
HeavyGuardian: Separate and Guard Hot Items in Data Streams
Tong Yang

∗

Peking University

Junzhi Gong
∗

Peking University

Haowei Zhang
∗

Peking University

Lei Zou
∗

Peking University

Lei Shi
†

Chinese Academy of Sciences

Xiaoming Li
∗

Peking University

ABSTRACT
1
Data stream processing is a fundamental issue in many fields, such

as data mining, databases, network traffic measurement. There are

five typical tasks in data stream processing: frequency estimation,

heavy hitter detection, heavy change detection, frequency distri-

bution estimation, and entropy estimation. Different algorithms

are proposed for different tasks, but they seldom achieve high ac-

curacy and high speed at the same time. To address this issue, we

propose a novel data structure named HeavyGuardian. The key

idea is to intelligently separate and guard the information of hot

items while approximately record the frequencies of cold items.

We deploy HeavyGuardian on the above five typical tasks. Ex-

tensive experimental results show that HeavyGuardian achieves

both much higher accuracy and higher speed than the state-of-the-

art solutions for each of the five typical tasks. The source codes

of HeavyGuardian and other related algorithms are available at

GitHub [1].

CCS CONCEPTS
• Information systems→Data streams;Data structures;Data
mining;

KEYWORDS
Data stream processing, Data structure, Probabilistic and approxi-

mate data

ACM Reference Format:
Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming

Li. 2018. HeavyGuardian: Separate and Guard Hot Items in Data Streams.

In KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining, August 19–23, 2018, London, United Kingdom. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3219819.3219978

∗
Department of Computer Science, Peking University, China

†
SKLCS, Institute of Software, Chinese Academy of Sciences, China

1
Co-primary authors: Tong Yang and Junzhi Gong. Junzhi Gong and Haowei Zhang

finished this work under the guidance of their supervisor: Tong Yang. Corresponding

author: Lei Zou. This work is supported by National Basic Research Program of

China (973 Program, 2014CB340405), Primary Research & Development Plan of China

(2016YFB1000304), NSFC (61672061, 61622201 and 61532010), the National Key Research

and Development Program of China under grant 2018YFB1003504.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3219978

1 INTRODUCTION
1.1 Background and Motivation
Approximate stream processing has been a hot issue for years.

Given a data stream, each item could appear more than once. There

are five typical stream processing tasks: frequency estimation,

heavy hitter detection, heavy change detection, frequency distribu-

tion estimation, and entropy estimation. Frequency estimation is to

estimate the number of appearances of any item in a data stream.

Heavy hitter detection is to find those items whose frequencies are

larger than a predefined threshold. Heavy change detection is to find
those items whose frequencies change drastically in two adjacent

time windows. Frequency distribution estimation is to estimate the

number of distinct items whose frequencies are equal to any given

value. Entropy estimation is to estimate the entropy of a data stream

in real time or within fixed-size time windows.
2
The above stream

processing tasks and many other stream processing tasks, such as

Super-Spreader [2], DDoS victims [3, 4], top-k frequent items [5–7],

hierarchical heavy hitters [8–10] etc, care more about hot items. In

practice, most items are cold while only a few items are hot [11–20].
Accurately recording the information of massive cold items wastes

much memory, and could incur non-trivial error to the estimation

of hot items when memory is tight. To achieve efficiency and effec-

tiveness, one elegant solution is to use a compact data structure to
keep and guard the information (item ID and frequency) of hot items
and efficiently record the frequencies of cold items. The key challenge
is to judge whether the incoming item is hot or cold in real time. It

is difficult to quickly record the history information of items with

high accuracy in small memory.

Existing designs of the above data structure use the strategy

record-all-evict-code. The key idea of this strategy is to first record

frequencies of all items, and then evict cold items. Two notable

algorithms using this strategy are Space-Saving [7] and the Aug-

mented sketch [12]. Space-Saving [7] records each incoming item

in a data structure named Stream-Summary. Stream-Summary is

essentially an ordered list, achieving insertion, deletion, and finding

the coldest item in O(1) time. For each incoming item e , if e is in
Stream-Summary, then it increments the recorded frequency of e
by 1. Otherwise, it replaces the coldest item whose frequencies are

ˆfmin with e , and sets the frequency of e to ˆfmin + 1. In this way,

many hot items are stored in Stream-Summary and cold items are

expected to be evicted. However, there are two limitations: 1) it

cannot record frequencies of cold items; 2) many later-incoming

cold items are significantly over-estimated, and probably stay in

Stream-Summary. Therefore, to reduce such error, Space-Saving

usually needs to keepm items in Stream-Summary when requiring

to store k (m is much larger than k) hottest items.

2
Generally, these tasks are measured within fixed-size time windows.

https://doi.org/10.1145/3219819.3219978
https://doi.org/10.1145/3219819.3219978

The Augmented sketch [12] is a two-stage data structure: the

first stage is a small array which sequentially stores δ hot items,

and the second is a classic sketch (e.g., a CM sketch) which stores

all item frequencies. Late-incoming hot items are first inserted into

the second sketch, and then swapped to the first stage. Because

for each incoming item, it needs to check the δ hot items one by

one, the authors recommended storing only δ = 32 hot items at

the first stage to guarantee the processing speed. However, such a

strategy provides limited help for streaming tasks, as many tasks

often need to report thousands of or more hot items from millions

of distinct items. The processing speed of the Augmented sketch

is slow because the first stage is similar to a very small cache,

requiring frequent communications between the two stages.

In summary, existing algorithms using record-all-evict-cold have

two shortcomings: 1) They are not memory efficient: Space-Saving

needs plenty of additional memory to store those items that are

not hot but not evicted, and the second stage of Augmented sketch

needs to use plenty of large counters to store frequencies of all

items. 2) The information of hot items is not well recorded. The

recorded frequencies of hot items in Space-Saving are much larger

than the real frequencies; while the Augmented sketch can only

accurately store a very few hot items in the first stage.

1.2 Our Proposed Solution
In this paper, we propose a new data structure calledHeavyGuardian.

The strategy of HeavyGuardian is called separate-and-guard-hot.
It intelligently separates hot items from cold items, and keeps and

guards the information of hot items with large counters, while

using small counters to record the frequencies of cold items.

We simplify the stream processing problem as follows: given

a data stream, how to use a very few cells to accurately record

the hottest item with its frequency. We aim to use two cells to

store the two hottest items with their frequencies. The king (the

hottest item) lives in one cell, while the guardian (the second hottest

item) lives in the other cell. If the incoming item is a supporter, i.e.,
it is same as the king or the guardian, then it simply increases

the corresponding frequency. Otherwise, the incoming item is a

rebel, then it weakens the guardian: decreasing the frequency f
of the guardian with a biased probability. The probability decreases
exponentially as f increases linearly. If the guardian is “killed”, i.e.,
its frequency is decreased to 0, it will be deleted, and the incoming

item will become a new guardian. If the guardian gains more and

more supporters, it could become a king. Further, if we use multiple

cells, then each king will have multiple guardians, its frequency is

often recorded with no error. Our algorithm is based on the above

key idea, and uses several improvements: 1) split the data stream

into many small sub-streams, and elect a king and several guardians

for each sub-stream; 2) use small counters to store the frequencies

of rebels.

Table 1: Main experimental results.

