
2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

Cuckoo Counter: A Novel Framework for Accurate Per-
Flow Frequency Estimation in Network Measurement

Jiuhua Qi∗, Wenjun Li∗†‡, Tong Yang‡, Dagang Li∗ and Hui Li∗†
∗Shenzhen Graduate School, Peking University, †RCNC, Peng Cheng Laboratory, ‡EECS, Peking University

Email: jiuhuaqi@pku.edu.cn, wenjunli@pku.edu.cn, yang.tong@pku.edu.cn, dgli@pku.edu.cn, lih64@pkusz.edu.cn

Abstract—Per-flow frequency estimation plays a fundamental
role in network measurement. As a probabilistic data structure,
sketch has been extensively investigated and used for per-
flow frequency estimation, but most sketch-based proposals in
previous literatures cannot achieve high accuracy and high speed
simultaneously. Moreover, because each insertion to a sketch
causes increment in multiple entries, the over-estimation error
will accumulate quickly over time. In this paper, we propose
Cuckoo Counter, a compact and accurate framework for per-
flow frequency estimation, which employs three novel ideas: (1)
kicking out conflicting flows instead of using multiple entries
counts to improve accuracy; (2) using different sizes of entries
to insulate mice flows from elephant flows, which can handle the
skewed data streams efficiently and improve memory utilization;
(3) a Cuckoo-like replacement strategy for mice flows, so as
to maintain accurate records for elephant flows. To verify the
effectiveness and efficiency of our framework, we compared it
with two well-known sketches as well as the recent proposed
Augmented sketch and Pyramid sketch. Extensive experimental
results on three different types of test datasets show that Cuckoo
Counter outperforms these sketches considerably.

Index Terms—Network measurement, Frequency Estimation,
Sketch

I. INTRODUCTION

Per-flow frequency estimation in network measurement can
provide significant information for network operations, such
as quality of service, congestion control, capacity planning
and anomaly detection [1]–[9]. Many algorithms have been
proposed [10]–[13]. In real network scenarios (phone call,
videos sensor data network traffic, web clicks and crawls),
the massive data comes as a high-speed stream [14]–[17]
. However, the traditional method of network measurement
is sample-based, which has low accuracy. Nevertheless, it
is impractical to record all flows accurately in high-speed
streams. So, using sketch a probabilistic data structure to
estimate flows frequencies has become popular and widely
accepted [8] [16] [18]–[21] . There are many classic sketches
proposed in the literatures [4] [22]–[25]. Sketches provide fine-
grained measurements and use a fixed small size of memory to
summarize traffic statistics of all flows, causing only boundary

This work is supported by NSFC (61671001, 61672061), Key Ar-
eas R&D Program of Guangdong (2019B010137001), National Keystone
R&D Program of China (2017YFB0803204, 2016YFB1000304, 2018YF-
B1004403), PCL Future Regional Network Facilities for Large-scale Ex-
periments and Applications (PCL2018KP001), Shenzhen Peacock Innovation
Program (KQJSCX20180323174744219) and Shenzhen Research Program
(JCYJ20170306092030521). Corresponding authors H. Li and W. Li are also
with Shenzhen Key Lab of Information Theory & Future Internet Architecture.

errors. Furthermore, sketches use multiple hash functions to
map a flow to multiple entries to improve the accuracy. But
higher accuracy requires more hash functions, which results
in lower speed. Hence, most sketches cannot achieve high
accuracy and high speed simultaneously.

Another characteristic of network traffic is that it is non-
uniformly distributed [8]. In other words, most flows have low
frequencies (< 16, called mice flows), while a few flows have
very high frequencies (> 40000, called elephant flows). Gen-
erally, the network traffic distribution conforms to the Zipfian
[26] distribution, while most exiting sketches (CM sketches
[22], CU sketches [4] and Count sketches [23]) that use entries
of the same size do not work well for the network traffic.
That is because if the entry size is allocated according to the
size of elephant flows, the higher bits in many entries used to
store mice flows are all wasted. This results in low memory
utilization. But, if the entry size is allocated according to the
size of mice flows, the entry overflow will result in very low
measurement accuracy of the elephant flows. The Augmented
sketch [14] uses an additional filter on existing sketch S to
capture elephant flows dynamically, but when inserting a flow,
it will cause many exchanges between the sketch and the filter.
The Pyramid sketch [27] proposed lately uses a hierarchical
data structure to dynamically accommodate elephant flows and
mice flows. While it still requires multiple entries updated for
each insertion, which affects the performance. Since for the
same memory size, if a flow is counted as many entries, there
will be fewer entries to exactly estimate different flows, which
will increase the probability of hash collisions and thus affect
the overall error.

