
Noname manuscript No.
(will be inserted by the editor)

WavingSketch: An Unbiased and Generic Sketch for
Finding Top-k Items in Data Streams

Zirui Liu∗, Fenghao Dong§, Chengwu Liu∗, Xiangwei Deng∗, Tong Yang∗B,

Yikai Zhao∗, Jizhou Li∗, Bin Cui∗, Gong Zhang†

Received: date / Accepted: date

Abstract Finding top-k items in data streams is a fun-

damental problem in data mining. Unbiased estimation

is well acknowledged as an elegant and important prop-

erty for top-k algorithms. In this paper, we propose a

novel sketch algorithm, called WavingSketch, which is

more accurate than existing unbiased algorithms. We

theoretically prove that WavingSketch can provide un-

biased estimation, and derive its error bound. WavingS-

ketch is generic to measurement tasks, and we apply it

to five applications: finding top-k frequent items, find-

ing top-k heavy changes, finding top-k persistent items,

finding top-k Super-Spreaders, and join-aggregate esti-

mation. Our experimental results show that, compared

with the state-of-the-art Unbiased Space-Saving, Wav-

ingSketch achieves 10× faster speed and 103× smaller

error on finding frequent items. For other applications,

WavingSketch also achieves higher accuracy and faster

speed. All related codes are open-sourced at GitHub [4].

Keywords Data Streams; Sketches; Unbiased Esti-

mation; Top-k Frequent Items; Heavy Changes;

∗ Zirui Liu, Chengwu Liu, Xiangwei Deng, Tong Yang, Yikai
Zhao, Jizhou Li, and Bin Cui
Institute: School of Computer Science, Peking University
E-mail: {zirui.liu, liuchengwu, yangtong, zyk, ljzh2014,
bin.cui}@pku.edu.cn, dengxiangwei@stu.pku.edu.cn

§ Fenghao Dong
Institute: Carnegie Mellon University
E-mail: fenghaod@andrew.cmu.edu

† Gong Zhang
Institute: Huawei Theory Lab, China
E-mail: nicholas.zhang@huawei.com

B Corresponding author: Tong Yang
E-mail: yangtong@pku.edu.cn

1 Introduction

1.1 Background and Motivation

Finding top-k items is a fundamental problem in ap-

proximate data stream mining. Nowadays, four kinds of

top-k items have attracted wide attention of researchers:

1) top-k frequent items [37,26,40,14,57]; 2) top-k heavy

changes [49,9,33]; 3) top-k persistent items [57,18]; and

4) top-k Super-Spreaders [54]. Frequent items refer to

items whose numbers of appearances exceed a prede-

fined threshold. Heavy changes refer to items whose fre-

quencies change drastically over two adjacent time win-

dows. Persistent items are items that appear in many

time windows. Super-Spreaders refer to the sources that

connect to many distinct destinations. Although these

top-k problems have different definition, we find that

if an algorithm does well in finding frequent items, it

can also well handle the other tasks because these tasks

can be converted into the task of finding frequent items

(§ 5). Recently, sketches, a kind of probabilistic data

structure, have been widely used in finding top-k items,

because of their memory efficiency and small error.

Unbiased estimation is well acknowledged as an ele-

gant and important property for top-k algorithms. First,

this property is important for distributed measurement,

such as the tasks of global heavy hitters detection, global

distribution estimation, global entropy estimation, etc.

To measure the frequency of items in distributed data

streams, we can deploy one sketch for each local data

stream, and then aggregate the measurement results

of all sketches. If the estimations are biased, when the

measurement results are aggregated, the error of local

sketches will accumulate, leading to large estimation er-

rors. Second, the property of unbiasedness is important

for the task of estimating the frequency sum. When es-

timating the frequency sum of all items in a given set,

we accumulate the estimated frequency of each item in

2 Zirui Liu, et al.

this set. Similarly, if the estimated frequency is biased,

the errors will accumulate to the final result, thereby

significantly degrading the measurement accuracy. Fur-

ther, unbiased approaches can also stimulate the the-

oretical progress of sketches. Until now, although nu-

merous sketches have been proposed, only a very few of

them (including the biased Count-Min Sketch [17] and

the unbiased Count Sketch [14]) have explicit and con-

cise theory bounds and proofs, and most of the other

sketches show rather complicated error bounds. One of

the key reasons is that their estimations are biased,

making the theoretical derivation very complicated.

Among a large number of algorithms for finding

frequent items [17,19,14,38,37,50,53], only one recent

work, Unbiased Space-Saving (USS) [53], achieves unbi-

ased estimation. Unfortunately, its estimation variance

is relatively large and its estimation for top-k items still

have overestimated error. As a result, when applied to

other applications (e.g., finding heavy changes, or per-

sistent items), the large estimation variance of USS will

bring large error. The goal of this paper is to devise a

theoretically unbiased sketch algorithm that have high

accuracy and generic to different applications.

···

e1,25 e2,2312
ListWaving Counter

Basic data structure (bucket)

Estimate item frequency
with unbiasedness

Record top-k
frequent items

+𝑠(𝑒)

&𝑓 = 𝑠(𝑒)×𝒞

WavingSketch

Multi-counter
extension (§3.4)

8 -5 4

Add additional
fields (§3.1)

e1,25,T e2,23,F

Fig. 1 Basic idea of WavingSketch.

1.2 Our Proposed Approach
Towards the above design goal, this paper presents Wav-

ingSketch. As shown in Figure 1, we use a simple exam-

ple to explain the key idea of WavingSketch. To find the

top-k frequent items, we maintain a counter C and a list.

The counter, which is called Waving Counter, provides

an unbiased estimation for each item’s frequency, and

the list is used to store k′ (k′ > k) items and their es-

timated frequencies. For each incoming item e, we first

use a hash function s(e) to hash e to +1 or −1, and

then increase or decrease the Waving Counter by 1. We

estimate the frequency of e using the Waving Counter:

the estimated frequency is f̂ = s(e)× C. We will prove

that the estimated frequency f̂ for any item is unbiased

(see § 4.1). Afterwards, if the estimated frequency of e

is larger than the smallest frequency in the list, we evict

the least frequent item from the list, and insert e into

the list. In this way, we manage to record frequent items

and evict infrequent items in the list. Based on this

idea, we encapsulate the aforementioned data structure

(Waving Counter and list) into a bucket, and construct

our WavingSketch as a bucket array. To achieve higher

accuracy, we will also add additional fields in the list

(§ 3.1) and extend the Waving Counter in each bucket

into multiple Waving Counters (§ 3.4).

Below we explain the rationale of WavingSketch. In

practice, the value of the Waving Counter fluctuates

over time, which is similar to the waves in the ocean.

When the absolute value of the Waving Counter rises

sharply, it is likely that a strong flow (frequent item) is

driving it. Thus, we expect to catch these frequent items

when the absolute value of the counter is fairly high.

Specifically, given an incoming item, we use the Wav-

ing Counter to unbiasedly estimate its frequency. If the

estimated frequency is large enough, it is of high proba-

bility that the incoming item is more frequent than the

least frequent item in the list. Therefore, we replace

the least frequent item with the incoming item. In this

way, WavingSketch manages to maintain top-k frequent

items and their estimated frequencies in the list.

WavingSketch has four advantages. First, WavingS-

ketch can provide unbiased estimation, which is theo-

retically proved in § 4.1. Second, WavingSketch is accu-

rate. Experimental results show that the error of Wav-

ingSketch is much smaller than state-of-the-art Space-

Saving and Unbiased Space-Saving. Third, WavingS-

ketch is generic to various applications. We apply Wav-

ingSketch to five applications: finding frequent items,

finding heavy changes, finding persistent items, finding

Super-Spreaders, and join-aggregate estimation. Fourth,

WavingSketch is fast. WavingSketch achieves higher in-

sertion throughput than prior art, and it can be further

accelerated by SIMD instructions (see § 3.5).

1.3 Key Contributions

– We propose a sketch algorithm called WavingSketch,

which can provide unbiased estimation with high ac-

curacy, and is generic to many top-k tasks.

– We theoretically prove that WavingSketch can pro-

vide unbiased estimation, and derive its error bound.

– We apply WavingSketch to five applications: find-

ing frequent items, finding heavy changes, finding

persistent items, finding Super-Spreaders, and join-

aggregate estimation.

– We conduct extensive experiments, and the results

show that WavingSketch achieves 103× smaller error

and 10× faster speed than state-of-the-art Unbiased

Space-Saving [53] in finding frequent items.

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 3

2 Background and Related Work

2.1 Problem Statement

Data stream: A data stream σ is defined as a sequence

{ei}i=1,2,...,n of n items drawn from the universe [m] :=

{1, 2, . . . ,m}. Each item ei in σ is associated with a

timestamp ti indicating its arrival time.

Frequent items: Given a data stream σ of n ele-

ments, the frequency of an item e ∈ [m] is defined as

f = |{j ∈ [n] : ej = e}|. Frequent items refer to a set of

items ΨF ⊆ [m], where the frequency of each item in

ΨF is larger than a predefined threshold F . Intuitively,

frequent items refer to items with large frequencies.

Heavy changes: Given a data stream σ, we divide it

into equal-sized and continuous time windows. Consider

an item e ∈ [m] and two adjacent time windows w1 and

w2. The frequency of e in w1 (or w2), namely f ′ (or

f ′′), is defined as the number of appearances of e in

time window w1 (or w2). The frequency change of e in

w1 and w2, namely∆f , is defined as∆f = |f ′′−f ′|. The
heavy changes between w1 and w2 refer to a set of items

ΨC ⊆ [m], where the frequency change of each item in

ΨC is larger than a predefined threshold C. Intuitively,

heavy changes refer to items whose frequencies change

drastically over two adjacent time windows.

Persistent items: Given a data stream σ, we divide

it into equal-sized and continuous time windows again.

Given an item e ∈ [m], we define its persistence p as

the number of time windows that e appears. Persistent

items refer to a set of items ΨP ⊆ [m], where the per-

sistence of each item in ΨP is larger than a predefined

threshold P . Intuitively, persistent items refer to items

that appear in many time windows.

Super-Spreaders: We consider a particular kind of

data streams: network streams. For a network stream

σn, each incoming item in σn is a packet ei ∈ Φ with

a source address srci and a destination address dsti,

namely ei = (srci, dsti). Here, Φ is the set of all distinct

packets (or the set of flows). Given a source address

src, we define its number of destinations as |{ej ∈ Φ :

srcj = src}|. Super-Spreaders refer to a set of source

addresses ΨS , where the number of destinations of each

source address in ΨS is larger than a predefined thresh-

old S. Intuitively, Super-Spreaders refer to sources that

connect to a large number of distinct destinations.

2.2 Related Work

2.2.1 Finding Frequent Items

There are two types of solutions for finding frequent

items. The first type, sketch-based solutions, records the

frequencies of all items by hashing. The second type,

KV-based solutions, records the ⟨ID, frequency⟩ pairs
of a subset of items with large frequencies.

Table 1 Symbols frequently used in this paper.

Notation Meaning

σ A data stream {ei}i=1,2,...,n where ei ∈ [m]
n Number of items in σ

m Number of distinct items in σ

ei The ith incoming item in data stream σ

fi Real frequency of item ei
f̂i (or f̂) Estimated frequency of item ei
B[i] The ith bucket of WavingSketch

B[i].count Waving Counter of bucket B[i]
B[i].heavy Heavy Part of bucket B[i]

l Number of buckets in WavingSketch
d Number of cells in B[i].heavy

hash(·) Raw hash function that uniformly maps
items into 32-bit/64-bit integers

h(·) Hash function mapping items into buckets
s(·) Hash function mapping items to {+1,−1}
c Number of Waving Counters in each bucket

g(·) Hash function mapping items into Waving
Counters

B[i].count[j] The jth Waving Counter of B[i]
r Compression ratio or expansion ratio.

Sketch-based solutions: A sketch is an excellent data

structure that records the approximate statistics of data

streams by maintaining a summary. Typical sketches

include CM [17], CU [19], Count [14], ASketch [43],

and more [58,11,65]. These sketches often consist of

multiple arrays, each of which contains many counters.

Each array is associated with a hash function that maps

items to the counters. As sketches suffer the error in-

curred by hash collision, people propose many strate-

gies to reduce this error. However, these strategies are

usually memory inefficient for the task of finding top-k

frequent items, because they record frequent items and

infrequent items simultaneously, while infrequent items

are useless for reporting top-k items.