Task Error rate
improvement

Speed
improvement

Frequency estimation ×1.72 ∼ 53.09 ×1.69 ∼ 13.30

Heavy hitter detection ×6.2 ∗ 104 ∼ 4.0 ∗ 106 ×1.419 ∼ 1.928

Heavy change detection ×137.38 ∼ 1448.35 ×1.419 ∼ 1.928

Entropy estimation ×3.69 ×1.91 ∼ 3.760

Main experimental results: We present main experimental re-

sults in Table 1. For the first three tasks, we compareHeavyGuardian

with the state-of-the-art, while for real-time entropy estimation, we

compare HeavyGuardian with the naive algorithm because there is

no existing algorithm. Take heavy hitter detection as an example.

HeavyGuardian achieves 6.24 ∗ 104 ∼ 4.02 ∗ 106 times smaller error

rate than the state-of-the-art – Space-Saving (See Figure 10(a)),

and can use only 0.005 bit for each distinct item (See Figure 10(a)).

Further, the speed of HeavyGuardian is up to 1.928 times higher

than that of Space-Saving (See Figure 11).

1.3 Main Contributions
(1) We propose a novel data structure, named HeavyGuardian,

which can intelligently separate and guard the information

of hot items and approximately record the frequencies of

cold items in a data stream.

(2) We derive the formula of the error bound of HeavyGuardian,

and the experimental results validate its correctness.

(3) We deploy HeavyGuardian on five typical tasks of data

stream processing. Extensive experimental results on real

and synthetic datasets show that HeavyGuardian achieves

both much higher accuracy and higher processing speed

than the state-of-the-art at the same time.

2 BACKGROUND
HeavyGuardian algorithm can support many data stream process-

ing tasks, including frequency estimation, heavy hitter detection,

heavy change detection, frequency distribution estimation, and

entropy estimation. In this section, we survey existing typical algo-

rithms for each of these tasks.

2.1 Frequency Estimation
Frequency estimation is to estimate the number of appearances of

any item in a data stream. Sketches can achieve memory efficiency

and fast speed at the cost of introducing small error, and therefore

gain wide acceptance recently [8–10, 12, 13, 21]. Typical sketches

include Count sketches [22], Count-min (CM) sketches [23], CU

sketches [15], Augmented sketch framework [12], Pyramid sketch

framework [13], and more [21, 24]. Count sketches, CM sketches,

and CU sketches use equal-sized counters to record frequencies,

while the size of counters needs to be large enough to accommodate

the largest frequency since hot items are often more important

than cold items. Moreover, as the number of cold items are much

larger than that of hot items [11–20], many counters store only a

small number, and thus the significant bits of these counters are

wasted. Augmented sketch framework uses a filter to accurately

store frequencies of only a few hot items (e.g., 32 hot items), thus

the improvement is limited. Pyramid sketch framework, the state-

of-the-art algorithm, can automatically enlarge the size of counters

according to the current frequency of the incoming item, and has

been proved to achieve much higher accuracy and higher speed

than all other algorithms. However, hot items require quite a few

memory accesses, and thus insertion speed of the Pyramid sketch in

the worst case is poor. Our goal is to achieve much higher accuracy

and faster speed both in average and in the worst case.

2.2 Heavy Hitter Detection
Heavy hitter detection is to find items whose frequencies are larger

than a predefined threshold. This is a critical task in data mining

[25], information retrieval [26], network measurement and manage-

ment [27], and more [28]. There are two kinds of algorithms: sketch

based algorithms and counter based algorithms. Sketch based al-

gorithms use a sketch (e.g., the CM sketch [23]) to approximately

record frequencies of all items, and use a min-heap to maintain the

k most frequent items. They require much memory usage to record

all item frequencies. Therefore, when the memory space is tight,

the accuracy decreases quickly. Counter-based algorithms include

Space-Saving [7], Frequent [29], and Lossy counting [30]. These

algorithms are similar to each other, and Space-Saving is the most

widely used one, and the details are presented in Section 1.1.

2.3 Heavy Change Detection
Given two adjacent time windows, heavy change detection is to

find those items whose frequencies differences are larger than a

predefined threshold. This is also an important task in many big

data scenarios, such as web search engines [31], anomalies detection

[32, 33], time series forecasting and outlier analysis [34], etc. There
are several well-known algorithms for heavy change detection.

Based on the classic CM sketch [23], the k-ary sketch [32] achieves

high accuracy for heavy change detection when memory space is

large, but needs to know all item IDs. To address this issue, the

reversible sketch [33] is based on the k-ary sketch, and can decode

the item ID at the cost of complexities.

2.4 Real-time Frequency Distribution &
Real-time Entropy

Frequency distribution estimation is important in database query

optimization [35], structural anomalies detection [36], and net-

work measurement and monitoring [37]. Notable algorithms for

frequency distribution estimation include MRAC [37], FlowRadar

[14], and more [38]. However, these algorithms cannot support

real-time frequency distribution. Real-time frequency distribution

estimation can support more powerful functions. For example, IP

service providers can infer the usage pattern of the network by the

estimated frequency distribution, which is important for adjusting

the strategies for their services. If the frequency distribution is

estimated in real time, then IP service providers can adjust their

strategies immediately, leading to better services for users.

Entropy refers to the uncertainty of a data stream. Formally,

entropy is defined as

∑
e
fe
N loд2

fe
N , where fe is the frequency of e

and N is the total number of items. Entropy estimation is important

in data mining [39, 40], data quality estimation [41, 42], network

measurement and monitoring [43]. For example, changes of entropy

indicate anomalous incidents in the stream, which can be used

for anomaly detection. The most notable algorithm is proposed

by Lall et al.[43], which uses sampling and simple mathematical

derivation to estimate the entropy. It achieves high accuracy, high

memory efficiency, and high processing speed at the same time.

FlowRadar [14] can also be used for entropy estimation, but the

performance is much poorer than the previous one. Unfortunately,

these algorithms cannot support real-time entropy estimation. Real-
time entropy estimation can support better performance in anomaly

detection, because in this way, IP service providers can deal with

the anomalous incidents in real time, providing better services for

users.

In summary, existing algorithms cannot estimate frequency dis-

tribution or entropy in real time. To support better performance, we

manage to quickly update frequency distribution and entropy for

each incoming item. To the best of our knowledge, this is the first
effort for real-time estimation of frequency distribution and entropy.

3 THE HEAVYGUARDIAN ALGORITHM
The key design of HeavyGuardian is to store hot items and cold

items differently: it keeps and guards frequencies of hot items pre-

cisely, and stores frequencies of cold items approximately. In this

section, we first present the basic data structure and algorithms of

HeavyGuardian, and then present an optimization technique.

3.1 HeavyGuardian Basics
Data structure: The data structure of the basic version of Heavy-

Guardian is a hash table, with each bucket storing multiple key-

value (KV) pairs and several small counters. As shown in Figure

1, a hash table A associated with a hash function h(.) consists of
w buckets A[1 · · ·w]. Each bucket has two parts: a heavy part
to precisely store frequencies of hot items, and a light part to

approximately store frequencies of cold items. For the heavy part

of each bucket, there are λh (λh > 0) cells, and each cell is used

to store one KV pair < ID, count >. The key is the item ID, while

the value is its estimated frequency (number of appearances) in the

data stream. We use A[i][j]h (1 ⩽ i ⩽ w, 1 ⩽ j ⩽ λh) to denote

the jth cell in the heavy part of the ith bucket, and use A[i][j]h .ID
and A[i][j]h .C to denote the ID field and the count field in the

cell A[i][j]h , respectively. Among all KV pairs within the heavy

part of one bucket, we call the hottest item (i.e., the item with the

largest frequency) the king, call other items guardians, and call

the guardian with the smallest frequency the weakest guardian.
For the light part of each bucket, there are λl (λl can be 0) counters

to store frequencies of cold items. We use A[i][j]l (1 ⩽ j ⩽ λl)

to denote the jth counter in the light part of the ith bucket. Since

counters in the light part are tailored for cold items, the counter size

can be very small (e.g., 4 bits), achieving high memory efficiency.

