
1

BurstSketch: Finding Bursts in Data Streams
Ruijie Miao∗, Zheng Zhong∗, Jiarui Guo∗, Zikun Li∗, Tong Yang∗†, Bin Cui∗

∗ School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and
Application, Peking University, China

† PCL Research Center of Networks and Communications, Pengcheng Laboratory

Abstract—Burst is a common pattern in data streams which
is characterized by a sudden increase in terms of arrival rate
followed by a sudden decrease. Burst detection has attracted
extensive attention from the research community. To detect bursts
accurately in real time, we propose a novel sketch, namely Burst-
Sketch, which consists of two stages. Stage 1 uses the technique
Running Track to select potential burst items efficiently. Stage 2
monitors the potential burst items and captures the key features
of burst pattern by a technique called Snapshotting. We further
propose an optimization, namely Dynamic Buckets, which can
improve the accuracy of BurstSketch. We provide theoretical
error bounds for Stage 1, Stage 2 and the optimized version.
Experimental results show that, compared with the strawman
solution, Burstsketch achieves 2.00 to 11.63 times higher F1 score,
and 1.56 times higher throughput. We also integrate BurstSketch
into Apache Flink, and show that using BurstSketch can be faster
than simply using the built-in APIs provided by Apache Flink.

Index Terms—burst, data stream, sketch, approximate query

I. INTRODUCTION

A. Background and Motivation

Burst is a common pattern in data streams, which is charac-
terized by a sudden increase in terms of arrival rate followed
by a sudden decrease. The arrival rate of an item refers to
its number of appearances in a fixed time window. Burst is
widely regarded as a meaningful structure in diversified fields
of data mining. In text data mining, the document streams,
such as news articles and research publications, often witness
the popularity of a particular topic grow and decline quickly.
This results in a burst structure about keywords which are
correlated to the topic [2]. By detecting the burst of keywords,
we can track the timeline of hot topics, and obtain a general
view about the content of the streams. In financial markets,
a burst of trading volume may indicate the happening of
financial fraud or illegal market manipulation. Further, the
burst detection can be applied in clustering [3], [4], online
search query analysis [5], [6], web click analysis [2] and social
media [7]–[9].

Real-time burst detection in data streams has attracted
extensive attention from the research community. In many
scenarios, data arrives in a form of data stream. For time-
sensitive applications which prefer quick analysis on the data
streams, an efficient real-time burst detection algorithm will be
more suitable. For example, in electronic commerce systems,

The first three authors contribute equally.
Tong Yang (yangtongemail@gmail.com) is the corresponding author.
The preliminary version of this paper was published in ACM Special

Interest Group on Management of Data (SIGMOD) [1], 2021.

real-time burst detection about user queries can provide timely
and accurate information about things in vogue or products in
demands [10]. Another example is event detection based on
social media streaming data. To detect newsworthy events at
any given time, an event detection system relies on real-time
burst detection algorithms to detect and track burst events
in real time. In this paper, we focus on the real-time burst
detection in data streams.

The major difficulty of real-time burst detection is to balance
the accuracy and the processing speed. The ever-increasing
volume of data demands high processing rate. For traditional
burst detection algorithms, it is challenging to catch up with
high speed(e.g., 20M items per second) of data items while still
maintaining high accuracy. To achieve high processing speed,
our idea is to maximize cache utilization: ideally, the designed
data structure should completely fit in the cache, which can
considerably improve the processing speed. To achieve high
accuracy of burst detection, our idea is to capture the critical
information that are related to bursts. Though the memory
consumption of our data structure is limited, the number of
bursts is often small compared with the large volume of data
items and can be recorded with limited memory. Therefore,
our data structure should filter out unrelated information and
detect bursts efficiently.

For real-time burst detection in data streams, typical work
includes CM-PBE [8] and TopicSketch [9]. CM-PBE can
detect bursty events in real time, which is quite efficient in both
time and space. TopicSketch aims at detecting hot topics in text
streams. It is simple, fast, and easy to deploy. However, these
two works define bursts as the sudden increase of frequency,
which ignore the sudden decrease. We argue that in some
scenarios it is also needed to identify the sudden decrease.
For example, prior work [2] has proposed the importance of
mining burst structure of keywords that consists of both quick
growth and decline. With the detection of frequency decline,
it means temporal hot keywords. However, if we only focus
on the sudden increase of frequency, it has a quite different
meaning: finding keywords that quickly become hot. Simply
applying the prior algorithms that are designed to find sudden
increase will suffer from low precision in our definition of
bursts. In summary, no existing work can provide real-time
burst detection in our definition, which consists of a sudden
increase and a sudden decrease.

B. Our Proposed Algorithm
Towards the design goal of this paper, we propose a novel

sketch to accurately detect bursts in real time, namely, Burst-

2

Sketch. To the best of our knowledge, BurstSketch is the first
sketch algorithm focusing on detecting bursts in our definition
in high speed data streams. BurstSketch has the following
features.
• BurstSketch is memory efficient: it is small enough to be

held in CPU L2 caches.
• BurstSketch is accurate: it achieves higher than 97% F1

score (using 60 KB memory), which is 2.00 to 11.63 times
higher than the strawman solution.

• BurstSketch is fast: the time complexity for insertion and
query is O(1), and it achieves throughput higher than 20
Mips.
we design two versions of BurstSketch: the basic version

and the optimized version. The basic version of BurstSketch
consists of two parts, Stage 1 and Stage 2. For each incoming
item, we first check whether it is a potential burst item in Stage
1, if so, it will be sent to Stage 2. The techniques used in Stage
1 and Stage 2 are named Running Track and Snapshotting,
respectively. We show the two key techniques below.
Technique I: Running Track. Running Track is used to select
potential burst items. It needs to filter out infrequent items
as well as items arrive at a steady speed. Running Track
works as follows. We use many tracks, each item will be
mapped into d tracks by hash functions h1(.) . . . hd(.). For
each track, we only observe the most frequent item. If it is
frequent enough, we consider it as a potential burst item. To
find the fastest item in each track, there are several optional
strategies: frequent [11], probabilistic decay [12], probabilistic
replacement [13]. We choose frequent since it is the simplest
and fastest which has a comparative accuracy compared to
others. In our strategy, high-speed items are unlikely to be
filtered out in every track, because it would be selected as long
as it becomes the most frequent item in at least one track.
Technique II: Snapshotting. Snapshotting is used to detect
bursts from potential bursts. The rationale of Snapshotting is
that a burst can be described only with the sudden increase
and sudden decrease in arrival rate. Therefore, we do not
need to record frequencies of items in every time window.
In Snapshotting, we only take two snapshots for the sudden
increase and the sudden decrease so that we can confirm
whether it is a burst. Snapshotting detects bursts with O(1)
memory.

We propose the optimized version based on the observation
of the high skewness in real-world datasets: most items are
infrequent, and a small amount of frequent items make up the
majority of the total frequency. Prior work [14] indicates that
such high skewness is common in the real-world scenarios.
For most infrequent items, the Stage 1 in the basic version
only records in the counters a small count. Even for frequent
items, as they will be regarded as potential burst items and
reported to Stage 2, they can be recorded with a small counter
with high probability. Therefore, we utilize the novel idea of
Dynamic Bucket to improve the memory efficiency. Dynamic
Bucket uses fingerprint to substitute ID, and supports dynamic
adjustment of memory partition for the fingerprint and the
counter. At the beginning, the bucket uses a long fingerprint
and a small counter. As the value in the counter grows, the
bucket will transition to use a short fingerprint and a large

counter. The optimized version incorporates more complex
operations, sacrificing a little processing speed for improve-
ment in accuracy. When the memory consumption is 20KB,
the throughput of the optimized version drops from 27MIPS
to 24MIPS, while the recall improves from 87% to 93%. As
the optimized version still maintains a high processing speed,
it is suitable for the scenarios where operators have a stricter
demand of accuracy for burst detection.

The BurstSketch can be applied in the distributed scenar-
ios by deploying in the Apache Flink. Detecting bursts by
simply using the built-in APIs of Flink requires recording
and processing frequency information for all IDs. In contrast,
BurstSketch consumes limited memory in each worker and
is more cache friendly. As a result, BurstSketch can achieve
higher throughput when applied in the Flink.

C. Main Contributions

• We propose BurstSketch and the optimized variants for
burst detection, which are accurate, efficient, and consumes
limited memory.

• We theoretically analyze the basic version and the optimized
version of BurstSketch, and prove that each stage can find
burst with bounded error.

• We conduct rich experiments on a variety of datasets. The
results of experiments demonstrate the high performance of
BurstSketch, and the improvement of its optimization.

• We explore the possibility of deploying BurstSketch to
Apache Flink and show that BurstSketch can be applied
in distributed scenarios.

II. PROBLEM STATEMENT & RELATED WORK

A. Problem Statement

The symbols frequently used in this paper are shown in
Table I.