KV-based solutions: Typical KV-based solutions in-

clude Space-Saving [38,16], Unbiased Space-Saving [53],

Lossy Counting [50], HeavyGuardian [59], Cold filter [67],

and LD-Sketch [24]. Space-Saving (SS) and Unbiased

Space-Saving (USS) use a list with m buckets to record

frequent items and their estimated frequencies. For an

incoming item e, if it is recorded in the list, we incre-

ment its frequency by one. If e is not in the list and the

list is not full, we insert (e, 1) into the list. Otherwise,

SS increments the frequency of the least frequent item,

and replace the least frequent item with the incoming

item. We can see that the estimated frequency recorded

in SS are always overestimated. Based on SS, Unbiased

Space-Saving (USS) makes small modification by re-

placing the least frequent item with a certain probabil-

ity. For each item recorded in the list, USS reports an

overestimated frequency, and for each item not recorded

in the list, USS estimates its frequency as 0. This means

4 Zirui Liu, et al.

that, the estimation of all non-recorded items are heav-

ily biased downward, and the estimation of all recorded

items are heavily biased upward. USS proves that its es-

timated result for any item is unbiased. This is because

its overestimated error for recorded items and underes-

timated error for non-recorded items can just offset each

other. However, although USS provides an unbiased es-

timation for any item, its estimated results for top-k

frequent items are also biased upward. In addition, the

estimation variance of USS is rather large, which leads

to its unsatisfactory accuracy for finding frequent items.

Notice that as probabilistic algorithms, when there are

more than k buckets equipped (each bucket stores an

item), SS and USS cannot guarantee to accurately re-

port all top-k items. LD-Sketch [24] is a KV-based

algorithm. The data structure of LD-Sketch is d bucket

arrays, where each bucket stores a list of l KV pairs and

several counters. The d bucket arrays in LD-sketch op-

erate independently of each other. Therefore, a top-k

item might be recorded in each of these d bucket ar-

rays, which leads to a memory waste. To theoretically

ensure the accuracy of finding the top-k items, the KV

pair list in each bucket of LD-Sketch independently ex-

pands its size l. This leads to an uncontrollable total

memory usage and unsatisfactory processing speed. In

addition, LD-Sketch is an algorithm solely dedicated to

the task of finding top-k items. It can only estimate the

frequency upper bound and lower bound for each top-

k item, and does not provide a method for estimating

the exact frequency. Thus, LD-Sketch is not generic to

frequency-related tasks like join-aggregate estimation.

2.2.2 Finding Heavy Changes

There are two kinds of solutions for finding heavy changes.

The first kind is “record all” solutions. This kind of so-

lutions builds a data structure to record all items in

each time window, and then decodes these data struc-

tures and reports heavy changes. Typical algorithms

include k-ary [9], reversible sketch [49], and FlowRadar

[33]. These solutions are not memory efficient because

they record all items, while recording persistently infre-

quent items are unnecessary for finding heavy changes.

By contrast, the other kind, “record sample” solutions,

only records frequent items. A typical “record sample”

algorithm is Cold filter [67]. However, in practice, the

data structure of Cold filter will be filled up very quickly,

and thus needs to be cleaned up periodically. LD-Sketch

[24] proposes to build one sketch for each time window

to record only top-k items. It reports a top-k item as a

heavy change if the difference of its estimated frequency

in the two time windows exceeds predefined threshold.

However, the accuracy of its frequency estimation has

much room for improvement.

2.2.3 Finding Persistent Items

Again, two kinds of solutions exist. The first kind, namely

“record all” solutions, records all items. A typical algo-

rithm is PIE [18]. For each time window, PIE builds

a hash table to record the fingerprints of the incom-

ing items. PIE uses the key technique of Raptor codes

[8] to generate different fingerprints in different time

windows. For a persistent item that appears in many

time windows, we can find many of its fingerprints, and

these fingerprints can be used to recover the item ID.

In this way, persistent items have a higher probability

to be successfully recovered. Unfortunately, the accu-

racy of PIE is also affected by hash collisions between

infrequent items and persistent items. The second kind,

namely “record samples” solutions, records only po-

tential persistent items. Small-Space [29] use sampling

techniques to select persistent items, but its sampling

error is hard to control. On-Off Sketch [63] combines

CM sketch and Space-Saving to build a top-k sketch.

It adds a 1-bit marker to each counter in the sketch

to decide whether an item first appears in current time

window. If so, it increments the frequency of this item.

However, the accuracy of this top-k sketch has much

room for improvement.

2.2.4 Finding Super-Spreaders

There are also two kinds of solutions. The first is “record

all” solutions. A typical algorithm is OpenSketch [61],

which combines CM sketch [17] and bitmap. However,

OpenSketch has poor accuracy under tight memory.

The second kind is “record samples” solutions, which

records only potential super-spreaders. One-level filter-

ing and two-level filtering [54] use sampling technique to

filter infrequent items. SpreadSketch [52] combines CM

sketch [17] and multi-resolution bitmap [20] to achieve

theoretial guarantees on accuracy. Its data structure is

d independent bucket arrays. Each super-spreader can

be recorded in each of these d arrays, which leads to

high memory overhead and slow processing speed.

2.3 Importance of Unbiasedness Property

In practice, the property of unbiased estimation is im-

portant to many applications. In this subsection, we

take two typical tasks as examples to explain the im-

portance of unbiasedness property: 1) answering subset

query; 2) finding global top-k items in disjoint data

streams. Besides these two tasks, unbiased algorithms

are also widely applied in other tasks like computing

item ranking [66], join-aggregate estimation [55,15], and

network packet sampling [36].

Subset query: Given a set of items, the subset query

problem estimates the aggregated results over all items

in the set. Two typical subset query tasks are subset

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 5

sum query and subset average query, which estimate

the frequency sum and average for a given set respec-

tively. The problem of subset query is of significant im-

portance in data stream analysis. For example, in ad

click analysis, each item represents a user’s visit to an

ad. Operators may wish to query the total number of

views for ads from all users belonging to the same com-

pany, or from a specific country [39]. In network mea-

surement, each item represents a packet in the network.

Users may query for the total number of packets origi-

nated from a certain subnet. The above queries can be

expressed as subset sums [64].

As pointed out by prior works [53,64,39], the unbi-

asedness property is crucial for subset query tasks, par-

ticularly for the subset sum task. Thanks to the Law

of Larger Numbers, the unbiasedness property ensures

that when aggregating the estimated frequencies of all

items in a set, the overestimated errors and underesti-

mated errors in the estimation of individual item fre-

quencies can offset each other. By contrast, applying

a biased algorithm to subset sum estimation will result

in unacceptably accumulated errors, with larger sets ex-

hibiting more substantial error accumulation. Our ex-

perimental results will show that compared to the algo-

rithms with one-sided overestimated error, our unbiased

WavingSketch achieves significantly smaller relative er-

ror (> 103×) on estimating the subset sum/average for

top-k items (§ 6.4.3).

Finding global top-k items: Given N disjoint data

streams S1, · · · ,SN , the global top-k problem finds the

k items with the largest frequency among S1, · · · ,SN .

This problem is important in many application scenar-

ios. For example, consider an autonomous system (AS)

in a wide-area network (WAN) with multiple border

routers [45,51]. All external network packets sent to the

AS from the same source IP address must pass through

the same border router. If we regard the source IP ad-

dress of network packets as the key, the network packet

streams on different border routers form a group of dis-

joint data streams. Network operators usually want to

monitor the main source of traffic entering the AS, i.e.

the k source IP addresses that send the most packets.

This objective can be cast into our problem of finding

global top-k items in disjoint data streams.

To find global top-k items, each data stream Si uses

a top-k algorithm Bi to report the set Ti of local top-k
items and their estimated frequency. The central an-

alyzer obtains global top-k items by selecting k items

with the k largest estimated frequency from ∪N
i=1Ti. As

pointed out by prior works [66], the property of unbi-

asedness is important in ensuring fairness in the selec-

tion of global top-k items. As an example, suppose we

use the well-known Space-Saving (SS) [38] or Unbiased

Space-Saving (USS) [53] as the top-k algorithm. Recall

that SS and USS always provide overestimated estima-

tion for top-k items (§ 2.2) , and the overestimated error

is positively correlated to the size of the data stream. If

we directly sort all the selected local top-k items based

on their estimated frequency, the result will be signif-

icantly related to the items’ local environment (size of

its data stream) rather than their real frequency. This

is because the items in the heavy data streams 1 will

be overestimated more and get higher chances to be

selected as global top-k items, while the real top-k fre-

quent items in the light data streams will tend to be

ignored due to their small overestimated error, which is

unfair. By contrast, if the algorithm can always provide

unbiased estimation for top-k items, the global top-k

results will no longer be influenced by the local envi-

ronment, thereby achieving top-k fairness [66]. Our ex-

perimental results will show that compared to the algo-

rithms with one-sided overestimated error, our unbiased

WavingSketch achieves significantly higher F1 score (up

to 60%) on finding global top-k items (§ 6.4.4).

3 The WavingSketch Algorithm
3.1 Data Structure
As shown in Figure 2, the data structure of WavingS-

ketch is an array of l buckets. Let B[i] be the ith bucket.

Each incoming item ei in the data stream is mapped

into one bucket B[h(ei)] through a hash function h(·).
In our implementation, we get the hash function h(·)
by modular operation: h(·) = hash(·)%l, where hash(·)
is a raw hash function that uniformly maps an item ID

into a 32-bit/64-bit integer (e.g., we use 32-bit Mur-

mur Hash [2] in our experiments). We use another hash

function s(·) to map each item into {+1,−1}. Simi-

larly, s(·) is also obtained from modular operation. Each

bucket B[i] consists of two parts: a Waving Counter

B[i].count, and a Heavy Part B[i].heavy. 1) The Waving

Counter B[i].count provides an unbiased estimation for

the frequency of any item that is mapped into B[i]. 2)
The Heavy Part B[i].heavy consists of d cells. Each cell

records a key-frequency pair and a flag ⟨ID, frequency,

flag⟩, where key is the ID of the recorded item, fre-

quency is its estimated frequency, and flag indicates

whether the estimated frequency is accurate (i.e., whether

the estimated frequency is the real frequency). All fields

in the data structure are initialized to 0 or Null.

3.2 Basic Operations
Insertion (Figure 2:) The pseudocode of the insertion

operation is shown in Algorithm 1. Given an incoming

item ei, we first compute the hash function h(ei) to

1 Notice that in practice the sizes of data streams are often
skewed (e.g., power law distribution) [41,66], where heavy data

streams have more items and light data streams have less items.

6 Zirui Liu, et al.

e7,128,F

e5,127,F

𝑩[𝒉(𝒆𝒊)]

𝑩[𝒉(𝒆𝟒)]

…

𝑩[𝒉(𝒆𝟕)]
𝒍 buckets

𝒔 𝒆𝟑 = +𝟏
-132+𝟏

𝒔 𝒆𝟕 = −𝟏

e1,135,T

Replace

𝒉 𝒆𝒊 𝒆𝒊 in Heavy Part or Heavy Part not full,
directly update or insert (Case 1, 2)

-127−𝟏

e3,257,F

e6,342,T

(-132+1)×(+1) < 135 No replacement

(-127-1)×(-1) > 127

Situation 1 of Case 3
Situation 2 of Case 3

𝒆𝒊

𝒉 𝒆𝟒𝒆𝟒

𝒉 𝒆𝟕𝒆𝟕
Waving Counter

Waving Counter Heavy Part

Fig. 2 Data structure and insertion examples of WavingS-
ketch (d = 2).

map ei into bucket B[h(ei)] (we call B[h(ei)] the hashed

bucket of ei in this paper). Below we show how to insert

ei into B[h(ei)]. There are three cases as follows:

Case 1: (see line 1-4 in Algorithm 1). If ei is already

recorded in B[h(ei)].heavy, there are two situations. 1)

ei is recorded with a flag of true: We just increment its

corresponding frequency in the Heavy Part by one; 2) ei
is recorded with a flag of false: We not only increment

its corresponding frequency by one, but also add s(ei)

to B[h(ei)].count (s(ei) ∈ {−1,+1}).
Case 2: (see line 5-6 in Algorithm 1) If ei is not recorded

in B[h(ei)].heavy and B[h(ei)].heavy is not full, we just

insert ⟨ei, 1, true⟩ into B[h(ei)].heavy.
Case 3: (see line 7-15 in Algorithm 1). If B[h(ei)].heavy
is full and the item ei is not recorded in B[h(ei)].heavy,
we first add s(ei) to B[h(ei)].count. Next, let f̂i =

B[h(ei)].count×s(ei) be the estimated frequency of ei. If

f̂i is larger than the smallest frequency in B[h(ei)].heavy,
we replace the least frequent item in B[h(ei)].heavy (de-

noted as er) with ei as follows: 1) We set the ID field

to ei; 2) We set the frequency field to f̂i; and 3) We

set the flag field to false (indicating the frequency of

ei has error). If the flag of the replaced item er is true,

we also need to insert er into B[h(ei)].count by adding

f̂r × s(er) to B[h(ei)].count, where f̂r is the frequency

field of er before replacement.

Below we use two examples to show how WavingS-

ketch handles Case 3 (see Figure 2). In our examples,

we use a WavingSketch with l buckets, and the Heavy

Part of each bucket consists of d = 2 cells. Suppose we

have inserted some items into the WavingSketch.

Example 1: When item e4 arrives, it is mapped into

bucket B[h(e4)], and we have s(e4) = +1. As e4 is not

in B[h(e4)].heavy and B[h(e4)].heavy is full, we first

add s(e4) = +1 to B[h(e4)].count. Then we have f̂4 =

B[h(e4)].count× s(e4) = −131. Since f̂4 is smaller than

the smallest frequency 135 in B[h(e4)].heavy, we do not

insert e4 into the Heavy Part.

