmap, there is an M-bit array, a[0], a[1],
.., alm — 1], and a hash function H. The M bits are divided into G

groups, each of which has w = % bits. The i*" group has an time

offset d;.

Insert: To insert the p? h jtem with key x, we compute i = L#J

along with j = H(x)%M, and then update the j** bit which belongs

to the i*" group. We first compute the time mark my = [#J%Z.
cycle

If my = ml[i], we set the j*" bit of the ik group to 1. Otherwise, we
clear the it" group, set the jt" bit to 1, and let m[i] = my.

Query: To query the cardinality, we first compute the age of each
group. Then we collect those groups whose age is within the legal
range, i.e., [N, T¢ycre] where f is small than but close to 1, and
count the number of 0 bit in these groups, which is denoted as u.



SHE: A Generic Framework for Data Stream Mining over Sliding Windows

Suppose there are ¢ legal groups. Then, the estimated cardinality is

u
—mlnw.

4.2 Bloom filter Using SHE (SHE-BF)

Data structure: The Bloom filter has a similar data structure to
that of Bitmap, except that there are k hash functions, Hy, Hp, .. .,
Hy, instead of just one hash function.

Insert: The insert operation of the Bloom filter is very similar to
that of the Bitmap, except that we have to update k bits with the k
hash functions.

Query: To query whether an item x appears in the latest time
window, we first find out the bits hashed by this item. Then, we
ignore those hashed bits whose age is shorter than the sliding time
window size N. For the rest hashed bits, if there is at least one 0 bit,
we return that the item x does not appear in the last time window.
Otherwise, we return that x appears in the latest time window.

4.3 HyperLogLog Using SHE (SHE-HLL)
Data structure: In HyperLogLog, there are M counters, C[0], C[1],
.., C[m — 1], and two hash functions, H, and H. In HyperLogLog,
each group has only one counter, ie., w = 1.
Insert: To insert an item x at time t(x is the ¢! item), we first
use I = H¢(x)%M to select a counter, denoted as C[i], and count
the number of the leading 0 bits in H,(x), which is denoted as
{zero- Then, we compute the item time mark my. If my = m[i] and
{zero = Cli] where m[i] is the time mark of C[i], we set C[i] to
Crero + 1. I my # m[i], we set C[i] to €zero + 1 and set m[i] to my.
Query: To query the cardinality, we first find out those legal groups.
Suppose that there are k legal groups whose values are £; (1 < j <
k), respectively. The estimated cardinality is C= ck(Z;‘:1 2=4)71M,
where c is a special constant [21].

4.4 Count-Min Sketch Using SHE (SHE-CM)
Data structure: The Count-Min Sketch has a similar data structure
to that of the Bloom filter except that the cell of Count-Min Sketch
is not the bits but the counters. The Count-Min Sketch also needs
k hash functions, Hy, Ho, . . ., Hy

Insert: To insert an item x, we collect k counters mapped by the
k hash functions. First, we compute the time marks of the groups
containing these counters. If there are groups whose age is longer
than T, ycle, they will be cleaned to zero. Then each of the collected
counters is added one.

Query: The query operation of CM sketch is similar to the Bloom
filter. We first find out the counters hashed by this item and ig-
nore those hashed counters whose age is shorter than N. Then we
choose the minimum value among these counters as the estimated
frequency of item x. According to our experiments, the counters
whose age is shorter than but close to N is occasionally a good
estimation. However, one important feature of the original CM
sketch is that it never underestimates the frequency. To use the
counters whose age is not long enough obviously goes against this
feature.

4.5 MinHash Using SHE (SHE-MH)

Data structure: In MinHash, there are two counter arrays C; and
C,, each of which contains M counters, and there are two item
streams S; and Sy inserted into C; and Cy, respectively. There are

ICPP °22, August 29-September 1, 2022, Bordeaux, France

also M hash functions Hy, H, . .
one counter, i.e., w = 1.

Insert: To insert a item x of Sy at time ¢, we compute M hash values,
Hy(x),...,Hp—1(x). Then, we compute the item time mark m,. For
the ith (0 < i < m) hash value, if my = m[i] and H;(x) < Cy[i]
where m[i] is the time mark of Cy[i], we set C[i] to H;(x). If
my # mli], we set Cx[i] to Hj(x) and set m[i] to my.

