
WavingSketch: An Unbiased and Generic Sketch for Finding
Top-k Items in Data Streams

Jizhou Li∗

Peking University

Zikun Li†

Peking University

Yifei Xu†

Peking University

Shiqi Jiang‡

Peking University

Tong Yang†§

Peking University

Bin Cui†�

Peking University

Yafei Dai†

Peking University

Gong Zhang∥

Theory Research Lab, Huawei, China

ABSTRACT
1 Finding top-k items in data streams is a fundamental problem in

data mining. Existing algorithms that can achieve unbiased esti-

mation suffer from poor accuracy. In this paper, we propose a new

sketch, WavingSketch, which is much more accurate than exist-

ing unbiased algorithms. WavingSketch is generic, and we show

how it can be applied to four applications: finding top-k frequent

items, finding top-k heavy changes, finding top-k persistent items,

and finding top-k Super-Spreaders. We theoretically prove that

WavingSketch can provide unbiased estimation, and then give an

error bound of our algorithm. Our experimental results show that,

compared with the state-of-the-art, WavingSketch has 4.50 times

higher insertion speed and up to 9 × 106 times (2 × 104 times in

average) lower error rate in finding frequent items when memory

size is tight. For other applications, WavingSketch can also achieve

up to 286 times lower error rate. All related codes are open-sourced

and available at Github anonymously.

CCS CONCEPTS

• Information systems→Data streammining; Data structures.

∗Shenzhen Graduate School, Peking University, China
†Department of Computer Science and technology, Peking University, China
‡School of Mathematical Sciences, Peking University, China
§PCL Research Center of Networks and Communications, Pengcheng Laboratory,
Shenzhen, China (e-mail: yangtongemail@gmail.com)
�National Engineering Laboratory for Big Data Analysis Technology and Application
(PKU), China
∥Theory Research Lab, Huawei, China
1Jizhou Li, Zikun Li and Yifei Xu contribute equally to this paper, and they together
with Shiqi Jiang complete this work under the guidance of the corresponding author:
Tong Yang (yangtongemail@gmail.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403208

KEYWORDS

data stream mining, top-k item, unbiased estimation, waving

counter

ACM Reference Format:

Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai,

and Gong Zhang. 2020. WavingSketch: An Unbiased and Generic Sketch

for Finding Top-k Items in Data Streams. In Proceedings of the 26th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20),

August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3394486.3403208

1 INTRODUCTION
1.1 Background and Motivation
One of the most fundamental problems in approximate data stream

mining is finding top-k items. Top-k is defined in terms of various

metrics. Four kinds of top-k items under different metrics have at-

tracted wide attention by researchers: 1) top-k frequent items [1–5],

2) top-k heavy changes [6–8], 3) top-k persistent items [5, 9], and 4)

top-k Super-Spreaders [10]. Frequent items refer to itemswhose num-

bers of appearances exceed a predefined threshold. Heavy changes

refer to items whose frequencies change drastically over two ad-

jacent time windows. Persistent items are items which appear in

more time windows than others. Super-Spreaders refer to sources

that connect to a large number of distinct destinations. Although

these four kinds of tasks have different metrics, we find that if

an algorithm does well in finding frequent items, it can also well

handle the other three tasks. The reason behind is discussed below.

To find heavy changes in two adjacent time windows, we can first

find all frequent items in both time windows respectively since

heavy changes must be frequent items in at least one time window.

Then heavy changes can be detected through calculate the abso-

lute change in frequencies of those frequent items in the two time

windows. Persistent items and frequent items are equivalent if the

frequency of an item is defined as the number of time windows in

which it appears. Similarly, for finding Super-Spreaders, we only

need to view the number of destinations an item connects to as

its frequency. In summary, if a data structure can accurately find

frequent items, it can also well handle other three tasks. Therefore,

we only consider finding frequent items in this section below. In

practice, sketches, a kind of probabilistic data structure, have been

widely used in finding top-k items, due to their memory efficiency

and small error for estimating item frequencies.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1574

Unbiased estimation is well acknowledged as a theoretically ele-

gant and pragmatic property. Unbiased estimation of item frequen-

cies is beneficial for several global estimation problems, such as

global heavy hitters, global distribution, global entropy, etc. For

example, to measure distributed data streams, one data structure

is deployed for each data stream. If their estimations are biased,

the error will accumulate when the data structures are aggregated.

Further, unbiased approaches could stimulate theoretical progress

in sketches. Although numerous sketches have been proposed, only

a very few of them (Count-Min Sketch [11], Count Sketch [4]) have

explicit and concise theory bounds and proofs, and most of the

others show error bounds and proofs that are fairly complicated.

One of the primary reasons for this is that their estimations are

biased.

Among a large number of algorithms for finding frequent items

[1, 4, 11–15], one recent work, Unbiased Space Saving (USS) [15],

achieves unbiased estimation.While USSmakes a great contribution

in terms of unbiased estimation, its accuracy is relatively low, i.e.,

its variance of estimation is large. As a result, when it is applied to

other tasks (e.g., finding heavy changes, persistent items, or Super-

Spreaders), the inaccuracy of frequency estimation will incur large

error for other tasks, which may be the reason why USS was only

used for frequent items in the paper [15]. The design goal of our

study is to devise an algorithm which is accurate, generic, and can

provide unbiased estimation.

1.2 Our Proposed Approach
Towards the above design goal, we propose the WavingSketch in

this paper. We use a simple example to show the key idea of Wav-

ingSketch. We use a counter and a list. The counter, namely the

Waving Counter, provides an unbiased estimation of item frequen-

cies and the list is used to store k ′ (k ′ > k) frequent items. For

each incoming item e , we use a hash function s(e) to hash e to

+1 or −1, and then increase or decrease the Waving Counter by 1.

Afterwards, we estimate e’s frequency using the Waving Counter.

If its frequency is larger than the smallest frequency in the list,

we exchange them. Based on this idea, we use a group of Waving

Counters and lists, and add additional fields in the list to achieve

higher accuracy (see details in Section 3.1).

Below we explain the rationale of WavingSketch. The value of

the Waving Counter fluctuates over time, and it is quite analogous

to the waves in the sea. Where there is a heavy swell, there is

probably a strong flow driving it. Therefore, we expect to catch a

frequent item when the absolute value of the counter is fairly high.

Specifically, given an incoming item, we use the Waving Counter

to unbiasedly estimate its frequency. If the estimated frequency is

large enough, it is with high probability that the incoming item is

frequent enough to replace the least frequent item in the list.

WavingSketch has four advantages. First, WavingSketch can

provide unbiased estimation, and the theoretical proofs are provided

in Section 5.1. Second, our theoretical and experimental results show

that the error of WavingSketch is much smaller than Space Saving

and Unbiased Space Saving. Third, WavingSketch is generic. To

verify this, we apply WavingSketch to four applications: finding

frequent items, finding heavy changes, finding persistent items, and

finding Super-Spreaders. Fourth, WavingSketch is fast. For each

insertion or query, we only need to access one bucket and it often

requires only one memory access.