Example 2: When item e7 arrives, it is mapped into

bucket B[h(e7)], and we have s(e7) = −1. As e7 is not

Algorithm 1: Insertion of WavingSketch.

Input: An incoming item ei
1 if ei is recorded in B[h(ei)].heavy then
2 increment the frequency of ei by one;
3 if ei.f lag = false then
4 B[h(ei)].count← B[h(ei)].count+ s(ei);

5 else if B[h(ei)].heavy is not full then

6 insert ⟨ei, 1, true⟩ into B[h(ei)].heavy;
7 else

8 B[h(ei)].count← B[h(ei)].count+ s(ei);

9 f̂i ← B[h(ei)].count× s(ei);
10 er ← the least frequent item in B[h(ei)].heavy;
11 f̂r ← er.frequency;

12 if f̂i > f̂r then
13 if er.f lag = true then

14 B[h(ei)].count← B[h(ei)].count+f̂r×s(er);
15 replace er in B[h(ei)].heavy with ⟨ei, f̂i, false⟩;

16 return;

in B[h(e7)].heavy and B[h(e7)].heavy is full, we first

add s(e7) = −1 to B[h(e7)].count. Then we have f̂7 =

B[h(e7)].count×s(e7) = 128. Since f̂7 is larger than the

smallest frequency 127 in B[h(e7)].heavy, we replace the
least frequent item in B[h(e7)].heavy (namely e5) with

e7: We set the ID field of that cell to e7; We set the

frequency field to f̂7 = 128; We set the flag to false.

Unbiased estimation: Given an item e, to report

the unbiased estimation of its frequency, we check the

Heavy Part of B[h(e)]. If e is in the Heavy Part with

a flag of true, we report the frequency field as its es-

timated frequency. Otherwise, we report the value of

f̂ = B[h(e)].count × s(e). We will theoretically prove

that the estimated frequency of e is unbiased in § 4.1.

Top-k query: To report top-k frequent items, we tra-

verse all Heavy Parts of the WavingSketch, and report

the items with top-k largest recorded frequencies.

3.3 Elastic Operations

Motivation: In practice, the density of many data

streams changes dynamically over time. For example,

consider a cache stream formed by many memory ac-

cess requests where each request is an item. When there

arrives an I/O intensive task, the cache stream will be-

come very dense. When applying WavingSketch to mea-

sure such data streams, we cannot always set the opti-

mal size of the sketch beforehand. When the sketch is

not large enough for current high-density data stream,

we should build a larger sketch to avoid poor accuracy.

By contrary, when the sketch is too large for current

low-density data stream, we can build a smaller sketch

to save memory. However, simply building a new sketch

will result in the loss of information recorded in the

previous sketch. An ideal solution is to make on-the-fly

reconfiguration on the sketch size. Towards this goal,

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 7

we propose two elastic operations of WavingSketch, by

which we can dynamically compress and expand the

size of WavingSketch by any integer factor.

Compression: The compression operation compresses

the size of a WavingSketch by any integer factor r. To

compress a WavingSketch B of l buckets to a WavingS-

ketch B′ of l′ = l/r buckets (suppose l = r · l′), we
take two steps: 1) distribute the l buckets into l′ = l/r

groups; and 2) merge the buckets in the same group into

one bucket. Below we describe the two steps in detail.

To compress a WavingSketch B, we first split the

bucket array B into r equal-sized shards B0, · · · ,Br−1,

each of which has l′ = l/r buckets. We have Bi[j] =

B[i×r+j] where i ∈ {0, · · · , r−1} and j ∈ {0, · · · , l/r−
1}. We distribute the buckets with the same index in

the r shards into the same group. For example, we dis-

tribute B0[0],B1[0], · · · ,Br−1[0] into group 0; and we

distribute B0[1],B1[1], · · · ,Br−1[1] into group 1, etc.

Second, we build the compressed sketch B′ by merg-

ing the buckets in each group. We have B′[i] = OP{B0[i],

· · · ,Br−1[i]}, where OP is the merging operator. To

merge buckets B0[i], · · · ,Br−1[i] into one bucket B′[i],

we first sum up the Waving Counters of the r buckets

to get B′[i].count =
∑r−1

j=0 Bj [i].count. Next, we retrieve

all items in the Heavy Parts of the r buckets. For the

d × r items, we select d items to store in B′[i].heavy

according to the following rules: 1) First, we prefer the

items with flag true. 2) For the items with the same

flag, we prefer the items with larger frequencies.

Afterwards, for the rest d×(r−1) items that are not

selected, we insert each of them with flag true into the

Waving Counter B′[i].count. Specifically, for an item er
with recorded frequency of f̂r, namely ⟨er, f̂r, true⟩, we
insert it into the Waving Counter by adding f̂r × s(er)

to B′[i].count. Finally, we modify the hash function of

the compressed WavingSketch to h′(·) = hash(·)%l′.

Recall that hash(·) is the raw hash function that maps

an item ID into a 32-bit/64-bit integer, and the hash

function of the original WavingSketch is obtained by

h(·) = hash(·)%l. We can see that the compression op-

eration needs to check each item stored in WavingS-

ketch, and thus its time complexity is O(d · l).
Discussion: We explain why the design of our com-

pression operation is reasonable. First, we prove that for

each item e recorded in B[h(e)], it can still be retrieved

in B′[h′(e)] after compression. Consider an item e. The

index of its hashed bucket in B is h(e) = hash(e)%l.

Note that in our compression operation, we distribute

every r buckets into the same group for merging, and

each group has l′ = l/r buckets. Thus, after compres-

sion, e will be recorded in B′[h(e)%l′]. On the other

hand, for item e, the index of its hashed bucket in B′ is

h′(e) = hash(e)%l′. We have the following lemma.

Lemma 1 For any integer b, l, and l′, if l is divisible

by l′, then (b%l)%l′ = b%l′

For example, (15%8)%4 = 15%4. Therefore, we have

(hash(ei)%l)%l′ = hash(e)%l′, namely h(e)%l′ = h′(e).

This property guarantees that each item in the original

WavingSketch can be retrieved in the compressed Wav-

ingSketch. Note that if we modify the compression op-

eration to simply merging every r consecutive buckets,

we must change the hash function of the compressed

WavingSketch to h′(·) = ⌊h(·)/r⌋ = ⌊(hash(·)%l)/r⌋,
which is more complicated.

𝑙 buckets

𝑙′ buckets

e1,275,T

Elastic Compression

Heavy Part
e2,230,F

Counter
-132

e3,176,T
Heavy Part

e4,132,F
Counter

114

e5,210,T
Heavy Part

e6,157,F
Counter

-141

e1,275,T
e5,210,T

17

-132+114-141
+s(e3) ×176

Evict e3 to
Counter

B0[0]

B1[0]

B2[0]

Merge

Fig. 3 Example of the elastic compression operation of Wav-
ingSketch (d = 2, r = 3, l = 9, and l′ = l/r = 3).

Example (Figure 3): We use an example to illustrate

the elastic compression operation of WavingSketch. To

compress a WavingSketch B by r = 3 times, we first

split B into r = 3 shards B0, B1, and B2. We dis-

tribute the buckets into l′ = l/r = 3 groups according

to their indices in the r = 3 shards, where the buck-

ets distributed into the same group are marked with

the same color. Next, we build the compressed sketch

B′ by merging the buckets in each group. Specifically,

we merge B0[0], B1[0], and B2[0] to get B′[0]: First, we

sum up the Waving Counters of the 3 buckets to get

B′[0].count = −132+114−141 = −159. Then we check

the Heavy Parts of the 3 buckets. Since there are 3 items

with the flag of true, we select the top-2 items with the

largest frequencies (e1 and e5), and insert the other item

e3 into the Waving Counter by adding s(e3)×176 = 176

to B′[0].count. Finally, we get B′[0].count = 17, and we

have e1 and e5 recorded in B′[0].heavy. Similarly, we

merge the other 2 groups to get B′[1] and B′[2].

Expansion: The expansion operation enlarges the size

of a WavingSketch by any integer factor r. To expand

a WavingSketch B of l buckets to a WavingSketch B′ of

l′ = l× r buckets, we also take two steps: 1) copy the l

buckets of B r times to get B′; 2) mark each bucket in

B′ as redundant, meaning that there could be redun-

dant items in the Heavy Part of this bucket. Finally, we

modify the hash function h(·) to h′(·) = hash(·)%l′.

8 Zirui Liu, et al.

After expansion, when a redundant bucket B′[j] is

accessed during insertion/query, we perform the follow-

ing redundancy-clean operation: For each item in the

Heavy Part of B′[j], we check whether it is a redun-

dancy. Specifically, for an item e stored in B′[j].heavy,

we check whether h′(e) = j. If not, we regard e as a re-

dundancy and delete it from B′[j] by clearing its cell in

the Heavy Part. Note that if the redundant item e has a

false flag, we subtract f̂ × s(e) from B′[j].count before

clearing its cell. After checking all items in B′[j].heavy,

we remove the redundancy mark of B′[j]. We can see

that the expansion operation copies the l buckets in

WavingSketch by r times, and then cleans the redun-

dant items in a lazy manner. Therefore, its time com-

plexity is O(r · l). If we directly check all items in ex-

panded WavingSketch and immediately clean the re-

dundant ones during expansion, the time complexity

will be O(r · l · d).
Discussion: We explain the reason why each item e in

original WavingSketch B can still be retrieved in the ex-

panded WavingSketch B′. Consider an item e recorded

in B. The index of its bucket is h(e) = hash(e)%l. After

expansion, e will exist in each of the following r buckets:

B′[h(e)],B′[h(e) + l], · · · ,B′[h(e) + (r − 1) · l].

Lemma 2 For any integer b, l, and r, we have b%(r×
l) ∈ {b%l, b%l + l, · · · , b%l + (r − 1) · l}.

For example, when b = 11, l = 7, and r = 2. We

have b%l = 4, and b%(r × l) = 11%(2 × 7) = 11 =

4 + 7 = b%l + l. Therefore, when b = hash(e), we

have h′(e) = hash(e)%l′ ∈ {hash(e)%l, hash(ei)%l +

l, · · · , hash(e)%l+(r−1) · l}. This property guarantees

that e must exist in B′[h′(e)] after expansion.

In this way, consider a frequent item e in the Heavy

Part of bucket B[h(e)]. After expansion, it can be im-

mediately retrieved in B′[h′(e)]. Notice that if e does

not appear after the expansion operation, it will first

exist in B′[h′(e)].heavy. As more items arrive, item e

might no longer be a frequent item, and thus it can

be kicked from the Heavy Part B′[h′(e)].heavy to the

Waving Counter B′[h′(e)].count (Case 3 in § 3.2).

𝑙 buckets

𝑙′ buckets

Elastic Expansion

e1,35,T
Heavy Part

e2,21,F
Counter

17

e1,35,T
e2,21,F

17

+s(e2)×21

Clean

Copy
ℬ![0]

ℬ![3]

Mark
True

---- e2,21,F17 False

𝒉! 𝒆𝟏 = 𝟑

e1,35,T e2,21,F17 True

Clean

e1,35,T -----4 False

𝒉! 𝒆𝟐 = 𝟎
𝒉 𝒆𝟏 = 𝒉 𝒆𝟐 = 𝟎
𝒉𝒂𝒔𝒉 𝒆𝟏 = 𝟑
𝒉𝒂𝒔𝒉 𝒆𝟐 = 𝟔

ℬ[0]

Fig. 4 Example of the elastic expansion operation of Wav-
ingSketch (d = 2, r = 2, l = 3, and l′ = l × r = 6).

Example (Figure 4): We use an example to illustrate

the elastic expansion operation of WavingSketch. To

expand a WavingSketch by r = 2 times, we copy the

l = 3 buckets of B by r = 2 times to get B′, where B′[0]

is identical to B′[3], B′[1] is identical to B′[4], etc. Then

we mark each bucket of B′ as redundant, and modify

the hash function of the expanded WavingSketch from

h(·) = hash(·)%l to h′(·) = hash(·)%l′.

After expansion, when a redundant bucket is first

accessed, we perform the redundancy−clean operation.

Below we take bucket B′[0] and B′[3] as examples to

illustrate this procedure. 1) When B′[0] is first accessed,

we check all items in its Heavy Part. For item e1 with

the true flag, as h′(e1) = 3 ̸= 0, we delete it from the

Heavy Part. For item e2, as h′(e1) = 0, we keep it in

B′[0]. Finally, we remove the redundancy mark of B′[0].

2) Similarly, when B′[3] is first accessed, we also check

all items in its Heavy Part. For e2 with the false flag, as

h′(e2) = 0 ̸= 3, we subtract f̂2 × s(e2) from B′[3].count

and delete e2 from the Heavy Part. We finally remove

the redundancy mark of B′[3].

Automatic Memory Adjustment: We discuss how

to leverage the elastic compression/expansion opera-

tions to enable one-the-fly memory adjustment of Wav-

ingSketch, thereby accommodating the dynamic vari-

ations in data stream density (skewness). In practice,

the skewness of data streams often varies over time.