Query: To compare S and Sz, we first ignore those illegal counters
in C; and Cy, and suppose that there are k legal counters left. Then,
we count the number of indexes i where C1[i] = Cy[i], which is
denoted as u. Thus, the similarity between S and S is %

., Hpr—1. And each group has only

5 MATHEMATICAL ANALYSIS

In this section, we analysis 1) the error caused by the on-demand
cleaning and 2) the error bounds in different tasks. For time-based
sliding window, we assume that the items arrive at a uniform speed.
So we only need to analyse SHE based on counter-based sliding
window.

5.1 Error Bound of On-demand Cleaning

In this part, we analyze the accuracy of on-demand cleaning. If
every group can be updated in one time cycle Ty ¢/, the on-demand
update of the group is zero error. We compute the probability that
a group fails to be updated, i.e., fails to be mapped by any item
in a sliding window. Let n be the number of groups that fail to
be updated and let C be the cardinality of a sliding window. We
assume that the cardinality of the stream in a cleaning cycle, whose
size is Teyere = (1+ @)N,is (1 + «)C. Thus, the number of cells
that are updated in the cleaning cycle is (1 + )CH, where H is the
number of inserted cell(s) in each insertion. The expectation of the

number of groups that fail to be updated in one sliding window is
= (1+a)CH
E=G-(1- é)(”“)CH —G-e 6 . Tomake E < £ where ¢ is

a small constant, we get the following inequality :

1
GInGx —— < ¢ (1)
(1+ a)CH
In practice, when we determine an ¢ and compute a G, we can get
the size of each group w = %

5.2 False Positive Rate of the Membership Task

In this section, we estimate the false positive rate of the Bloom filter
using our SHE (SHE-BF), and provide a equation to determine the
value of «. Similar to the Bloom filter, the SHE-BF has a one-side
error (i.e, only false positive error but no false negative error). Let
R = a + 1. The estimated cardinality of data streams in a cleaning
cycle of size Teyc1e = rN (r € [0, R)) is rC. For a group whose age
is rT, the expectation of the proportion of 0 bits in the group is
Py(r) = (1 - %)CH’/G. For fixed w,G,C.H, let Q = (1 — %)CH/G,
Then we get the false positive rate:

H
FPRg = |1- —flR Poydr) 1, Q%-9) !
®) = R - In(Q)R
Let g(R) = (QI;%Q). As H and Q are fixed and @ < 0, we can

minimize FPR(g) by minimizing g(R). To minimize g(R), we take



ICPP °22, August 29-September 1, 2022, Bordeaux, France

the derivative of g(R) with respect to R:
d

9 _ AR
g = Q% [RIn(Q)-1]+Q

From the above equation, we can see that 3_1% is monotonically

increasing when R € [0, +00). Next, we solve the equation g_fz =0,
and let Ry denote the solution of the equation. Then, the optimal «
is:

a=Ry-1 (2)

5.3 Error Bounds of cardinality estimation

In this section, we analyze the accuracy of SHE-BM (Bitmap using
SHE), SHE-HLL (HyperLogLog using SHE), and SHE-MH (MinHash
using SHE), and offer two error bounds with respect to « for the
three algorithms, respectively.

SHE-BM: For SHE-BM, we analyze its error bound. Then, we dis-
cuss the value of « for stable performance. Let F(x) denotes the
cardinality of data streams in the sliding window of size x (i.e., the
recent x items). Our goal is to estimate the cardinality when x = T,
i.e, C = F(T). Suppose there are m, bits whose ages are legal in the
SHE-BM, and u bits of value 0 among the m, bits.

We first analyze the over-estimation case. When the age of a
group, ie., x, is within [(1 — a)T, T), the largest possible valve of
F(x) is C. When the age of a group is within [T, (1+a)T), the largest
estimation of the cardinality is C + (x — T). Therefore, we get the

upper bound:
v 60 c, fl-a)T<x<T
xX) =
upper C+(x-T), ifT<x<0+a)T

Then, we can get a lower bound of u, i.e., the number of 0 bits
among the m, legal bits.

= aT 1 \C
A A Y Vs 2 S R
lower me ) aT

_C aT
>e "™ - |1-——
4me

Therefore, the upper bound of the estimated cardinality Cis:

B1E) = -me 1n B | |) < 4 5T
In the same way, we can get the lower bound of the estimated
cardinality C:

E[C]>C- “TT
Finally, the error bound of SHE-BM is:

T
<e=2 3)

E[C]-C
S c Tel

C

Therefore, we can adjust the error bound ¢ by setting a.