Main Experimental Results: In finding frequent items, compared

with USS, WavingSketch achieves 4.50 times higher insertion speed

and up to 9× 106 times (2× 104 times in average) smaller error rate.

In finding heavy changes, WavingSketch improves the F1 Score

[16] by 8 times in average when using only 1/10 of the memory

size of other algorithms and improves the insertion speed by up

to 1.9 times. In finding persistent items, WavingSketch achieves

up to 7.5 times higher insertion speed and up to 286 times smaller

error rate. In finding Super-Spreaders, WavingSketch achieves up

to 14 times lower error rate. All related codes are open-sourced and

available at Github anonymously [17].

1.3 Contributions
• We propose the WavingSketch, which is accurate, generic,

and can provide unbiased estimation.

• We theoretically prove that WavingSketch can provide unbi-

ased estimation, and then give an error bound of our algo-

rithm.

• We apply WavingSketch to four applications: finding fre-

quent items, finding heavy changes, finding persistent items,

and finding Super-Spreaders.

• We conduct extensive experiments, and the results show

that WavingSketch achieves up to two orders of magnitude

smaller error than the state-of-the-art.

2 RELATEDWORK
In this section, we only show the related algorithms for the four

typical top-k tasks, for other related work and applications please

refer to [18–28].

2.1 Finding Frequent Items
To find frequent items, two types of solutions exist. The first, sketch-

based algorithms, record the frequencies of all items by hashing, but

do not solve the hash collision. The second, KV-based algorithms,

record < ID, f requency > pairs of a subset of items that have a

large frequency.

Sketch-based Algorithms: Typical sketches include the CM [11],

CU [12], Count [4], and ASketch [29]. These sketches often consist

of multiple arrays, each containing many counters. Each array is

associated with a hash function that maps items to the counters.

Hash collision may lower their accuracy, so they use some methods

to reduce the error, however these methods are usually memory

inefficient. This is because they also record relatively unimportant

small items. Furthermore, sometimes multiple memory accesses

per insertion decrease their throughput.

KV-based Algorithms: Typical KV-based algorithms include

Space Saving [13, 30], Unbiased Space Saving [15], Lossy Counting

[14], HeavyGuardian [31], and Cold filter [24]. Space Saving and

Unbiased Space Saving use a data structure called Stream-Summary

to record frequent items. When the data structure is full, and an

item that is not recorded in the data structure arrives, the least

frequent item will be replaced by the new item. The state-of-the-art,

Unbiased Space Saving, achieves unbiased estimation by replacing

the least frequent item with a certain probability. Although the

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1575

average estimated frequency is unbiased, it considers the frequen-

cies of all non-recorded items as 0. This means that, the estimation

of all non-recorded items are heavily biased downward, and the

estimation of all recorded items are heavily biased upward. Also,

for each insertion, many pointer operations reduce the throughput

of Space Saving and Unbiased Space Saving.

2.2 Finding Heavy Changes
To find heavy changes, there are two kinds of algorithms. One is

record all. This kind of algorithms build a data structure to record

all items in each period, and then decode and report heavy changes.

Typical algorithms include k-ary [7], the reversible sketch [6], and

FlowRadar [8]. The other kind of solutions only records frequent

items. A typical algorithm is Cold filter [24]. Both solutions are not

memory efficient because their data structures are not compact.

2.3 Finding Persistent Items
Again, two types of solutions exist. The first, record all, records

all items. A typical algorithm is PIE [9] with Raptor codes [32] to

generate different fingerprints in different periods. However, due

to the recording of infrequent items and collisions, the accuracy

of PIE is low. The second kind, called record samples, samples and

removes duplicates before recording items. A typical algorithm

is Small-Space [33]. Indeed, sampling can save memory, but the

incurred error is hard to reduce.

2.4 Finding Super-Spreaders
There are two kinds of solutions. The first is record all. A typical

algorithm is OpenSketch [34], which combines the techniques of

CM sketches (presented above) and bitmaps. It is accurate when

large amount of memory is used. The second kind is record samples.

Sampling can automatically filter many infrequent items to save

memory. The typical algorithms are called one-level filtering and

two-level filtering [10]. Similarly, sampling makes error hard to

reduce.

3 THEWAVINGSKETCH ALGORITHM
In this section, we first present the data structure of WavingSketch,

then we show its operations. We list the symbols frequently used

in this paper and their meanings in Table 1.

Table 1: Symbols frequently used in this paper.
Notation Meaning

S a data stream

ei ith distinct item in S
fi frequency of item ei
f̂i estimated frequency of item ei
B[i] ith bucket of WavingSketch

B[i].count Waving Counter of B[i]
B[i].heavy Heavy Part of B[i]
B[i].v[ei] recorded value of ei in B[i].heavy

l number of buckets in WavingSketch

d number of cells in B[i].heavy
h(.) hash function from items to {1, . . . , l}
s(.) hash function from items to {+1,−1}

3.1 Data Structure
Data Stream: a data stream S is a series of items, each of which

could appear more than once. The number of appearances of an

item e is called e’s frequency.
Data Structure (Figure 1): The data structure of WavingSketch

is an array which consists of l buckets. Let B[i] be the ith bucket.

Each item ei in the data stream is mapped into one bucket B[h(ei)]
through a hash function h(.). Each bucket consists of two parts: a

Waving Counter B[i].count , and a Heavy Part B[i].heavy. We use

another hash function s(.) to map each incoming item to {+1,−1}.
For each item e mapped into bucket B[i], it will be recorded

in one or both of the two parts. The Heavy Part consists of d
cells. Each cell is used to store a key-value (KV) pair and a flag

< ID, f requency, f laд >. The key is the item ID, the value is its

estimated frequency, and the flag indicates whether the frequency

has error. The Waving Counter provides an unbiased estimation

for frequencies of items that are inserted into it.

e7,128,F

e8,127,F
buckets

-132 e1,135,T

in Heavy Part or Heavy Part not full,
dirrectly update or insert (Case 1, 2)

-127

e4,257,F

e5,342,T

(-132+1) (+1)<135 No replacement

(-127-1) (-1)>127

Situation 1 of Case 3
Situation 2 of Case 3

Figure 1: Data structure and insertion examples of Wav-

ingSketch.

3.2 Operations of WavingSketch
Initialization: All fields in the data structure are initially 0 or null .
Insertion (Figure 1): The pseudocode of the insertion operation

is shown in Algorithm 1 in appendix A. Given an incoming item

ei , we first compute the hash function h(ei) to map ei to bucket

B[h(ei)]. Below we show how to insert ei into B[h(ei)]. There are
three cases as follows:

Case 1: (See lines 2 to 5 in Algorithm 1). If ei is already recorded

in B[h(ei)].heavy, there are two situations. 1) ei is recorded with

flag of true , we just increment the corresponding frequency in

the Heavy Part; 2) ei is recorded with flag of f alse , we not only
increment the corresponding frequency, but also add B[h(ei)].count
by s(ei) (s(ei) ∈ {−1,+1}).
Case 2: If ei is not recorded in B[h(ei)].heavy and B[h(ei)].heavy
is not full, we just insert < ei , 1, true > into B[h(ei)].heavy (See

lines 6-7 in Algorithm 1).