Ideally, when the skewness of data stream increases,

meaning that the frequencies of top-k items also in-

crease, the problem of finding top-k items will become

easier. In such case, WavingSketch can use less mem-

ory. Conversely, when the skewness of data stream de-

creases, the top-k problem becomes more challenging,

and WavingSketch should use more memory. To achieve

the above goal, we periodically calculate the hit rate θ

of incoming items in the Heavy Part of WavingSketch.

We use this hit rate to reflect the real-time skewness of

data stream and control the memory size of WavingS-

ketch. We maintain θ within a range [Θ1, Θ2] through

adjusting the memory of WavingSketch. Specifically,

when θ falls below Θ1, it indicates a decrease in data

stream skewness, and in such case, we execute an expan-

sion operation to double the memory. Conversely, when

θ exceeds Θ2, indicating an increase in data stream

skewness, we execute a compression operation to halve

the memory. Note that the difference |Θ2 −Θ1| should
be sufficiently large to prevent oscillations of repeated

compression and expansion operations. We will see that

by maintaining the hit rate between [73%, 77%], our

WavingSketch can automatically adjust its size to adapt

to dynamically changing data stream skewness, so as to

always achieve > 97% F1 score (§ 6.3.3).

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 9

3.4 Optimization using Multi-Counter Bucket

Motivation and rationale: WavingSketch uses Wav-

ing Counter to provide unbiased estimation for the items

not recorded in Heavy Part (and the items recorded

with flag false). In the basic version of WavingSketch,

each bucket only has one Waving Counter. When the

data stream is of high-density, multiple top-k items will

collide into one bucket, and thus collide into one Waving

Counter. These collisions significantly degrade the accu-

racy of WavingSketch. For example, consider two items

e1 and e2 with frequencies f1 = 100 and f2 = 100. Sup-

pose s(e1) = s(e2) = 1. When e1 and e2 collide into one

Waving Counter C, we have C = f1×s(e1)+f2×s(e2) =

200. In this case, the estimated frequency of e1 (or e2)

will be f̂1 = C × s(e1) = 200, which is significantly

larger than its true frequency 100. To tackle this issue,

we propose a multi-counter version of WavingSketch,

where we extend the Waving Counter in each bucket

into an array of c (c > d) Waving Counters. We add

another hash function g(·) to map each item ei into one

of the c Waving Counters in its hashed bucket B[h(ei)].
In this way, multi-counter WavingSketch reduces the

collisions of top-k items in Waving Counters by c times

at the cost of more memory usage. Although simply in-

creasing the number of buckets in basic WavingSketch

can also improve the accuracy, we find that using multi-

counter WavingSketch is more effective: Both our theo-

retical analyses (see § 4.2-4.3) and experimental results

(see § 6.1) show that under the same memory usage,

multi-counter WavingSketch has higher accuracy than

basic WavingSketch. Next, we briefly introduce the op-

erations of multi-counter WavingSketch.

Basic operations:

1) Insertion: For an incoming item ei, we first com-

pute hash function h(ei) to map it into bucket B[h(ei)].
If ei is already recorded in B[h(ei)].heavy (Case 1) or

B[h(ei)].heavy is not full (Case 2), we perform the same

insertion operation as in the basic version. Otherwise

(Case 3), we compute hash function g(ei) to map ei into

a Waving Counter B[h(ei)].count[g(ei)], and add s(ei)

to this counter. Let f̂i = B[h(ei)].count[g(ei)]×s(ei). If

f̂i is larger than the smallest frequency in B[h(ei)].heavy,
we replace the least frequent item er with ei. Similar

to the basic version, if the flag of the replaced item er
is true, we insert er into its Waving Counter by adding

f̂r × s(er) to B[h(er)].count[g(er)], where f̂r is the fre-

quency field of er before replacement.

2) Unbiased estimation: Given an item e, we also

first check the Heavy Part of B[h(e)]. If e is in the Heavy

Part with flag true, we report its recorded frequency.

Otherwise, we report the value of B[h(e)].count[g(e)]×
s(e) as its estimated frequency. We theoretically prove

that the estimated frequency made by multi-counter

WavingSketch is also unbiased in § 4.1.

Elastic operations: Multi-counter WavingSketch also

supports the elastic operations in § 3.3. 1) For the com-

pression operation, when merging B0[i], · · · ,Br−1[i] into

B′[i], we get the tth Waving Counter by B′[i].count[t] =∑r−1
j=0 Bj [i].count[t] for ∀t ∈ [0, c). Afterwards, we se-

lect the d items to be recorded in B′[i].heavy according

to the method described in § 3.3, and evict each not-

selected item er with flag true into its Waving Counter

by adding f̂r×s(er) to B′[i].count[g(er)]. The other pro-

cedures of the compression operation are the same as in

the basic version. 2) The expansion operation is exactly

the same as that in the basic version. We just copy the

sketch r times and mark all buckets as redundant.

3.5 SIMD Acceleration

Many data streams, such as network packet streams

[60] and high-frequency financial transaction streams

[27], are generated at extremely high speeds (> 10 mil-

lion items per second), necessitating that sketch algo-

rithms be sufficiently fast to catch up with this high

speed. In addition, many applications like online ML

training [62] and real-time anomaly detection [24] also

have strict requirements on the latency of sketch algo-

rithms. Therefore, it is of great value to make the speed

of WavingSketch as fast as possible. Single instruction,

multiple data (SIMD) [21] is a widely used parallel pro-

cessing technology that can perform the same operation

on multiple data points simultaneously. In this subsec-

tion, we use SIMD instructions to further accelerate

the insertion/query speed of WavingSketch. Nowadays,

most modern processors come with built-in SIMD in-

structions sets (like SSE, AVX on x86 architectures).

The utilization of SIMD instructions allows for harness-

ing the full potential of modern processors. There are

also many existing sketches that use these features to

accelerate their speed [34,35,60,63,68].

To accelerate WavingSketch with SIMD, we first

propose the Heavy Part rearrangement technique to

vectorizes the d keys and values in each bucket of Wav-

ingSketch, allowing for their parallel processing with

SIMD2. By utilizing the parallel processing capabili-

ties of SIMD, we further propose two techniques to ac-

celerate the two critical procedures in the insertion/-

query operation of WavingSketch: 1) finding matched

key (used in insertion and query operations); 2) finding

the item with the smallest frequency (used in insertion

operations). We discuss the implementation details of

the above techniques in our supplementary materials

2 Notice that in our implementation, we always use the
Heavy Part rearrangement technique for higher processing
speed, even without enabling SIMD acceleration.

10 Zirui Liu, et al.

[5]. Experimental results show that after using SIMD

acceleration, we improve the insertion/query speed of

WavingSketch by up to 45%/51% (see § 6.2.3).

4 Mathematical Analysis

4.1 Proof of Unbiasedness
We prove that for an arbitrary item, its estimated fre-

quency made by WavingSketch is unbiased. We first

consider the basic version of WavingSketch in Theo-

rem 1. Then we extend the conclusion to multi-counter

WavingSketch in Theorem 2. In this subsection, we pro-

vide a concise proof framework for Theorem 1 prov-

ing the unbiasedness nature of WavingSketch, and uses

some examples to explain the different cases in our

proof. We provide the detailed proof with rigorous math-

ematical languages in our supplementary materials [5].

Theorem 1 Given a data stream σ and an arbitrary

item e ∈ [m] in σ, the estimated frequency of e made by

basic WavingSketch, namely f̂ , is unbiased, i.e., E
(
f̂
)
=

f , where f is the real frequency of e.

Proof For item e, its estimated frequency f̂ is only af-

fected by the items mapped into the same bucket with

e, namely the items mapped into B[h(e)]. Thus, we

only need to consider the items mapped into B[h(e)].
Consider an incoming item ek mapped into B[h(e)]. We

prove that the expected increment to the estimated fre-

quency f̂ , namely E
(
∆f̂

)
, is 1 if ek = e and 0 if ek ̸= e.

Case 1: ek = e, and ek is error-free.

In this case, WavingSketch just increments the corre-

sponding frequency of e in the Heavy Part by one. Af-

terwards, e is still in the Heavy Part and is error-free.

Thus, we have ∆f̂ = ∆f = 1.

Example (Figure 5(a)): In Case 1 of Figure 5(a), the

incoming item e1 is in the Heavy Part with the flag

true. Therefore, we just increment its frequency in the

Heavy Part, and the increment of the estimated fre-

quency ∆f̂1 = 1.

Case 2: ek = e, and ek is not error-free.

In this case, WavingSketch estimates the frequency of

e as f̂ = B[h(e)].count × s(e). After insertion, if no

error-free item is removed from the Heavy Part, we just

add s(e) to the Waving Counter. Therefore, we have

∆f̂ = s(e) × s(e) = 1. Otherwise, suppose er is the

error-free item in Heavy Part that is replaced by e. We

have B[h(e)].count′ = B[h(e)].count+ s(e)+ fr × s(er).

Therefore, we have ∆f̂ = s(e) × (s(e) + fr × s(er)) =

s(e)×s(e)+fr×s(er)×s(e) = 1+fr×s(er)×s(e). Since

s(er) and s(e) are independent, we can prove the expec-

tation E (s(er)× s(e)) = 0. The detailed proof can be

found in our supplementary materials [5]. Therefore, we

finally have E
(
∆f̂

)
= 1.

Example (Figure 5(a)): In Case 2 of Figure 5(a), the

incoming item e2 is not in the Heavy Part, and after

inserting e2, an error-free item e6 in the Heavy Part is

replaced by the incoming item e2. In this case, we add

s(e2) and s(e6) × f6 to the Waving Counter. We have

∆f̂2 = s(e2) × (s(e2) + f6 × s(e2)× s(e6)) = 1 + f6 ×
s(e6)×s(e2). Note that for two distinct items e2 and e6,

s(e2) and s(e6) are independent. Based on this property,

we can prove that E (s(e2)× s(e6)) = 0, which indicates

that E
(
∆f̂2

)
= 1.

Case 3: ek ̸= e, and ek is error-free.

In this case, WavingSketch just increments the corre-

sponding frequency of ek in the Heavy Part by one,

which does not affect the estimated frequency of e.

Thus, we have ∆f̂ = 0.

Example (Figure 5(b)): In Case 3 of Figure 5(b), e3 is

an error-free item. The incoming item e8 just adds s(e8)

to the Waving Counter, which has nothing to do with

the estimated frequency of e3. Thus, we have ∆f̂3 = 0.

Case 4: ek ̸= e, and ek is not error-free.

We consider two subcases of Case 4 by discussing whether

e is error-free before the insertion of ek.

Subcase 4.1: e is error-free.

In this subcase, if e is not removed from the Heavy Part

by ek, it will remain error-free after the insertion of ek.

Therefore, we naturally have ∆f̂ = 0. Otherwise, e is

replaced by ek, and inserted into B[h(e)].count. We have

B[h(e)].count′ = B[h(e)].count +s(ek) + s(e) × f , and

f̂ ′ = B[h(e)].count′×s(e) = f+(B[h(e)].count+ s(ek))×
s(e). Notice that e is error-free before the insertion of

ek, meaning that e has not been inserted into B[h(e)].count,
and thus the value of s(e) does not affect B[h(e)].count.
Therefore, B[h(e)].count and s(e) are independent. In

addition, s(ek) and s(e) are also independent. Similar to

case 2, we can prove E ((B[h(e)].count+ s(ek))× s(e))

= 0. In this way, we have E
(
∆f̂

)
= 0.

Example (Figure 5(b)): In Case 4.1 of Figure 5(b), e4 is

not error-free. The incoming item e10 adds s(e10) to the

Waving Counter, and replaces the error-free item e4 in

the Heavy Part. After inserting e10, the estimated fre-

quency of e4 is f̂4 = (B[h(e4)].count+ s(e10) + f4 × s(e4))

×s(e4) = (B[h(e4)].count+ s(e10))× s(e4)+ f4. There-

fore, we have ∆f̂4 = (B[h(e4)].count+ s(e10)) × s(e4).

As e4 is error-free before inserting e10, it has not yet

been inserting into B[h(e4)].count, meaning that s(e4)

and B[h(e4)].count are independent. On the other hand,

for two distinct items e4 and e10, s(e4) and s(e10) are

also independent. Based on these properties, we can

prove that E ((B[h(e4)].count+ s(e10))× s(e4)) = 0, which

indicates that E
(
∆f̂4

)
= 0.

Subcase 4.2: e is not error-free.

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 11

e1,275,T

Cases when ek = e

Heavy Part
e5,230,F

Counter
-132

increment e1,276,T
e1

h(e1)

e2
h(e2) e6,14,T e7,120,T14

replace

Case 2

e2,15,F

Δ"𝑓! = 1 Case 1

1
+s(e2)+s(e6)×f6

Δ"𝑓" = 1 + 𝑓#×𝑠(𝑒")×𝑠(𝑒#)

𝑠 𝑒" = 1; 𝑠 𝑒# = −1; 𝑓# = 14

(a) Examples when ek = e (Case 1 and Case 2)

e9,25,T

Cases when ek ≠ e

e3,23,T-12e8
h(e8)

e10
h(e10)

e4,12,T e11,36,T12

replace

Case 4.1

e10,13,F

Δ"𝑓! = 0 Case 3

1
+s(e10)+s(e4)×f4
Δ"𝑓" = (𝐶𝑜𝑢𝑛𝑡 + 𝑠(𝑒#$))×𝑠(𝑒")

𝑠 𝑒#$ = 1; 𝑠 𝑒" = −1; 𝑓" = 12

-11+s(e8)

Heavy PartCounter

(b) Examples when ek ̸= e (Case 3 and Case 4)

Fig. 5 Examples illustrating the unbiasedness of WavingSketch.