In this paper, we propose Cuckoo Counter, a compact and
accurate framework for per-flow frequency estimation. Cuckoo
Counter maintains a similar data structure as the Cuckoo hash
[28], with two arrays of N buckets each, and four entries
in each bucket, but the entries are of different sizes. Each
entry consists of two parts, i.e.) fingerprint and counter. The
key ideas of our Cuckoo Counter are as follows. (1) We
leverage entries with different sizes to count the frequencies of
mice flows and elephant flows respectively, which can handle
skewed data streams efficiently and improve the memory
utilization. The reason we assign four entries to each bucket
is that when light collisions occur, we keep flows that are all
conflicting in the same bucket as much as possible to avoid
kick-outs across buckets. When the current counter of the entry
overflows, we relocate the stored flow to a larger entry in the

978-1-7281-4387-3/19/$31.00 © 2019 IEEE

same or the alternative bucket, so as to guarantee that elephant
flows are placed in entries with large size. We fixed each
bucket to a 64-bit size so that we only need one memory access
for per bucket operation, which would achieve fast speed.
(2) When serious conflicts occur, we use partial-key cuckoo
hashing [29] to kick out flows that are in the smallest entries,
thus ensuring that we always kick out mice flows. Therefore,
we merely introduce errors among mice flows and make sure
that the statistics of the elephant flows are accurate, because
elephant flows are generally considered more important than
mice flows in most cases. (3) We only use one entry to store
the frequency of a flow while ensuring high precision and
high speed, thus improving memory utilization. However, we
need to introduce fingerprints to identify different flows in
the same bucket, which will cause small memory overhead
but easy to distinguish elephant flows. Our experiments also
show that this memory consumption is entirely acceptable. The
experiments illustrate that our Cuckoo Counter improves the
insertion throughput by 30%, query throughput by 70% and
accuracy by 230% compared with the state-of-the-art Pyramid
sketch on average. The source code is available at Github [30].

The rest of this paper is organized as follows. In Section II,
we first briefly summarize the related work. We describe our
Cuckoo Counter in detail in Section III. Section IV provides
experimental results. Finally, Section V draws conclusion and
the future work.

II. RELATE WORK

The most popular per-flow frequency estimation method
in network measurement is sketches. The classical frequency
estimation sketches include CM sketches [22] , CU sketches
[4], Count sketches [23], and the recently frequency estimation
sketches are Augmented sketch [14] and Pyramid sketches
[27]. The most widely used sketch is the CM sketch. A CM
sketch consists of d arrays, denoted by A1···Ad, where each
array maintains W entries. There are d hash functions, h1···hd.
When inserting a flow e, the CM sketch adds all the d mapped
entries, i.e.) A1[h1(e)] · · ·Ai[hi(e)], (1 ≤ hi(e) ≤ w, 1 ≤ i ≤
d) by 1. When querying a flow e’, it returns the minimum
values of the d mapped entries, i.e.) min(1≤i≤d)Ai[hi(e

′)].
Due to hash collisions, the same entry may be shared by
different flows, which results a high error for mice flows. The
CU sketch processes are similar to the CM sketch expect that
it only increases the minimum entries of the d mapped entries
by 1 when inserting. The Count sketch is also similar to the
CM sketch except for assigning two hash functions to each
array. The Augmented sketch uses an additional filter (a queue
with k entries) on existing sketch S to capture elephant flows
dynamically. It uses prefilter to increase accuracy but increases
complexity and results slower update and query speed. The
Pyramid sketch is a layered data structure with λ layers.
The entries of layer i are half of layer i − 1, i ⊆ [1, λ]. It
can dynamically adapt to mice flows and elephant flows in
network traffic and has high speed and accuracy, but it still
uses multiple entries to estimate a flow, which results in low
memory utilization and large error.