Case 3: (See lines 8 to line 15 in Algorithm 1). If B[h(ei)].heavy
is full and the ei is not recorded in B[h(ei)].heavy, there are two
situations. Let f̂i be B[h(ei)].count ∗s(ei). 1) If f̂i is smaller than the

smallest counter in B[h(ei)].heavy, we insert ei into B[h(ei)].count ,
i.e., add B[h(ei)].count by s(ei); 2) If f̂i is not smaller than the small-

est counter in B[h(ei)].heavy, after inserting ei into B[h(ei)].count ,
we replace the item with the smallest counter. Specifically, we re-

place the ID field of that cell with ei , set the frequency field to

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1576

f̂i + 1 and set the flag field to f alse . If the flag of the replaced

item er is true , then er is inserted into B[h(ei)].count , i.e., adding
B[h(ei)].count by vr ∗ s(er), where vr is the value of the frequency

field before replacement.

Below we use two examples to show how WavingSketch deals

with Case 3 (See Figure 1).

Example 1: When e3 arrives, it is mapped to bucket B[h(e3)], and
s(e3) = +1. e3 is not in B[h(e3)].heavy and B[h(e3)].heavy is full,

thus f̂3 = B[h(e3)].count · s(e3) = −132. Because f̂3 is smaller

than the smallest frequency 135 in B[h(e3)].heavy, we insert e3 to
B[h(e3)].count and set it to −132 + s(e3) = −131.
Example 2:When e7 arrives, it is mapped to bucket B[h(e7)], and
s(e7) = −1. e7 is not in B[h(e7)].heavy and B[h(e7)].heavy is full,

thus f̂7 = B[h(e7)].count · s(e7) = 127. Because f̂7 is not smaller

than the smallest frequency 127 in B[h(e7)].heavy, we insert e7
to B[h(e3)].count , replace the ID field of that cell with e7, set the

frequency field to f̂7 + 1 = 128, and set the flag field to f alse .
Unbiased Estimation: To give an unbiased estimation of an item

ei , we traverse the Heavy Part of B[h(ei)]. If ei is in the Heavy Part

with flag of true , we report the frequency field as its frequency.

Otherwise, we report the value of the Waving Counter as its fre-

quency.

Top-k Query: For top-k queries, we only focus on the items stored

in the Heavy Part, and report the frequency field as its frequency.

Essentially, WavingSketch is similar to Count Sketch+Minheap

(Count+Heap for short): they both identify frequent items based

on unbiased estimation of item frequencies. Although they both

cannot prove the unbiasedness when reporting frequent items, the

bias should be very small. However, WavingSketch is faster and

much more accurate than Count+Heap (see Figure 2-5).

4 APPLICATIONS
In this section, we applyWavingSketch to four applications: finding

frequent items (Section 4.1), finding heavy changes (Section 4.2),

finding persistent items (Section 4.3), and finding Super-Spreaders

(Section 4.4). The settings of each application are shown in Table 2.

4.1 Finding Frequent Items
Problem Statement: Given a data stream S with N distinct items

(e1, e2..., eN), find all items that have top-k largest frequencies.

Data Structure and Insertion: Because WavingSketch can be

directly used to find frequent items, the data structure and insertion

process are the same as presented in Section 3.2.

Report:We simply traverse the bucket array and return the IDs of

items that have top-k largest frequencies.

Analysis:WavingSketch has the following advantages. First, this

data structure has high memory efficiency, since it uses no pointer

and almost has no empty cells. Second, each insertion only need to

access one bucket. And this insertion can be accelerated through

SIMD instructions [35]. After using SIMD, the access time of a

bucket is similar to the time of one memory access. Third, WavingS-

ketch can achieve significantly smaller error than the unilateral

accumulation of SS [13] and USS [15], which is proved in experi-

ments (see Section 6).

4.2 Finding Heavy Changes
Problem Statement: The data stream S is divided into two equal-

sized periods: S1 and S2. Suppose that the frequency of ei in S1 is

f
′
i and the frequency of ei in S2 is f

′′
i . We define

���f ′
i − f

′′
i

��� as Δfi .
The problem consists in finding all items that have top-k largest

Δfi .
Data Structure: For each period, we build a WavingSketch to

record frequent items, and compare the frequent items in adjacent

periods to find heavy changes.

Insertion: For each input ei , we insert ei to a WavingSketch ac-

cording to its period. The insertion process is the same as in Section

3.2.

Report: For two adjacent periods, we traverse all items in the data

structures. For each item ei , we query its frequency in the two

WavingSketch, and get two frequencies, i.e.f
′
i and f

′′
i . We calculate

Δfi for each item, and report the items with top k largest Δfi . Note
that if an item does not appear in the Heavy Part of WavingSketch,

the queried frequency is 0.

4.3 Finding Persistent Items
Problem Statement: The data stream S is divided into T equal-

sized time windows. We define the persistency of an item as the

number of time windows it appears in. The problem consists in

finding all items that have top-k largest persistencies.

Data Structure: Our data structure consists of two parts. The first

part is a Bloom filter[36] used to remove duplicates, because we

need to check whether an item has probably appeared in the current

window in finding persistent items.

Bloom filter: Bloom filter [36] is a compact data structure consist-

ing of a number of bits and is often used to judge whether an item

exists in a set. It has z hash functions. There are two operations

for this data structure. One is insertion. The z hash functions are

computed to pick z bits in the Bloom filter, and all the z bits are

set to 1. The other is to judge whether an item is in the set. The

same z hash functions are computed to get the z bits, and if all the

z bits are 1, the Bloom filter reports true . If the item is indeed in

the set, true is always reported, i.e., it has no false negative error.
Though there might be false positives error, (i.e. items not in the set

reported mistakenly to be in), the probability is often small enough

to be acceptable in practice.

Insertion: Given an incoming item ei , we first check the Bloom

filter to judge whether ei has appeared in this time window: if the

Bloom filter reports true, which means ei is a duplicate, then ei is
discarded. Otherwise, ei is inserted into the Bloom filter, and then

inserted into WavingSketch.

Periodical Emptying: Because we only remove duplicates inside

a time window, we should empty the Bloom filter by setting all bits

to 0 at the end of each time window.

Report: The process of reporting persistent items is the same as

Section 4.1.

4.4 Finding Super-Spreaders
Problem Statement: Given a data stream with <ei , ej > pairs, we

define the connection of ei as the number of distinct ej it pairs with.
The problem consists in finding all items that have top-k largest

connections.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1577

Table 2: Settings of WavingSketch for different applications.
Applications Input Remove Duplicates Input of WavingSketch Report

Frequent Items Item ei × ei top-k largest fi
Heavy Changes Item ei × ei top-k largest Δfi
Persistent Items Item ei � ei top-k largest fi
Super-Spreaders Pair <ei , ej > � ei top-k largest fi

Data Structure:We need to check whether a pair has appeared for

finding Super-Spreaders. Therefore, we need a Bloom filter[36] to

remove duplicates in this application. As a result, the data structure

is the same as finding persistent items.