From Equations (3), we can see that the error bound of E [6] is
tighter when « is smaller. However, a cannot be too small, because
a small « can lead to a large variance for E[”%], and thus lead to a

large variance for E[C]. Specifically, suppose p is the true proportion
of 0 bits in legal bits (i.e., the bits in legal groups), then the variance

ofE[—”[] is:
Var (E [—u ]) =L
mye mye

Yuhan Wu, Zhuochen Fan, Qilong Shi, et al.

Therefore, my = l%r—“am =(2- ﬁ)m cannot be too small, and thus
a cannot be too small.
SHE-HLL: The analyzing procedure is similar to that of SHE-BM.
For a group, let pymax be the expectation of the position in which
the leftmost "1" is. Then we can get an upper bound of ppgx:
Blpmax] < 3 - ton (G + 55+ e (5)}
2 G 2G G

Then, the upper bound of the estimated cardinality Cis:
E[C]<C+ “TT

In the same way, we can get the lower bound, and finally we get
the following error bound:

aT aT
<e=—- |1+ —
= e [reo()

SHE-MH: Let F(x) be the similarity between two streams in the
sliding window of size x, and S = F(T) = 2—8 be the similarity
of the two streams when the sliding window size is T, where Sn
and Sy are the size of the intersection set and the union set of
the items in the two streams, respectively. Then, we compute the
error bound of E[§] The worst case of over-estimation is that F(x)
sharply decrease when x € [(1—a)T, T] and sharply increased when
x € [T, (1 + «)T). In this situation, we overestimate the similarity
and therefore the upper bound of the estimated similarity is:

aT s, aT S~+
o 1 fo S dx /0 58+§ dx
E[S] == +
2 aT aT

s,
Su

E[C]-C

- @

2aT

U

1 1
15 + 682 + O(es)] , where ¢ =

We can get the lower bound of E[S] in the same way, and the final

error bound of E[S] is:

)E[§]—s‘ < ie-%— éez 5)

According to Equation (5), the bias |E[S] — S| can be bounded by ¢,
where ¢ is a small constant related to . Therefore, we can have a
tight error bound by adjusting «.

6 IMPLEMENTATION ON FPGA

In this section, we show that the hardware version of SHE is able
to be implemented on the pipeline architecture and meets with the
constraints mentioned in Section 2.3.

We prove that the memory usage of SHE is small theoretically
and practically, and it is feasible to implement SHE in SRAM. In
Section 5, the error bound of the cardinality estimation is propor-
tional to the size of sliding window. Fig.9 shows that when memory
size is under 2MB, SHE-CM achieves a acceptable performance for
frequency estimation while the average relative error of SWAMP is
more than 10. To achieve a extremely high accuracy, the memory
usage of other SHE algorithms is no more than 128KB, which can
undoubtedly fit in SRAM.

SHE can be implemented on the pipeline architecture with con-
straints of single stage memory access and limited concurrent mem-
ory access. As shown in Section 3.3, the cleaning and insertion



SHE: A Generic Framework for Data Stream Mining over Sliding Windows

process of SHE-BM on the counter-based sliding window can be
concluded as four stages:

(1) On receiving a fixed-length key of an input item, we first get
the time from the item counter and update the item counter.

(2) A hash function is used to calculate the index of the mapped
bit.

(3) The new time marks are calculated for each of the groups
in parallel, and then we update the stored time mark of the
mapped group after comparing it with the new time mark.

(4) The last stage is to update the mapped bit and group accord-
ing to the comparison of the new time mark and the stored
time mark.

Each memory region, including the time marks and the mapped
bit, is accessed in one stage, and therefore meets with the constraints
of single stage memory access. Furthermore, the third constraints,
i.e., limited concurrent memory access, is sufficient since there is
only one memory address to be accessed with at most the size of a
group for each stage. The insertion process of SHE-BF and other
SHE algorithms is barely the same as SHE-BM.

We implement the SHE-BM and SHE-BF on the Virtex-7 family
of Xilinx FPGA (xc7vx690t) [5] and achieve the processing speed of
544 Mips(million items per second). In our FPGA implementation
of SHE-BM, we set the size of group to 64 bits and the size of bit
array to 1024 bits. Therefore, we use one 1024-bit register for the
bit array. The item counter is implemented as a 32-bit register. The
settings of SHE-BF are the same as SHE-BM but there are 8 identical
processes in the implementation of SHE-BF.

Table 2 shows the evaluation of the resource utilization of SHE-
BM and SHE-BF and Table 3 shows the performance. The clock
frequency of our implementation of SHE-BM achieves 544MHz,
which means that the processing speed is 544 Mips(million items
per second). Since the 8 identical insertion processes in SHE-BF can
work in parallel on FPGAs, the frequency with SHE-BF is barely the
same as with SHE-BM. The FPGA clock frequency with both SHE-
BM and SHE-BF achieves more than 200MHZ, which is a typical
FPGA clock frequency [28].