ID , count

e

ℎ(𝑒)

Heavy part Light partk g … g c c … c

k : King cell g : Guardian cell c : Counter

Figure 1: The data structure of HeavyGuardian.

Initialization: All fields in every bucket is set to 0.

Insertion: For each incoming item e , it first computes the hash

function h(e) (1 ⩽ h(e) ⩽ w) to map e to bucket A[h(e)]. We call

A[h(e)] the mapped bucket. Given an incoming item e , we first try
to insert e into the heavy part. If failed, then we insert it into the

light part.

1) Heavy part insertion: When inserting an item e into the heavy
part, there are three cases as follows.

Case 1: e is in one cell in the heavy part of A[h(e)] (being a king

or a guardian). HeavyGuardian just increments the corresponding

frequency (the count field) in the cell by 1.

Case 2: e is not in the heavy part of A[h(e)], and there are still

empty cells. It inserts e into an empty cell, i.e., sets the ID field to e
and sets the count field to 1.

Case 3: e is not in any cell in the heavy part of A[h(e)], and there
is no empty cell.We propose a novel technique named Exponential
Decay: it decays (decrements) the count field of theweakest guardian

by 1 with probability P = b−C , where b is a predefined constant

number (e.g., b = 1.08), and C is the value of the Count field of

the weakest guardian. After decay, if the count field becomes 0, it

replaces the ID field of the weakest guardian with e , and sets the

count field to 1; otherwise, it inserts e into the light part.

2) Light part insertion: To insert an item e to the light part, it

first computes another hash function h′(e), and then increments

counter A[h(e)][h′(e)]l in the light part of the bucket by 1.

Actually, we can still use h(.) instead of h′(.) in the light part,

because each item is expected to be stored in either the heavy

part or the light part, and thus h(.) and h′(.) do not need to be

independent. Therefore, only one hash computation is needed to
process each incoming item.
Query: To query an item e , first, it checks the heavy part in bucket

A[h(e)]. If e matches a cell in the bucket, it reports the corresponding

count field; if e matches no cell, it reports counter A[h(e)][h′(e)]l
in the light part.

𝑒1

ℎ(𝑒1)

𝑒4

ℎ(𝑒4)

𝑒7

ℎ(𝑒7)

𝑒2 , 3𝒆𝟏,13 4 2 𝒆𝟑,21 5 1 𝑒6 , 1𝒆𝟓,34 3 7

Heavy part Light part
𝐴 2 [2]ℎ

𝐴 2 [1]ℎ

𝐴 2 [1]𝑙

𝐴

Figure 2: Examples of insertion of HeavyGuardian.

Example: As shown in Figure 2, we setw = 3, λh = 2, λl = 2, and

b = 1.08. It means one bucket has 2 cells in the heavy part, and 2

counters in the light part. When e1 arrives, it is mapped to bucket

A[1], and e1 is the king in the hot part. Therefore, it increments

the corresponding count field (A[1][1]h .C) from 13 to 14. When e4
arrives, it is mapped to bucket A[2], and e4 is not in the heavy part

of the bucket but there is an empty cell (A[2][2]h). Therefore, it sets
the ID field of the empty cell (A[2][2]h .ID) to e4, and sets the count
field (A[2][2]h .C) to 1. When e7 arrives, it is mapped to bucket A[3].
e7 is not in the heavy part of the bucket, and there is no empty

cell. Therefore, it decays the count field of the weakest guardian

(A[3][2]h .C) with a probability 1.08−1 ≈ 0.926. If the count field is

decayed to 0, then it replaces e6 with e7, and sets the count field

to 1. Otherwise, e7 is inserted into the light part. Assume that e7 is
mapped to the counter A[3][2]l by computing h′(e7) = 2, and thus

A[3][2]l is incremented from 7 to 8.

Analysis: In the operation of exponential decay, whenC (the count

field of the weakest guardian) is small, P is close to 1 (e.g., 1.08−1 ≈
0.926, 1.08−2 ≈ 0.857), and thus cold items will be evicted from

the heavy part soon. When C is large, P is close to 0 (1.08−1000 ≈

3.77∗10−34), and thus not only hot items can hardly be evicted from

the heavy part, but also the stored frequencies of hot items can

hardly be decreased. As more andmore items arrive, the frequencies

of the king and guardians vary, and thus the king could become a

guardian and a guardian could also become the king. Obviously, hot

items seldom become the weakest guardian, and thus its frequency

is almost exactly correct. While for each incoming cold item, it will

be inserted into the light part in most cases; even if it accidentally

becomes the weakest guardian, it will soon be evicted by other new

incoming items with a high probability. In this way, the heavy part

of each bucket in HeavyGuardian seldom records cold items, but
records and guards the frequencies of hot items. With regards to the

processing speed, 1) processing one hot item only needs to check

cells sequentially in the heavy part, and this is fast because these

cells can fit into a cache line; 2) processing one cold item also is fast,

as it only needs one additional access of the light part. Therefore,

the time complexity of HeavyGuardian is O(1).

3.2 Optimization: Using Fingerprints
When the size of the item ID is large, we propose to use fingerprints

3

to replace IDs in HeavyGuardian, to further improve its memory

efficiency. In this way, the memory usage of HeavyGuardian is

independent to the size of item ID. Due to hash collisions, some

items could share the same fingerprint, and thus some cold items

can be treated as hot items, which can lead to lower accuracy.

However, as the probability of hash collisions is low, it introduces

little impact to the performance. Given a bucket, the probability

that a certain hot item suffers from fingerprint collisions is

Pr { f inдerprint collision} = 1 − (1 − 2
−l)

M
w (1)

where l is the fingerprint size (in bit),M is the number of distinct

items, andw is the width of HeavyGuardian. As shown in Table 2,

we setM = 1, 000, 000. When the fingerprint size is larger than 16,

the probability of fingerprint collisions is negligible.

Table 2: The probability of fingerprint collisions.

Probability w = 10000 w = 20000 w = 50000

l = 8 0.324 0.178 0.075

l = 16 1.52 × 10
−3

7.63 × 10
−4

3.05 × 10
−4

l = 32 2.33 × 10
−8

1.16 × 10
−8

4.66 × 10
−9

4 MATHEMATICAL ANALYSIS
In this section, we first prove there is no over-estimation error

for items recorded in the heavy part of HeavyGuardian, and then

derive the formula of the error bound.

4.1 Proof of no Over-estimation Error
Theorem 4.1. In the basic version of HeavyGuardian, given an

arbitrary item e , the estimated frequency of e recorded in the heavy
part ˆfe of HeavyGuardian is no larger than its real frequency fe .

Proof. We prove that the theorem holds at any point of time by

using mathematical induction. Given any item e , it is mapped to

one bucket, and there are some other items mapped to this bucket.

For those items that are not mapped to this bucket, they have no

impact on the estimated frequency of e , and thus we omit them.