TABLE I: Symbols Used in This Paper
Notation Meaning
Ai ith bucket array of Stage 1

B Bucket array of Stage 2

k parameter for the definition of sudden increase
and sudden decrease

L Maximum width of a burst

T Burst threshold

H Running Track threshold

Cpre Frequency in the previous time window

Ccur Frequency in the current time window

t Timestamp in Stage 2

Burst Detection: Burst, in our definition, is a particular pattern
of the changing behavior in terms of the arrival rate of an item
in a data stream, and the pattern consists of a sudden increase
and a sudden decrease. Specifically, we divide the data stream
into fixed-width time windows. Given an item e, a sudden
increase means that, in two adjacent time windows, the arrival
rate of e in the second time window is no less than k times
of that in the first time window. Similarly, a sudden decrease
is that the arrival rate of e in the second time window is no
more than 1

k of that in the first time window. Also, we do

3

not consider infrequent bursty items as bursts, for they are not
useful in most applications, so the arrival rate of a burst item
should exceed a burst threshold. In practice, a burst occurs
over a short period of time. Therefore, we set a limitation L for
the width of a burst, namely, the number of time windows that
the burst lasts. The formal definition of a burst is as follows.
Formal Definition: For a time series data stream S =
{et1, et2, et3, . . . }, an item e and a burst threshold T ,
given that the data stream is divided into fixed time windows
w1, w2, w3, . . . and the arrival rate of e in the time
windows are r1, r2, r3, . . . , if there exist four time windows
wi, wi+1, wj , wj+1, where

ri+1 > k · ri ∧ rj+1 6
1

k
· rj ∧ j > i

and
rk > T, ∀k ∈ {i+ 1, . . . , j} ∧ j − i 6 L

then e is a burst item, the changing process of its arrival rate
is a burst, the width of the burst is j − i time windows,
window wi+1 is the sudden-increase window, and window
wj+1 is the sudden-decrease window. If multiple sudden-
increase windows happen consecutively, we just consider the
latest one as the burst’s possible beginning. If multiple sudden-
decrease windows happen consecutively, we just consider the
first one after the sudden increase as the burst’s end. It can
prevent multiple reports of a single burst.

B. The Comparison of the Definitions of Burst

Kleinberg’s work [2] models the burst structure using an
infinite-state automation, where each state denotes a level
of message emitting rate. If the automation starts from the
low-rate states, transits to high-rate states, and finally falls
back to low-rate states, a burst is detected. The definition
in Kleinberg’s work is similar to our definition, as we all
define the burst in a rising and declining manner. Kleinberg’s
definition does not restrict the rising and declining rate and
hence is not designed for sudden increase and sudden decrease,
while our definition restricts the rate by the parameter k. We
argue that it is hard to pre-define the exact range of high rates
and low rates, so we use parameter k to describe the amplitude
of the increase and decrease.

Some work [15] defines burst as a large number of events
occurring in a certain time window. Some other work [8],
[9] defines the burst as the sudden increase in frequency, and
does not care about whether there is a sudden decrease. Our
definition in this paper is more complete with both sudden
increase and sudden decrease. We believe all above definitions
refer to different data patterns, and thus have different appli-
cations. In some applications, the occurrence of decreasing
trend is also crucial. Kleinberg’s work [2] has pointed out the
importance of detecting both increase and decrease for nested
burst structure in text mining. In electronic commerce systems,
the decreasing trend should be considered. If the sales of an
item contains both a sudden increase and a sudden decrease,
the item should be regarded as temporally hot, which should
be considered in the business decisions. Another example is
network management. The flows that consist of both sudden

rate increase and sudden rate decrease are different from
those with only sudden increase. For the flows that match our
definition of bursts, they consume resources in a short period
of time. The operators need to identify burst flows and their
period in order to allocate the required resources for burst
flows.

C. Prior Work on Burst Detection

Abundant algorithms on burst detection [2], [8], [9], [16]–
[18] have been proposed. We will list those with close relation
to our work in the follows. Besides, research work [19]–[24]
on finding frequent items has close relation to burst detection,
and will be briefly discussed.

Kleinberg [2] models bursts as state transitions, and utilizes
Bayes procedure to compute the optimal state sequence. The
state sequence will then be converted to tree representation
and extracted bursty structure. Their definition of burst, as
mentioned in II-B, is similar to ours. Nonetheless, it is a non
real-time algorithm. And in their algorithm, each automation is
correlated with exactly one item, which means that the space
consumption grows linearly with the number of items under
monitoring. In contrary, BurstSketch is a real-time algorithm
with limited memory consumption.

CM-PBE [8] is a recent work concerning burst detection,
which concentrates on detecting burst from history without
storing or querying the whole stream. To identify bursty events
in data streams, they propose a concept named frequency
curve, which shows how the item’s frequency grows cumu-
latively over time. They propose two algorithms: CM-PBE-1
and CM-PBE-2. To approximate the curve, CM-PBE-1 uses
dynamic programming, while CM-PBE-2 solves linear pro-
gramming. Both algorithms can largely save the storage space,
as they store as few points as possible. Our algorithm differs
in two regards. First, the definitions of bursts are different.
In their work, an event that witnesses a large acceleration in
its arrival rate is considered a bursty event, whereas in our
definition, burst consists of a sudden increase and a sudden
decrease in its arrival rate. Besides, our algorithm cares about
real-time burst detection in high speed data streams, while their
work puts a premium on bursty events detection in history.

TopicSketch [9] focus on detecting burst in real time. They
also use the acceleration of items’ arrival rate as a metrics
of burst. To calculate the acceleration, they incrementally
maintain velocities of two time windows. Their definition of
burst is close to the definition of CM-PBE, which is different
from ours, as mentioned above.

Research work on finding frequent items in unbounded data
streams is also closely related, as our definition requires the
item frequency in the burst period higher than the burst thresh-
old T . Tong et. al [20] study two different definitions under the
scenarios of uncertain data: expected support-based frequent
itemset and probabilistic frequency itemset. They clarify the
relationship between these two definitions, provide uniform
baseline and evaluate all existing representative algorithms.
Jin et. al [19] propose a novel framework for sliding window
top-k queries on uncertain streams. They carefully design the
synopsis that achieves the same asymptotic processing time

4

bound as the base synopsis, but much lower asymptotic space
bound. These two work focuses on finding frequent items in
uncertain data streams. For burst detection in the uncertain
data streams, the methods in the above literature can be used
to track frequent items in the time window, and then further
analysis on burst detection can be applied. This paper focuses
on the scenarios of certain data streams, and burst detection
in the uncertain data streams is left for future work.

D. Typical Sketch Algorithms

In order to detect burst efficiently, our proposed algorithm
takes advantage of the technique of sketches. Sketches are
probabilistic algorithms for data stream processing. They can
generate approximate answers to queries with small memory
consumption and very high speed. Due to the above advan-
tages, sketches are applied to a wide range of data stream
processing tasks, such as finding frequent items [25]–[30],
finding top-k hot items [11]–[14], [31]–[33], detecting heavy
changes [34]–[36], graph stream summarizing [37], [38], and
item classification [39]. Moreover, sketches are also applied
in many other areas [40]–[48], such as machine learning [49],
membership testing [50], persistent data structures [51].

III. THE BURSTSKETCH ALGORITHM

In this section, we propose the BurstSketch algorithm.
First, we introduce the strawman solution in Section III-A.
Second, we introduce the BurstSketch algorithm in Section
III-B. Finally, we introduce the optimization on BurstSketch
in Section III-C.

A. The Strawman Solution

The strawman solution is based on the CM sketch. The CM
sketch consists of k counter arrays, each associated with a
hash function. For each incoming item, the hash function is
calculated to map it to a mapping bucket in each array, then
all the mapping buckets of the item is increased by 1. To
report the estimated frequency of an item, the CM sketches
output the minimum value among the mapping buckets. In the
strawman solution , we construct L+ 2 CM sketches to store
the estimated frequencies of the latest L+2 time windows to
detect burst whose width no larger than L. We use a queue
to store potential burst items. Whenever the frequency of an
item in a window is larger than the burst threshold, we insert
its flow ID into the queue. At the end of each time window,
for potential burst items, we query their frequencies from
CM sketches to find burst patterns. Although the strawman
solution is capable to detect bursts, it is memory consuming
and inaccurate. Because it stores information of L+2 windows
and takes into account many items that are not potential bursts.

B. The BurstSketch Algorithm

Rationale: In this paper, we propose a novel sketch, namely
BurstSketch. BurstSketch consists of two stages. To avoid
recording unnecessary information, the first stage checks
whether an incoming item is a potential burst item. We only
send the potential items to the second stage for burst detection.

To detect a burst, rather than recording the frequencies of
L + 2 time windows for each item, Stage 2 only records the
frequencies of 2 adjacent time windows for potential burst
items to detect whether there exists sudden increase or sudden
decrease, and we use a timestamp to snapshot it. In summary,
compared to the strawman solution, our BurstSketch filters out
much more unnecessary information.
Data Structure: As shown in Figure 1, BurstSketch has two
stages: Stage 1 using Running Track to filter low arrival rate
items, and Stage 2 using Snapshotting to find burst patterns.
Stage 1 consists of d bucket arrays A1,A2, . . . ,Ad, and
each array consists of m buckets. There are d hash functions
h1(.), h2(.), . . . , hd(.) associating with d bucket arrays respec-
tively. Each bucket has two fields: item ID (key) and frequency.
We have a Running Track threshold H to determine whether
the item is a potential burst item. It is worth noting that the
number of tracks determines the maximum number of bursts
our BurstSketch can detect simultaneously. A single track
takes up only several bytes, but more tracks enable us to detect
more bursts simultaneously, and also lessens hash collisions.
Therefore, we recommend using enough tracks to achieve
higher accuracy. Stage 2 is a bucket array B[1],B[2], . . . ,B[M]
associated with a hash function g(.). Each bucket has s cells.
Each cell has four fields: item ID (key), two counters Cpre

and Ccur, timestamp t. Cpre is used to record the frequency
of the item in the previous time window, while Ccur is used to
record the frequency of the item in the current time window.
The timestamp records the time window in which the latest
sudden increase happened. If the timestamp is equal to 0, it
means no sudden increase occurred.
Insertion: Given an incoming item e, if e is in Stage 2,
we increment e.Ccur by 1. Otherwise, we insert it into
Stage 1: we hash e into d mapping buckets of Stage 1
A1[h1(e)],A2[h2(e)], . . . ,Ad[hd(e)]. For each bucket, there
are 3 cases.
Case 1: e is not in the bucket, and the bucket is empty. In
this case, we insert e into the bucket with the frequency of 1.
Case 2: e is not in the bucket, and the bucket is not empty.
In this case, we need a replacement strategy to allow a new
potential burst to get in. We apply Frequent [11]: we decrement
the frequency of the bucket by 1. If the frequency is decreased
to 0, we empty the bucket. There are two other typical
replacement strategies, namely, probabilistic decay [12], and
probabilistic replacement [13]. For probabilistic decay, sup-
pose the recorded frequency is f , we decrement the frequency
by 1 in the probability of f−1.08. If the frequency is decrease
to 0, we empty the bucket. For probabilistic replacement, with
a probability of 1

f+1 , we replace the recorded ID by e and
increase the counter by 1. We choose Frequent because it
is fast and easy to implement, and it can efficiently evict
infrequent items and save buckets for burst items.
Case 3: e is in the bucket. We just increment the frequency
of e by 1. If the frequency of e is equal to or larger than the
Running Track threshold H , we try inserting e into Stage 2
(because e is frequent enough): if we find an empty cell in the
bucket B[g(e)], we insert e in it with its frequency. Otherwise,
we try evicting the smallest item whose timestamp t is 0: if
the frequency of the item is smaller than the frequency of e