In this subcase, WavingSketch estimates the frequency

of e as f̂ = B[h(e)].count× s(e). Similar to Case 2, we

discuss whether an error-free item is removed from the

Heavy Part after inserting ek.

4.2.1) If no error-free item is removed from the Heavy

Part, we have B[h(e)].count′ = B[h(e)].count + s(ek),

and ∆f̂ = s(ek)× s(e).

4.2.2) If an error-free item er is removed from the Heavy

Part, we have B[h(e)].count′ = B[h(e)].count+ s(ek) +

fr × s(er), and ∆f̂ = s(ek)× s(e) + fr × s(er)× s(e).

For both situations in (4.2.1) and (4.2.2), we can prove

that E (s(ek)× s(e)) = 0 and E (fr × s(er)× s(e)) = 0,

meaning that E
(
∆f̂

)
= 0. The detailed proof can be

found in our supplementary materials [5].

It should be noted that in either situation of (4.2.1)

and (4.2.2), it is incorrect to assume that s(e) and s(ek)

are independent of each other, as was mistakenly as-

sumed in our conference version [32]. This is because

the fact that whether an error-free item is replaced adds

conditions on the value of s(e)× s(ek). For example, if

an error-free item is removed from the Heavy Part (sit-

uation 4.2.2), it essentially requires the s(·) values of

all erroneous items in the Waving Counter tend to be

more uniform. In other words, at this point, the value

of s(e)×s(ek) has a larger probability of being 1 than 0.

Nevertheless, we can circumvent this issue in our proof

by using some techniques in measure theory. For more

details, please refer to our supplementary materials [5].

In this way, we have proved that the expected incre-

ment E
(
∆f̂

)
= 1 if ek = e and E

(
∆f̂

)
= 0 if ek ̸= e,

which means that E
(
f̂
)
= f always holds.

Theorem 2 Given a data stream σ and an arbitrary

item e ∈ [m] in σ, the estimated frequency of e made

by multi-counter WavingSketch is also unbiased.

This theorem can be proved by making small modi-

fications to the proof of Theorem 1. The detailed proof

can be found in our supplementary materials [5].

We have proved that WavingSketch can provide un-

biased estimation for any item (or for any top-k item).

By contrast, as discussed in § 2.2.1, the estimated fre-

quency made by Space-Saving [38] and Unbiased Space-

Saving [53] for top-k items is always biased upward.

Therefore, for the tasks where we want to aggregate the

estimated results (e.g., subset query, finding global top-

k items), SS and USS will suffer significant accumulated

errors (§ 2.3). We will see that our unbiased WavingS-

ketch achieves significantly higher accuracy than biased

SS and USS in these tasks in § 6.4.3 and § 6.4.4.

4.2 Variance

We derive the variance of the estimated frequency. We

first consider the basic version of WavingSketch in The-

orem 3. Then we extend the formula to multi-counter

WavingSketch in Theorem 4.

Theorem 3 Given a data stream σ and an arbitrary

item e ∈ [m] in σ (suppose e is not error-free, and

let Ω′ be the current event). Consider the basic version

of WavingSketch. Let S1 ⊆ [m] be the set of all items

mapped into B[h(e)] that are not error-free. Let S′
1 =

S1\{e}. The variance of the estimated frequency of e,

namely V ar
(
f̂
)
, satisfies the following bound: V ar

(
f̂
)
⩽

|S′
1| ×

∑
ej∈S′

1
f2
j , where |S′

1| is the cardinality of S′
1.

Theorem 4 Given a data stream σ and an arbitrary

item e ∈ [m] in σ (suppose e is not error-free). Consider

the multi-counter version of WavingSketch. Let S2 ⊆
[m] be the set of all items mapped into B[h(e)].count[g(e)]
that are not error-free. Let S′

2 = S2\{e}. The variance

of the estimated frequency of e, namely V ar
(
f̂
)
, satis-

fies the following bound: V ar
(
f̂
)
⩽ |S′

2| ×
∑

ej∈S′
2
f2
j ,

where |S′
2| denotes the cardinality of set S′

2.

The detailed proof to Theorem 3-4 can be found in

our supplementary materials [5]. We can see that the

variance of multi-counter WavingSketch is smaller than

that of the basic WavingSketch because S′
2 ⊆ S′

1.

12 Zirui Liu, et al.

4.3 Error Bound
We first derive the general error bound of WavingS-

ketch without distribution assumption in Theorem 5-6.

Then we derive the error bound of WavingSketch under

Zipf distribution in Theorem 7-8. Finally, we summa-

rize the theoretical results and analyze how the param-

eters of WavingSketch (l and c) affect its error. We di-

rectly consider multi-counter WavingSketch in this sub-

section. We present the detailed proof and the definition

of probability space in our supplementary materials [5].

We first derive the error bound of WavingSketch

without distribution assumption. We use L2-norm and

L1-norm to derive Theorem 5 and Theorem 6.

Theorem 5 Given a data stream σ and an arbitrary

item e ∈ [m] in σ. Let ||Fe||2 =
√∑

ej∈S′
2
f2
j , where

S′
2 is defined in Theorem 4. The estimated frequency of

item e, namely f̂ , satisfies the following error bound:

P
(∣∣∣f̂ − f

∣∣∣ ⩾ ϵ
√

|S′
2| · ||Fe||2

)
⩽ 1

ϵ2 .

Theorem 6 Given a data stream σ and an arbitrary

item e ∈ [m] in σ. Let ||Fe||1 =
∣∣∣∑ej∈S′

2
fj

∣∣∣, where

S′
2 is defined in Theorem 4. The estimated frequency of

item e, namely f̂ , satisfies the following error bound:

P
(∣∣∣f̂ − f

∣∣∣ ⩾ ϵ · ||Fe||1
)
⩽ 1

ϵ .

We then derive the error bound of WavingSketch un-

der Zipf distribution. In a data stream σ from a Zipf [42]

distribution, the kth most frequent item in [m] shows

up n
kαζ(α) times, where α 3 is the parameter of Zipf dis-

tribution and ζ(α) =
∑m

i=1
1
iα . Next, we use L2-norm

and L1-norm to derive Theorem 7 and Theorem 8.

Theorem 7 Given a data stream σ that comes from a

Zipf distribution with the parameter α > 1. Let ||F ||2 =√∑
ej∈[m] f

2
j . Let Z =

(
m

ζ(α)

) 1
α 4, meaning that the

frequency of the Zth most frequent items is n
m . For an

arbitrary item e ∈ [m] in σ, its estimated frequency f̂

has the following error bound:

P
(∣∣∣f̂ − f

∣∣∣ ⩾ ϵ||F ||2
)
⩽

Z

lc
+

4m

ϵ2l2c2
+

2lc

m
(1)

Theorem 8 Given a data stream σ that comes from a

Zipf distribution with the parameter α > 1. Let ||F ||1 =∣∣∣∑ej∈[m] fj

∣∣∣. Let Z =
(

m
ζ(α)

) 1
α

, meaning that the fre-

quency of the Zth most frequent items is n
m . For an

3 We assume α > 1 so that the series
∑∞

i=1
1
iα

converges.
4 Notice that Z is a constant determined by data stream σ.

arbitrary item e ∈ [m] in σ, its estimated frequency f̂

has the following error bound:

P
(∣∣∣f̂ − f

∣∣∣ ⩾ ϵ||F ||1
)
⩽

Z

lc
+

√
2

ϵ
√
lc

+
2lc

m
(2)

Summary: From Theorem 7, we can see that when

lc ≪ m, we have that P
(
|f̂ − f | ⩾ ϵ||F ||2

)
⩽ Z

lc +
2m

ϵ2l2c2 . In practice, we can set l and c so that l2c2 is

significantly larger than m (i.e.,
√
m ≪ lc ≪ m), in

which case the error of any item is theoretically guar-

anteed to be very small. For example, we can set lc to

be m0.8 to get a small value in the right side of the

inequality in Theorem 7. In addition, we can see that

when lc ≪ m, larger value of lc goes with smaller er-

ror of WavingSketch, which proves multi-counter Wav-

ingSketch is more memory-efficient than basic Wav-

ingSketch. This is because under the same value of lc,

the memory usage of multi-counter WavingSketch is

smaller. For example, consider a basic WavingSketch

W1 with 2l buckets and a multi-counter WavingSketch

W2 with l buckets and c = 2 Waving Counters per

bucket. We can see that the value of lc of W1 and W2

are the same, but the memory usage of W1 is larger

than that of W2 because W1 has more Heavy Parts.

In other words, under the same memory usage, multi-

counter WavingSketch has smaller value of lc than basic

WavingSketch, and thus has smaller error.

4.4 Analysis for Elastic Operations

We first prove that the elastic expansion and compres-

sion operations do not change the unbiased property of

WavingSketch in Theorem 9-10. Then we discuss how

the theoretical error bounds of WavingSketch change

following the elastic operations. We directly consider

multi-counter WavingSketch in this subsection.

Theorem 9 Given a data stream σ and an arbitrary

item e ∈ [m] in σ. After inserting σ into a WavingS-

ketch B, we perform the elastic expansion operation to

expand B by r times and get B′. Then the estimated

frequency made by B′ is unbiased, namely E
(
f̂ ′
)
= f .

Proof In § 4.1, we have proved that the estimated fre-

quency made byWavingSketch is unbiased, namely E
(
f̂
)

= f . After the expansion operation, the estimated fre-

quency of e remains unchanged, namely we have f̂ = f̂ ′.

Thus, we naturally have E
(
f̂ ′
)
= E

(
f̂
)
= f .

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 13

Theorem 10 Given a data stream σ and an arbitrary

item e ∈ [m] in σ. After inserting σ into a WavingS-

ketch B, we perform the elastic compression operation

to compress B by r times and get B′. Then the estimated

frequency made by B′ is unbiased, namely E
(
f̂ ′
)
= f .

Proof We discuss the following three cases.

Case 1: e is error-free in both B and B′.

We have f̂ ′ = f , which naturally means E
(
f̂ ′
)
= f .

Case 2: e is error-free in B but not error-free in B′.

We have f̂ = f . Let Ψ1 be the set of all erroneous items

mapped into B′[h(e)].count[g(e)] (except e). In other

words, Ψ1 denotes the items that conflict with item e

as a result of the compression operation. We have f̂ ′ =

f +
∑

ej∈Ψ2
fj × s(e)× s(ej). For any item ej ∈ Ψ1, s(e)

and s(ej) are independent from each other. Therefore,

we have E
(
f̂ ′
)

= f +
∑

ej∈Ψ2
fj × E (s(e)× s(ej)) =

f +
∑

ej∈Ψ2
fj × E (s(e))× E (s(ej)) = f + 0 = f .

Case 3: e is not error-free in both B and B′.

According to the unbiased property of WavingSketch

(§ 4.1), we have E
(
f̂
)

= f . Let Ψ2 be the set of all

erroneous items mapped into B′[h(e)].count[g(e)] but

not mapped into B[h(e)].count[g(e)]. In other words,

Ψ2 denotes the items that conflict with item e as a re-

sult of the compression operation. We have f̂ ′ = f̂ +∑
ej∈Ψ2

fj×s(e)×s(ej). For any item ej ∈ Ψ2, s(e) and

s(ej) are independent from each other. Therefore, we

have E
(
f̂ ′
)
= E

(
f̂
)
+

∑
ej∈Ψ2

fj × E (s(e)× s(ej)) =

E
(
f̂
)
+
∑

ej∈Ψ2
fj×E (s(e))×E (s(ej)) = E

(
f̂
)
+0 = f .

We finally discuss how the theoretical error bounds

of WavingSketch in § 4.3 change following the elastic op-
erations. For Theorem 5-6, their error bounds are based

on set S2, which is the set of all items mapped into the

same Waving Counter B[h(e)].count[g(e)] as the target

item e. According to the definition of S2, after perform-

ing expansion/compression operations, set S2 will con-

tract/expand to S2. By substituting S2 with the new S2

and plugging it into Theorem 5-6, we can get the new

error bound after elastic operations. For Theorem 7-

8, their error bounds are based on parameters l, c, m,

and Z, where m and Z are parameters of data stream,

and l and c are parameters of WavingSketch. After per-

forming expansion/compression operations, parameter

l (number of the buckets in WavingSketch) will become

l′, and parameter c (number of Waving Counters in each

bucket) remains unchanged. By substituting l with l′

and plugging it into Theorem 7-8, we can get the new

error bound after elastic operations.

5 Application

5.1 Finding Top-k Frequent Items

Goal: Finding top-k frequent items refers to report the

items that have top-k largest frequencies. In other word,

the algorithm should report a set of items ΨF , where the

frequency of each item in ΨF should be larger than a

predefined threshold F , and F is the real frequency of

the kth most frequent item in data stream σ (see § 2.1).
Method:WavingSketch can directly find frequent items.