Initially, e is not in the bucket, so the theorem holds. At any

point of time, for each incoming item x that mapped to this bucket,

there are four cases as follows.

3
The fingerprint of an item is a series of bits, and can be computed by a hash function.

Case 1: x , e and e is not in the mapped bucket. Then after inser-

tion, e is still not in the bucket, so the theorem holds.

Case 2: x , e but e is in the mapped bucket. Then the estimated

frequency of e is possibly decayed, and thus the estimated frequency

is still no larger than the real frequency of e . The theorem holds.

Case 3: x = e but e is not in the mapped bucket. After inserting e ,
if e is not recorded in the bucket, then clearly the theorem holds. If

e is recorded, then the estimated frequency is 1, which is no larger

than the real frequency of e , so the theorem holds.

Case 4: x = e and e is in the mapped bucket. Then both the esti-

mated frequency and the real frequency of e are incremented by 1,

and the theorem still holds.

In summary, the theorem holds at any point of time.

□

4.2 The Error Bound of the Heavy Part of
HeavyGuardian

Theorem 4.2. Given a streamS with items e1, e2, · · · , eM , it obeys
an arbitrary distribution. We assume that the heavy part of each
bucket stores the hottest λh items that mapped to that bucket. Let ei
be the ith hottest item, let fi be the real frequency of ei , and let ˆfi be
the estimated frequency of ei . Given a small positive number ϵ and a
hot item ei , we have

Pr { fi − ˆfi ⩾ ϵN } ⩽
1

2ϵN

[
fi −

√
f 2i −

4PweakE(V)

b − 1

]
(2)

where

Pweak = e−
i−1
w ×

[i−1w]λh−1

(λh − 1)!
(3)

and

E(V) =
1

w

M∑
j=i+1

fj (4)

Proof. According to the assumption, ei is a hot item, and it is in

the mapped bucket. For each incoming ei , its estimated frequency

ˆfi is incremented by 1. After inserting all items, the estimated

frequency of ei is

ˆfi = fi − Xi (5)

where Xi is the number of exponential decays that are successfully
applied to ei .

Exponential decays are applied to
ˆfi iff ei is theweakest guardian

and the incoming item is not in this bucket. In other words, there

are λh − 1 hotter items (items with a frequency larger than ei)
mapped to this bucket. Therefore, the probability that ei is the
weakest guardian is

Pweak =

(
i − 1

λh − 1

) (
1

w

)λh−1 (w − 1

w

)i−λh
(6)

Note that this probability obeys binomial distribution B(i − 1, 1w),

and it can be approximated by the Poisson distribution P(i−1w).

Therefore, we have

Pweak = e−
i−1
w ×

[i−1w]λh−1

(λh − 1)!
(7)

Let V be the number of items that perform exponential decays on

ei . The expectation of V is

E(V) =
1

w

M∑
j=i+1

fj (8)

Then we get

E(Xi) = Pweak ·
E(V)

E(ˆfi)

E(ˆfi)∑
j=1

b−j

= Pweak ·
E(V)

E(ˆfi)

b−1[1 − b−E(
ˆfi)]

1 − b−1

= Pweak ·
E(V)

E(ˆfi)(b − 1)

(9)

here we assume that the exponential decays occur randomly as

the estimated frequency of ei grows from 1 to fi , and b−fi → 0.

Therefore, we have

E(ˆfi) = fi − E(Xi)

= fi −
PweakE(V)

E(ˆfi)(b − 1)

(10)

then we solve this equation and get E(ˆfi)

E(ˆfi) = fi −
PweakE(V)

E(ˆfi)(b − 1)

E(ˆfi)
2 − fiE(ˆfi) +

PweakE(V)

b − 1

= 0

E(ˆfi) =
fi +

√
f 2i −

4PweakE(V)

b−1

2

(11)

and based on Markov inequality, we have

Pr { fi − ˆfi ⩾ ϵN } ⩾
E(fi − ˆfi)

ϵN

=

fi −
fi +

√
f 2i −

4PweakE(V)

b−1

2

 ·
1

ϵN

=
1

2ϵN

[
fi −

√
f 2i −

4PweakE(V)

b − 1

] (12)

Therefore, the theorem holds. □

10 20 30 40 50
Memory size (KB)

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
bo

un
d

Real value
Theoretic bound

(a) ϵ = 2
−18

10 20 30 40 50
Memory size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
bo

un
d

Real value
Theoretic bound

(b) ϵ = 2
−19

Figure 3: Theoretical error bound and real value.

To validate the error bound derived in Theorem 4.2, we conduct

experiments on CAIDA datasets. Here we set λh = 2, b = 1.08,

ϵ = 2
−18

and 2
−19

, N = 3.2 × 10
7
, and M = 10

6
. We vary the

memory size from 10KB to 50KB, andw is computed based on the

memory size. As shown in Figure 3(a) and Figure 3(b), the theoretical

error bound is always larger than the experimental values, which

confirms the correctness of our derived error bound.

5 HEAVYGUARDIAN DEPLOYMENT
The HeavyGuardian algorithm can support various kinds of data

stream processing tasks. In this section, we present how to deploy

HeavyGuardian on five typical tasks mentioned in Section 2.

5.1 Frequency Estimation
In each bucket of HeavyGuardian, the heavy part records frequen-

cies of hot items, and the light part records frequencies of other

items. Therefore, HeavyGuardian supports frequency estimation

for any item. HeavyGuardian can intelligently record and guard fre-

quencies of hot items in the heavy part with large counters, and use

small counters to record frequencies of cold items in the light part.

Therefore, when the memory space is tight, HeavyGuardian can

still achieve high accuracy for frequency estimation.

5.2 Heavy Hitter Detection & Heavy Change
Detection

The key design of our algorithm is to use HeavyGuardian to main-

tain frequencies of only hot items in the heavy part of each bucket,

and manage to record the item ID of only hot items in an auxiliary
list. Because heavy hitter detection and heavy change detection

focus on only hot items, we do not need the light parts which store

frequencies of cold items. Therefore, we simply set λl = 0.

5.2.1 Detecting Heavy Hitters. Insertion: For each incoming

item e , it first inserts e into HeavyGuardian. It then gets the esti-

mated frequency of e: ˆfe , and checks whether
ˆfe is equal to the

heavy hitter threshold T . If
ˆfe = T , it inserts e into the list B.

Note that the condition is
ˆfe = T rather than

ˆfe > T . The

reason is as follows. HeavyGuardian stores the fingerprints and

frequencies of hot items, and the frequency of each heavy hitter

increases one by one when not considering fingerprint collisions.

Therefore, in this way, we store the IDs of heavy hitters in the

auxiliary list B only once. In the worst case, when a cold item and

a heavy hitter have the same fingerprint and they are mapped

into one bucket, only if the cold item arrives when the recorded

frequency is just T − 1, the cold item ID will be recorded. Such

situation happens with a very small probability. The list B only

stores the IDs of heavy hitters, and thus the memory usage is small,

and in addition, its memory can be dynamically allocated.

Query: To report all heavy hitters, it traverses the list B. For each

item ID e , it gets the estimated frequency
ˆfe from HeavyGuardian.

If
ˆfe is larger than or equal to T , it reports e as a heavy hitter.