5

…… …… 𝑒𝑒2, 10 …… 𝑒𝑒6, 45 …… 𝑒𝑒7, 1 …… …… 𝑒𝑒4, 49 …… …… 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒2 𝑒𝑒1

𝑒𝑒6, 44 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒4

𝑒𝑒4 × 50

(𝑒𝑒9, 5, 15, 0)
(𝑒𝑒10, 125, 90, 4)

(𝑒𝑒11, 150, 350, 0)
(𝑒𝑒12, 400, 120, 3)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
(𝑒𝑒10, 125, 90, 0)

(𝑒𝑒11, 150, 350, 8)
(𝑒𝑒12, 400, 120, 0)

Eviction
Illegal Burst

Sudden Increase
Sudden Decrease

Report 𝑒𝑒12 as a 5 window burst

…………

…………

…………

(𝑒𝑒9, 5,15,6)

…………

…………

(𝑒𝑒8, 210, 330, 2)
…………

…………

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
…………

…………

(𝑒𝑒4, 0, 50,0)

𝑒𝑒3𝑒𝑒8

(𝑒𝑒8, 210, 331, 2)

𝑒𝑒1, 1𝑒𝑒2, 11

𝑒𝑒5

Stage 1：

Stage 2：

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Fig. 1: An example of BurstSketch using one hash function.

Algorithm 1: Insertion-BurstSketch

Input: an item e; H , the Running Track threshold;
1 if e is in B[g(e)] then
2 e.Ccur ← e.Ccur + 1;

3 else
4 for each i ∈ [1, d] do
5 if e is in Ai[hi(e)] then
6 increase the frequency of e by 1;
7 if the frequency of e ≥ H then
8 if Insert Stage2 (e, the frequency of e)

then
9 clear Ai[hi(e)] to empty;

10 else if Ai[hi(e)] is empty then
11 insert e into Ai[hi(e)] and set the

frequency of e to 1;

12 else if e is not in Ai[hi(e)] and Ai[hi(e)] is
not empty then

13 decrease the frequency of Ai[hi(e)] by 1;
14 if the frequency of Ai[hi(e)] is 0 then
15 clear Ai[hi(e)] to empty;

16 Function Insert_Stage2(e, C):
17 if C > the Ccur of the smallest item in B[g(e)]

then
18 use e to replace the smallest item;
19 e.Ccur ← C; e.Cpre ← 0;
20 return 1;

21 return 0;

, we evict the item and insert e with its frequency. If all the
items’ t are not 0, we try evicting the smallest item in the
bucket with the same method. Stage 2 stores and monitors
potential bursts. The space in Stage 2 is limited, so we need
to evict the items that are not likely to become a burst when
the corresponding bucket is full.
Detection: Stage 2 uses Snapshotting to capture the sudden

increase and the sudden decrease for each item, and reports
bursts in the end of each time window. For item e, suppose
the max width of a burst is L. First we detect if there is a
sudden increase or sudden decrease: we check the frequencies
of e in the latest two time windows. If e.Ccur

e.Cpre
≥ 2, the sudden

increase happens. Then we update the current time window
into t. Specially, if e has been inserted into Stage 2 in the
current time window (which means we do not know e.Cpre),
we regard e.Cpre as 0. If e.Ccur

e.Cpre
≤ 1

2 , a sudden decrease
happens. Then we check whether there has been a sudden
increase and whether the difference between t and the current
time window is no more than L. If so, BurstSketch reports
a burst which has t as its sudden-increase window and the
current time window as its sudden-decrease window, then we
clean e.t to 0. Otherwise, no burst is reported and t remains
unchanged.
Cleaning Policy: In Stage 1, we clean all arrays at the end
of each time window. In Stage 2, we evict the items whose
arrival rates are always low. Specifically, at the end of every
time window, we check if the frequencies of the latest two time
windows are both lower than H . If so, we evict the item. We
also clean illegal potential bursts, whose frequency is smaller
than T in the current time window. If so, we clean t of the
item to 0.
A Running Example: Figure 1 shows a running example of
BurstSketch. In this example, in Stage 2, given a bucket with
(e10, 125, 90, 4), e10 is the item ID, 125 is e10’s frequency
in the previous time window Cpre, 90 is e10’s frequency in
the current time window Ccur, and 4 is the time when the
latest sudden increase happens. Suppose the Running Track
threshold H = 50, the burst threshold T = 100, and the time
of this example is at the end of time window 8.
Example 1: To insert e8, we find it in Stage 2, so we just
increment e8.Ccur by 1.
Example 2: To insert e2, we find it in Stage 1, so we just
increment the frequency of e2 by 1.
Example 3: To insert e5, we do not find it in both stages, so
we decrement the frequency of the item in the mapped bucket
by 1.
Example 4: To insert e3, we decrement the frequency of e7
from 1 to 0, then we evict e7.

6

Example 5: To insert e4, we find it in Stage 1, so we increment
e4 by 1. After the increment, the frequency of e4 reaches the
Running Track threshold and we find an empty cell in Stage
2. Then we clean e4 in Stage 1 and insert it into Stage 2 with
the frequency of 50.
Example 6: To insert e1, we find an empty bucket in Stage
1, so we insert e1 with the frequency of 1.

At the end of every time window, we check if there is any
sudden increase, sudden decrease, illegal burst, or legal burst.
At the same time, we evict the items which are not potential
burst items anymore.
Example 7: For e9, both e9.Cpre and e9.Ccur are below 50,
so we evict e9 from Stage 2.
Example 8: For e10, e10.Ccur is below 100, it means it is an
illegal burst, so we clean its timestamp to 0.
Example 9: For e11, e11.Ccur

e11.Cpre
= 350

150 ≥ 2, it means a
sudden increase happens. Therefore, we record the current
time window 8 into the timestamp field.
Example 10: For e12, e12.Ccur

e12.Cpre
= 120

400 ≤
1
2 , it means a sudden

decrease happens. And we find the width of the burst (i.e.,
8 − 3 = 5) is legal. Therefore, we report e12 as a burst with
a width of 5. Then we clean the timestamp of e12.
Bursts inside bursts: We have an extended version to detect
bursts inside bursts. The definition of bursts inside bursts is
similar to bracket matching: sudden increase corresponds to
left bracket and sudden decrease corresponds to right bracket.
To detect bursts inside bursts, the ideal algorithm works as
follows. We add a stack for each item in Stage 2. When a
sudden increase happens, we push a timestamp with current
time into the stack. If the stack is full, we delete the oldest
timestamp, which is at the bottom of the stack. We use an
array with two pointers (a header and a tail) to implement
the stack, and thus can delete the timestamp from the bottom
of the stack. When a sudden decrease happens, we pop the
timestamp (the most recent sudden increase) from the top of
the stack, and report the pair of sudden increase and sudden
decrease as bursts inside bursts. If the stack is empty, we do
nothing.

C. Optimization: Dynamic Buckets

Rational: Stage 1 in BurstSketch is used to filter out infre-
quent items and report potential burst items to Stage 2. We
notice that, for infrequent items, as the frequencies are low,
they do not need large counters. For potential burst items,
as the algorithm tries to report them to Stage 2 when the
frequencies reach Running Track threshold H , they also do not
need large counters with high probability. However, relatively
larger counters are needed compared with infrequent items.
To achieve memory efficiency, we can use smaller counters in
the buckets. Moreover, we wish the infrequent items can be
stored in small counters, while the burst items can be stored
in relatively larger counters.

Therefore, we propose an optimization named Dynamic
Bucket, which is designed to optimize Stage 1. In the opti-
mization, instead of recording full IDs in the original buckets
in Stage 1, we record fingerprint, which is the hash value
of the full item ID and has less bit width. We also use less

bits as counters, so the bucket size is much smaller. Our
main idea is to divide the fingerprint field and counter field
dynamically, in order to allocate different size of counters for
different items. At the beginning of each time window, each
bucket will use a division strategy that allocate more bits to
record fingerprint, and less bits to counters. As the items are
inserted, the frequency in the bucket grows. Once the counter
is going to overflow, the bucket is re-divided, and we use more
bits as counter and less bits as fingerprint. In this way, we
allocate larger counters for burst items and smaller counters
for infrequent items.
Data Structure: For the optimized version, the Stage 2 is the
same as the original BurstSketch. Therefore, we only describe
the data structure of Stage 1. In the optimization, the Stage 1
contains d arrays A1,A2, . . . ,Ad, and each array consists of
m dynamic buckets. As shown in figure 2, a dynamic bucket
is composed of a fingerprint field, a counter field, and an
indicator field. The sum of the fingerprint field’s width and the
counter field’s width is a fixed number w, and several division
schemes are predefined to decide how w bits are allocated
to both fields. The information about which division schemes
the dynamic bucket uses currently is encoded in the indicator
field. Suppose there are D predefined division schemes, then
dlog(D)e bits is needed for the indicator field in each dynamic
bucket. We sort the division schemes according bit width of
the counter field. The i-th scheme allocate ci bits for counter
field and pi bits for fingerprint field, and we encode it as i
in the indicator field. Same as the original BurstSketch, there
is d hash functions h1(.), h2(.), . . . , hd(.) associating with d
arrays respectively. In addition, another hash function hfp(.)
is needed to calculate the fingerprint for item IDs, which takes
IDs as input and output fingerprints of width w.
Insertion: Given the incoming item e, if e is in Stage
2, we insert it to Stage 2. Otherwise, we insert e into
Stage 1. We compute the fingerprint hfp(e) of the item
e, and hash it into d mapping buckets of Stage 1,
A1[h1(e)],A2[h2(e)], . . . ,Ad[hd(e)].