Insertion: Given an incoming pair < ei , ej >, we first check the

Bloom filter to judge whether the pair <ei , ej > has appeared before:
if the Bloom filter reports true , which means <ei , ej > is a duplicate,
then <ei , ej > is discarded; Otherwise, <ei , ej > is inserted into the

Bloom filter, and then inserted into WavingSketch.

Report: The process of reporting Super-Spreaders is the same as

Section 4.1.

5 MATHEMATICAL ANALYSIS
In this section, we provide a theoretical analysis for WavingSketch.

First, we prove that our algorithm can provide an unbiased esti-

mated frequency in Section 5.1. Then, we show the variance and

the error bound of WavingSketch in Section 5.2. Due to space limi-

tation, we show how the parameter of WavingSketch influences its

performance in Appendix D.2.

5.1 Proof of Unbiasedness
In this section, we prove that for each item ei , WavingSketch can

provide an unbiased estimated frequency f̂i . If ei is in the Heavy

Part and is error-free (flag is true), f̂i is the corresponding count in

the Heavy Part. Otherwise, f̂i = B[h(ei)].count · s(ei).
Theorem 5.1. The estimation of fi is unbiased, i.e., E(f̂i) = fi .

Proof. For an item ei , we prove that the expected increment to

f̂i is 1 if ei is the next item and 0 otherwise. Let f̂i
′
be the estimated

frequency after the next item comes. We separately consider the

four cases to analyze whether ei is error-free and whether it’s the

next item.

Case 1: ei is error-free and ei is the next item.

Then the corresponding count in the Heavy Part is increased by 1,

i.e., B[h(ei)].v[ei]′ = B[h(ei)].v[ei] + 1. ei is still in the Heavy Part

and is error-free. Thus, we have f̂i
′
= B[h(ei)].v[ei]′ = f̂i + 1.

Case 2: ei is error-free and ei is not the next item.

The corresponding count in the Heavy Part stays the same. If ei is

still in the Heavy Part, we have f̂i
′
= B[h(ei)].v[ei]′ = f̂i . Other-

wise, ei is eliminated from the heavy part, then ei is inserted into the
Waving Counter and is no longer error-free. Then B[h(ei)].count ′ =
B[h(ei)].count + f̂i · s(ei). Thus, f̂i ′ = B[h(ei)].count ′ · s(ei) =
B[h(ei)].count ·s(ei)+ f̂i ·s(ei)2. There is same chance for s(ei) to be
1 and −1, so E(s(ei)) = 0. Since s(ei) and B[h(ei)].count are indepen-
dent, we have E(B[h(ei)].count ·s(ei)) = B[h(ei)].count ·E(s(ei)) = 0.

Thus, E(f̂i ′) = E(B[h(ei)].count · s(ei)) + f̂i = f̂i .
Case 3: ei is not error-free and ei is the next item.

We have f̂i = B[h(ei)].count · s(ei) and B[h(ei)].count is added by

s(ei). If no error-free item is removed from the Heavy Part, we have

f̂i
′
= (B[h(ei)].count + s(ei)) · s(ei) = f̂i + 1. Otherwise, ei replaces

the item with the lowest count in the Heavy Part and that item

is error-free. Let em be that item, and we have B[h(ei)].count ′ =
B[h(ei)].count + s(ei) + ˆfm · s(em). Thus, our estimation satisfies

f̂i
′
= B[h(ei)].count ′ · s(ei) = f̂i + 1 + ˆfm · s(em) · s(ei). Since,

ˆfm · s(em) and s(ei) are independent, we have E(f̂i ′) = f̂i + 1 +

E(ˆfm · s(em)) · E(s(ei)) = f̂i + 1.
Case 4: ei is not error-free and ei is not the next item.

Let ej be the next item. We have f̂i = B[h(ei)].count · s(ei). If ej is
error-free, then ej does not influence the Waving Counter. Thus,

f̂i
′
= f̂i . Otherwise, B[h(ei)].count is added by s(ej).

If no error-free item is removed from the Heavy Part, we have

f̂i
′
= (B[h(ei)].count + s(ej)) · s(ei) = f̂i + s(ei) · s(ej). Since s(ei)

and s(ej) are independent, E(s(ei) · s(ej)) = E(s(ei)) · E(s(ej)) = 0.

Thus, E(f̂i ′) = f̂i + E(s(ei) · s(ej)) = f̂i . Otherwise, ej replaces
the item with the lowest count in the Heavy Part and that item

is error-free. Let em be that item, and we have B[h(ei)].count ′ =
B[h(ei)].count + s(ej) + ˆfm · s(em). Thus, our estimation satisfies

f̂i
′
= B[h(ei)].count ′ · s(ei) = f̂i + s(ej) · s(ei)+ ˆfm · s(em) · s(ei). As

proved before, we have E(s(ej)·s(ei)) = 0 and E(ˆfm ·s(em)·s(ei)) = 0.

Thus, E(f̂i ′) = f̂i + E(s(ej) · s(ei)) + E(ˆfm · s(em) · s(ei)) = f̂i .

Therefore, we’ve proved that the expected increment to f̂i is 1 if
ei is the next item and 0 otherwise, which indicates that we always

have E(f̂i) = fi . In other words, our estimation is unbiased. �

5.2 Variance and Error Bound
We show the variance and the error bound of our estimation for

each item ei in Theorem 5.2 and 5.3. Due to space limitation, the

details of proofs are provided in Appendix D.1.

Theorem 5.2. Let e1, e2, · · · , en be the items inserted to B[h(ei)].
We can get the bound of the variance of our estimation

Var (f̂i) �
∑
ej�ei

(fj)2 (1)

Theorem 5.3. Let l = e
ϵ 2
, then P

(��� f̂i − fi

��� � ϵ ‖ f ‖2
)
� 1

e

6 EXPERIMENTAL RESULTS
In this section, we provide experimental results of WavingSketch.

We describe the experiment setup in Section 6.1. Since finding

frequent items is the basis of the other three applications, we show

how WavingSketch performs in this application compared with

prior algorithms in Section 6.2, and show how parameter settings

and data distribution can affect its performance in Section 6.3 and

Section 6.4. Finally, we show how WavingSketch performs in other

applications compared with prior algorithms in Section 6.5. All

abbreviations used in the evaluation and their full name are shown

in Table 3.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1578

Table 3: Abbreviations in experiments.
Abbreviation Full name

Count+Heap Count Sketch[4] with a heap

SS Space Saving[13]

USS Unbiased Space Saving[15]

FR FlowRadar[8]

CF Cold Filter[24]

OLF One-level Filtering[10]

TLF Two-level Filtering[10]

WavingSketch The WavingSketch in Section 3

WavingSketch_C WavingSketch for heavy changes

WavingSketch_P WavingSketch for persistent items

WavingSketch_S WavingSketch for Super-Spreaders

6.1 Experimental Setup
Implementation: We have implemented WavingSketch and all

other algorithms in C++. The hash functions are implemented using

the 32-bit Bob Hash (obtained from the open-source website [37])

with different initial seeds.

Datasets:We use four kinds of datasets: 1) Synthetic Datasets; 2)

IP Trace Dataset; 3) Web Page Dataset; 4) Network Dataset. The

details are shown in appendix B.