5.2.2 Detecting Heavy Changes. The algorithm for heavy change

detection is similar to that for heavy hitter detection. For two

adjacent time windows in a data stream, we deploy one Heavy-

Guardian to each time window. We set the heavy hitter threshold

exactly as the heavy change threshold, and we can then get heavy

hitters in each time window. In such a setting of thresholds, heavy

changes must be heavy hitters in at least one time window. After

getting heavy hitters for each time window, we compute the differ-

ence of frequencies for each heavy hitter, and if the difference is

larger than or equal to the heavy change threshold, we report it as

a heavy change.

5.3 Real-time Frequency Distribution &
Real-time Entropy

The key design of our proposed algorithm is to useHeavyGuardian to

maintain frequencies of all items, and use an auxiliary array of coun-

ters to record the distribution of frequencies. We use an auxiliary

array Dist of counters to maintain the frequency distribution. Dist

has y counters, and the ith counter records the number of items

whose frequencies are i . For each incoming item e , we first insert

e into HeavyGuardian, and get the estimated frequency
ˆfe . Then

we increment the
ˆf th
e counter by 1, and decrement the (ˆfe − 1)th

counter by 1 if
ˆfe > 1. In this way, we can estimate the frequency dis-

tribution in real time. Further, by computing

∑y
i=1 Dist[y]·

y
N loд2

y
N ,

we can also get the estimated entropy in real time.

As mentioned in Section 2.4, all existing algorithms cannot sup-

port real-time frequency distribution estimation and entropy esti-

mation. In contrast, by simply adding an auxiliary array, Heavy-

Guardian is able to maintain the real-time frequency distribution

and entropy. Further, as HeavyGuardian achieves high accuracy,

and the recorded frequencies of hot items increase one by one, our

proposed algorithm achieves achieve high accuracy for real-time

frequency distribution and entropy.

6 EXPERIMENTAL RESULTS
6.1 Experiment Setup
Dataset:
1) CAIDA: This dataset is from CAIDA Anonymized Internet Trace
2016 [44], consisting of IP packets. Each item is identified by the

source IP address and the destination IP address. The dataset con-

tains 10M items, with around 4.2M distinct items.

2)Web page: This dataset is built from a spidered collection of web

HTML documents [45]. This dataset contains 10M items, belonging

to around 0.4M distinct items.

We also conduct experiments on synthetic datasets with different

skewness values. Due to space limitation, we present results of this

part of experiments in the technical report [1].

Implementation: HeavyGuardian and other related algorithms

are implemented in C++.We tried several different hash functions in

our experiments, and found that the performance keeps unchanged.

Here we use the Bob hash that literature [46] recommends. All the

programs are run on a server with dual 6-core CPUs (24 threads,

Intel Xeon CPU E5-2620 @2 GHz) and 62 GB total system memory.

The cache size is typically several megabytes. To preserve cache

memory to other important tasks, we keep the memory size in our

experiment under 1000KB.

6.2 Metrics
Precision: Precision measures the ratio of number of correctly

reported answers to number of reported answers. It is defined as

|Ω∩Ψ |

|Ω |
, where Ω is the set of answers reported by algorithms, and

Ψ is the set of correct answers.

Recall: Recall measures the ratio of number of correctly reported

answers to number of correct answers. It is defined as
|Ω∩Ψ |

|Ψ |
.

Average Relative Error (ARE): ARE measures the accuracy of

the estimated frequency. It is defined as
1

M
∑
ej ∈Ω

| ˆfj−fj |
fj

, whereM

1.0 1.1 1.2 1.3 1.4 1.5 1.6
b

7.50

7.75

8.00

8.25

8.50

A
A

E

(a) Experiments on b

5 10 15 20 25 30
λh

10

20

30

A
A

E

(b) Experiments on λh

5 10 15 20 25 30
l

0

500

1000

1500

A
A

E

(c) Experiments on l

Figure 4: Experiments on system parameters.

200 400 600 800 1000
Memory size (KB)

0

200

400

A
A

E

HeavyGuardian
CM sketch
P cu sketch
ASketch

(a) CAIDA

200 400 600 800 1000
Memory size (KB)

0

25

50

75

100

A
A

E

HeavyGuardian
CM sketch
P cu sketch
ASketch

(b) Web page

Figure 5: AAE vs. memory size (frequency estimation).

200 400 600 800 1000
Memory size (KB)

0

100

200

300

400

A
R

E

HeavyGuardian
CM sketch
P cu sketch
ASketch

(a) CAIDA

200 400 600 800 1000
Memory size (KB)

0

20

40

60

A
R

E

HeavyGuardian
CM sketch
P cu sketch
ASketch

(b) Web page

Figure 6: ARE vs. memory size (frequency estimation).

is the total number of distinct items, fj is the real frequency of ej ,

and
ˆfj is the estimated frequency of ej .

Average Absolute Error (AAE): AAE measures the accuracy of

the estimated frequency (or differences between two adjacent time

windows of the data stream). It is defined as
1

M
∑
ej ∈Ω | ˆfj − fj | or

1

M
∑
ej ∈Ω | ˆdj − dj |, where dj and ˆdj are used only in heavy change

detection, and dj is the real frequency difference of ej and ˆdj is the
estimated frequency difference of ej .
Throughput: Throughput measures the processing speed of the

algorithm. The throughput is defined as N /T , where N is the num-

ber of items, and T is the time used. We use Million of insertions

per second (Mips) to measure the throughput.

6.3 Experiments on System Parameters
In this section, we conduct experiments to evaluate the effects of

system parameters for HeavyGuardian.We focus on the exponential

base b, the number of guardians per bucket λh , and the fingerprint

size l . Because these three parameters are only related to the heavy

part, we focus on the accuracy of hot items and omit cold items.

Further, we set the total memory size to 100KB, use the CAIDA

dataset in our experiments, and use AAE to evaluate the accuracy.

Effects of b (Figure 4(a)): In this experiment, we set λh = 2 and

do not use fingerprints to replace ID fields. The results show that

when b changes from 1.02 to 1.18, AAE keeps unchanged. While as

b is larger than 1.20, AAE increases. The optimal value of b is from

1.02 to 1.18, and we set b = 1.08 in our experiments.

Effects of λh (Figure 4(b)): In this experiment, we do not use fin-

gerprints to replace ID fields. The results show that as λh increases,

it first decreases significantly, and when λh is between 8 to 20,

AAE keeps at a low value. When λh becomes larger than 20, AAE

increases slightly. In order to let the size of a bucket fit into a cache

line, we set λh to 8.

Effects of l (Figure 4(c)): The results show that when l increases,
AAE first decreases significantly, and then keeps at a low value

when l > 15. In order to put more cells in a cache line and re-

duce fingerprint collisions, we should not use long fingerprints.

Therefore, we set l = 16.

In terms of λl , we found that as λl increases, the accuracy of

cold items increases, while the accuracy of hot items decreases. In

order to make a trade-off between hot items and cold items, we set

the memory size of the heavy part equal to that of the light part.

In our implementation, we set the counter size in the heavy part

to 16 bits, and set the counter size in the light part to 4 bits. This

indicates λl = 64.

6.4 Experiments on Stream Processing Tasks
In this section, we apply HeavyGuardian to the five typical stream

processing tasks: frequency estimation, heavy hitter detection,

heavy change detection, real-time frequency distribution estima-

tion and entropy estimation. We conduct experiments to compare

the performance of HeavyGuardian to other existing algorithms

for all these tasks.