For each hashed bucket, suppose the current indicator field
is i. There are 3 cases for insertion.
Case 1: the bucket is empty. In this case, we truncate hfp(e)
and use lower pi bits to set the fingerprint field, and then set
the counter field to 1.
Case 2: the bucket is not empty, and lower pi bits of hfp(e)
do not match with the fingerprint field. In this case, the counter
field is decreased by 1. If the counter field become 0 after the
decrease, we empty the bucket.
Case 3: the bucket is not empty, and lower pi bits of hfp(e)
match the fingerprint field. In this case, we should increase the
counter field by 1. However, if the counter field is going to
overflow, we should move to the i+1 division scheme before
increasing the counter: re-divide the dynamic bucket, allocate
ci+1 bits for the counter field and fi+1 bits for the fingerprint
field, and set the fingerprint field to lower fi+1 bits of hfp(e),
set the counter field to the original value. When the frequency
is equal or larger than the Running Track threshold H , we try
to insert e into Stage 2, and clear it in Stage 1 if succeeded.
Cleaning Policy: For each dynamic bucket in Stage 1, we set
both the counter field and fingerprint field to 0. Besides, we

7

Fig. 2: Dynamic Buckets in the Stage 1 of the optimized BurstSketch.

set the indicator to 0, as the corresponding division scheme
has the smallest counter field.
A Running Example: Figure 2 shows a running example of
BurstSketch with the optimization. In the example, the sum w
of the fingerprint field’s width and the counter field’s width is
32. Two division schemes are predefined: if the indicator field
is 0, it indicates that the fingerprint field is 28 bits and the
counter field is 4 bits; if the indicator field is 1, it indicates that
the fingerprint field is 24 bits and the counter field is 8 bits.
Compared with the original bucket in Stage 1, the dynamic
bucket is much smaller. We use the same division schemes in
our evaluations, because we set Running Track threshold H
to 50 and an 8-bit counter is enough.
Example 1: To insert e1, we compute the fingerprint hfp(e1).
We find that the indicator is 0, and the bucket is empty, so we
set the fingerprint field to lower 28 bits of hfp(e1) (f1) and
set the counter field to 1.
Example 2: To insert e2, we compute the fingerprint hfp(e2).
We find that the indicator is 0, and the lower 28 bits of hfp(e2)
match f2, so we want to increase the counter field by 1.
However, the counter field is going to overflow. So we re-
divide the two fields, set the indicator to 1, and increase the
counter field to 17.
Example 3: To insert e5, we compute the fingerprint hfp(e5).
We find that the lower 28 bits of hfp(e5) do not match f3, so
we decrease the counter field to 4.

IV. MATHEMATICAL ANALYSIS

In this section, we provide theoretical analysis for Burst-
Sketch. First, we derive the error bound of Stage 1 in Section
IV-A. Then we show an upper bound of the number of distinct
items in Stage 2 in Section IV-C. Finally, we show that there
is no overestimation error in Section IV-D.

A. The Error Bound of Stage 1

Lemma 1. Given a time series data stream S which has fixed
window size. In a window w, for item ei, suppose ei does
not in Stage 2. Let Fi,j,k be the number of items mapping to
bucket Aj [k] in w except for item ei, fi be the frequency of ei
in w, Aj [k].ID be the ID of bucket Aj [k], Aj [k].count be the
frequency of bucket Aj [k]. Suppose fi > Fi,j,k, which means
ei is in the majority in this bucket, we have Aj [k].ID = ei
and fi − Fi,j,k 6 Aj [k].count 6 fi.

Proof. Since each item which is not ei can at most counteract
one ei, so there at least remains fi − Fi,j,k numbers of ei.

Therefore, Aj [k].ID = ei and fi − Fi,j,k 6 Aj [k].count.
Aj [k].count 6 fi is obvious because Aj [k].count increases
only when the item is equal to Aj [k].ID.

Theorem 2. Given a time series data stream S which has fixed
window size W . In a window w, suppose Aj [k].ID = ei, let
fi be the frequency of item ei in w. For 0 < ε < fi, we have

Pr{fi −Aj [k].count ≥ ε} 6 W − fi
mε

(1)

Proof. By the linearity of the expectation and the pairwise
independence of the hash functions, we have

E[Fi,j,k] = E[
∑
e 6=ei

feIhj(e)=hj(ei)] =
∑
e 6=ei

fe
1

m
=

W − fi
m

where fe is the frequency of item e in the window. By Markov
inequality, we have

Pr{Fi,j,k < ε} = 1− Pr{Fi,j,k ≥ ε} ≥ 1− W − fi
mε

Therefore, according to the lemma above,

Pr{fi −Aj [k].count ≥ ε} = 1− Pr{fi −Aj [k].count < ε}
6 1− Pr{fi > Fi,j,k ∧ Fi,j,k < ε}
= 1− Pr{Fi,j,k < ε}

6
W − fi
mε

B. The Error Bound of Optimized Stage 1

Theorem 3. Given a time series data stream S with fixed
window size W . Suppose D division schemes are predefined,
and i-th scheme allocate ci bits for counter field and pi bits
for fingerprint field. In a window w, suppose hfp(ei) matches
Aj [k].fingerprint, let fi be the frequency of item ei in w.
For ε > 0, we have

Pr{|fi−Aj [k].count| ≥ ε} 6 W − fi
m2pDε

+
(W − fi)(2

p0 − 1)

m2p0ε
(2)

Proof. Let Fi,j,k be the number of items that maps to bucket
Aj [k] and match the fingerprint field other than ei. Let Gi,j,k

be the number of items that maps to bucket Aj [k] and do not
match the fingerprint field other than ei. By the linearity of the

8

expectation of the pairwise independence of the hash function,
we have

E[Fi,j,k] = E[
∑
e 6=ei

feIhj(e)=hj(ei)∧hfp(e)=hfp(ei)]

6
∑
e 6=ei

fe
1

m2pD
=

W − fi
m2pD

E[Gi,j,k] = E[
∑
e 6=ei

feIhj(e)=hj(ei)∧hfp(e)6=hfp(ei)]

6
∑
e 6=ei

fe
1

m
· (1− 1

2p0
) =

(W − fi)(2
p0 − 1)

m2p0

where p0 is the largest fingerprint field, and pD is the
smallest fingerprint field. By Markov inequality, we have

Pr{fi −Aj [k].count ≥ ε} 6 E[fi −Aj [k].count]

ε

6
E[Fi,j,k]

ε

6
W − fi
m2pDε

Pr{Aj [k].count− fi ≥ ε} 6 E[Aj [k].count− fi]

ε

6
E[Gi,j,k]

ε

6
(W − fi)(2

p0 − 1)

m2p0ε

Therefore, we have

Pr{|fi −Aj [k].count| ≥ ε}
6Pr{fi −Aj [k].count ≥ ε}+ Pr{Aj [k].count− fi ≥ ε}

6
W − fi
m2pDε

+
(W − fi)(2

p0 − 1)

m2p0ε

C. Upper Bound of the Number of Distinct Items in Stage 2

Theorem 4. Given a data stream S. We assume each window
has W items. In each window, S obeys an arbitrary distribu-
tion. Let n be the number of distinct items in Stage 2, H be
the Running Track threshold. Then, we have

n 6
3W

H
(3)

Proof. For an item, it is in Stage 2 either because it has
already been in Stage 2 before this window or because it passes
through Stage 1 in this window. We denote f0 the frequency
of the item in the current window, f1 the frequency of the
item in the previous window, f2 the frequency of the item in
the window before the previous window. In the case of the
item that has already been in Stage 2, because of the cleaning
policy, we have f1 ≥ H ∨ f2 ≥ H . In another case, the item
passes through Stage 1, which means f0 ≥ H . In summary,
for an item in Stage 2, it satisfies f0 ≥ H∨f1 ≥ H∨f2 ≥ H .

For each window, the number of items whose frequency is not
less than the threshold is no more than W

H . We add up it and
derive the upper bound 3W

H .

D. Proof of no Overestimation Error

Theorem 5. For any item ei in Stage 2, let f̂i be the estimated
frequency of item ei in Stage 2, fi be the real frequency, then

f̂i 6 fi

Proof. For item ei, if it has already been in Stage 2 before
the current window, it is obvious that estimated frequency f̂i
is equal to the real frequency fi. If it passes through Stage 1
in the current window, the frequency before being stored in
Stage 2 should not be less than the Running Track threshold.
Because we set the threshold as the initial value of f̂i, we have
f̂i 6 fi.

V. DEPLOYMENT OF BURSTSKETCH ON APACHE FLINK

Apache Flink [52] is one of the state-of-the-art data stream
processing frameworks. A popular task on Flink is to con-
duct real-time data stream analytics with low latency, and
integrating sketches into Flink has received attention in re-
cent researches. For example, Condor [53] implements CM
sketches [25], HyperLogLog [54], DDSketch [55], etc. Based
on the sketch implementation, Condor supports the processing
of synopsis-based streaming jobs on the top of Flink. Some
other works [56]–[58] also propose the implementation of
sketch-based solutions on the top of Flink and evaluate their
performance. The motivation for deploying sketches on Flink
is as follows. First, sketch-based solutions can accelerate data
processing while providing guaranteed accuracy, and thus
is suitable for many tasks. Second, by deploying on Flink
and utilizing the APIs provided by Flink, the sketched-based
solutions can work in distributed scenarios.