There are two commonly algorithms of Counter vari-
ants(Counter Braids [11] and Randomized Counter Sharing
[12]) are used to estimate per-flow frequency. In Counter
Braids, due to the post process, the query speed is significantly
slow. The Randomized Counter Sharing sacrifices its accuracy
for high speed. So, both of them cannot provide high speed
and high accuracy at the same time. There are also some other
typical counter-based data structures in network measurement,
but most of them are used for finding the top-k frequent flows,
such as Lossy Counting [1], Space-Saving [31] and Frequent
[32].

We are inspired by the Cuckoo hashing [28]. Cuckoo
hashing is proposed to solve the hash conflict problem. It
has the characteristics of high space efficiency and fast query
speed. The Cuckoo filter [29] is a compact variant of a cuckoo
hash table that stores only fingerprints. The Cuckoo filter is
primarily used to check if a flow exists. To the best of our
knowledge, Cuckoo hashing or Cuckoo filter has not been
used to perform per-flow frequency estimation in data streams.
Meanwhile, the Cuckoo filter is not suitable for frequency
estimation in data streams, because it assigns the same sizes
of entries and kicks out too many times resulting in very low
speed.

Summary: Although there are various algorithms to esti-
mate the frequency of per-flow in network traffic, no existing
methods can achieve high accuracy and speed by storing the
frequency information of a flow only once.

III. CUCKOO COUNTER FRAMEWORK

In this section, we describe the data structure and algorithm
of our Cuckoo Counter. The algorithm includes insertion,
query, and deletion.

A. Data Structure

As shown in Figure 1, our Cuckoo Counter consists of two
arrays, A1 and A2. Each array has N buckets, and each bucket
consists of four entries with different sizes, entry1, entry2,
entry3, entry4. Entry is the unit of our Cuckoo Counter. The
four entries are 12 bits, 12 bits, 16 bits, 24 bits respectively.
Therefore, each bucket is 64 bits, and only one memory access
is required for each bucket operation. Each entry consists of
two parts, fingerprint and counter. We employ the fingerprint
of the key as identification of the flow. All fingerprints take
up 8bits memory size, therefore, the sizes of counters are 4
bits∼16 bits. Entry1.counter and entry2.counter are 4 bits.
Entry3.counter is 8 bits and entry4.counter is 16 bits. All
these entries can be used to estimate and store the mice flows.
But the elephant flows only are stored in entry4. Entry3

acts as a buffer for counting between mice flows and elephant
flows. It can deposit both mice and medium-size flows.

We introduce partial-key cuckoo hashing [29] to derive
a flows alternate location based on its fingerprint. For a
flow e, the details of calculating the index of two candidate
buckets are as follows, h1(e) = hash(e), h2(e) = h1(e) ⊕
hash(e′s fingerprint).

Fig. 1. The data structure of Cuckoo Counter.

The XOR in the formula guarantees that h1(e) can also be
computed from h2(e) and e′s fingerprint, which means that
h1(e) = h2(e) ⊕ hash(e′s fingerprint). Hence, no matter
which array the flow is in, we can calculate the location of the
flow in another array by its current position and fingerprint:

hanother = hcurrent ⊕ hash(flow′s fingerprint) (1)

B. Algorithm and Operations

Insertion: Initially, all entries are set to 0. When
inserting a flow e, we first compute two indexes by
hashing, h1(e) and h2(e) to find two candidate buck-
ets, A1[h1(e)] and A2[h2(e)]. Then we scan all entries
A1[h1(e)][entryj], A2[h2(e)][entryj], (1 ≤ j ≤ 4) in these
two buckets. If flow e exists, we increment the counter of
corresponding entry by 1. If flow e is an new flow, then
we check if there are empty entries in A1[h1(e)][entryj] or
A2[h2(e)][entryj], and if so, insert the flow into the empty
entry which is found firstly and set the value of the counter to
1. If the two buckets are full, we randomly select a flow e’ in
A1[h1(e)][entry1] or A2[h2(e)][entry1] to kick out, and insert
flow e into the kicked-out entry. Then relocate the kicked flow
e’ by the partial-key cuckoo hash. The flow e’ will be inserted
into the corresponding bucket of another array. If the bucket
is full too, we will kick out the flow e” in the entry1 of the
bucket to insert the flow e’, and replace e” again. We keep
kicking out and inserting until the original flow and the kicked-
out flows are inserted, or the kicking out times reach 2. When
the kicking number is 2, we randomly select a bucket from
the current kicked-out flow mapped two buckets, then replace
the fingerprint of entry1 in the bucket by the fingerprint of
current kicked-out flow and add these counters of two flows
simply. The Algorithm of insertion is given in Figure2.