Computation Platform: We conduct all the experiments on a

machine with two 6-core processors (12 threads, Intel Xeon CPU

E5-2620 @2 GHz) and 64 GB DRAM memory. Each processor has

three levels of cache memory: one 32KB L1 data caches and one

32KB L1 instruction cache for each core, one 256KB L2 cache for

each core, and one 15MB L3 cache shared by all cores.

Metrics:

1) Average Relative Error (ARE): 1
|Ψ |

∑
ei ∈Ψ | fi − f̂i |/fi , where

fi is the real frequency of item ei , f̂i is its estimated frequency, and

Ψ is the query set. In the experiments, we query the dataset by

querying each actually frequent item once in the sketch.

2) Recall Rate (CR): The ratio of the number of correctly reported

items to the number of correct items.

3) Precision Rate (PR): The ratio of the number of correctly re-

ported items to the number of reported items.

4) F1 Score: 2∗CR∗PR
CR+PR

5) Throughput:Million operations (insertions) per second (Mops).

Experiments are repeated 10 times and the average throughput is

reported.

6.2 Experiments on Finding Frequent Items
Parameter settings: See details in appendix C.1.

Comparisonwith prior algorithms:We compareWavingSketch

with 3 algorithms: Count+Heap[4], USS[15], and SS[13]. We choose

Count+Heap because it is a typical unbiased sketch-based algorithm.

We choose USS because it is a typical unbiased KV-based algorithm.

And we choose SS because it is classic and has been shown in [30]

to be better than many algorithms, like Lossy Counting[14] and

Frequent[1].

ARE (Figure 2(a)-2(d)): We find that, on the synthetic dataset,

the ARE of WavingSketch is around 7 × 10−5 under a memory of

200KB. On the three real-world datasets, the ARE of WavingSketch

is around 1565, 21737, and 19802 times lower than Count+Heap,

USS, and SS, respectively.

CR (Figure 3(a)-3(d)):We find that, on the synthetic dataset, the

CR ofWavingSketch is around 1.31, 1.39, and 1.38 times higher than

Count+Heap, USS, and SS, respectively. On the three real-world

datasets, the CR of WavingSketch is around 1.25, 1.35, and 1.41

times higher than Count+Heap, USS, and SS, respectively.

PR (Figure 4(a)-4(d)):On the synthetic dataset, the PR ofWavingS-

ketch is around 1.61, 3.68, and 3.67 times higher than Count+Heap,

USS, and SS, respectively. On the three real-world datasets, the PR

of WavingSketch is around 1.54, 2.33, and 2.39 times higher than

Count+Heap, USS, and SS, respectively.

Throughput (Figure 5(a)-5(d)): On the synthetic dataset and the

three real-world datasets, the insertion throughput of WavingS-

ketch is around 4.05, 4.50, and 2.50 times higher than Count+Heap,

USS, and SS, respectively.

Analysis. 1) The ARE of SS and USS is much higher than WavingS-

ketch, because the recorded items’ frequency tends to be greatly

overestimated in SS and USS. The ARE of Count+Heap is higher

than WavingSketch because Count+Heap needs to keep a large

Count Sketch to ensure the accuracy. So when the memory is very

limited, its accuracy will be much worse than WavingSketch. 2)

The throughput of WavingSketch is much higher than that of prior

algorithms, because WavingSketch only needs one memory access

for each insertion. In SS and USS, the pointer operations will lead to

cache misses and make the throughput much lower. In Count+Heap,

multiple accesses to memory and the O(logk) time complexity of

the heap operations slow down the insertion throughput. 3) We find

that the PR of SS and USS sometimes decreases asmemory consump-

tion increases. This is common for algorithms that overestimate the

frequency. For example, if the only 200 items are recorded, there

are at most 200 items whose estimated frequency exceeds the pre-

defined threshold. However, if 2000 items are recorded, there may

be 1000 items whose estimated frequency exceeds the predefined

threshold due to overestimation, which leads to a decrease in PR.

6.3 Experiments on Parameter Settings
Parameter settings: See details in appendix C.3.

ARE (Figure 6(a)): We find that the ARE of d = 8 is around 1.16

times higher than that of d = 16 and is almost equal to that of

d = 32, and d = 64.

CR (Figure 6(c)):We find that the CR of d = 8 is almost equal to

that of d = 16 and is around 1.01 and 1.03 times higher than that of

d = 32 and d = 64, respectively.

PR (Figure 6(b)):We find that the PR of d = 8 is around 1.04, 1.06,

and 1.06 times lower than that of d = 16, d = 32, and d = 64,

respectively.

Throughput (Figure 6(d)):We find that the throughput ofd = 8 is

around 1.07, 1.17, and 1.39 times higher than that of d = 16, d = 32,

and d = 64, respectively.

Analysis: According to the results, given an amount of memory, a

higher value of d typically goes with a higher precision of WavingS-

ketch and a lower throughput, other aspect of performance is not

influenced explicitly. In other words, the value of d is selected based

on a trade-off between precision and throughput. If the application

requires a higher speed, we can use a smaller value of d . If the
application requires a higher precision, we can use a larger value

of d .

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1579

0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

A
R

E

Memory (MB)

WavingSketch SS
Count+Heap USS

(a) Synthetic

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

A
R

E
Memory (MB)

WavingSketch SS
Count+Heap USS

(b) IP trace

0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

A
R

E

Memory (MB)

WavingSketch SS
Count+Heap USS

(c) Web page

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

A
R

E

Memory (MB)

WavingSketch SS
Count+Heap USS

(d) Network

Figure 2: ARE of finding frequent items.

0.2 0.4 0.6 0.8 1.0
0.20

0.40

0.60

0.80

1.00

C
R

Memory (MB)
(a) Synthetic

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

C
R

Memory (MB)
(b) IP trace

0.2 0.4 0.6 0.8 1.0
0.20

0.40

0.60

0.80

1.00

C
R

Memory (MB)
(c) Web page

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

C
R

Memory (MB)
(d) Network

Figure 3: CR of finding frequent items. The legend is the same as that of Figure 2.

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

PR

Memory (MB)
(a) Synthetic

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

PR

Memory (MB)
(b) IP trace

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

PR

Memory (MB)
(c) Web page

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

C
R

Memory (MB)
(d) Network

Figure 4: PR of finding frequent items. The legend is the same as that of Figure 2.

0.2 0.4 0.6 0.8 1.0
0.00

2.00

4.00

6.00

T
hr

ou
gh

pu
t(

M
op

s)

Memory (MB)

p

(a) Synthetic

0.2 0.4 0.6 0.8 1.0
0.00

1.50

3.00

4.50

T
hr

ou
gh

pu
t(

M
op

s)

Memory (MB)

p

(b) IP trace

0.2 0.4 0.6 0.8 1.0
0.00

1.50

3.00

4.50

6.00

T
hr

ou
gh

pu
t(

M
op

s)

Memory (MB)

p

(c) Web page

0.2 0.4 0.6 0.8 1.0
0.00

1.50

3.00

4.50

T
hr

ou
gh

pu
t(

M
op

s)

Memory (MB)

p

(d) Network

Figure 5: Throughput of finding frequent items. The legend is the same as that of Figure 2.