In this section, we first describe a naı̈ve solution to detect
bursts that match our definition with the built-in method in
Flink, and then we describe the implementation of BurstSketch
on Flink.
A Naı̈ve Solution: Flink provides APIs for state management
while processing data streams. To detect burst corresponding
to our definition, a naı̈ve solution is to maintain stateful
information for each key, which includes the frequency in
current window, the frequency in last window, etc. We call
this solution Stateful Detector. For implementation, we extend
KeyedProcessFunction, and use a ValueState to record all
stateful information.
BurstSketch: For implementation of BurstSketch on Flink, we
extend KeyedProcessFunction and maintain BurstSketch in the
KeyedProcessFunction. As items with the same key are sent to
the same instance of KeyedProcessFunction, they will be in-
serted into the same BurstSketch that is owned by the instance.
This guarantees the correctness of the implementation.

9

VI. EXPERIMENTAL RESULTS

In this section, we show the experimental results of Burst-
Sketch. First, we describe the experimental setup in Section
VI-A. Second, we show how parameter settings affect the
performance of BurstSketch and the optimized version in
Section VI-B and Section VI-C, respectively. Third, in Section
VI-D, we evaluate the performance of BurstSketch and the
optimized version in three datasets, and compare them with the
strawman solution and prior works. Then, we provide analyses
on BurstSketch and the optimized version in Section VI-E.
Finally, we conduct experiments on Apache Flink.

A. Experimental Setup

Datasets: We use the following datasets in our experiments
and divide them into count-based windows and time-based
windows.
1) IP Trace Dataset: As many papers [12], [31] do, we
use anonymized IP trace streams from CAIDA [59]. CAIDA
identifies each flow of IP trace streams by the five-tuples:
source and destination IP address, source, and destination port,
protocol. We use the source and destination IP address in the
five-tuples as ID. We use 20M items. The number of bursts
of this dataset is 19551 when we set the window size as 40K
items. The duration in which the data was collected is 44.02s.
2) Web Page Dataset: The Web Page dataset is built from a
collection of web pages, which is downloaded from a website
[60]. Each item is 4 bytes long, representing the number of
distinct items in a web page. We use 20M items. The number
of bursts of this dataset is 6861 when we set the window size
as 70K items.
3) Network Dataset: The Network dataset contains users’
posting history on the stack exchange website [61]. Each item
has three values u, v, t , which means user u answered user
v’s question at time t. We use u as ID. We use 3M items.
The number of bursts of this dataset is 989 when we set the
window size as 70K items.
Implementation: The basic version and the optimized version
of BurstSketch and the strawman solution are implemented in
C++. We run the programs on a server with dual 6-core CPUs
(12 threads, Intel Xeon CPU E5-2620 @2.00 GHz) and 64GB
DRAM memory. In all experiments, we use MurmurHash3
[62] to implement the hash functions. All related codes of
BurstSketch are open-sourced and available at GitHub [63].
Metrics:
1) Recall Rate (RR): The ratio of the number of correctly
reported to the number of true instances.
2) Precision Rate (PR): The ratio of the number of correctly
reported to the number of reported instances.
3) F1 Score: 2·RR·PR

RR+PR . It is calculated from the precision and
recall of the test, and it is also a measure of a test’s accuracy.
4) Throughput: Million insertions per second (MIPS). We
repeat the experiments 5 times and average the results.

B. Experiments on Parameter Settings of BurstSketch

In this subsection, we measure the effects of some key pa-
rameters of BurstSketch, namely, the number of hash functions

d, the ratio of the memory usage of Stage 1 to the total memory
usage stage ratio, the number of cells in a bucket s, the ratio
of the Running Track threshold to the burst threshold l, and
the ratio between two adjoin windows for sudden increase
or sudden decrease detection k in Stage 2. We also adjust
the replacement strategy in Stage 1 and evaluate its effect on
the performance of BurstSketch. In the following experiments
except the replacement strategy, we set memory to 20 KB,
40 KB and 80 KB, We conduct experiments on the CAIDA
dataset, and use F1 score to evaluate the effects of parameters.
Effects of d (Figure 3(a)): The experiment results show that
the best value for d is from 1 to 3. In this experiments, we
vary the number of hash functions d from 1 to 5. For 20
KB, F1 score peaks when d = 1; for 40 KB, F1 score peaks
when d = 2; for 80 KB, F1 score peaks when d = 3. The
experimental results that when memory grows larger, more
hash functions can achieve better F1 score. However, more
hash functions mean more hash computation when inserting,
and thus lead to lower throughput. We also find that when
d is set to 1, BurstSketch can reach good F1 score, higher
than 0.97 when memory is 40 KB and higher than 0.98 when
memory is 80 KB. Therefore, we set d to 1 in default.
Effects of stage ratio (Figure 3(b)): The experimental
results show that the best value for stage ratio is from 0.4 to
0.5. In this experiment, we vary stage ratio from 0.2 to 0.6
in a step of 0.05. The results show that, for 20 KB, F1 score
peaks when stage ratio = 0.4. For 40 KB and 80 KB, F1
score peaks when stage ratio = 0.5. Therefore, the optimal
value of stage ratio is from 0.4 to 0.5, and we choose 0.5 in
default for other experiments.
Effects of s (Figure 3(c)): The experimental results show that
BurstSketch achieves high accuracy when the number of cells
in a bucket is 4. We compare the effects of different values of
s. As shown in figure, in all 3 different memory settings, F1
score increases fast as s grows from 1 to 4, and then increases
slowly when s grows from 4 to 16. Therefore, when s is set
to 4, BurstSketch achieves high F1 score, while larger s does
not bring much benefit. So we set s to 4 in default for other
experiments.
Effects of l (Figure 3(d)): The experimental results show that
the optimal value for l is from 0.1 to 0.2. In this experiment,
we compare the performance of BurstSketch when l varies
from 0.1 to 0.5. When the memory size is 20 KB and 80 KB,
F1 score peaks when l = 0.1. When the memory size is 40
KB, F1 score peaks when l = 0.2. Thus, the optimal value of
l is from 0.1 to 0.2, and we set l = 0.2.
Effects of the ratio k (Figure 3(e)): Our experimental
results show that BurstSketch performs well even when the
ratio k is very high. As the ratio k grows from 2 to 10, the
F1 score of BurstSketch decreases. However, the drops range
between 0.016 and 0.032, which indicates the performance of
BurstSketch is stable. For simplicity, we set k to 2 in default
in other experiments.
Effects of replacement strategy (Figure 3(f)): Our experi-
mental results show that the F1 Score of BurstSketch under the
three replacement strategies are close. In this experiment, we
compare the effects of three replacement strategies: Frequent,
probabilistic decay, and probabilistic replacement. Among

10

1 2 3 4 50 . 9
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

1
F1

 sc
ore

d

 2 0 K B 4 0 K B
 8 0 K B

(a) d

0 . 2 0 . 3 0 . 4 0 . 5 0 . 60 . 9
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

1

F1
 sc

ore

S t a g e R a t i o

 2 0 K B 4 0 K B
 8 0 K B

(b) stage ratio

1 2 4 8 1 60 . 6
0 . 7
0 . 8
0 . 9

1

F1
 sc

ore

s

 2 0 K B 4 0 K B
 8 0 K B

(c) s

0 . 1 0 . 2 0 . 3 0 . 4 0 . 50 . 9
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

1

F1
 sc

ore

l

 2 0 K B 4 0 K B
 8 0 K B

(d) l

2 4 6 8 1 00 . 9
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

1

F1
 sc

ore

k

 2 0 K B 4 0 K B
 8 0 K B

(e) k

2 0 4 0 6 0 8 0 1 0 0 1 2 00 . 9
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

1

F1
 sc

ore

M e m o r y (K B)

 F r e q u e n t
 P r o b a b i l i s t i c D e c a y
 P r o b a b i l i s t i c R e p l a c e m e n t

(f) replacement strategy

Fig. 3: Evaluation on parameter settings of BurstSketch.

three replacement strategies, F1 scores of Frequent and prob-
abilistic decay are sightly higher. Probabilistic replacement
is slow and complex, while Frequent is fast and easy to
implement. Therefore, we choose Frequent as the replacement
strategy for BurstSketch in this paper.
Analysis: Small d can achieve good accuracy, because higher
d results in more copies of items, which is memory consuming.
For stage ratio, as memory usage of Stage 1 becomes larger,
hash collisions are reduced. If memory usage in Stage 2 is
larger, more potential burst items can be monitored at the same
time. Therefore, the optimal ratio balances two stages. For
l, if it is smaller, items in Stage 1 is easier to be inserted
into Stage 2, so that the arrival rate of the item will be more
accurate. However, as l becomes smaller, the number of items
monitored in Stage 2 grows larger. making Stage 2 easier to be
full. Therefore, the optimal ratio balances these two situations.
Concrete Steps for Choosing Parameters: For parameter
d, we find that d = 1 is a good choice. For parameter
stage ratio, the optimal value is always large than 0.1 in
general. Therefore, we can try increasing stage ratio to find
the optimal value. For parameter s, we can try setting s from 2
to 16 to find the suitable value. For parameter l, the optimal l is

1 2 3 4 50 . 8
0 . 8 5

0 . 9
0 . 9 5

1

F1
 sc

ore

d

 2 0 K B 4 0 K B
 8 0 K B

(a) d

0 . 2 0 . 3 0 . 4 0 . 5 0 . 60 . 8 5

0 . 9

0 . 9 5

1

F1
 sc

ore

S t a g e R a t i o

 2 0 K B 4 0 K B
 8 0 K B

(b) stage ratio

1 2 4 8 1 60 . 5
0 . 6
0 . 7
0 . 8
0 . 9

1

F1
 sc

ore

s

 2 0 K B 4 0 K B
 8 0 K B

(c) s

0 . 1 0 . 2 0 . 3 0 . 4 0 . 50 . 9
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

1

F1
 sc

ore

l

 2 0 K B 4 0 K B
 8 0 K B

(d) l

2 4 6 8 1 00 . 8
0 . 8 5

0 . 9
0 . 9 5

1

F1
 sc

ore

k

 2 0 K B 4 0 K B
 8 0 K B

(e) k

2 0 4 0 6 0 8 0 1 0 0 1 2 00 . 9
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

1

F1
 sc

ore
M e m o r y (K B)

 F r e q u e n t
 P r o b a b i l i s t i c D e c a y
 P r o b a b i l i s t i c R e p l a c e m e n t

(f) replacement strategy

Fig. 4: Evaluation on parameter settings of the optimization.

always in the range between 0.1 and 0.5 in general. Therefore,
we can try setting l from 0.1 to 0.5 to find the optimal value.