Table 2: Resource utilization of FPGA implementation.

LUT Register Block Memory
SHE-BM | 1653(0.38%) | 1509(0.17%) 0
SHE-BF | 12875(2.97%) | 11790(1.36%) 0

Table 3: The clock frequency of FPGA implementation.

Clock Frequency(MHz)
SHE-BM 544.07
SHE-BF 468.82

7 EXPERIMENTAL RESULTS

We test the hardware version of SHE on both CPU platform and
FPGA platform. The result on FPGA has been shown above. On
CPU platform, each of the five SHE-algorithms are compared to
prior works and the ideal goal, which is the performance that the
original algorithms without SHE achieve by treating each window
as a fixed window. All source codes are released at Github [1].

ICPP °22, August 29-September 1, 2022, Bordeaux, France

7.1 Experimental Setup

1. Datasets: The following datasets is used in our experiments.

o CAIDA: We use the public traffic dataset released by CAIDA[4]
to test all algorithms mentioned above except SHE-MH. Each
trace collected from the dataset contains approximately 30M
items and 600K distinct items (srcIP).

e Distinct Stream: We test SHE-BF with additional synthetic
dataset where the frequency of each distinct item is 1. This dataset
is used to simulate the worst case when applying SHE-BF.

e Relevant Stream: For SHE-MH, we conduct experiments on syn-
thetic datasets generated from the traces collected from IMC10
[9]. Each synthetic dataset has two traces, each of which contains
100K distinct items (2.5M items).

e Other Datasets: We test the processing speed of the SHE on the
CAIDA along with the two other datasets, Campus and Webpage.
Campus contains IP traces captured by the main gateway of our
campus. Webpage is obtained from the public dataset repository
Frequent Itemset Mining Dataset Repository [2] collected from a
number of web pages.

2. Evaluation metrics:

¢ FPR (False Positive Rate): 7>, where m denotes the number of
queried items which does not appear in the latest sliding window.
By default, We query items which do not present in recent (1+a)T
items to calculate the FPR. We use FPR to evaluate the accuracy
of the membership task.

e RE (Relative Error): If }f l , where f denotes the true value of

the measurement results and fdenotes the estimated measure-
ment result of f. We use RE to evaluate the accuracy of SHE-BM,
SHE-HLL and SHE-MH. For SHE-BM and SHE-HLL, f is the
number of distinct items within the sliding window, which is
called cardinality. For SHE-MH, f is the similarity[13, 35] of the
two data stream within the sliding window.

e ARE (Average Relative Error): % Zfi 1 % where N de-
notes the number of distinct items within the sliding window, f;
denotes the true frequency of the item i and ﬁ denotes the esti-
mated frequency of item i. We use ARE to evaluate the accuracy
of SHE-CM.

e Throughput: We use Mips (million insertions per second) to
evaluate the throughput of insertion for each algorithm.

3. Default Settings: We implement the hardware version of
SHE and the other algorithms in C++, and use BOBHash [3] as
the hash function. Before evaluating the performance, we feed
enough items until the performance is stable.

The default parameters are described as follows. The window size
N is set to 21 items. The number of cells in a group, denoted as w,
is 64 SHE-BF, SHE-BM and SHE-CM, and is 1 for SHE-HLL and SHE-
MH. «, defined as M varies among different applications,
which depends on the distinguishing features of these algorithms.
For SHE-BM, SHE-HLLand SHE-MH, it is set to 0.2 by default. For
SHE-CM, it is set to 1 and for SHE-BF, it is set to 3. More detailed
settings are listed below.

o SHE-BM: We compare SHE-BM with three algorithms: TSV [26],
CVS [33], and SWAMP [6]. For TSV, we use the 64-bit timestamp.
For CVS, we set the maximum value of its counter to 10. For



ICPP °22, August 29-September 1, 2022, Bordeaux, France

Yuhan Wu, Zhuochen Fan, Qilong Shi, et al.