We only select an entry1 of A1[h1(e)][entryj] or
A2[h2(e)][entryj] randomly to kick out or insert when the
buckets of flow e mapped are full. Because we make sure that
entry1 always record the mice flow in data stream. When the
counter of the entry overflows, such as the value of the counter
in entry1 is bigger than 16, we scan other larger entries in the
bucket. If there is a larger entry, but its counter value is smaller
than the overflow entry, then swap the two entries. Otherwise,
we check these entries in another alternative bucket, if there is

Fig. 2. Insert algorithm

Fig. 3. Query algorithm

(a) caida datasets (b) real-life transactional datasets (c) synthetic datasets with different skewness

Fig. 4. Comparison of insertion throughput on different datesets.

(a) caida datasets (b) real-life transactional datasets (c) synthetic datasets with different skewness

Fig. 5. Comparison of query throughput on different datesets.

a greater size of the entry f, but its counter value is less than
the overflow entry. Then we kick out the original flow in f and
relocate it. Afterward, we insert the overflow flow into f. This
will only add the frequency of mice flow to the elephant flow
erroneously or other mice flows, without mistakenly adding
the elephant flow to the mice flow, which greatly improve the
accuracy of the frequency estimation especially the frequencies
of elephant flows.

An error is introduced for flows that cannot be inserted
normally after the maximum number of kicks. However, the
probability that cannot be inserted in each mapped bucket is
5
N , where N is the buckets number in an array. Only when
two buckets that are hashed cannot be inserted, will a flow be
kicked out. Since, the probability of a flow is kicked out is
25
N2 . Hence the error introduced by several kicks is tolerable.
In reality, an accurate estimate of the frequency of each flow
is unrealistic and impossible.

Query: When querying a flow e, we calculate two indexes
firstly, h1(e) and h2(e), by partial-key cuckoo hashing. Then
we match the fingerprint of e with these fingerprints in
Ai[hi(e)][entryj] (i ∈ {1, 2}, 1 ≤ j ≤ 4). If matched,
we return the counters value of the corresponding entry.
Otherwise, we return Ai[hi(e)][entry1].counter randomly.
That is because serious hash collisions result in no matching
fingerprint, but we can ensure that the flow to be queried is
definitely placed in one of the buckets which the flow e is
mapped. According to the insertion algorithm,the flow with a

severe hash conflict stored in entry1 of the mapped buckets
randomly. The Algorithm of query is given in Figure3.

Deletion: The deletion operation of our Cuckoo Counter is
simple. We also compute two indexes of a flow e, h1(e) and
h2(e) , and scan entries in Ai[hi(e)][entryj] (i ∈ {1, 2}, 1 ≤
j ≤ 4). If the same fingerprint of flow e in these entries
exists, we decrease the corresponding counter by 1. Otherwise,
we decrease Ai[hi(e)][entry1].counter by 1 randomly. The
reason is the same as when querying.

IV. PREFORMANCE EVALUATION

A. Experimental Setup

Datasets: we use the following three datasets.
CAIDA Datasets: We use the CAIDA trace which col-

lected in Equinix-Chicago monitor from CAIDA [33]. Our
experimental CAIDA datasets are the same as that used with
Elastic Sketch [34]. Due to the results by only using source
IP address are extremely similar to by using 5-tuple (Source
IP, Destination IP, Source Port, Destination Port and Protocol)
as flow ID. We identify each flow by its source IP address (4
bytes).

Real-Life Transactional Datasets: We download the Real-
Life Transactional dataset called WebDocs from website [35].
This dataset is built from a spidered collection of web html
documents. The more details about the dataset are in [36].
Since the dataset is too large, we cut it into sub-datasets with
a size of 102MB. The frequency ranges from 1 to 5349.