C. Experiments on Parameter Settings of Optimization

In this subsection, we measure the effects of key parameters
for the optimized BurstSketch. The varied parameters in this
subsection is the same as the Section VI-B, including d,
stage ratio, s, l, k, and the replacement strategy. In the
following experiments except the replacement strategy, we set
memory to 20 KB, 40 KB and 80 KB, We conduct experiments
on the CAIDA dataset, and use F1 score to evaluate the effects
of parameters.
Effects of d (Figure 4(a)): The experiment results show
that the best value for d is 1 for the optimized BurstSketch.
We find that F1 score decreases as d grows for the optimized
BurstSketch. Therefore, we set d to be 1 in default for our
experiments.
Effects of stage ratio (Figure 4(b)): The experimen-
tal results show that the optimal value for the optimized
BurstSketch is between 0.25 to 0.5. For 20 KB, F1 score
peaks when stage ratio = 0.25; for 40 KB, F1 score
peaks when stage ratio = 0.4; for 80 KB, F1 score peaks

11

when stage ratio = 0.5. Therefore, the optimal value of
stage ratio is from 0.25 to 0.5, and we choose 0.5 in default
for other experiments.
Effects of s (Figure 4(c)): The experimental results show
that the optimized BurstSketch achieves high accuracy when
the number of cells in a bucket is 4. We find that F1 score
increases as s grows. When s is set to 4, the optimization
achieves high F1 score, while larger s does not bring much
benefit. So we set s to 4 in default in our experiments.
Effects of l (Figure 3(d)): The experimental results show
that the optimal value for l is from 0.2 to 0.3. For 20 KB
and 40 KB, F1 score peaks when l = 0.3; for 80 KB, F1
score peaks when l = 0.2. Therefore, the optimal value of l
is between 0.2 and 0.3, and we set l to 0.2 in default.
Effects of the ratio k (Figure 3(e)): Our experimental
results show that, the optimized BurstSketch achieves good
performance even when k is large. As the ratio k grows
from 2 to 10, the F1 score of BurstSketch drops slightly. For
simplicity, we set k to 2 in default in other experiments.
Effects of replacement strategy (Figure 3(f)): Our experi-
mental results show that the F1 score of the optimization under
the three replacement strategies are close. Considering that
Frequent is fast and easy to implement, we choose Frequent
as the default replacement strategy.

D. Evaluation of BurstSketch and the optimization.
In this section, we evaluate our BurstSketch and the opti-

mization by comparing them with the strawman solution and
prior works. We evaluate the precision, recall, F1 score and
throughput on three different datasets: CAIDA, Web Page and
Network. For prior works, we choose TopicSketch, CM-PBE-1
and CM-PBE-2. Note that no prior works focusing on the exact
same definition of bursts, and we choose above algorithms
because they are approximate algorithms, and the definition is
similar. The results are shown in Figure 5, 6, 7.
Precision: The experimental results show that, our Burst-
Sketch and the optimized version achieve high precision
stably. For three datasets, the precision of BurstSketch and
the optimization are close, and both are higher than 93%.

For precision, BurstSketch outperforms the strawman solu-
tion and three prior works in all three datasets. In the CAIDA
datasets, BurstSketch achieves on average 1.68, 2.01, 7.23 and
7.23 times higher precision than strawman solution, TopicS-
ketch, CM-PBE-1 and CM-PBE-2, respectively. In the Web
Page datasets, BurstSketch achieves on average 1.97, 1.60,
8.45 and 8.45 times higher precision than strawman solution,
TopicSketch, CM-PBE-1 and CM-PBE-2, respectively. In the
Network datasets, BurstSketch achieves on average 1.22, 1.51,
12.51 and 12.51 times higher precision than strawman solu-
tion, TopicSketch, CM-PBE-1 and CM-PBE-2, respectively.
Recall: The experimental results show that, our BurstSketch
and the optimized version achieve high recall stably. For three
datasets, when the memory usage ranges between 20 KB to
120 KB, recall of both algorithms is higher than 87%. Com-
pared with the basic version, the optimized BurstSketch can
achieve higher recall. On average, the optimized BurstSketch
achieves 1.016x recall in CAIDA, 1.027x recall in Web Page,
1.015x recall in Network.

For recall, BurstSketch also outperforms the strawman
solution and three prior works in all three datasets. In the
CAIDA datasets, BurstSketch achieves on average 3.97, 1.60,
1.24 and 1.24 times higher recall than strawman solution,
TopicSketch, CM-PBE-1 and CM-PBE-2, respectively. In the
Web Page datasets, BurstSketch achieves on average 20.70,
9.49, 1.38 and 1.38 times higher recall than strawman solution,
TopicSketch, CM-PBE-1 and CM-PBE-2, respectively. In the
Network datasets, BurstSketch achieves on average 2.75, 1.04,
1.26 and 1.26 times higher recall than strawman solution,
TopicSketch, CM-PBE-1 and CM-PBE-2, respectively.
F1 score: The experimental results show that, our BurstSketch
and the optimized version achieve high F1 score stably. For
three datasets, when the memory usage ranges between 20
KB to 120 KB, the F1 score of both algorithms is higher
than 0.90. Compared with the basic version, the optimized
BurstSketch can achieve higher F1 score. On average, the
optimized BurstSketch achieves 1.008x F1 score in CAIDA,
1.017x recall in Web Page, 1.008x recall in Network.

For F1 score, BurstSketch outperforms the strawman solu-
tion and three prior works in all three datasets. In the CAIDA
datasets, BurstSketch achieves on average 2.86, 1.80, 4.17 and
4.17 times higher F1 score than strawman solution, TopicS-
ketch, CM-PBE-1 and CM-PBE-2, respectively. In the Web
Page datasets, BurstSketch achieves on average 11.63, 5.59,
4.85 and 4.85 times higher F1 score than strawman solution,
TopicSketch, CM-PBE-1 and CM-PBE-2, respectively. In the
Network datasets, BurstSketch achieves on average 2.00, 1.27,
6.77 and 6.77 times higher F1 score than strawman solution,
TopicSketch, CM-PBE-1 and CM-PBE-2, respectively.
Throughput: The experimental results show that, our Burst-
Sketch and the optimized version achieve high throughput. For
three datasets, when the memory usage ranges between 20 KB
to 120 KB, the throughput of the basic BurstSketch ranges
between 25.12 and 27.16 Mips, and the throughput of the
optimized BurstSketch ranges between 22.49 and 24.89 Mips.
Compared with the basic version, the optimized BurstSketch
has slower throughput, because the optimization sacrifices
insertion speed for higher accuracy.

For all algorithms, the throughput is similar in all three
datasets. BurstSketch achieves much faster speed than the
strawman solution and three prior works. BurstSketch achieves
1.56x higher throughput than strawman solution on average,
16.14x higher throughput than TopicSketch on average, and
79.98x higher throughput than CM-PBE-1 and CM-PBE-2 on
average.
Summary: BurstSketch achieves high F1 score and through-
put, and the performance is stable in all three datasets. The F1
score and throughput of BurstSketch is much higher than the
strawman solution and three prior works, which indicates that
BurstSketch is much more accurate and faster. The optimized
version sacrifices the processing speed for higher recall rate
and F1 score. The experimental results show that its through-
put is slightly slower but still higher than 20 MIPS, and it
improves the recall rate by up to 6%. It is noticeable that the
recall rate of the basic version is already high, and therefore
the improvement of the optimization is nontrivial.

12

2 0 4 0 6 0 8 0 1 0 0 1 2 00
2 0
4 0
6 0
8 0

1 0 0
Pr

ec
isi

on
 (%

)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(a) Precision

2 0 4 0 6 0 8 0 1 0 0 1 2 00
2 0
4 0
6 0
8 0

1 0 0

Re
ca

ll (
%)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(b) Recall

2 0 4 0 6 0 8 0 1 0 0 1 2 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 sc

ore

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(c) F1 score

2 0 4 0 6 0 8 0 1 0 0 1 2 00
5

1 0
1 5
2 0
2 5

Th
rou

gh
pu

t (M
ips

)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(d) Throughput

Fig. 5: Experiments on CAIDA datasets.

2 0 4 0 6 0 8 0 1 0 0 1 2 00
2 0
4 0
6 0
8 0

1 0 0

Pr
ec

isi
on

 (%
)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(a) Precision

2 0 4 0 6 0 8 0 1 0 0 1 2 00
2 0
4 0
6 0
8 0

1 0 0

Re
ca

ll (
%)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(b) Recall

2 0 4 0 6 0 8 0 1 0 0 1 2 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 sc

ore
M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(c) F1 score

2 0 4 0 6 0 8 0 1 0 0 1 2 00
5

1 0
1 5
2 0
2 5
3 0

Th
rou

gh
pu

t (M
ips

)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(d) Throughput

Fig. 6: Experiments on Web Page datasets.