6.4.1 Experiments on Frequency Estimation. In this section, we

conduct experiments on frequency estimation. We compare the

performance of HeavyGuardian with the CM sketch [23] and the

Pcu sketch (the CU sketch using the Pyramid sketch framework

[13]). We do not conduct experiments for other sketches, because

[13] has shown that the performance of the Pcu sketch is much

better than sketches of CU [15], Count [22], and Augmented [12]

in terms of both accuracy and speed. Specifically, we use AAE and

ARE as metrics to evaluate the accuracy, and use throughput to

evaluate the speed. We vary the memory size to show the change

in the performance.

AAE vs. memory size (Figure 5(a), 5(b)): In this experiment, we

vary the memory size from 100KB to 1000KB. Compared to the CM

sketch, AAE of HeavyGuardian is between 9.56 and 35.86 times

smaller in the CAIDA dataset, and between 13.61 to 30.86 times

smaller in the Web Page dataset. Compared to the Pcu sketch, AAE

of HeavyGuardian is between 1.72 to 20.23, and between 11.30 to

32.57 times smaller in the two datasets, respectively. Compared to

ASketch, AAE of HeavyGuardian is between 9.58 and 36.10, and

between 13.73 and 30.93 times smaller in the two datasets.

AREvs.memory size (Figure 6(a), 6(b)):Compared to CM sketch,

ARE of HeavyGuardian is between 9.30 to 35.24 and between 12.96

to 53.21 smaller in the two datasets, respectively. Compared to Pcu
sketch, ARE of HeavyGuardian is between 1.68 to 19.85 and between

11.15 to 41.67 smaller in the two datasets, respectively. Compared

to ASketch, ARE of HeavyGuardian is between 9.31 and 35.44, and

between 13.10 and 53.09 times smaller in the two datasets.

CAIDA Web
Dataset

0

10

20

30

40

T
hr

ou
gh

pu
t(

M
ip

s) CM sketch
P cu sketch

ASketch
HeavyGuardian

(a) Insertion speed vs. dataset

CAIDA Web
Dataset

0

10

20

30

T
hr

ou
gh

pu
t(

M
ip

s) CM sketch
P cu sketch

ASketch
HeavyGuardian

(b) Query speed vs. dataset

Figure 7: Throughput evaluation (frequency estimation).

20 40 60 80 100
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

Pr
ec

is
io

n

ASketch
HeavyGuardian
Sketch+min-heap
Space-Saving

(a) CAIDA

20 40 60 80 100
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

Pr
ec

is
io

n

ASketch
HeavyGuardian
Sketch+min-heap
Space-Saving

(b) Web page

Figure 8: Precision vs. memory size (heavy hitter detection).

Throughput vs. dataset (Figure 7(a), 7(b)): In this experiment,

we set the memory size to 1000KB, and we apply all three algo-

rithms to both two datasets. The insertion throughput and the query

throughput of HeavyGuardian is always higher than that of other

algorithms for both datasets. Specifically, when applying to theWeb

page dataset, the insertion throughput of HeavyGuardian is 3.53

times higher than that of CM sketch, is 1.92 times higher than that

of Pcu sketch, and is 13.30 times higher than that of ASketch. Fur-

ther, the query throughput of HeavyGuardian is 1.81 times higher

than that of CM sketch, is 1.69 times higher than that of Pcu sketch,

and is 5.37 times higher than that of ASketch.

6.4.2 Experiments on Heavy Hitter Detection & Heavy Change
Detection. For heavy hitter detection, we compare the performance

of HeavyGuardian with that of one sketch plus a min-heap (CM
sketch+min-heap) [23], Space-Saving [7], and ASketch [12]. For

heavy change detection, we compare the performance of Heavy-

Guardian with that of the k-ary sketch [32] and ASketch. For

sketch+min-heap, the k-ary sketch, and Asketch, we set d = 4,

and set the size of the min-heap to 30KB. Moreover, the width of

the sketch, the width of the HeavyGuardian, and the number of

buckets in Space-Saving, are computed based on the total memory

size. We measure precision, recall, and ARE to compare the perfor-

mances of the three algorithms, and also vary the memory size to

show the change in the performance. Further, we also measure the

throughput for both datasets to show the speed of these algorithms.

I. Heavy Hitter Detection
In the experiments of varying thememory size, we vary themem-

ory size from 20KB to 100KB for Space-Saving and HeavyGuardian,

but vary the memory size from 40KB to 100KB for sketch+min-heap

and ASketch, because they require 30KB for the min-heap.

Precision vs. memory size (Figure 8(a), 8(b)): For both two

datasets, HeavyGuardian always achieves 100% precision for every

memory size. However, when the memory size is 40KB, the preci-

sion is only 12.7% and 36.4% for Space-Saving, is 26.0% and 40.1%

for sketch+min-heap, and is 12.5% and 20.0% for ASketch for the

two datasets, respectively.

20 40 60 80 100
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

R
ec

al
l

ASketch
HeavyGuardian
Sketch+min-heap
Space-Saving

(a) CAIDA

20 40 60 80 100
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

2.5

R
ec

al
l

ASketch
HeavyGuardian
Sketch+min-heap
Space-Saving

(b) Web page

Figure 9: Recall vs. memory size (heavy hitter detection).

20 40 60 80 100
Memory size (KB)

10−4

100

104

108

1012

A
R

E

ASketch
HeavyGuardian
Sketch+min-heap
Space-Saving

(a) CAIDA

20 40 60 80 100
Memory size (KB)

10−7

10−2

103

108

1013

1018

A
R

E

ASketch
HeavyGuardian
Sketch+min-heap
Space-Saving

(b) Web page

Figure 10: ARE vs. memory size (heavy hitter detection).

Recall vs. memory size (Figure 9(a), 9(b)): The results show

that when memory size is varied from 40KB to 100KB, the recall

of HeavyGuardian is almost 100% for both two datasets. However,

when the memory size is 40KB, the recall is only 28.6% and 58.8%

for Space-Saving, is 15.6% and 32.4% for sketch+min-heap, and is

27.1% and 32.4% for ASketch for the two datasets, respectively.

ARE vs. memory size (Figure 10(a), 10(b)): The results show

that for the CAIDA dataset, ARE of HeavyGuardian is between

62,381 and 2,364,154 times smaller than that of sketch+min-heap,

is between 330,658 and 4,023,510 times smaller than that of Space-

Saving, and is 776,347 and 1,321,717 times smaller than that of AS-

ketch. For the Web Page dataset, ARE of HeavyGuardian is between

2,084,227 and 828,730,985 times smaller than that of sketch+min-

heap, is between 23,294 and 225,262,199 times smaller than that

of Space-Saving, and is between 2,271,724 and 93,006,636 times

smaller than that of ASketch.

CAIDA Web page
Dataset

0

10

20

30

40

T
hr

ou
gh

pu
t(

M
ip

s) HeavyGuardian
Space-Saving

Figure 11: Speed evaluation (heavy hitter detection).

Throughput vs. dataset (Figure 11): In each dataset, the through-
put of HeavyGuardian is significantly higher than that of Space-

Saving. Specifically, the throughput of HeavyGuardian is between

1.419 and 1.982 times higher than that of Space-Saving. The through-

put of other algorithms is presented in the previous section.

0 100 200 300
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

Pr
ec

is
io

n

k-ary sketch
ASketch
HeavyGuardian

(a) CAIDA

0 100 200 300
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

Pr
ec

is
io

n

k-ary sketch
ASketch
HeavyGuardian

(b) Web page

Figure 12: Precision vs. memory size (heavy change detec-
tion).