6.4 Experiments on Distributions
Parameter Setting: See details in appendix C.4.

ARE (Figure 7(a)): We find that the ARE of a skewness of 0.3 is

around 2.5 and 5.1 times higher than that of a skewness of 0.6 and

3 respectively.

F1 Score (Figure 7(b)):We find that the F1 Score of a skewness of

0.3 is around 1.53 and 2.18 times lower than that of a skewness of

0.6 and 3 respectively.

Analysis: According to the results, WavingSketch can achieve

higher accuracy under higher skewness of the dataset.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1580

20 40 60 80 100
0.00

0.15

0.30

0.45

A
R

E

Memory (KB)

d=8 d=16
d=32 d=64

(a) ARE

20 40 60 80 100
0.40

0.60

0.80

1.00

C
R

Memory (KB)

d=8 d=16
d=32 d=64

(b) CR

20 40 60 80 100
0.25

0.50

0.75

1.00

PR

Memory (KB)

d=8 d=16
d=32 d=64

(c) PR

20 40 60 80 100
3.00

3.50

4.00

4.50

5.00

5.50

T
hr

ou
gh

pu
t(

M
op

s)

Memory (KB)

d=8 d=16
d=32 d=64

(d) Throughput

Figure 6: Evaluation on Parameter Setting.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.70

1.40

A
R

E

Dataset Skewness

20KB 40KB 60KB

(a) ARE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.25

0.50

0.75

F1
Sc

or
e

Dataset Skewness

20KB 40KB 60KB

(b) F1 Score

Figure 7: Evaluation on Distributions.

6.5 Experiments on other applications
Comparison with prior algorithms: For finding heavy changes,

we compare WavingSketch_C with FR[8] and FR with CF[24]. For

finding persistent items, we compare WavingSketch_P with PIE[9]

and Small-Space[33]. For finding Super-Spreaders, we compare

WavingSketch_S with OLF[10], TLF[10], and OpenSketch[34].

Parameter settings: See details in appendix C.2.

Finding Heavy Changes (Figure 8(a)-8(b)): We find that the F1

Score of WavingSketch_C is around 10 times and 6 times higher

than FR and FR with CF, respectively. The throughput of WavingS-

ketch_C is around 1.35 and 1.92 times higher than FR and FR with

CF, respectively.

Finding Persistent Items (Figure 9(a)-9(b)):We find that the F1

Score of WavingSketch_P is around 3.71 and 4.35 times higher than

PIE and Small-Space, respectively. The throughput of WavingS-

ketch_P is close to Small-Space, and is around 7.55 times higher

than PIE.

Finding Super-Spreaders (Figure 10(a)-10(b)):We find that the

F1 Score of WavingSketch_S is around 22.18, 17.73, and 1.21 times

higher than OLF, TLF, and OpenSketch, respectively. The through-

put of WavingSketch_S is lower than OLF and TLF, but higher than

OpenSketch.

Analysis. 1) The F1 Score shows that WavingSketch_C greatly out-

performs FR and FR+CF while using merely 1
10 memory they use.

This is because finding heavy changes requires frequency of items.

Since WavingSketch provides more accurate estimation, it also per-

forms better in this task. 2) On finding persistent items, the F1 Score

of WavingSketch_P is much better than prior algorithms. For Small-

Space, sampling can enhance the throughput, but the low sample

0.4 0.5 0.6 0.7 0.8
0.00

0.25

0.50

0.75

1.00

F1
Sc

or
e

Memory (MB)

WavingSketch_C FR
FR+CF

(a) F1 Score

0.4 0.5 0.6 0.7 0.8
1.00

1.50

2.00

2.50

3.00

3.50

T
hr

ou
gh

pu
t(

M
op

s)

Memory (MB)

WavingSketch_C FR
FR+CF

(b) Throughput

Figure 8: Evaluation on finding Heavy Changes.

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

F1
Sc

or
e

Memory (MB)

WavingSketch_P PIE
Small-Space

(a) F1 Score

0.2 0.4 0.6 0.8 1.0
0.00

1.00

2.00

3.00

T
hr

ou
gh

pu
t(

M
op

s)

Memory (MB)

WavingSketch_P PIE
Small-Space

(b) Throughput

Figure 9: Evaluation on finding Persistent Items.

rate under small memory magnifies the error. For PIE, though it

uses 200 times memory as WavingSketch_P, hash collisions still

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1581

0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00

F1
Sc

or
e

Memory (MB)

WavingSketch_S TLF
OpenSketch OLF

(a) F1 Score

0.6 0.7 0.8 0.9 1.0
0.00

2.00

4.00

6.00

8.00

T
hr

ou
gh

pu
t(

M
op

s)
Memory (MB)

WavingSketch_S TLF
OpenSketch OLF

(b) Throughput

Figure 10: Evaluation on finding Super-Spreaders.

lower its accuracy seriously. 3) On finding Super-Spreaders, though

the Bloom filter requires a lot of memory, WavingSketch_C still

greatly outperforms prior algorithms. The reason for this is the sig-

nificant amount of memory required by prior algorithms to remove

duplicates. For example, OpenSketch uses bitmaps, and OLF uses a

hash-table. In contrast, Bloom filter is more effective.

7 CONCLUSION
In this paper, we propose an algorithm called WavingSketch for

finding top-k items. It can provide unbiased estimation and out-

perform the state-of-the-art, Unbiased Space Saving in terms of

accuracy and speed. We prove mathematically the unbiasedness

and show that the error is much lower than that of the state-of-the-

art, Unbiased Space Saving. Besides, WavingSketch is generic. We

show how it can be applied to four applications: finding frequent

items, finding heavy changes, finding persistent items, and finding

Super-Spreaders. We conduct extensive experiments on three real-

world and one synthetic datasets. Experimental results show that,

compared with Unbiased Space Saving, WavingSketch achieves

4.50 times higher insertion speed in average and up to 9× 106 times

(2× 104 times in average) lower error rate in finding frequent items.

ACKNOWLEDGMENT
This work is supported by National Natural Science Foundation

of China (NSFC) (No. 61832001, 61702016, 61672061), National Key

R&D Program of China (No. 2018YFB1004403), Huawei Technolo-

gies, and the project of "FANet: PCL Future Greater-Bay Area Net-

work Facilities for Large-scale Experiments and Applications (No.

LZC0019).

REFERENCES
[1] G. Lukasz, D. David, D. Erik D, L. Alejandro, and M. J Ian. Identifying frequent

items in sliding windows over on-line packet streams. In IMC. ACM, 2003.
[2] RichardMKarp, Scott Shenker, and Christos H Papadimitriou. A simple algorithm

for finding frequent elements in streams and bags. ACM Transactions on Database
Systems (TODS), 28(1):51–55, 2003.

[3] M. Nishad and P. Themis. Frequent items in streaming data: An experimental
evaluation of the state-of-the-art. Data & Knowledge Engineering, 2009.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In Automata, Languages and Programming. Springer, 2002.

[5] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent data
sketching. In Proc. ACM SIGMOD, pages 795–810. ACM, 2015.