-o-05KB -o- 0.25KB -o- 4MB —o-32KB -o-05KB
1KB —e- 2KB 1KB —e-8KB 5 2MB -e- 1MB 128 KB —@- 512KB 1KB -e-2KB
0.12 0.20 =15 @ 10°
= = w ko] =
o] o hd )-o-o-0o-0o00000 e}
= 0.09 = 0.15 g 2 =0.3
b b Z10 <L 10 v
£0.08 2010 3 710 202
® ® ®
$0.03 $0.05 20° B10%)0-00q 0o oo T0.1
14 14 & ] @
0.00 0.00 oo 108 0Qiie v
0 1 2 3 4 5 0 1 2 3 4 5 < 0 1 2 3 4 5 0 1 2 3 4 5 10 12 14 16 18 20
Time (Window) Time (Window) Time (Window) Time (Window) Time (Window)
(a) Cardinality (Bitmap) (b) Cardinality (HLL) (c) Frequency (d) Membership (e) Similarity
Figure 5: The stability of SHE as the window slides with time.
-o-64B o328 -e-1MB -e-2KB -e-1KB
015, % 128B -9 256B 06,2 128B-9-512B o100 2MB -e- 4MB 19,2 BKB -~ 32KB 032 2KB-e-4KB
I o
5 5 2075 & 5
5010 504 = 210° 502
2 2 3050 = 2
Boos Bo2 005 § 104 Bo1 0\,\./.\,\'
4 @ g . 7 o *— ¢
0.00 0.0 <0.00 10° 0.0
1 4 16 64 256 1 4 16 64 256 1 4 16 64 256 1 4 16 64 256 100 200 300 400 500
Window (*1024) Window (*4096) Window (*1024) Window (*256) Window (*512)
(a) Cardinality(Bitmap) (b) Cardinality(HLL) (c) Frequency (d) Membership (e) Similarity

Figure 6: The adaptation for different window size.
When the ‘Window(*k)’ is x, it means that the window size is x"k.

SWAMP, we use its DISTINCTMLE estimator. For SHE-BM, all

of the SHE is actually similar to the ideal goal. For example, SHE-
HLL and SHE-MH keep almost constant ARE because the original

the parameters are using the default settings.

SHE-HLL: We compare two algorithms: SHLL [14] and SHE-
HLL. For the SHLL, we store the 64-bit timestamp. For both of
algorithms, we calculate 32-bit hash values and store the numbers
of leading 0 of these hash values in 5-bit cells. We set the window
size to 22! because HyperLogLog is usually used to estimate
massive cardinality.

SHE-CM: We compare SHE-CM with two algorithm: ECM [30]
and SWAMP. For ECM, we set the number of hash function to 4.
For SHE-CM, we set the number of the hash function to 8.

algorithms are not sensitive to the size of data.

Performance vs. a (Fig. 7): We only show the performance of the
SHE-BF and SHE-BM, because the other three algorithms (SHE-
CM, SHE-HLL, and SHE-MH) are similar to SHE-BM. The optimal
a is computed according to Equation 2. As shown in Fig. 7a, the
SHE-BF using the optimal  performs well on the real dataset. For
SHE-BM and other SHE-algorithms, the SHE performs well when
a is from 0.2 to 0.4 as an empirical setting.
—0— g=1 —@— Optimal a

o=2 —&— a=16

—o— 0=0.1
0=0.2 —— 0=0.5

o SHE-BF: We compare SHE-BF with three algorithms: TBF [36], o 10° 0.100
TOBF [27], and SWAMP. For TBF, we set the size of each counter Sl R 5
to 18 bits and the number of hash functions to 8. For TOBF, we 0 10 \ ut.l 0.075
use the 64-bit timestamp. For SWAMP, we use its ISMEMBER =107 N 00,050
estimator. For SHE-BF, we fix the number of hash functions to 8. 10° ‘\'\,\‘\ _*g 0,025 ‘\‘\‘_._H
a is determined according to Equation 2, which is roughly 3. % o
o SHE-MH: We compare two algorithms: the straw-man MinHash L 10'40 30 60 %0 120 008 5 10 15 20
and SHE-MH. The straw-man MinHash is the modified MinHash ) ’ ’ ’
by adding a 64-bit timestamp for each pair of counters to indicate Memory (KB) Memory (KB)
if the counters need to be cleaned. The outputs of hash functions (@) SHE-I]?iF 7: Perf (b) SHE-BM
used in both algorithms are 24-bit integers. _ gure 7: Ferformance vs. . .
—o—o=1 —o— Optimal a
® 1 0=2 —0— o=3 © 06 —o—o=1 o=4
7.2 Impact of Parameters B B
1) Common Parameters: 2 01 g
Performance vs. time (Fig. 5): We find that the SHE is stable as 3 % 0.06
time goes by and the window slides. We test our algorithms every T 001 c
half window on the same stream and we test the algorithms using % %
three different sizes of memory. When given enough memory, the L 0-0011 2 3 4 5 L 0-0060 10 20 30

performance is stable especially for SHE-BF and SHE-CM.