(a) caida datasets (b) real-life transactional datasets (c) synthetic datasets with different skewness

Fig. 6. Comparison of average absolute error(aae) on different datesets.

(a) caida datasets (b) real-life transactional datasets (c) synthetic datasets with different skewness

Fig. 7. Comparison of average relative error(are) on different datesets.

Synthetic Datasets: We use the Zipfgen program to gener-
ate 11 stream datasets (skewness from 0 to 1.0, with intervals
of 0.1) that follow the zipf distribution. Each dataset is fixed
one million flows and distinct flows with different numbers.
The sizes of flows are 13 bytes, and the maximum frequency
of flows in each dataset are 16 ∼ 55361.

Parameter Setting: We implement our Cuckoo Counter
in C++ [30]. We compare Cuckoo Counter with classic CM
sketch, CU sketch and the recently Augmented sketch,Pyramid
sketch. Because the PCU sketch has the best performance, we
use PCU sketch as the representative of Pyramid sketch in
our experiments. We allocate 100KB of memory size to each
experiment. The size of CM sketch, CU sketch and Augmented
sketch entries are 16 bits. CM sketch and CU sketch allocate
4 arrays and use 4 32-bit Bob hash [37] functions to flows
mapping. The Augmented sketch consists of the widely used
CM sketch and a filter. The filter will allocate about 0.4KB
additional memory, and the CM sketch of Augmented sketch
also includes 4 arrays and 4 32-bit Bob hash functions. All
entries of the PCU sketch are 4 bits, and the number of mapped
entries is 4. The PCU sketch use 1 64-bit Bob hash function.
Our Cuckoo Counter has three kinds of entries and two arrays.
The memory sizes of these counters in entries are 4 bits, 8 bits,
16 bits respectively, and the fingerprints are 8 bits. We also
use a 64-bit Bob hash to find two candidate buckets.

Test Platform: we performed all the experiments on the
server NF5 280M4. The server has 12 core CPUs (24 threads,

Intel (R) Xeon (R) CPU E5-2620 v3 @2.40 GHz) and 32GB
total DRAM memory.

B. Metrics

Three parameters are mainly evaluated in our experiments,
Throughput, Average Absolute Error (AAE), and Average
Relative Error (ARE).

Throughput: Throughput is used to measure the processing
speed of the algorithm and is estimated by the running time
of the algorithm. Its estimated by the formula N

T , where N is
the number of flows, T is the running time. We use millions
of per second (Mps) to represent throughput.

AAE: AAE is defined as 1
ψΣ(ei∈ψ)|fi − f̃i|, where fi is

the real frequency of flow ei, f̃i is the estimated frequency,
and ψ is the number of different flows.

ARE: ARE is defined as
1
ψΣ(ei∈ψ)|fi−f̃i|

f̃i
. These parameters

in the formula have the same meaning as in AAE.

C. Performance

In this part, we illustrate the performance of our Cuckoo
Counter by insertion throughput, query throughput, AAE and
ARE. We use CC as an abbreviation of Cuckoo Counter,
while CM, A, CU, PCU are used as the abbreviations of the
CM sketch, Augmented sketch, CU sketch and PCU sketch
respectively in the figures.

Insertion Throughput: We use 10 CAIDA sub-traces to
test. The Figure4(a) shows that the insertion throughput of

(a) insertion throughput (b) query throughput (c) aae (d) are

Fig. 8. Comparison of insertion throughput, query throughput, aae and are on different memory sizes.

Cuckoo Counter is 1.56, 3.27, 1.70 times higher than the
insertion throughput of the CM sketch, Augmented sketch
and CU sketch severally, and slightly higher than the PCU
sketch. As Figure4(b) displays, the insertion throughput of
Cuckoo Counter is 2.64, 4.0, 2.79, 1.14 times higher than the
insertion throughput of the CM sketch, Augmented sketch,
CU sketch and PCU sketch on 10 Real-Life Transactional
Datasets. We also use the skewness datasets (skewness from
0 to 1.0, with intervals of 0.1) to experiment. The results
show that the insertion throughput of Cuckoo Counter is 1.23∼
1.75, 3.22∼3.92, 1.43∼1.86, 0.96∼1.41 times higher than the
insertion throughput of the CM sketch, Augmented sketch, CU
sketch and PCU sketch in Figure4(c).