0 100 200 300
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

R
ec

al
l

k-ary sketch
ASketch
HeavyGuardian

(a) CAIDA

0 100 200 300
Memory size (KB)

0.0

0.5

1.0

1.5

2.0

R
ec

al
l

k-ary sketch
ASketch
HeavyGuardian

(b) Web page

Figure 13: Recall vs. memory size (heavy change detection).

0 100 200 300
Memory size (KB)

100

102

104

106

A
A

E

k-ary sketch
ASketch
HeavyGuardian

(a) CAIDA

0 100 200 300
Memory size (KB)

10−1

101

103

105

107

109

A
A

E

k-ary sketch
ASketch
HeavyGuardian

(b) Web page

Figure 14: AAE vs. memory size (heavy change detection).

II. Heavy Change Detection
In the experiments of heavy change detection, we vary the mem-

ory size from 10KB to 300KB for HeavyGuardian to show the change

in the performance. For the k-ary sketch and ASketch, we vary the

memory size from 100KB to 300KB, because it requires 60KB for

the two min-heaps to store the item IDs.

Precision vs. memory size (Figure 12(a), 12(b)): The results

show that when memory size is varied from 100KB to 300KB, the

precision of HeavyGuardian changes from 97.5% to 100% for the

CAIDA dataset, and changes from 98.9% to 100% for the Web Page

dataset. While for the k-ary sketch, the precision changes from 7.2%

to 52.3% for the CAIDA dataset, and changes from 26.9% to 85.7%

for the Web Page dataset. For ASketch, the precision is between

5.6% and 17.3% for the CAIDA dataset, and is between 21.5% and

55.1% for the Web Page dataset.

Recall vs. memory size (Figure 13(a), 13(b)): When memory

size is larger than 50KB, the recall of HeavyGuardian is almost

100% for both two datasets. However, for the k-ary sketch, when

memory size is 100KB, the recall is only 65.3% and 26.9% for the

two datasets. For ASketch, the recall is 55.4% and 26.4% for the two

datasets when the memory size is 100KB.

AAE vs. memory size (Figure 14(a), 14(b)): For the the CAIDA
dataset, AAE of HeavyGuardian is between 137.38 and 218.82 times

smaller than that of the k-ary sketch, and is between 368.66 and

517.95 times smaller than ASketch. For the Web Page dataset, AAE

of HeavyGuardian is between 628.45 and 1448.35 times smaller than

that of the k-ary sketch, and is between 1235.20 and 7363.74 times

smaller than ASketch.

0 500 1000 1500 2000
Frequency

101

102

103

104

105

106

#
ite

m
s

Real
CM sketch(512KB)
ASketch(512KB)
HG(128KB)
HG(256KB)
HG(512KB)

(a) Distribution (1 ∼ 2000)

100 600 1100
Frequency

0

25

50

75

100

125

150

#
ite

m
s

Real
HG(512KB)

(b)Distribution (100 ∼ 1100)

Figure 15: Real-time frequency distribution.

0 2 4 6
items (*106)

12

14

16

18

R
ea

l-
tim

e
en

tr
op

y

Real
CM sketch

ASketch
HeavyGuardian

Dataset I

Dataset II Dataset III

CM sketch & HeavyGuardian

(a) Real-time entropy estimation

2 4 6
items (*106)

0.0

0.5

1.0

1.5

Sl
op

e
(*

10
−

6) Real
CM sketch
ASketch
HeavyGuardian

CM sketch & ASketch

Real & HeavyGuardian

(b) The slope of real-time entropy

Figure 16: Real-time entropy distribution.

The insertion speed of HeavyGuardian for heavy change de-

tection is same as that for heavy hitter detection. Due to space

limitation, we omit speed evaluation for heavy change detection.

6.4.3 Experiments on Real-time Frequency Distribution Estima-
tion & Entropy Estimation. Due to space limitation, We only show

the experimental results for real-time frequency distribution esti-

mation and real-time entropy estimation on the CAIDA dataset. Be-

cause there is no existing algorithm achieving real-time frequency

distribution and real-time entropy estimation, we only compare

HeavyGuardian with a naive algorithm: use a CM sketch or an

ASketch to record frequencies of all items, and update the frequency

distribution and the entropy based on counters in the CM sketch

or the ASketch in real time.

I. Real-time Frequency Distribution Estimation: In the exper-

iments of real-time frequency distribution estimation, we set the

memory size to 128KB, 256KB, and 512KB for HeavyGuardian, and

512KB for the CM sketch and ASketch.

Frequency distribution (Figure 15(a) and 15(b)): As shown in

Figure 15(a), as the memory size increases, the estimated frequency

distribution of HeavyGuardian (HG) is closer to the real frequency

distribution, while that of the CM sketch and ASketch suffers from

large errors. As shown in Figure 15(b), we limit the frequency from

100 to 1000, and we only compare the real frequency with the

estimated frequency of HeavyGuardian when the memory size is

512KB. The results show that the two distributions are almost the

same, which shows the accuracy of HeavyGuardian for frequency

distribution estimation.

II. Real-time Entropy Estimation: For experiments of real-time

entropy estimation, we select 3 segments in one CAIDA dataset

(2M items in each segment, and we call them Segment I, II, and III),

and combine them together as one big dataset. Note that these 3

segments are randomly picked from three different time points.

Real-time entropy (Figure 16(a) and 16(b)): As shown in Figure

16(a), when changing from one segment to another segment, both

the estimated real-time entropy of HeavyGuardian and the real

entropy increasesmore quickly than before, while for the CM sketch

and ASketch, this change is not evident (entropies estimated by

CM sketch and ASketch are almost the same). In order to make the

change more evident, we plot the slope of the real-time entropy

in Figure 16(b). The results show that the estimated slope of the

real-time entropy of HeavyGuardian is almost the same as the real

value, while the slope of the real-time entropy of the CM sketch

and ASketch suffers from large errors. The results also show that

ARE of the estimated entropy of HeavyGuardian is 0.036, while

that of the CM sketch and ASketch is 0.133, which means that

HeavyGuardian achieves 3.69 times smaller error than the CM

sketch and ASketch.

7 CONCLUSION
There are five typical stream processing tasks: frequency estimation,

heavy hitter detection, heavy change detection, frequency distri-

bution estimation, and entropy estimation. Each of these tasks has

quite a few solutions, but can hardly achieve high accuracy when

memory is tight. To address this issue, we propose a novel data struc-

ture HeavyGuardian. The key idea is separate-and-guard-hot:
intelligently separating hot items from cold items using a key tech-

nique named “exponential decay”, and guarding the information of

hot items while approximately recording the frequencies of cold

items. We derive theoretical bound for HeavyGuardian, and vali-

date it by experiments. Experimental results also show that Heavy-

Guardian achieves both much smaller error and faster speed than

the state-of-the-art algorithms for each of the five typical tasks.

REFERENCES
[1] The source codes of heavyguardian and other related algorithms.

https://github.com/Gavindeed/HeavyGuardian.

[2] Shoba Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. New

streaming algorithms for fast detection of superspreaders. Department of Electrical
and Computing Engineering, page 6, 2005.

[3] Elisa Bertino. Introduction to data security and privacy. Data Science and
Engineering, 1(3):125–126, 2016.

[4] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement

with opensketch. In NSDI, volume 13, pages 29–42, 2013.