Performance vs. window size (Fig. 6): We find that the SHE is
stable to the window size when other parameters are fixed. We test
our algorithms for three different sizes of memory. The performance

# of Hash Functions
(b) FPR vs. # of Hash Functions.

Item Age (Window)
(a) FPR vs. Item Age.

Figure 8: Parameters of SHE-BF.



SHE: A Generic Framework for Data Stream Mining over Sliding Windows

ICPP °22, August 29-September 1, 2022, Bordeaux, France

—e— SHE-BM SWAMF —e— SHE-HLL —o— SHE-CM SWAMF  —e— SHE-BF SWAMP —o— SHE-MH
—o— |deal o~ TSV —e— CVS —e— |deal —o— SHLL 5+|dea| ECM —e— |deal —o— TOBF TBF —e— |deal —o— Straw
N 0.09 _ 0.3 E 10 % 10° ¥ T e _ 0.6
o e o ox <]
50,06 502 21 2102 b o.4k\v/“
[} [} = [
2 2 2 g 2
80,03 0.1 01 a 10* ®0.2
2 2 % : g
89 o o Ko ht:.:%og
0.00 o, 0.0 To.01 i 10® 0.0
02 46 8 10 100 1 2 4 8 16 32 &£ 000510152025 0 128 256 384 512 1 2 3 4
Memory (KB) Memory (KB) Memory (MB) Memory (KB) Memory (KB)
(a) Cardinality(Bitmap) (b) Cardinality(HLL) (c) Frequency (d) Membership (e) Similarity

Figure 9: Accuracy comparison for five tasks.

[ 1deal 7 SHE-HLL [ SHLL [ idea /4 SHE-BM ] cVs

— 40 —
g 77
30
d £
g2 F
[=2] [«2]
g 10 @20
[S =

Webpage
(a) Processing speed compari- (b) Processing speed comparison
son for SHE-HLL on different for SHE-BM on different dataset.
dataset.

CAIDA

Webage

CA A us Campus

Figure 10: Processing speed comparison for two specific

tasks.
[_lidea ZZASHE
760
g
E ot
=]
g
920}
o
F o vz v
BM CM-sketch BF HLL MH

Figure 11: Processing speed comparison with the ideal goal.
2) Parameters of SHE-BF:

FPR vs. time age (Fig. 8a): The figure shows that the FPR becomes
stable when the item age is increasing. The item age is the time
spans from the item’s arrival to the current time. We test the SHE-
BF on Distinct Stream and repeated our experiment for 10, 000 times.
As the item age increases, the FPR decreases at a nearly exponential
speed until the item age is larger than the size of relaxed window.
FPR vs. number of hash functions (Fig. 8b): The optimal « de-
pends on the number of hash functions according to Equation 2.
We find that the optimal « for different number of hash functions
estimated by Equation 2 works well on Distinct Stream, which is
the worst case for Bloom filter as mentioned in Section 7.1.

7.3 Accuracy Performance

We compare the accuracy of SHE with both the state-of-the-art and
the ideal goal in the five tasks. The ideal goal for each measure-
ment task is the accuracy achieved if we treat the sliding window
task as a fixed window task. For example, we insert all items in the
sliding window to an empty Bloom filter [10], and calculate the
membership accuracy by it.

SHE-BM vs. Others (Fig. 9a): We find that the SHE-BM achieves a
much more stable and precise performance in a wide range of mem-
ory than the state-of-the-art. To achieve 0.01 ARE, the SHE-BM uses
1KB memory while SWAMP needs more than 100KB memory. Fur-
thermore, when the memory size is limited under 3KB, only the
SHE-BM make a good estimation while others are not.

SHE-HLL vs. Others (Fig. 9b): We find that the SHE-HLL is about
10 times more accurate than the SHLL when the memory size is
less than 16KB. The SHE-HLL achieves 0.02 ARE when the memory
size grows to more than 4KB, and it is quite close to the ideal goal.
SHE-CM vs. Others (Fig. 9¢): We find that the SHE-CM is often
10 times more accurate than the competitors. SWAMP only works
when the memory is sufficient while its accuracy is barely accept-
able when the memory is scarce.