We can see that when skewness is 0 or 0.1, the insertion
throughput of Cuckoo Counter is merely smaller than PCU
sketch. That is because we fixed 1 million flows on each
skewness datasets. The smaller skewness means more dif-
ferent flows in the data stream, causing in more kicked-out
flows when insertion. It will reduce the insertion throughput
of Cuckoo Counter. Cuckoo Counter has a higher insertion
throughput than CM sketch and CU sketch because Cuckoo
Counter only needs to hash three times (an average of 1.7
times was shown in our experiment) in the worst case(when
the memory is nearly full), while CM sketch and CU sketch
four times per insert.

Query throughput: As Figure5(a) shows, the query
throughput of Cuckoo Counter is 2.18, 3.70, 2.18, 1.50 times
higher than the CM sketch, Augmented sketch CU sketch
and PCU sketch on different CAIDA datasets. As Figure5(b)
shows, the query throughput of Cuckoo Counter is 2.98, 3.94,
2.90, 1.58 times higher than the CM sketch, Augmented sketch
CU sketch and PCU sketch on different Real-Life Transac-
tional Datasets. As Figure5(c) shows, the query throughput of
Cuckoo Counter is 2.10, 4.12, 1.96, 1.72 times higher than the
CM sketch, Augmented sketch, CU sketch and PCU sketch on
skewness datasets.

Due to Cuckoo Counter only need check two buckets when
querying a flow . The query throughput of Cuckoo Counter is
better performance than other four sketches.

AAE: Our experimental results show that on different
CAIDA datasets, the AAEs of CM sketch, Augmented sketch,
CU sketch and PCU sketch are 7.14, 7.14, 3.70, 1.52 times

higher than the AAE of the Cuckoo Counter in Figure6(a).
As Figure6(b) shows, the AAEs of CM sketch, Augmented
sketch, CU sketch and PCU sketch are 5.23, 5.60, 2.77,
1.06 times higher than the AAE of the Cuckoo Counter
on different Real-Life Transactional datasets. As Figure6(c)
shows that on different skewness datasets, the AAEs of CM
sketch, Augmented sketch, CU sketch and PCU sketch are
4.65∼17.70, 4.64∼17.68, 2.45∼9.02,1.05∼3.00 times higher
than the AAE of the Cuckoo Counter.

ARE: Our experimental results show that on different
CAIDA datasets, the AREs of CM sketch, Augmented sketch,
CU sketch and PCU sketch are 7.56, 7.56, 3.97,1.64 times
higher than the ARE of the Cuckoo Counter in Figure7(a).
The results show that on different Real-Life Transactional
datasets, the AREs of CM sketch, Augmented sketch, CU
sketch and PCU sketch are 5.23, 5.60, 2.77, 1.07 times higher
than the ARE of the Cuckoo Counter in Figure7(b). the
results show that on different skewness datasets, the AREs
of CM sketch, Augmented sketch, CU sketch and PCU sketch
are 7.67∼23.08, 7.66∼23.08, 4.46∼12.16, 1.86∼4.20 times
higher than the ARE of the Cuckoo Counter in Figure7(c).

Memory size: We test the insertion throughout, query
throughout, AAE and ARE as memory size changed on
CAIDA datasets. We set the memory size from 20KB to
200KB at each interval of 20KB. The relationship between
insertion throughput, query throughput, AAE and ARE and
the memory size displays in Figure8. We can observe that
when memory is smaller, Cuckoo Counter provides better
performance than the other four sketches.

V. CONCLUTION AND FUTURE WORK

In this paper, we propose a novel framework for per-flow
frequency estimation in network measurement, called Cuckoo
Counter. Experimental results demonstrate that our framework
provides higher accuracy and speed than the sketch-based
methods of per-flow frequency estimation in network traffic.
Meanwhile, since most of the errors of Cuckoo Counter come
from mice flows, Cuckoo Counter provides more accurate
statistics of elephant flows than mice flows. Our Cuckoo
Counter is extremely suitable for heavy hitter detection with
high accuracy. In the future, we will carry out theoretical
analysis of Cuckoo Counter and apply it to more scenarios,
such as heavy hitter detection.