To report the top-k frequent items, we simply traverse

the bucket array of WavingSketch and return the IDs

of the items that have top-k largest frequencies.

5.2 Finding Top-k Heavy Changes

Goal: Finding top-k heavy changes refers to report the

items with top-k largest frequency changes over two

adjacent time windows. The algorithm should report a

set of items ΨC , where the frequency change of each

item in ΨC should be larger than threshold C, and C is

the kth largest frequency change of all items (see § 2.1).
Method: Consider two adjacent time windows w1 and

w2. We build two WavingSketches B1 and B2 for w1

and w2. To report the top-k heavy changes between w1

and w2, we traverse B1.heavy and B2.heavy to get the

IDs of all items recorded in the Heavy Parts of B1 and

B2. For each item e, we query it in B1 and B2 to get

its estimated frequencies in w1 and w2: f̂ ′ and f̂ ′′. We

estimate the frequency change of e by ∆f̂ = |f̂ ′′ − f̂ ′|.
Finally, we report the items with top-k largest ∆f̂ .

5.3 Finding Top-k Persistent Items

Goal: Finding top-k persistent items refers to report

the items with top-k largest persistence 5. In other

words, the algorithm should report a set of items ΨP ,

where the persistence of each item in ΨP should be

larger than a predefined threshold P , and P is the kth
largest persistence of all items (see § 2.1).

Preliminary of Bloom filter [10]: A Bloom filter [10]

is a probabilistic data structure used to judge whether

an item exists in a set. A Bloom filter consists of z hash

functions and one bit array, where all bits are initialized

to zero. To insert an item, Bloom filter computes the

z hash functions to pick z bits in the bit array (called

the z hashed bits), and set each of the z bits to one. To

query an item, Bloom filter checks the z hashed bits.

If all the z hashed bits are one, Bloom filter reports

true. Otherwise, it reports false. Bloom filter has false

positive errors and no false negative errors.

Method: We build one WavingSketch and one Bloom

filter, which is used to answer whether an item has ap-

peared in current time window. For each incoming item

5 We have formally defined the persistence of an item as the
number of time windows it appears (see § 2.1).

14 Zirui Liu, et al.

ei, we first query it in the Bloom filter: 1) If the Bloom

filter reports true, meaning that ei has already appeared

in current time window, we discard ei. 2) If the Bloom

filter reports false, we insert ei into the Bloom filter and

WavingSketch. We periodically clean up the Bloom fil-

ter at the end of each time window. In this way, we

use the WavingSketch to maintain the persistencies of

items. To report the top-k persistent items, we traverse

the bucket array of WavingSketch and return the IDs

of items that have top-k largest frequencies.

5.4 Finding Top-k Super-Spreaders
Goal: As stated in § 2.1, we consider a particular kind

of data stream, namely network stream, where each

item is a source/destination address pair (srci, dsti).

Finding top-k Super-Spreaders refers to report k source

addresses that have top-k largest connections. In other

words, the algorithm should report a set of source ad-

dresses ΨS , where the number of distinct destinations of

each source address in ΨS should be larger than a pre-

defined threshold S, and S is the kth largest number of

destinations of all source addresses (see § 2.1).

Method: We build one WavingSketch and one Bloom

filter. The WavingSketch is used to record the number

of destinations for source addresses, and the Bloom fil-

ter is used to remove duplicated items. For each incom-

ing item ei = (srci, dsti), we first query it in the Bloom

filter: 1) If the Bloom filter reports true, meaning that

ei has appeared before, we just discard ei. 2) If the

Bloom filter reports false, we insert ei = (srci, dsti)

into the Bloom filter, and then insert srci into the Wav-

ingSketch. To report the top-k Super-Spreaders, we tra-

verse the bucket array of WavingSketch and return the

source addresses with top-k largest frequencies.

5.5 Performing Join-aggregate Estimation
Goal: Join-aggregate estimation is an important task

in data management society. Given two data streams

σ1 = {ei}i=1,2,...,n1
and σ2 = {ej}j=1,2,...,n2

drawn from

the universe [m] := {1, 2, . . . ,m}. For an arbitrary item

ei. Let fi and gi denote the frequency of ei in σ1 and σ2,

respectively. The result of the join-aggregate query on

σ1 and σ2 is defined as J(σ1, σ2) =
∑m

i=1 fi · gi, where
m is the number of distinct items in σ1 and σ2.

Background and prior art: Join-aggregate estima-

tion is the base of many data management applica-

tions [30,25,31,56]. For example, in many data min-

ing applications [28,44], join-aggregate results are used

to measure the cosine similarity of two data streams.

For another example, consider the case of distributed

multi-way join in DBMS, a good join-aggregate esti-

mation algorithm can guide us to devise an optimal

join plan, which minimizes the volume of intermediate

relations and the communication time. In some cases,

we must treat the attribute values from a large ta-

ble as a data stream [25], because these tables are so

large that we can only process their values in a one-

pass manner. As it is impractical and unnecessary to

compute the exact join-aggregate results, researchers

turn to probabilistic data structures, namely sketches,

for fast approximate join-aggregate computation. Typ-

ical sketches include AGMS [7], Fast-AGMS (FAGMS)

[15], Skimmed sketch [22], JoinSketch [55], and more

[23,48,47,12]. Skimmed sketch [22] and JoinSketch [55]

propose to separate items into multiple parts accord-

ing to their frequencies, and record items in different

parts with different components. Specifically, Skimmed

sketch separates items into two parts: hot items and

cold items. JoinSketch separates items into three parts:

hot items, medium items, and cold items. In this way,

they achieve higher accuracy than traditional FAGMS.

Method: Similar as the separation idea above, we ap-

ply WavingSketch to perform join-aggregate estimation

by separately considering frequent items and infrequent

items. We use basic WavingSketch to explain our join-

aggregate procedure. It is straightforward to extend our

method to multi-counter WavingSketch.

First, we build two equal-sized WavingSketches B1

and B2 for the two data streams σ1 and σ2. We cal-

culate Ĵ(σ1, σ2) by checking every two buckets in the

same position of B1 and B2. Specifically, for B1[k] and

B2[k], we define Ψk as the set of all items mapped into

B1[k] or B2[k], i.e., Ψk := {ei : ei ∈ [m] ∧ h(ei) = k}.
We calculate the join-aggregate value Ĵk(σ1, σ2) of the

items in Ψk by dividing Ψk into the following three parts:

1) Let Ψk,1 ⊆ Ψk be the set of the items recorded in

both B1[k].heavy and B2[k].heavy with flag true. We

calculate Ĵk,1(σ1, σ2) =
∑

ei∈Ψk,1
f̂i · ĝi, where f̂i and

ĝi are the recorded frequencies in the Heavy Parts.

2) Let Ψ1
k,2 ⊆ Ψk be the set of the items that are

recorded in B1[k].heavy with flag true, but are not

recorded in B2[k].heavy or recorded in B2[k].heavy with

flag false. We calculate the first part of Ĵk,2(σ1, σ2) as

Ĵ1
k,2(σ1, σ2) =

∑
ei∈Ψ1

k,2
f̂i · ĝi, where f̂i is recorded in

the Heavy Part of B1[k] and ĝi = B2[k].count × s(ei).

Similarly, let Ψ2
k,2 ⊆ Ψk be the set of the items that

are recorded in B2[k].heavy with flag true, but are not

recorded in B1[k].heavy or recorded in B1[k].heavy with

flag false. We calculate the second part of Ĵk,2(σ1, σ2)

as Ĵ2
k,2(σ1, σ2) =

∑
ei∈Ψ2

k,2
f̂i·ĝi, where f̂i = B1[k].count×

s(ei) and ĝi is recorded in the Heavy Part of B2[k]. 3)

Let Ψk,3 = Ψk\(Ψk,1 ∪ Ψk,2) be the set of the other

items in Ψk. We calculate their join-aggregate value as

Ĵk,3(σ1, σ2) = B1[k].count×B2[k].count. Finally, we get

Ĵ(σ1, σ2) =
∑l−1

k=0 Ĵk(σ1, σ2) =
∑l−1

k=0

∑3
i=1 Ĵk,i(σ1, σ2).

Next, we theoretically prove that this estimated join-

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 15

aggregate result made by WavingSketch is unbiased,

and uses an example to explain the estimation process

and the mathematical proof.

Theorem 11 Given two data streams σ1 and σ2, the

estimated result of their join-aggregate query made by

WavingSketch is unbiased, namely we have E
(
Ĵ(σ1, σ2)

)
= J(σ1, σ2).

Proof This theorem can be proved by separately prov-

ing all of the three parts of Ĵk(σ1, σ2) are unbiased. Ac-

tually, it is quite straightforward to see that the first two

parts of Ĵk(σ1, σ2) are unbiased. We will illustrate this

fact in our following example. For the detailed proof,

please refer to our supplementary materials [5].

···
e1,25,T

Example of join-aggregate estimation

e2,23,T12
Heavy PartCounter

B1

···
e1,16,T e3,13,F11

Heavy PartCounter

B2

𝝍𝟏,𝟏 = {𝒆𝟏}1

Join

&𝑱𝟏,𝟏 = (𝒇𝟏×+𝒈𝟏 =
𝟐𝟓×𝟏𝟔 = 𝟒𝟎𝟎

2 𝝍𝟏,𝟐𝟏 = 𝒆𝟐
𝝍𝟏,𝟐𝟐 = ∅

&𝑱𝟏,𝟐 = (𝒇𝟐×+𝒈𝟐 =
𝟐𝟑×𝟏𝟏 = 𝟐𝟓𝟑

𝐬 𝒆𝟐 = 𝟏; +𝒈𝟐 = 𝑪𝒐𝒖𝒏𝒕𝟐×𝒔 𝒆𝟐 = 𝟏𝟏
3

&𝑱𝟏,𝟑 = 𝑪𝒏𝒕𝟏×𝑪𝒏𝒕𝟐
= 𝟏𝟐×𝟏𝟏 = 𝟏𝟑𝟐+𝒈𝟏 = 𝟏𝟔

(𝒇𝟏 = 𝟐𝟓; (𝒇𝟐 = 𝟐𝟑

Fig. 6 Example of the unbiased join-aggregate estimation.

Example (Figure 6): To calculate the join-aggregate

result Ĵ(σ1, σ2), we check every pair of buckets in the

same position of B1 and B2. We take the second bucket

pair B1[1] and B2[1] as an example to illustrate the esti-

mation process. We calculate the three parts of Ĵ1(σ1, σ2)

as follows. 1) We can see that e1 is the only item that is

error-free in both B1[1].heavy and B2[1].heavy, mean-

ing that Ψ1,1 = {e1}. Therefore, we have Ĵ1,1(σ1, σ2) =

f̂1 · ĝ1 = 25 · 16 = 400. It is straightforward to see

that Ĵ1,1(σ1, σ2) is error-free because both f̂1 and ĝ1
are error-free. Therefore, Ĵ1,1(σ1, σ2) is naturally unbi-

ased. 2) We can see that e2 is the item that is error-free

in B1[1].heavy and not error-free in B2, meaning that

Ψ1
1,2 = {e2}. Similarly, we can see that Ψ2

1,2 = Ø. We

calculate the second part as Ĵ1,2(σ1, σ2) = f̂2 · ĝ2 =

23 · 11 = 253, where f̂2 is recorded in B1[1].heavy and

ĝ2 = B1[1].count×s(e2) = 11×1 = 11. In § 4.1, we have
proved that the estimated frequency made by WavingS-

ketch is unbiased (Theorem 1-2), meaning that ĝ2 is un-

biased. As f̂2 is error-free and ĝ2 is unbiased, we have

Ĵ1,2(σ1, σ2) = f̂2 · ĝ2 is also unbiased. 3) We directly

calculate the third part as Ĵ1,3(σ1, σ2) = B1[1].count×
B2[1].count = 12 × 11 = 132. We theoretically prove

Ĵ1,3(σ1, σ2) is also an unbiased estimation for the join-

aggregate value of the items in Ψ1,3 in our supplemen-

tary materials [5].

6 Experimental Results

We conduct experiments on one synthetic dataset (Zipf

[42]) and three real-world datasets (IP Trace [1], Web-

Page [3], and Network [6]). For the synthetic dataset, we

use Web Polygraph [46], an open-source performance

testing tool, to generate 10 synthetic datasets follow-

ing Zipf [42] distribution with different skewness (α ∈
[0, 3]). By default, we use the dataset with α = 1.0.

We use the following metrics: Average Relative Error

(ARE), Recall Rate (RR), Precision Rate (PR), F1

Score, and Throughput. For details about the platform,

implementation, datasets, and metrics, please refer to

our supplementary materials [5].