[6] Robert Schweller, Zhichun Li, Yan Chen, et al. Reversible sketches: enabling
monitoring and analysis over high-speed data streams. IEEE/ACM Transactions
on Networking (ToN), 15(5):1059–1072, 2007.

[7] K. Balachander, S. Subhabrata, Z. Yin, and C. Yan. Sketch-based change detection:
methods, evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pages 234–247. ACM, 2003.

[8] Yuliang Li, Rui Miao, Changhoon Kim, andMinlan Yu. Flowradar: a better netflow
for data centers. In USENIX NSDI, pages 311–324. USENIX Association, 2016.

[9] D. Haipeng, S. Muhammad, L. Alex X, and Z. Yuankun. Finding persistent items
in data streams. Proc. VLDB, 2016.

[10] S. Venkataraman, D. Xiaodong Song, P. B. Gibbons, and A. Blum. New streaming
algorithms for fast detection of superspreaders. In NDSS, 2005.

[11] Graham Cormode and S Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1), 2005.

[12] Cristian Estan and George Varghese. New directions in traffic measurement and
accounting. ACM SIGMCOMM CCR, 32(4), 2002.

[13] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation
of frequent and top-k elements in data streams. In International Conference on
Database Theory. Springer, 2005.

[14] M. Gurmeet Singh and M. Rajeev. Approximate frequency counts over data
streams. In Proc. VLDB, pages 346–357, 2002.

[15] Daniel Ting. Data sketches for disaggregated subset sum and frequent item
estimation. In SIGMOD Conference, 2018.

[16] Ming Ji, Jun Yan, Siyu Gu, Jiawei Han, Xiaofei He, Wei Vivian Zhang, and Zheng
Chen. Learning search tasks in queries and web pages via graph regularization.
In Proc. ACM SIGIR, pages 55–64. ACM, 2011.

[17] Source code related toWavingSketch. https://github.com/WavingSketch/Waving-
Sketch.

[18] Graham Cormode. Sketch techniques for approximate query processing. Foun-
dations and Trends in Databases. NOW publishers, 2011.

[19] PinghuiWang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, ChenxuWang, John CS
Lui, and Xiaohong Guan. A memory-efficient sketch method for estimating high
similarities in streaming sets. In SIGKDD, pages 25–33, 2019.

[20] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. Sketchml: Accelerating
distributed machine learning with data sketches. In SIGMOD. ACM, 2018.

[21] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In ACM SIGCOMM 2018, pages 561–575, 2018.

[22] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyramid sketch:
A sketch framework for frequency estimation of data streams. Proc. VLDB Endow.,
10(11):1442–1453, August 2017.

[23] Tong Yang, Alex X Liu, Muhammad Shahzad, Yuankun Zhong, Qiaobin Fu, Zi Li,
Gaogang Xie, and Xiaoming Li. A shifting bloom filter framework for set queries.
Proceedings of the VLDB Endowment, 9(5):408–419, 2016.

[24] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig.
Cold filter: A meta-framework for faster and more accurate stream processing.
In SIGMOD Conference, 2018.

[25] Bofang Li, Aleksandr Drozd, and et al. Scaling word2vec on big corpus. Data
Science and Engineering, pages 1–19, 2019.

[26] Stephen Bonner, Ibad Kureshi, and et al. Exploring the semantic content of unsu-
pervised graph embeddings: An empirical study. Data Science and Engineering,
4(3):269–289, 2019.

[27] Yinghui Wang, Peng Lin, and Yiguang Hong. Distributed regression estimation
with incomplete data in multi-agent networks. Science China Information Sciences,
61(9):092202, 2018.

[28] Tongya Zheng, Gang Chen, and et al. Real-time intelligent big data process-
ing: technology, platform, and applications. Science China Information Sciences,
62(8):82101, 2019.

[29] R. Pratanu, K. Arijit, and A. Gustavo. Augmented sketch: Faster andmore accurate
stream processing. In Proc. ACM SIGMOD, 2016.

[30] C. Graham and H. Marios. Finding frequent items in data streams. VLDB, 2008.
[31] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li.

Heavyguardian: Separate and guard hot items in data streams. In SIGKDD, 2018.
[32] A.Shokrollahi. Raptor codes. IEEE Transactions Information Theory, 52(6), 2006.
[33] Bibudh Lahiri, Jaideep Chandrashekar, and Srikanta Tirthapura. Space-efficient

tracking of persistent items in a massive data stream. Statistical Analysis and
Data Mining, 7:70–92, 2011.

[34] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement
with opensketch. In NSDI 2013, 2013.

[35] Michael Flynn. Some computer organizations and their effectiveness. ieee trans
comput c-21:948. Computers, IEEE Transactions on, C-21:948 – 960, 10 1972.

[36] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[37] Hash website. http://burtleburtle.net/bob/hash/evahash.html.
[38] David MW Powers. Applications and explanations of Zipf’s law. In Proc. EMNLP-

CoNLL. Association for Computational Linguistics, 1998.
[39] Alex Rousskov and Duane Wessels. High-performance benchmarking with web

polygraph. Software: Practice and Experience, 2004.
[40] The caida anonymized 2016 traces. http://www.caida.org/data/overview/.
[41] Real-life transactional dataset. http://fimi.ua.ac.be/data/.
[42] The Network dataset Internet Traces. http://snap.stanford.edu/data/.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1582

A PSEUDO CODE

Algorithm 1: Insertion of WavingSketch.

Input: An item ei
1 f̂i = B[h(ei)].count ∗ s(ei);
2 if ei ∈ Lei then
3 update the frequencies;

4 if flag for ei is false then
5 B[h(ei)].count ← B[h(ei)].count + s(ei);
6 else if Lei is not full then
7 insert the item with <ei , 1, true >;

8 else

9 B[h(ei)].count ← B[h(ei)].count + s(ei);
10 er ← Lei .smallestItem();
11 f̂r ← er . f requency;

12 if f̂i ≥ f̂r then
13 if er . f laд = true then

14 B[h(ei)].count ← B[h(ei)].count + f̂r ∗ s(er);
15 Lei .replaceSmallestItem(ei , f̂i + 1, f alse);
16 return;

B DATASETS

1) Synthetic Datasets: We generate 10 synthetic datasets that

follow the Zipf [38] distribution by using Web Polygraph [39], an

open-source performance testing tool. Each dataset has 32 million

items, and the skewness of datasets varies from 0.3 to 3.0. The

length of each item ID is 4 bytes. The synthetic datasets can be

used to experiment the influence of the distribution of datasets

(skewness varying from 0.3 to 3.0). We also use the dataset with

skewness of 1.5 as the synthetic dataset for experiments on the

four applications, because this skewness provides an appropriate

difficulty of distinguishing items by frequency.

2) IP Trace Dataset: The IP Trace Dataset is streams of

anonymized IP traces collected in 2016 by CAIDA [40]. Each item

contains a source IP address (4 bytes) and a destination IP address

(4 bytes), 8 bytes in total.

3) Web Page Dataset: The Web page dataset is built from a collec-

tion of web pages, which were downloaded from the website [41].