REFERENCES

[1] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in VLDB’02: Proceedings of the 28th International Conference
on Very Large Databases. Elsevier, 2002, pp. 346–357.

[2] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM SIGCOMM Conference.
ACM, 2016, pp. 101–114.

[3] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proceedings of
the Conference of the ACM Special Interest Group on Data Communi-
cation. ACM, 2017, pp. 127–140.

[4] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp. 270–
313, 2003.

[5] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies
using sketch subspaces,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement. ACM, 2006, pp. 147–152.

[6] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement. ACM, 2003,
pp. 234–247.

[7] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in small
memory,” in IEEE INFOCOM 2009. IEEE, 2009, pp. 504–512.

[8] G. Cormode, “Sketch techniques for approximate query processing,”
Foundations and Trends in Databases. NOW publishers, 2011.

[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. ACM,
2009, pp. 202–208.

[10] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 12, pp. 2327–2339, 2006.

[11] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, pp.
121–132, 2008.

[12] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking
(ToN), vol. 20, no. 5, pp. 1622–1634, 2012.

[13] Y. Zhou, P. Liu, H. Jin, T. Yang, S. Dang, and X. Li, “One memory
access sketch: a more accurate and faster sketch for per-flow mea-
surement,” in GLOBECOM 2017-2017 IEEE Global Communications
Conference. IEEE, 2017, pp. 1–6.

[14] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 1449–1463.

[15] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, “Processing
complex aggregate queries over data streams,” in Proceedings of the
2002 ACM SIGMOD international conference on Management of data.
ACM, 2002, pp. 61–72.

[16] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1530–
1541, 2008.

[17] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine et al., “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Foundations
and Trends® in Databases, vol. 4, no. 1–3, pp. 1–294, 2011.

[18] C. C. Aggarwal and P. S. Yu, “On classification of high-cardinality data
streams,” in Proceedings of the 2010 SIAM International Conference on
Data Mining. SIAM, 2010, pp. 802–813.

[19] A. Chen, Y. Jin, J. Cao, and L. E. Li, “Tracking long duration flows in
network traffic,” in 2010 Proceedings IEEE INFOCOM. IEEE, 2010,
pp. 1–5.

[20] G. Cormode and M. Garofalakis, “Sketching streams through the net:
Distributed approximate query tracking,” in Proceedings of the 31st
international conference on Very large data bases. VLDB Endowment,
2005, pp. 13–24.

[21] D. Thomas, R. Bordawekar, C. C. Aggarwal, and S. Y. Philip, “On
efficient query processing of stream counts on the cell processor,” in
2009 IEEE 25th International Conference on Data Engineering. IEEE,
2009, pp. 748–759.

[22] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[23] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

[24] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. A. Dinda,
M.-Y. Kao, and G. Memik, “Reversible sketches: enabling monitoring
and analysis over high-speed data streams,” IEEE/ACM Transactions on
Networking (ToN), vol. 15, no. 5, pp. 1059–1072, 2007.

[25] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016, pp. 311–324.

[26] D. M. Powers, “Applications and explanations of zipf’s law,” in Proceed-
ings of the joint conferences on new methods in language processing and
computational natural language learning. Association for Computa-
tional Linguistics, 1998, pp. 151–160.

[27] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: A sketch
framework for frequency estimation of data streams,” Proceedings of the
VLDB Endowment, vol. 10, no. 11, pp. 1442–1453, 2017.

[28] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[29] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, 2014, pp. 75–88.

[30] “The source codes of cuckoo counter.” https://github.com/OceanTaraxa/
Cuckoo Counter Framework.git.

[31] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in International
Conference on Database Theory. Springer, 2005, pp. 398–412.

[32] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency estimation
of internet packet streams with limited space,” in European Symposium
on Algorithms. Springer, 2002, pp. 348–360.

[33] “The caida traces.” http://www.caida.org/data/overview/.
[34] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,

X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 2018, pp. 561–
575.

[35] “Real-life transactional dataset.” http://fimi.ua.ac.be/data/.
[36] “Webdoca dataset.” http://fimi.uantwerpen.be/data/webdocs.pdf.
[37] “Hash website.” http://burtleburtle.net/bob/hash/evahash.html.