2 0 4 0 6 0 8 0 1 0 0 1 2 00
2 0
4 0
6 0
8 0

1 0 0

Pr
ec

isi
on

 (%
)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(a) Precision

2 0 4 0 6 0 8 0 1 0 0 1 2 00
2 0
4 0
6 0
8 0

1 0 0

Re
ca

ll (
%)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(b) Recall

2 0 4 0 6 0 8 0 1 0 0 1 2 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 sc

ore

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(c) F1 score

2 0 4 0 6 0 8 0 1 0 0 1 2 00
5

1 0
1 5
2 0
2 5

Th
rou

gh
pu

t (M
ips

)

M e m o r y (K B)

 S t r a w m a n B u r s t S k e t c h
 D y n a m i c T o p i c S k e t c h
 C M - P B E - 1 C M - P B E - 2

(d) Throughput

Fig. 7: Experiments on Network datasets.

E. Analysis on BurstSketch and Optimization

In this section, we analyse BurstSketch and the optimization
from several aspects. First, we evaluate the minimal memory
usage to achieve an acceptable performance in data streams
of different speeds. Second, we evaluate the performance in
detecting bursts inside bursts. Third, we evaluate how the
duration of the burst effects the performance. Fourth, we
compare their performances in time-based windows and count-
based windows. Finally, we measure the effectiveness of Stage
1 in BurstSketch and the optimization.
Memory usage in burst detection in data streams of
different speed (Figure 8(a)): In this experiment, we vary
the speed of the input data stream (from 10K items to 80K
items per window), and check how much memory BurstSketch
and the optimization have to use to achieve an F1 score of
0.95. The experimental results show that the memory usage
to achieve an F1 score of 0.95 grows linearly with the increase
of the speed of the data stream. And optimized BurstSketch

require less memory.

Bursts inside bursts (Figure 8(b)): The results show that
BurstSketch and the optimization performs well in detecting
bursts inside bursts. With 20 KB, BurstSketch and the opti-
mization can achieve an F1 score higher than 0.94. And the F1
score grows rapidly as memory increases for both BurstSketch
and the optimization.

The influence of the duration of bursts (Figure 8(c)): The
experimental results reveal that as the duration of burst grows
larger, the RR of BurstSketch and the optimization increases.
The reason is that the streams with larger duration tend to
be stable, and our algorithm detects this kind of bursts more
effectively.

Performance under time-based and count-based windows
(Figure 9(a)): Different from count-based windows, the num-
ber of items per window could vary a lot in time-based
windows. The experimental results show that the performance
under count-based windows is slightly lower than that under

13

0 1 2 3 4 5 6 7 8 90
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

Me
mo

ry
(K

B)

i t e m (1 0 K) p e r w i n d o w

 B u r s t S k e t c h D y n a m i c

(a) memory usage

2 0 4 0 6 0 8 0 1 0 0 1 2 00 . 9 4
0 . 9 5
0 . 9 6
0 . 9 7
0 . 9 8
0 . 9 9

1

F1
 sc

ore

M e m o r y (K B)

 B u r s t S k e t c h D y n a m i c

(b) bursts inside bursts

0 1 2 3 4 5 6 7 8 9
9 0
9 2
9 4
9 6
9 8

1 0 0

Re
ca

ll (
%)

D u r a t i o n

 B u r s t S k e t c h D y n a m i c

(c) bursts’ duration

Fig. 8: Analyses on BurstSketch and the optimization, including memory usage for different data stream speed, detecting burst
inside burst, and performance under different bursts’ duration.

Count-based Time-based
0.90

0.92

0.94

0.96

0.98

1.00

F1
 s

co
re

BurstSketch
Dynamic

(a) window type

BurstSketch Dynamic
0.90

0.92

0.94

0.96

0.98

1.00

Filtered items
Passed bursts

(b) effectiveness of Stage 1

Fig. 9: Analyses on BurstSketch and the optimization, includ-
ing window type and the effectiveness of Stage 1.

time-based windows. This reveals that the accuracy of our
BurstSketch and the optimization is insensitive to whether the
number of items in each window is equal. The reason behind
is that, no matter whether the number of items in each window
is equal, after the items are filtered by Stage 1, the number
of items (potential bursts) that reach Stage 2 varies a lot per
window.
Effectiveness of Stage 1 (Figure 9(b)): In this experiments we
measure the ratio of filtered items to the whole items (Filtered
items), and the ratio of bursts that pass Stage 1 to all bursts
(Passed bursts). The experimental results show that Stage 1 is
highly effective in filtering out non-burst items, since more
than 97% of the items in the data stream are filtered out.
More than 99% real bursts can pass Stage 1, which shows
that Stage 1 has a very high recall rate. Moreover, we find
that with optimization, BurstSketch filters less items but let
more bursts go through, which explains why the optimization
achieves better performance.

F. Experiments on Apache Flink

In this section, we compare our BurstSketch with Stateful
Detector on Apache Flink.
Experimental setup: We conduct cluster experiments and
local experiments, separately. For cluster experiments, our
cluster consists of one master node and 4 worker nodes. Each
node has 4 virtual CPU cores of Intel XEON Platinum 8369B,
and 8 GB main memory. For local experiments, we only
conduct them in the local mode of master node. For both
cluster and local experiments, we configure the memory size
of job manager and task manager to be 1 GB, and run 5 times
to compute average throughput for BurstSketch and Stateful

1 2 3 41 . 2
1 . 5
1 . 8
2 . 1
2 . 4
2 . 7

Th
rou

gh
pu

t (M
ips

)

P a r a l l e l i s m

 B u r s t s k e t c h S t a t e f u l D e t e c t o r

(a) Local

1 2 3 40 . 5
1

1 . 5
2

2 . 5
3

Th
rou

gh
pu

t (M
ips

)

N o d e

 B u r s t s k e t c h S t a t e f u l D e t e c t o r

(b) Cluster

Fig. 10: Comparison between BurstSketch and Stateful Detec-
tor on Apache Flink

Detector. The provided data is constructed based on CAIDA
[59] datasets. we deploy a Hadoop Distributed File System
(HDFS) in our Flink cluster as the data source, in which we
set the master node as NameNode and the worker nodes as
DataNodes. In Flink experiments, each node uses Flink 1.13.1,
Java 11 and Hadoop 2.8.3 running on Ubuntu 20.04 LTS.
Local Experiments (Figure 10(a)): We vary the parallelism
from 1 to 4 and evaluate the throughput. The experimental re-
sults show that BurstSketch achieves 1.03x throughput higher
than Stateful Detector. When the parallelism grows from 1 to
3, the throughput of BurstSketch increases from 1.885 Mips
to 2.531 Mips, and that of Stateful Detector increases from
1.825 Mips to 2.526 Mips. When the parallelism grows from
3 to 4, the throughput of BurstSketch drops from 2.531 Mips
to 2.459 Mips, and that of Stateful Detector drops from 2.526
Mips to 2.440 Mips. The reason why throughput drops may be
that the master node has only 4 CPU cores, and there are other
process such as job manager, Hadoop NameNode running in
the node. When the parallelism is 3, the CPU utilization is
already high, and the increase of parallelism can only lead to
the drop of throughput.
Cluster Experiments (Figure 10(b)): We vary the number of
worker nodes in the Flink cluster from 1 to 4 and evaluate the
throughput. As shown in figure, when the number of worker
nodes increases from 1 to 4, the throughput of BurstSketch
increases from 1.969 Mips to 2.821 Mips, and that of Stateful
Detector increases from 1.826 Mips to 2.513 Mips. We find
that in cluster experiments, the throughput of BurstSketch is
1.11x higher than that of Stateful Detector.
Analysis: The experimental results show that the throughput of
BurstSketch increases when the parallelism and the number of

14

worker nodes grow in reasonable ranges. Besides, BurstSketch
achieves higher throughput than Stateful Detector in both
local and cluster settings. The reason behind is that, Stateful
Detector should maintain a state for each key, and access the
corresponding state each time an item is processed, and the
size of all states can be large when the dataset is large. Burst-
Sketch, however, only maintains and accesses limited memory
for each parallel instance. Therefore, compared with Stateful
Detector, BurstSketch better utilizes the caches, improving the
performance of throughput.

VII. CONCLUSION

Real-time burst detection in high-speed data streams is
important in many applications. This paper proposes a novel
algorithm called BurstSketch for real-time burst detection,
which is fast, memory-efficient, and accurate. Experimental
results show that BurstSketch can achieve high accuracy with
fairly limited memory usage in real-time burst detection for
high-speed items.

ACKNOWLEDGMENT

This work is supported by Key-Area Research and Devel-
opment Program of Guangdong Province 2020B0101390001,
National Natural Science Foundation of China (NSFC) (No.
U20A20179,61832001).

REFERENCES

[1] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “Burstsketch:
Finding bursts in data streams,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2375–2383.

[2] J. Kleinberg, “Bursty and hierarchical structure in streams,” KDD, 2003.
[3] Q. He, K. Chang, and E.-P. Lim, “Using burstiness to improve clustering

of topics in news streams,” in Seventh IEEE International Conference
on Data Mining (ICDM 2007). IEEE, 2007, pp. 493–498.

[4] Q. He, K. Chang, E.-P. Lim, and J. Zhang, “Bursty feature represen-
tation for clustering text streams,” in Proceedings of the 2007 SIAM
International Conference on Data Mining. SIAM, 2007, pp. 491–496.

[5] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos, “Identifying
similarities, periodicities and bursts for online search queries,” in
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, 2004, pp. 131–142.

[6] T. Lappas, B. Arai, M. Platakis, D. Kotsakos, and D. Gunopulos, “On
burstiness-aware search for document sequences,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2009, pp. 477–486.

[7] G. Dong, W. Yang, F. Zhu, and W. Wang, “Discovering burst patterns
of burst topic in twitter,” Computers & Electrical Engineering, vol. 58,
pp. 551–559, 2017.