[5] Ben Chen, Zhijin Lv, Xiaohui Yu, and Yang Liu. Sliding window top-k monitoring

over distributed data streams. Data Science and Engineering, 2(4):289–300, 2017.
[6] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation

of frequent and top-k elements in data streams. In International Conference on
Database Theory, pages 398–412. Springer, 2005.

[7] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation

of frequent and top-k elements in data streams. In Proc. Springer ICDT, 2005.
[8] Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava. Finding

hierarchical heavy hitters in data streams. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages 464–475, 2003.

[9] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez

Waisbard. Constant time updates in hierarchical heavy hitters. arXiv preprint
arXiv:1707.06778, 2017.

[10] Nan Tang, Qing Chen, and Prasenjit Mitra. Graph stream summarization: From

big bang to big crunch. In Proceedings of the 2016 International Conference on
Management of Data, pages 1481–1496. ACM, 2016.

[11] Graham Cormode. Sketch techniques for approximate query processing. Foun-
dations and Trends in Databases. NOW publishers, 2011.

[12] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and

more accurate stream processing. In Proc. SIGMOD, 2016.
[13] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyramid sketch:

a sketch framework for frequency estimation of data streams. Proceedings of the
VLDB Endowment, 10(11):1442–1453, 2017.

[14] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better

netflow for data centers. In NSDI, pages 311–324, 2016.
[15] Cristian Estan and George Varghese. New directions in traffic measurement and

accounting: Focusing on the elephants, ignoring the mice. ACM Transactions on

Computer Systems (TOCS), 21(3):270–313, 2003.
[16] Yin Zhang, Matthew Roughan, Walter Willinger, and Lili Qiu. Spatio-temporal

compressive sensing and internet traffic matrices. In ACM SIGCOMM Computer
Communication Review, volume 39, pages 267–278. ACM, 2009.

[17] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic charac-

teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267–280. ACM, 2010.

[18] Graham Cormode, Balachander Krishnamurthy, and Walter Willinger. A mani-

festo for modeling and measurement in social media. First Monday, 15(9), 2010.
[19] Dave Maltz. Unraveling the complexity of network management. 2009.

[20] Ilker Nadi Bozkurt, Yilun Zhou, Theophilus Benson, Bilal Anwer, Dave Levin,

Nick Feamster, Aditya Akella, Balakrishnan Chandrasekaran, Cheng Huang,

Bruce Maggs, et al. Dynamic prioritization of traffic in home networks. 2015.

[21] Jiecao Chen and Qin Zhang. Bias-aware sketches. Proceedings of the VLDB
Endowment, 10(9):961–972, 2017.

[22] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items

in data streams. Automata, languages and programming, pages 784–784, 2002.
[23] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 2005.
[24] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig.

Cold filter: A meta-framework for faster and more accurate stream processing.

[25] Katsiaryna Mirylenka, Graham Cormode, Themis Palpanas, and Divesh Srivas-

tava. Conditional heavy hitters: detecting interesting correlations in data streams.

The VLDB Journal, 24(3):395–414, 2015.
[26] Gobinda G Chowdhury. Introduction to modern information retrieval. Facet

publishing, 2010.

[27] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S Muthukrish-

nan, and Jennifer Rexford. Heavy-hitter detection entirely in the data plane. In

Proceedings of the Symposium on SDN Research, pages 164–176. ACM, 2017.

[28] Mohamed A Soliman, Ihab F Ilyas, and Kevin Chen-Chuan Chang. Top-k query

processing in uncertain databases. In IEEE 23rd International Conference on Data
Engineering, pages 896–905. IEEE, 2007.

[29] Erik Demaine, Alejandro López-Ortiz, and J Munro. Frequency estimation of

internet packet streams with limited space. AlgorithmsâĂŤESA 2002, 2002.
[30] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts

over data streams. In Proc. VLDB 2002, pages 346–357.
[31] Monika Rauch Henzinger. Algorithmic challenges in web search engines. Internet

Mathematics, 1(1):115–123, 2004.
[32] Er Krishnamurthy, Subhabrata Sen, and Yin Zhang. Sketchbased change detection:

Methods, evaluation, and applications. In In ACMSIGCOMM InternetMeasurement
Conference. Citeseer, 2003.

[33] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible sketches

for efficient and accurate change detection over network data streams. In Pro-
ceedings of the 4th ACM SIGCOMM conference on Internet measurement, 2004.

[34] Chung Chen and Lon-Mu Liu. Forecasting time series with outliers. Journal of
Forecasting, 12(1):13–35, 1993.

[35] Viswanath Poosala and Yannis E Ioannidis. Estimation of query-result distribution

and its application in parallel-join load balancing. In VLDB, pages 448–459, 1996.
[36] Shanshan Ying, Flip Korn, Barna Saha, and Divesh Srivastava. Treescope: finding

structural anomalies in semi-structured data. VLDB, 2015.
[37] Abhishek Kumar, Minho Sung, Jun Jim Xu, and Jia Wang. Data streaming

algorithms for efficient and accurate estimation of flow size distribution. In Proc.
ACM SIGMETRICS, pages 177–188, 2004.

[38] Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams:

experimental comparisons, new analyses, and further improvements. The VLDB
Journal, 25(4):449–472, 2016.

[39] Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. Entropy-based subspace

clustering for mining numerical data. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining, 1999.

[40] Zhetao Li, Baoming Chang, Shiguo Wang, Anfeng Liu, Fanzi Zeng, and Guang-

ming Luo. Dynamic compressive wide-band spectrum sensing based on channel

energy reconstruction in cognitive internet of things. IEEE Transactions on
Industrial Informatics, 2018.

[41] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava.

Truth finding on the deep web: Is the problem solved? In Proceedings of the VLDB
Endowment, volume 6, pages 97–108, 2012.

[42] Zhetao Li, Fu Xiao, Shiguo Wang, Tingrui Pei, and Jie Li. Achievable rate maxi-

mization for cognitive hybrid satellite-terrestrial networks with af-relays. IEEE
Journal on Selected Areas in Communications, 36(2):304–313, 2018.

[43] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data

streaming algorithms for estimating entropy of network traffic. In Proc. ACM
SIGMETRICS, pages 145–156, 2006.

[44] The caida anonymized internet traces 2016.

http://www.caida.org/data/overview/.

[45] Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/.

[46] Christian Henke, Carsten Schmoll, and Tanja Zseby. Empirical evaluation of

hash functions for multipoint measurements. SIGCOMM CCR., 2008.

https://github.com/Gavindeed/HeavyGuardian
http://www.caida.org/data/overview/
http://fimi.ua.ac.be/data/

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Proposed Solution
	1.3 Main Contributions

	2 Background
	2.1 Frequency Estimation
	2.2 Heavy Hitter Detection
	2.3 Heavy Change Detection
	2.4 Real-time Frequency Distribution & Real-time Entropy

	3 The HeavyGuardian Algorithm
	3.1 HeavyGuardian Basics
	3.2 Optimization: Using Fingerprints

	4 Mathematical Analysis
	4.1 Proof of no Over-estimation Error
	4.2 The Error Bound of the Heavy Part of HeavyGuardian

	5 HeavyGuardian Deployment
	5.1 Frequency Estimation
	5.2 Heavy Hitter Detection & Heavy Change Detection
	5.3 Real-time Frequency Distribution & Real-time Entropy

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Metrics
	6.3 Experiments on System Parameters
	6.4 Experiments on Stream Processing Tasks

	7 Conclusion
	References