6.1 Experiments on Finding Frequent Items

We compare WavingSketch with four algorithms: Count

sketch +Max-Heap (Count+Heap) [14], Unbiased Space-

Saving (USS) [53], Space-Saving (SS) [38], and LD-

Sketch (LD) [24]. We set k = 2000 and conduct exper-

iments using both basic WavingSketch (d = 8, c = 1)

and multi-counter WavingSketch (d = 8, c = 16). For

WavingSketch, SS, and USS, we vary their memory

by changing bucket number l. For Count+Heap, we

vary its memory by changing the number of counters

in Count sketch and the Heap size. Recall that the KV-

pair list in each bucket of LD-Sketch independently ex-

pands its size, and thus the total memory usage of LD-

Sketch is uncontrollable (§ 2.2.1). In our experiments,

we control the initial memory of LD-Sketch to be the

same as the other algorithms, meaning that the actual

memory usage of LD-Sketch is significantly larger than

that indicated in Figure 7-11 (at least 10× larger).

ARE (Figure 7(a)-7(d)): We find that the ARE of
WavingSketch is significantly smaller than that of SS,

USS, Count+Heap, and LD-Sketch, and the ARE of

multi-counter WavingSketch is smaller than that of ba-

sic WavingSketch. We conduct experiments to estimate

the frequency of top-k items and report the ARE. Recall

that LD-Sketch is an algorithm solely designed for find-

ing top-k items (§ 2.2.1). However, the algorithm of LD-

Sketch can provide an upper estimation and a lower es-

timation for the frequency of each recorded top-k item.

In this experiment, we use the upper estimation of LD-

Sketch as the estimated frequency because we find that

this method yields lower error. On synthetic dataset,

when using 200KB memory, the ARE of basic WavingS-

ketch and multi-counter WavingSketch are 2.06× 10−4

and 5.28 × 10−5, while that of SS, USS, Count+Heap,

and LD-Sketch are 2.02, 2.00, 0.025, and 0.25, respec-

tively. On the other three real-world datasets, the ARE

of WavingSketch and multi-counter WavingSketch are

also significantly smaller than other algorithms. The

ARE of SS and USS is high because of their overes-

16 Zirui Liu, et al.

50 100 150 200 250 300
Memory Usage (KB)

10
6

10
3

10
0

10
3

A
R

E

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(a) Synthetic

50 100 150 200 250 300
Memory Usage (KB)

10
4

10
2

10
0

10
2

A
R

E

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(b) IP trace

50 100 150 200 250 300
Memory Usage (KB)

10
7

10
4

10
1

10
2

A
R

E

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(c) Webpage

50 100 150 200 250 300
Memory Usage (KB)

10
5

10
3

10
1

10
1

10
3

A
R

E

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(d) Network

Fig. 7 Average Relative Error (ARE) on finding frequent items (“MC Waving” refers to Multi-counter WavingSketch).

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

R
ec

al
l R

at
e

(R
R

)

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(a) Synthetic

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

R
ec

al
l R

at
e

(R
R

)

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(b) IP trace

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

R
ec

al
l R

at
e

(R
R

)

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(c) Webpage

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

R
ec

al
l R

at
e

(R
R

)

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(d) Network

Fig. 8 Recall Rate (RR) on finding frequent items (“MC Waving” refers to Multi-counter WavingSketch).

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

Pr
ec

is
io

n
R

at
e

(P
R

) Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(a) Synthetic

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

Pr
ec

is
io

n
R

at
e

(P
R

) Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(b) IP trace

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

Pr
ec

is
io

n
R

at
e

(P
R

) Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(c) Webpage

50 100 150 200 250 300
Memory Usage (KB)

0.0

0.5

1.0

Pr
ec

is
io

n
R

at
e

(P
R

) Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(d) Network

Fig. 9 Precision Rate (PR) on finding frequent items (“MC Waving” refers to Multi-counter WavingSketch).

50 100 150 200 250 300
Memory Usage (KB)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

op
s) Waving

MC_Waving
Count+Heap

SS
USS
LD-Sketch

(a) Synthetic

50 100 150 200 250 300
Memory Usage (KB)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

op
s) Waving

MC_Waving
Count+Heap

SS
USS
LD-Sketch

(b) IP trace

50 100 150 200 250 300
Memory Usage (KB)

0

20

40

60

Th
ro

ug
hp

ut
 (M

op
s) Waving

MC_Waving
Count+Heap

SS
USS
LD-Sketch

(c) Webpage

50 100 150 200 250 300
Memory Usage (KB)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

op
s) Waving

MC_Waving
Count+Heap

SS
USS
LD-Sketch

(d) Network

Fig. 10 Insertion throughput on finding frequent items (“MC Waving” refers to Multi-counter WavingSketch).

timated errors. The ARE of Count+Heap is high, be-

cause the Count sketch has small error only when there

is sufficient memory. LD-Sketch has large ARE because

its estimation has large upward bias. Actually, its orig-

inal paper did not conduct experiments on frequency

estimation, nor did it specify a method for estimating

frequency. Besides, as discussed in § 2.2.1, LD-Sketch is

memory inefficient due to the redundancy of the top-k

item in its data structure.

RR (Figure 8(a)-8(d)): We find that the RR of Wav-

ingSketch is significantly higher than that of SS, USS,

and Count+Heap. The RR of multi-counter WavingS-

ketch, basic WavingSketch, and LD-Sketch are almost

identical, which are nearly 100%. On synthetic dataset,

under the memory usage of 100KB, the RR of basic

WavingSketch, multi-counter WavingSketch, Count+Heap,

SS, USS, and LD-Sketch are 96.50%, 99.05%, 25.23%,

20.52%, 19.97%, and 100%, respectively. On the other

datasets, the RR of WavingSketch and LD-Sketch are

also almost always 100%, which are significantly better

than the other algorithms. Notice that although LD-

Sketch achieves almost 100% RR, its actual memory

usage is significantly larger (at least 10× larger) than

that indicated in the figures. In addition, we will see

that it has poor precision rate.

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 17

PR (Figure 9(a)-9(d)): We find that the PR of Wav-

ingSketch is significantly higher than that of SS, USS,

Count+Heap, and LD-Sketch, and the PR of multi-

counter WavingSketch is higher than that of basic Wav-

ingSketch. On the synthetic dataset, under the memory

usage of 100KB, the PR of basic WavingSketch, multi-

counter WavingSketch, Count+Heap, SS, USS, and LD-

Sketch are 88.60%, 99.40%, 20.16%, 41.01%, 39.20%,

and 25.86%, respectively. On the other datasets, the

PR of WavingSketch is also almost 100%, which is sig-

nificantly better than the other algorithms. LD-Sketch

demonstrates a low PR because it reports top-k items

based on the upper estimation of item frequency. The

overestimated error of upper estimation leads to false

positives while minimizes false negatives. In other words,

LD-Sketch sacrifices precision rate in favor of high re-

call rate. We can see that the PR of SS and USS some-

times decreases as memory grows. This is common for

algorithms that have overestimated errors. For exam-

ple, under small memory usage, if the algorithm can

only record 200 items, then the frequencies of all the 200

items might exceed the predefined frequency threshold,

resulting in a 100% PR. However, under large mem-

ory, if 2000 items are recorded, then there might only

be 1800 items whose estimated frequency exceeds the

predefined threshold, which leads to a 90% PR.

Insertion throughput (Figure 10(a)-10(d)): We

find that the insertion throughput of WavingSketch is

significantly higher than that of SS, USS, Count+Heap,

and LD-Sketch, and the throughput of multi-counter

WavingSketch is lower than that of basic WavingSketch.

On the synthetic dataset, under the memory usage of

100KB, the throughput of basic WavingSketch, multi-

counter WavingSketch, Count+Heap, SS, USS, and LD-

Sketch are 29.42 Mops, 29.43 Mops, 9.34 Mops, 1.96

Mops, 10.24 Mops, and 1.01 Mops respectively. On the

other datasets, the throughput of WavingSketch is also

significantly higher than the other algorithms. SS and

USS have slow throughput because of the frequent cache

misses. Count+Heap has slow throughput because it

needs multiple memory accesses per insertion, and the

time complexity of its heap operations isO(log k′) where

k′ is its heap size. LD-Sketch has slow throughput be-

cause of the following reasons. 1) As each item accesses

d buckets during insertion, LD-Sketch needs at least

d memory accesses per insertion. 2) The KV-pair list

in each bucket of LD-Sketch independently expands its

size. These frequent dynamic expansion operations are

time-consuming. 3) Each bucket in LD-Sketch varies

in size, and thus the bucket array of LD-Sketch can-

not be implemented in a hardware-friendly manner. It

cannot leverage hardware techniques (e.g., SIMD) to

accelerate its speed either. By contrast, WavingSketch

has always O(1) time complexity, and it only needs one

memory access per insertion, which is very fast.

Performance on large-scale dataset (Figure 11):

We find that on large-scale dataset with billions of items,

WavingSketch also achieves high accuracy and fast speed.

As shown in Figure 11(a), when using 1MB memory,

the F1 score of basic WavingSketch, multi-counter Wav-

ingSketch, Count+Heap, SS, USS, and LD-Sketch are

98.03%, 99.37%, 37.94%, 48.12%, 49.79%, and 83.51%,

respectively. The throughput of basic WavingSketch,

multi-counter WavingSketch, Count+Heap, SS, USS,

and LD-Sketch are 32.32 Mops, 31.84 Mops, 9.67 Mops,

14.23 Mops, 4.73 Mops, and 1.72 Mops, respectively.

1.0 1.1 1.2 1.3 1.4 1.5
Memory Usage (MB)

0.0

0.5

1.0

F1
 S

co
re

Waving
MC_Waving
Count+Heap

SS
USS
LD-Sketch

(a) F1 Score

1.0 1.1 1.2 1.3 1.4 1.5
Memory Usage (MB)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

op
s) Waving

MC_Waving
Count+Heap

SS
USS
LD-Sketch

(b) Throughput

Fig. 11 WavingSketch on large-scale IP trace dataset.

Summary: 1) Under limited memory usage, WavingS-

ketch has higher accuracy than SS, USS, Count+Heap,

and LD-Sketch. This is because when using small mem-

ory, SS, USS, and LD-Sketch have large overestimated

errors, and Count sketch has large variance. 2) Wav-

ingSketch is faster than SS, USS, Count+Heap, and

LD-Sketch. This is because the time complexity of Wav-

ingSketch is always O(1), while that of the other three

algorithm is related to their sizes. In addition, when us-

ing small d, WavingSketch only needs one memory ac-

cess per insertion. By contrast, SS, USS, Count+Heap,

and LD-Sketch need multiple memory accesses and com-

plex operations. 3) Compared to basic WavingSketch,

multi-counter WavingSketch has higher accuracy but

slightly slower throughput. As explained in § 3.4, multi-

counter WavingSketch has higher accuracy because it

reduces the collisions of frequent items in Waving Coun-

ters, and as this operation needs extra computation, its

insertion speed is slower. 4) WavingSketch scales well

to large-scale datasets, where it also achieves higher ac-

curacy and faster speed than prior art.

6.2 Experiments on Different Settings

6.2.1 Impact of WavingSketch Parameters
We evaluate how the two parameters (d and c) of Wav-

ingSketch affect its performance in Figure 12. We fix

the memory of WavingSketch to 50KB, because such

small memory better exposes the impact of different d

and c. We vary d from 4 to 32, and vary c from 1 to

64. We further show that multi-counter WavingSketch

18 Zirui Liu, et al.

0 20 40 60
Counters Per Bucket (c)

10
3

10
2

10
1

A
R

E

d = 4
d = 8

d = 16
d = 32

(a) ARE

0 20 40 60
Counters Per Bucket (c)

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

(R
R

)

d = 4
d = 8
d = 16
d = 32

(b) RR

0 20 40 60
Counters Per Bucket (c)

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
R

at
e

(P
R

)

d = 4
d = 8
d = 16
d = 32

(c) PR

0 20 40 60
Counters Per Bucket (c)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

op
s) d = 4

d = 8
d = 16
d = 32

(d) Throughput

Fig. 12 Impact of WavingSketch parameters.

is more memory efficient in Figure 13, where we report

the minimal memory of WavingSketch under different

ARE/RR requirement. We use the synthetic dataset

and set k = 2000 by default.

ARE (Figure 12(a)): We find that larger d always

goes with smaller ARE, and when d is fixed, the ARE

first decreases and then increases as c grows from 1

to 64. For basic WavingSketch (c = 1), the ARE of

d = 32 is about 3.6× smaller than that of d = 4. For

multi-counter WavingSketch, when c = 16, the ARE of

d = 32 is about 6.2× smaller than that of d = 4. When

d = 8, the optimal value of c is from 14 to 18.

RR (Figure 12(b)): We find larger d goes with higher

RR, and when d is fixed, the RR first increases and then

decreases as c grows from 1 to 64. For basic WavingS-

ketch, the RR under different d are almost the same.

For multi-counter WavingSketch, when c = 16, the RR

of d = 16 is 92.5%, and the RR of d = 4 is 81.8%. When

d = 8, the optimal value of c is from 12 to 16.

PR (Figure 12(c)): We find that under large value

of c, larger d always goes with higher PR, and when d

is fixed, the PR always increases as c grows from 1 to

64. When c = 32, the PR of d = 32 is 90.1%, and the
PR of d = 4 is 83.5%. When d = 8, the PR reaches its

optimal value when c is larger than 18.