SHE-BF vs. Others (Fig. 9d): We find that the SHE-BF is much
more accurate than other algorithms. Specifically, the FPR of the
SHE-BF is roughly 100 times lower than all of the other algorithms
when the memory size is under 256KB. Even when the memory is
more than 256KB, the SHE-BF is still better than SWAMP.
SHE-MH vs. Others (Fig. 9¢): The SHE-MH is about 10 times
more accurate than the straw-man MinHash with same memory
footprints. The performance of SHE-MH is almost the same with
the ideal goal when the memory size grows.

7.4 Throughput

As shown in Fig. 10, SHE is much faster than other sliding-window
algorithms on the three different datasets. We find that the pro-
cessing speeds of SHE-algorithms are comparable to those of the
original algorithms as shown in Fig. 11.

8 CONCLUSION

This paper proposes the SHE for high-speed data stream mining
over sliding windows. It is a generic framework which can ex-
tend common fixed window algorithms to sliding windows. SHE
is a hardware friendly algorithm because it meets the three ma-
jor constraints for dedicated hardware platforms: 1) limited SRAM
memory, 2) single stage memory access and 3) limited concurrent
memory access. SHE uses circular cleaning to handle out-dated
information at low memory cost and uses age-sensitive selection
to choose proper cells for query. Additionally, SHE proposes group
update and on-demand update to limit concurrent memory accesses.
We implemented SHE on FPGA, a representative of dedicated hard-
ware platform. We show case application of SHE to five well-known
fixed window algorithms, achieving up to 100 times lower error
compared with the state-of-the-art. All related source codes are
anomalously released at Github [1].

ACKNOWLEDGMENTS

We thank Peng Liu and Peiqing Chen for their helpful discussions.
We thank the reviewers for their constructive comments. This work
is supported by Key-Area Research and Development Program of
Guangdong Province 2020B0101390001, National Natural Science
Foundation of China (NSFC) (No. U20A20179, 61832001).



ICPP °22, August 29-September 1, 2022, Bordeaux, France

REFERENCES

(1]

[12]

[13]

[14

(15

[16]

[17

(18]

[19

[20

[
=

[22]

[23

[24]

[25]

™
&

[27

[28]

[29]

[30]

[n. d.]. The source codes of our and other related algorithms. https://github.com/
Sliding-Hardware-Estimator/SlidingHardwareEstimator. ([n. d.]).

2004. Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data.
(2004).

2008. Bob Jenkins’ hash function web page, paper published in Dr Dobb’s journal.
(2008). http://burtleburtle.net/bob/hash/doobs.html.

2020. The CAIDA Anonymized Internet Traces. (2020). http://www.caida.org/
data/overview/.

2020. Virtex 7 series FPGA white paper. https://www.xilinx.com/products/silicon-
devices/fpga/virtex-7.html. (2020).

Eran Assaf, Ran Ben Basat, Gil Einziger, and et al. 2018. Pay for a sliding bloom
filter and get counting, distinct elements, and entropy for free. In INFOCOM’ 18.
2204-2212.

Bryan Ball, Mark Flood, Hosagrahar Visvesvaraya Jagadish, and et al. 2014. A
flexible and extensible contract aggregation framework (caf) for financial data
stream analytics. In DSMM’ 14. 1-6.

Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and et al. 2018. Efficient Measurement
on Programmable Switches Using Probabilistic Recirculation. In ICNP’ 18. 313~
323.

Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In IMC’ 10. 267-280.

Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422-426.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99-110.

Andrei Z Broder. 1997. On the resemblance and containment of documents. In
Sequences '97. 21-29.

Yousra Chabchoub and Georges Hébrail. 2010. Sliding hyperloglog: Estimating
cardinality in a data stream over a sliding window. In ICDMW’ 10. 1297-1303.
Aiyou Chen, Li Erran Li, and Jin Cao. 2009. Tracking cardinality distributions in
network traffic. In INFOCOM’ 09. 819-827.

Ondrej Chum, James Philbin, Andrew Zisserman, and et al. 2008. Near Duplicate
Image Detection: min-Hash and tf-idf Weighting.. In BMVC’ 08. 812-815.
Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75.

Gil Einziger and Roy Friedman. 2015. Counting with TinyTable: Every bit counts!.
In 2015 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 77-78.

Cristian Estan and George Varghese. 2002. New directions in traffic measurement
and accounting. In Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications. 323-336.

Mustafa Amir Faisal, Zeyar Aung, John R Williams, and et al. 2012. Securing
advanced metering infrastructure using intrusion detection system with data
stream mining. In PAISI” 12. 96-111.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and et al. 2007. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. In DMTCS’ 07.
137-156.

Frédéric Giroire. 2009. Order statistics and estimating cardinalities of massive
data sets. Discrete Applied Mathematics 157, 2 (2009), 406-427.