[8] D. Paul, Y. Peng, and F. Li, “Bursty event detection throughout histo-
ries,” in 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 2019, pp. 1370–1381.

[9] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang, “Topicsketch:
Real-time bursty topic detection from twitter,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 8, pp. 2216–2229, 2016.

[10] N. Parikh and N. Sundaresan, “Scalable and near real-time burst
detection from ecommerce queries,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2008, pp. 972–980.

[11] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro,
“Identifying frequent items in sliding windows over on-line packet
streams,” in Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, 2003, pp. 173–178.

[12] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian:
Separate and guard hot items in data streams,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 2584–2593.

[13] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, “Randomized
admission policy for efficient top-k and frequency estimation,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[14] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in SIGMOD, 2016.

[15] X. Zhang and D. Shasha, “Better burst detection,” in 22nd International
Conference on Data Engineering (ICDE’06). IEEE, 2006, pp. 146–146.

[16] Y. Zhu and D. Shasha, “Efficient elastic burst detection in data streams,”
in SIGKDD, 2003.

[17] Z. Yuan, Y. Jia, and S. Yang, “Online burst detection over high speed
short text streams,” in ICCS, 2007.

[18] R. Maison and M. Zakrzewicz, “Prediction-based load shedding for burst
data streams,” Bell Labs Technical Journal, 2011.

[19] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin, “Sliding-window top-k
queries on uncertain streams,” Proceedings of the VLDB Endowment,
vol. 1, no. 1, pp. 301–312, 2008.

[20] Y. Tong, L. Chen, Y. Cheng, and P. S. Yu, “Mining frequent itemsets
over uncertain databases,” arXiv preprint arXiv:1208.0292, 2012.

[21] Y. Tong, X. Zhang, and L. Chen, “Tracking frequent items over
distributed probabilistic data,” World Wide Web, vol. 19, no. 4, pp. 579–
604, 2016.

[22] Y. Tong, L. Chen, and P. S. Yu, “Ufimt: an uncertain frequent itemset
mining toolbox,” in Proceedings of the 18th ACM SIGKDD international
conference on knowledge discovery and data mining, 2012, pp. 1508–
1511.

[23] Y.-X. Tong, L. Chen, and J. She, “Mining frequent itemsets in correlated
uncertain databases,” Journal of Computer Science and Technology,
vol. 30, no. 4, pp. 696–712, 2015.

[24] Y. Tong, L. Chen, and B. Ding, “Discovering threshold-based frequent
closed itemsets over probabilistic data,” in 2012 IEEE 28th International
Conference on Data Engineering. IEEE, 2012, pp. 270–281.

[25] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms, 2005.

[26] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” ACM SIGMCOMM CCR, 2002.

[27] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Automata, Languages and Programming, 2002.

[28] A. Shrivastava, A. C. Konig, and M. Bilenko, “Time adaptive sketches
(ada-sketches) for summarizing data streams,” in SIGMOD, 2016.

[29] Q. Huang, S. Sheng, X. Chen, Y. Bao, R. Zhang, Y. Xu, and G. Zhang,
“Toward {Nearly-Zero-Error} sketching via compressive sensing,” in
18th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 21), 2021, pp. 1027–1044.

[30] H. Li, Q. Chen, Y. Zhang, T. Yang, and B. Cui, “Stingy sketch: a sketch
framework for accurate and fast frequency estimation,” Proceedings of
the VLDB Endowment, vol. 15, no. 7, pp. 1426–1438, 2022.

[31] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: adaptive and fast network-wide
measurements,” in SIGCOMM, 2018.

[32] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in ICDT, 2005.

[33] D. Ting, “Data sketches for disaggregated subset sum and frequent item
estimation,” in SIGMOD, 2018.

[34] G. Cormode and S. Muthukrishnan, “What’s new: Finding significant
differences in network data streams,” IEEE/ACM Transactions on Net-
working, 2005.

[35] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. A. Dinda,
M.-Y. Kao, and G. Memik, “Reversible sketches: enabling monitoring
and analysis over high-speed data streams,” IEEE/ACM Transactions on
Networking, 2007.

[36] K. Balachander, S. Subhabrata, Z. Yin, and C. Yan, “Sketch-based
change detection: methods, evaluation, and applications,” in SIGCOMM,
2003.

[37] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From
big bang to big crunch,” in SIGMOD, 2016.

[38] X. Gou, L. Zou, C. Zhao, and T. Yang, “Graph stream sketch: Summa-
rizing graph streams with high speed and accuracy,” IEEE Transactions
on Knowledge and Data Engineering, 2022.

[39] K. S. Tai, V. Sharan, P. Bailis, and G. Valiant, “Sketching linear
classifiers over data streams,” in SIGMOD, 2018.

[40] G. Cormode, “Sketch techniques for approximate query processing,”
TRDB, 2011.

[41] P. Wang, Y. Qi, Y. Zhang, Q. Zhai, C. Wang, J. C. Lui, and X. Guan,
“A memory-efficient sketch method for estimating high similarities in
streaming sets,” in SIGKDD, 2019.

15

[42] Y. Wang, P. Lin, and Y. Hong, “Distributed regression estimation with
incomplete data in multi-agent networks,” Science China Information
Sciences, 2018.

[43] T. Zheng, G. Chen, and et al., “Real-time intelligent big data processing:
technology, platform, and applications,” Science China Information
Sciences, 2019.

[44] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” VLDB Endowment, 2016.

[45] D. Ting, “Count-min: Optimal estimation and tight error bounds using
empirical error distributions,” in SIGKDD, 2018.

[46] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proceedings of the 2017
ACM international conference on Management of Data, 2017, pp. 775–
787.

[47] P. Wang, Y. Qi, Y. Zhang, Q. Zhai, C. Wang, J. C. Lui, and X. Guan,
“A memory-efficient sketch method for estimating high similarities in
streaming sets,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 25–33.

[48] Y. Zhao, Y. Zhang, Y. Li, Y. Zhou, C. Chen, T. Yang, and B. Cui,
“Minmax sampling: A near-optimal global summary for aggregation in
the wide area,” in Proceedings of the 2022 International Conference on
Management of Data, 2022.

[49] J. Jiang, F. Fu, T. Yang, and B. Cui, “Sketchml: Accelerating distributed
machine learning with data sketches,” in SIGMOD, 2018.

[50] Y. Peng, J. Guo, F. Li, W. Qian, and A. Zhou, “Persistent bloom filter:
Membership testing for the entire history,” in SIGMOD, 2018.

[51] Z. Wei, G. Luo, K. Yi, X. Du, and J.-R. Wen, “Persistent data sketching,”
in SIGMOD, 2015.

[52] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[53] R. Poepsel-Lemaitre, M. Kiefer, J. von Hein, J.-A. Quiané-Ruiz, and
V. Markl, “In the land of data streams where synopses are missing, one
framework to bring them all,” Proceedings of the VLDB Endowment,
vol. 14, no. 10, pp. 1818–1831, 2021.

[54] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Discrete
Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 2007, pp. 137–156.

[55] C. Masson, J. E. Rim, and H. K. Lee, “Ddsketch: A fast and fully-
mergeable quantile sketch with relative-error guarantees,” arXiv preprint
arXiv:1908.10693, 2019.

[56] J. Chakkaradhari, “Large scale centrality measures in apache flink and
apache giraph,” Ph.D. dissertation, Technical University of Berlin, 2014.

[57] S. Katragadda, R. Gottumukkala, M. Pusala, V. Raghavan, and J. Wo-
jtkiewicz, “Distributed real time link prediction on graph streams,” in
2018 IEEE International Conference on Big Data (Big Data). IEEE,
2018, pp. 2912–2917.

[58] A. Kontaxakis, N. Giatrakos, and A. Deligiannakis, “A synopses data
engine for interactive extreme-scale analytics,” in Proceedings of the
29th ACM International Conference on Information & Knowledge
Management, 2020, pp. 2085–2088.

[59] “The caida anonymized 2016 internet traces.”
http://www.caida.org/data/overview/.

[60] “Real-life transactional dataset.” http://fimi.ua.ac.be/data/.
[61] “The Network dataset Internet Traces.” http://snap.stanford.edu/data/.
[62] “Murmurhash,” https://github.com/aappleby/smhasher.
[63] “Source code related to BurstSketch,” https://github.com/mrj222/burst-

sketch.

Ruijie Miao
Ruijie Miao is an undergraduate student of Peking
University. His major is Computer Science. His
research interests include network measurement and
streaming algorithms.

Zheng Zhong
Zheng Zhong is an undergraduate student of Peking
University. His research interests include Streaming
processing, Bloom filters, and data structure. He
published papers in SIGMOD and SIGKDD. He is
also the reviewer of SIGKDD2022.

Jiarui Guo
Jiarui Guo is an undergraduate student of Peking
University majoring in Computer Science. His re-
search interests include approximation algorithms in
data streams and computer network systems.

Zikun Li
Zikun Li received B.S. degree in Computer Sci-
ence from Peking University in 2021. His research
interests include networked systems, database and
machine learning.

Tong Yang
Tong Yang received the PhD degree in computer
science from Tsinghua University in 2013. He vis-
ited the Institute of Computing Technology, Chinese
Academy of Sciences (CAS). He is currently an
Associate Professor with School of Computer Sci-
ence, Peking University. His research interests in-
clude network measurements, sketches, IP lookups,
Bloom filters, and KV stores. He has published more
than ten papers in SIGCOMM, SIGKDD, SIGMOD,
NSDI, etc.

Bin Cui
Bin Cui is a professor in School of Computer
Science and Director of Institute of Network Com-
puting and Information Systems, at Peking Univer-
sity. His research interests include database system
architectures, query and index techniques, big data
management and mining. He is a senior member of
IEEE, member of ACM and distinguished member
of CCF.