Each item (4 bytes) represents the number of distinct terms in a

web page.

4) Network Dataset: The network dataset contains users’ posting

history on the stack exchange website [42]. Each item has three

values u,v, t , which means user u answered user v’s question at

time t . We use u as the ID.

C PARAMETER SETTINGS

C.1 Parameter Settings for Finding Frequent
Items

Let d be the number of cells in the Heavy Part of a bucket. For

WavingSketch, we set d = 16. For other sketches, the parameters

are set according to the recommendation of their authors. The

memory size ranges from 0.2MB to 1MB. We choose such a small

memory for the following two reasons.

• When using sketches, it is often desired that they fit in the

cache to make them fast enough.

• Sketches are often sent across the network, and the small

size of sketches can significantly save the bandwidth.

C.2 Parameter Settings for Other Applications

For WavingSketch, we set d = 16, which means there are 16 cells in

the Heavy Part. For other sketches, the parameters are set according

to their authors’ recommendations. For finding heavy changes, the

memory size ranges from 4MB to 8MB, because FR cannot decode

with lessmemory, andWavingSketch_C only uses 1
10 thememory of

FR and FR+CF. For finding persistent items, the memory size ranges

from 0.2MB to 1MB. Because PIE cannot decode with small amounts

of memory, it will use 200 times more memory as Small-Space and

WavingSketch_P. For finding Super-Spreaders, the memory size

ranges from 0.6MB to 1MB, because algorithms on this application

often need more memory to remove duplicates. We use the IP Trace

dataset to evaluate the performance of other applications because

only IP Trace datasets can be used to find Super-Spreaders.

C.3 Parameter Settings for Experiments on
Parameter Settings

As shown in Section 3, we have two parameters in WavingSketch:

l and d . To evaluate the influence of parameter setting, we fix the

memory usage of WavingSketch and vary the value of d . We use

finding frequent items as the considered application in this section

to avoid the influence brought by the Bloom filter. The memory

size ranges from 20KB to 100KB, because such little memory better

exposes the differences between different values of d . As shown in

Section 6.2, WavingSketch performs better than prior algorithms

with only 200KB memory. We vary d from 8 to 64 and use the

synthetic dataset to evaluate the influence of the parameter setting.

C.4 Parameter Settings for Experiments on
Distributions

To evaluate the impact of the item distribution, we use the synthetic

datasets whose skewness ranges from 0.3 to 3.0. For WavingSketch,

we set d = 16, which means there are 16 cells in the Heavy Part. The

memory size ranges from 20KB to 60KB, because such little memory

better exposes the difference between different distributions.

D MATHEMATICAL ANALYSIS

D.1 Variance and Error Bound

Here, we show the variance and the error bound of our estimation

for each item ei .

Theorem D.1. Let e1, e2, · · · , en be the items inserted to B[h(ei)].
We can get the bound of the variance of our estimation that

Var (f̂i) �
∑
ej�ei

(fj)2 (2)

Proof. If ei is error-free, then f̂i = fi . Otherwise, we have f̂i =(∑
ej ∈Se fj · s(ej)

)
·s(ei), where Se is the set of the items that are not

error-free. According to 5.1, E(f̂i) = fi , so we get the variance of

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1583

f̂i that Var (f̂i) = Es(ej)∈{1,−1}
((∑

ej ∈Se , j�i fj · s(ej)
)
· s(ei)

)2
=

Es(ej)∈{1,−1}
(∑

ej ∈Se , j�i fj · s(ej)
)2

From the analysis in 5.1, we find that s(ei) and whether ei is error-
free is independent. Thus, the cross terms have the same chance

to be 1 and −1, so the expectation of their sum is 0. Therefore, we

have Var (f̂i) = Es(ej)∈{1,−1}
(∑

ej ∈Se , j�i (fj)2
)
� ∑

ej�ei (fj)2 �

According to the variance, we can derive an error bound for

‖ f ‖2.

Theorem D.2. Let l = e
ϵ 2
, then P

(��� f̂i − fi

��� � ϵ ‖ f ‖2
)
� 1

e

Proof. Based on Chebyshev’s theorem, we can get that

P
(��� f̂i − fi

��� � √
e
∑
ej�ei (fj)2

)
� Var (f̂i)(√

e
∑
ej �ei (fj)2

)2 � 1
e .

For items in B[h(ei)], we can have an estimation that
∑
ej (fj)2 =

1
l
(‖ f ‖2)2. Therefore, we can get

P
(��� f̂i − fi

��� � ϵ ‖ f ‖2
)

� P
(��� f̂i − fi

��� � ϵ
√
l ·∑h(ej)=h(ei) f

2
j

)
�

P
(��� f̂i − fi

��� � √
e
∑
ej�ei f

2
j

)
� 1

e �

We can find that this bound is relatively loose because it also

takes effect on the items in the Waving Counter. However, for items

in the Heavy Part,
√
l ·∑ej�ei (Δi fj)2 is often much smaller than

‖ f ‖2.
We can also derive an error bound of ‖ f ‖1.
Theorem D.3. Let l = e

ϵ , we have

P
(��� f̂i − fi

��� � ϵ ‖ f ‖1
)
� 1

e

Proof. For our WavingSketch, we have

E

[��� f̂i − fi

���] = E ⎡⎢⎢⎢⎢⎣
������
∑
ej�ei

fj · s(ej)
������
⎤⎥⎥⎥⎥⎦ � E

⎡⎢⎢⎢⎢⎣
������
∑
ej�ei

fj

������
⎤⎥⎥⎥⎥⎦ �

ϵ ‖ f ‖1
e

By the Markov inequality,

P
(��� f̂i − fi

��� � ϵ ‖ f ‖1
)
� P

(��� f̂i − fi

��� � eE
[��� f̂i − fi

���]) � 1

e
�

D.2 Parameter Analysis

We analyze the influence of parameters in WavingSketch. We use

c = dl to denote the number of cells in WavingSketch. Then we

show that for fixed c , how d influences the performance of our

WavingSketch.

Theorem D.4. Let ei be the ith most frequent item in the data

stream. The probability that its frequency fi is among top-d largest

frequencies in bucket B[h(ei)] is at least 1 − dd

d !
·
(
i−1
c

)d
Proof. Let Pi be the probability that B[h(ei)] contains at least d

items whose frequency is higher than ei . When i � d , Pi = 0. So

we only need to discuss the case that i > d . When i > d , we have

Pi �
(
i − 1

d

)
·
(
1
l

)d
� dd

d !
·
(
i−1
c

)d
. Therefore, the probability that

fi is among top-d largest frequencies in bucket B[h(ei)] is at least
1 − dd

d !
·
(
i−1
c

)d
. �

We can find that, when i decreases, Pi decreases sharply, which
indicates that the probability that ei is top-d items in B[h(ei)] be-
comes much higher. According to Stirling’s approximation,

1 − dd

d!
·
(
i − 1

c

)d
≈ 1 − 1√

2πd
·
(
e(i − 1)

c

)d
(3)

We can also find that, when i < c
e + 1, the probability that ei is

top-d items in B[h(ei)] increases with d increasing.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1584