Lajos Gergely Gyurko, Terry Lyons, Mark Kontkowski, and Jonathan Field. 2013.
Extracting information from the signature of a financial data stream. arXiv
preprint arXiv:1307.7244 (2013).

Fang Hao, Murali Kodialam, TV Lakshman, and Haoyu Song. 2009. Fast multiset
membership testing using combinatorial bloom filters. In IEEE INFOCOM 2009.
IEEE, 513-521.

Yu Hua, Bin Xiao, Bharadwaj Veeravalli, and Dan Feng. 2011. Locality-sensitive
Bloom filter for approximate membership query. IEEE Trans. Comput. 61, 6 (2011),
817-830.

Hyang-Ah Kim and David R O’Hallaron. 2003. Counting network flows in real
time. In GLOBECOM’ 03. 3888-3893.

Shijin Kong, Tao He, Xiaoxin Shao, and et al. 2006. Time-out bloom filter: A new
sampling method for recording more flows. In ICOIN’ 06. 590-599.

Bojie Li, Kun Tan, Layong Luo, and et al. 2016. Clicknp: Highly flexible and high
performance network processing with reconfigurable hardware. In SSIGCOMM
’16. 1-14.

Sang-Hyun Oh, Jin-Suk Kang, Yung-Cheol Byun, and et al. 2006. Anomaly
intrusion detection based on clustering a data stream. In ISC’ 06. 415-426.
Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. 2012.
Sketch-Based Querying of Distributed Sliding-Window Data Streams. VLDB

[31

[32

[33

[34

[35

[36

[37

]

]

]

]

Yuhan Wu, Zhuochen Fan, Qilong Shi, et al.

Endow. (2012).

Chen Qian, Hoilun Ngan, Yunhao Liu, and Lionel M Ni. 2011. Cardinality estima-
tion for large-scale RFID systems. IEEE transactions on parallel and distributed
systems 22,9 (2011), 1441-1454.

Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang,
Peter A Dinda, Ming-Yang Kao, and Gokhan Memik. 2007. Reversible sketches:
enabling monitoring and analysis over high-speed data streams. IEEE/ACM
Transactions on Networking 15, 5 (2007), 1059-1072.

Jingsong Shan, Jianxin Luo, Guigiang Ni, and et al. 2016. CVS: fast cardinality
estimation for large-scale data streams over sliding windows. Neurocomputing
194 (2016), 107-116

Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A
linear-time probabilistic counting algorithm for database applications. ACM
Transactions on Database Systems (TODS) 15, 2 (1990), 208-229.

Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. 2014. Similarity and locality based
indexing for high performance data deduplication. IEEE Trans. Comput. 64, 4
(2014), 1162-1176.

Linfeng Zhang and Yong Guan. 2008. Detecting click fraud in pay-per-click
streams of online advertising networks. In ICDCS’ 08. 77-84.

Yongpeng Zhang and Frank Mueller. 2011. GStream: A General-Purpose Data
Streaming Framework on GPU Clusters. In ICPP. 245-254.


https://github.com/Sliding-Hardware-Estimator/SlidingHardwareEstimator
https://github.com/Sliding-Hardware-Estimator/SlidingHardwareEstimator
http://fimi.ua.ac.be/data
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html

	Abstract
	1 Introduction
	1.1 Background and Motivations
	1.2 Our Solution

	2 Related Work
	2.1 Fundamental Measurement Tasks and Algorithms
	2.2 Prior Work for Measurements over Sliding Windows
	2.3 Constraints for Hardware Implementations

	3 The SHE Framework
	3.1 Preliminaries and Problem Statement
	3.2 SHE Framework on Software Platforms
	3.3 SHE Framework on Hardware Platforms

	4 Applications of SHE
	4.1 Bitmap Using SHE (SHE-BM)
	4.2 Bloom filter Using SHE (SHE-BF)
	4.3 HyperLogLog Using SHE (SHE-HLL)
	4.4 Count-Min Sketch Using SHE (SHE-CM)
	4.5 MinHash Using SHE (SHE-MH)

	5 Mathematical Analysis
	5.1 Error Bound of On-demand Cleaning
	5.2 False Positive Rate of the Membership Task
	5.3 Error Bounds of cardinality estimation

	6 Implementation on FPGA
	7 Experimental Results
	7.1 Experimental Setup
	7.2 Impact of Parameters
	7.3 Accuracy Performance
	7.4 Throughput

	8 Conclusion
	Acknowledgments
	References