Insertion throughput (Figure 12(d)): We find that

smaller d goes with higher insertion throughput. We

also find that when d is fixed, the throughput is in-

sensitive to c. Our results show that the throughput of

d = 4 is around 1.11×, 1.29×, and 1.41× higher than

that of d = 8, d = 16, and d = 32. When d = 8, the

throughput of WavingSketch is about 29.0 Mops.

Minimal memory (Figure 13): We find that multi-

counter WavingSketch is 10% ∼ 35% more memory effi-

cient than basic WavingSketch. Under the ARE require-

ment of 10−4, the minimal memory of basic WavingS-

ketch and multi-counter WavingSketch are 330KB and

252KB. Under the RR requirement of 99%, the mini-

mal memory of basic WavingSketch and multi-counter

WavingSketch are 158KB and 104KB.

Summary: 1) Multi-counter WavingSketch is more mem-

ory efficient than basic WavingSketch. 2) Under fixed c,

larger d goes with higher accuracy and lower through-

10 1 10 2 10 3 10 4 10 5 10 6

ARE Requirement
0

100

200

300

400

500

M
in

im
al

 M
em

or
y

(K
B

)

Basic
Multi-counter

(a) ARE requirement

75% 80% 85% 90% 95% 99%
Recall Requirement

0

50

100

150

M
in

im
al

 M
em

or
y

(K
B

)

Basic
Multi-counter

(b) Recall requirement

Fig. 13 Minimal size under different ARE/RR requirement.

put. The reason is that as d grows, there are more cells

in the Heavy Part, and thus WavingSketch has more

chance to record the ground-truth top-k items. At the

same time, we also need to check more cells at each

insertion, which slows down its throughput. 3) Under

fixed d, as c grows from 1, the accuracy first increases

and then decreases. When c is relatively small (< 100),

the throughput is nearly not affected by c. As explained

in § 3.4, using multiple Waving Counters reduces the

probability of frequent items colliding into the same

counter, and thus improves the accuracy. However, un-

der fixed memory usage, if we use too much Waving

Counters, the number of cells in the Heavy Part will

decreases, which will degrade the accuracy. Our results

show that the optimal value of c is from 1.5d to 2.5d.

Parameter setup methods: We briefly explain how

to set the three parameters of WavingSketch (l, d, and

c) in practice. 1) First, we set d according to the speed

requirement. For applications that prefer higher speed,

we can choose a small d, and for applications that prefer

higher accuracy, we can choose a large d. In practice, we

recommend to use d = 8 or d = 16. 2) For multi-counter

WavingSketch, we recommend to set c to 1.5d ∼ 2.5d.

For example, when d = 8, we can set c = 16. 3) When d

and c are fixed, meaning that the size of each bucket is

fixed, we set l according to the size of available memory.

6.2.2 Impact of Data Distribution

We evaluate how the data distribution affect the per-

formance of WavingSketch. We use the 10 synthetic

datasets that follow the Zipf [42] distribution with the

skewness varies from 0.0 to 3.0. We set k = 2000, d = 8,

and c = 16, and we vary the memory from 20KB to

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 19

0 1 2 3
Dataset Skewness

10
4

10
2

10
0

10
2

A
R

E

20 KB
40 KB
60 KB

(a) ARE

0 1 2 3
Dataset Skewness

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

20 KB
40 KB
60 KB

(b) F1 score

Fig. 14 Impact of data distribution.

60KB, because such small memory better exposes the

difference between different distributions.

ARE (Figure 14(a)): We find that the ARE of Wav-

ingSketch decreases as the data skewness grows. For ex-

ample, when using 60KB memory, the ARE under the

skewness of 3.0 is about 10.3× and 1.7× smaller than

that under the skewness of 0.3 and 0.6, respectively.

F1 score (Figure 14(b)):We find that the F1 score of

WavingSketch increases as the data skewness grows. For

example, when using 60KB memory, the F1 score under

the skewness of 3.0 is about 1.78× and 1.08× higher

than that under the skewness of 0.3 and 0.6 respectively.

Summary and analysis: We find that higher data

skewness goes with higher accuracy of WavingSketch,

meaning that WavingSketch is good at processing skewed

data. These results validate that WavingSketch is most

suitable for the application scenarios where the data

stream follows a highly skewed distribution.

6.2.3 Impact of SIMD Acceleration

We evaluate the speed improvement of WavingSketch

under SIMD acceleration. We use SIMD to accelerate

a multi-counter WavingSketch with c = 16. We fix the

memory usage of WavingSketch to 200KB, and conduct

the experiments using the synthetic dataset.

Experimental results (Figure 15): We find SIMD

acceleration improves the insertion and query speed of

WavingSketch by 27% ∼ 45% and 30% ∼ 51%. As

shown in Figure 15(a), when d = 32, the insertion

throughput of WavingSketch without and with SIMD

are 21.18 Mops and 30.60 Mops. As shown in Figure 15(b),

when d = 32, the query throughput of WavingSketch

without and with SIMD are 30.13 Mops and 45.41 Mops.

4 8 16 32
Number of cells in Heavy Part (d)

0

10

20

30

40

50

60

In
se

rt
 T

hr
ou

gp
ut

 (M
op

s)

Waving w/o SIMD
Waving w/ SIMD

(a) Insertion throughput

4 8 16 32
Number of cells in Heavy Part (d)

0

20

40

60

80

Q
ue

ry
 T

hr
ou

gp
ut

 (M
op

s)

Waving w/o SIMD
Waving w/ SIMD

(b) Query throughput

Fig. 15 Impact of SIMD acceleration.

6.3 Experiments on Elastic Operations

6.3.1 Performance of Elastic Compression
We evaluate the accuracy of the compressed WavingS-

ketch and the compression speed under the synthetic

dataset. We set d = 8 and c = 16. In Figure 16(a)-

16(c)), we build a 320KB WavingSketch, and compress

it by different ratio. For each compression ratio r, we

compare the accuracy of the compressed WavingSketch

W1 with the WavingSketch of the same memory as W1.

In Figure 16(d), we evaluate the compression time at

different initial memory and compression ratio.

Accuracy (Figure 16(a)-16(c)): We find that under

the same memory, the accuracy of WavingSketch com-

pressed from large memory is significantly better than

that of the WavingSketch initially using small mem-

ory. When r = 16, the ARE of the WavingSketch com-

pressed from 320KB to 20KB is 1.0×10−6, which is four

orders of magnitude smaller than that of the WavingS-

ketch initially using 20KB memory. When r = 16, the

RR/PR of the WavingSketch compressed from 320KB

to 20KB is 76.9%/100%, while that of the WavingS-

ketch initially using 20KB memory is 52.1%/68.2%.

Speed (Figure 16(d)): We find that WavingSketch

achieves fast compression speed. It only takes 1.24 mil-

lisecond to compress a 320KBWavingSketch by 16 times,

which is negligible compared to the sketch building time.

In addition, under the same initial memory, larger com-

pression ratio r goes with more compression time.

Summary and analysis: 1) After compression, Wav-

ingSketch still has high accuracy on top-k frequent items.

This is because in the compression procedure, WavingS-

ketch attempts to maintain the information of frequent

items in Heavy Parts, and discards the information of

infrequent items into Waving Counters. Thus, as long as

d× c > k, the compressed WavingSketch can still make

accurate estimation. 2) WavingSketch has fast compres-

sion speed. This is because in the compression proce-

dure, we access each bucket only once, and do not need

any hash computation. Thus, the compression time is

just the time to traverse all buckets in WavingSketch.

6.3.2 Performance of Elastic Expansion
We evaluate the accuracy of the expanded WavingS-

ketch and the expansion speed under the synthetic dataset.

We set d = 8 and c = 16. In Figure 17(a)-17(c), we build

WavingSketches of different memory and insert the first
1
4 dataset into them. For each WavingSketch, we ex-

pand it to 320KB, and insert the remaining 3
4 dataset

into it. For each expansion ratio r, we compare the ex-

panded WavingSketch W1 with the non-expanded Wav-

ingSketch. In Figure 17(d), we evaluate the expansion

time at different initial memory and expansion ratio r.

Accuracy (Figure 17(a)-17(c)): We find after ex-

pansion, the RR and PR are higher than that of the

20 Zirui Liu, et al.

1 2 4 8 16 32
Compression Ratio (r)

10
6

10
4

10
2

10
0

A
R

E

Baseline
Compressed Waving

(a) ARE

1 2 4 8 16 32
Compression Ratio (r)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

(R
R

)

Baseline
Compressed Waving

(b) Recall Rate

1 2 4 8 16 32
Compression Ratio (r)

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
R

at
e

(P
R

)

Baseline
Compressed Waving

(c) Precision Rate

10 20 40 80 160 320
Initial Memory (KB)

0.00

0.25

0.50

0.75

1.00

1.25

C
om

pr
es

si
on

 T
im

e
(m

s) r = 2
r = 4
r = 8
r = 16

(d) Compression Time

Fig. 16 Performance of elastic compression.

1 2 4 8 16 32
Expansion Ratio (r)

10
6

10
4

10
2

10
0

A
R

E

Baseline
Expanded Waving

(a) ARE

1 2 4 8 16 32
Expansion Ratio (r)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

(R
R

)

Baseline
Expanded Waving

(b) Recall Rate

1 2 4 8 16 32
Expansion Ratio (r)

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
R

at
e

(P
R

)

Baseline
Expanded Waving

(c) Precision Rate

10 20 40 80 160 320
Initial Memory (KB)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pa

ns
io

n
Ti

m
e

(m
s) r = 2

r = 4
r = 8
r = 16

(d) Expansion Time

Fig. 17 Performance of elastic expansion.

0 1 2 3 4 5 6 7 8 9 10
Number of Inserted Items (x10M)

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e
(

)

(a) Hit Rate (θ)

0 1 2 3 4 5 6 7 8 9 10
Number of Inserted Items (x10M)

2
5

2
6

2
7

2
8

2
9

2
10

M
em

or
y

U
sa

ge
 (K

B
)

(b) Memory Usage

0 1 2 3 4 5 6 7 8 9 10
Number of Inserted Items (x10M)

0.90

0.92

0.94

0.96

0.98

1.00

F1
 S

co
re

(c) F1 Score

Fig. 18 Performance of automatic memory adjustment.

non-expanded WavingSketch, but ARE does not show

much improvement. When r = 16, the RR/PR of the

WavingSketch expanded from 20KB to 320KB is 80.0%/

63.2%, while that of the non-expanded WavingSketch is

52.7%/39.6%. When r = 16, the ARE of the WavingS-

ketch expanded from 20KB to 320KB is 0.038, while

that of the non-expanded WavingSketch is 0.074.

Speed (Figure 17(d)): We find that WavingSketch

achieves fast expansion speed. It only takes < 1 mil-

lisecond to expand a 320KB WavingSketch by 16 times,

which is negligible compared to the sketch building time.

We also find that under the same initial memory, larger

expansion ratio r goes with longer expansion time.

Summary and analysis: 1) After expansion, the ac-

curacy of WavingSketch is significantly improved. There-

fore, in practice, when the density of workload suddenly

increases, we can perform the elastic expansion opera-

tion to maintain the accuracy of WavingSketch. 2) Wav-

ingSketch has fast expansion speed. This is because in

the expansion procedure, we just copy the WavingS-

ketch r times, and do not need any computation.

6.3.3 Experiments on Automatic Adjustment

We evaluate the performance of WavingSketch on auto-

matic memory adjustment described in § 3.3. We cre-

ate a synthetic Zipf [42] data stream of 100M items,

and change its skewness every 10M items by varying α
from 1.0 to 1.1. In Figure 18(a)-18(c), the darker the

background color, the higher the skewness of the data

stream. We set k = 1000 and set the hit rate range to

[73%, 77%] (marked as red lines in Figure 18(a)). We

will see that under such range, WavingSketch always

achieves high accuracy on finding top-1000 items. We

set the initial memory of WavingSketch to 1024KB.

Experimental results (Figure 18): We find that

WavingSketch can automatically tune its memory to

adapt to the dynamic changes of data stream skewness,

so that it can always maintain high accuracy (> 97% F1

score) on finding top-k items. As shown in Figure 18(a)-

18(b), as the skewness increases at the 1st and the

30Mth item, the hit rate θ exceeds the upper bound Θ2,

which triggers the compression operation of WavingS-

ketch to save memory. As the skewness decreases at the

80Mth item, the hit rate θ drops below the lower bound

Θ1, which triggers the expansion operation of WavingS-

ketch to improve the accuracy. From Figure 18(c), we

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 21

can see that with the automatic memory adjustment

mechanism, WavingSketch can always maintain its F1

score above 97%. In particular, as the skewness drops

after the 50Mth item, the F1 score of WavingSketch also

gradually drops, and at the 80Mth item, WavingSketch

eventually triggers the expansion mechanism, thereby

always maintaining the F1 score above a certain level.

6.4 Experiments on Other Applications

6.4.1 Experiments on Other Top-k Applications

We show the performance of WavingSketch on three

top-k tasks. On finding heavy changes, we compare

WavingSketch with FlowRadar (FR) [33], FlowRadar

+Cold filter (FR+CF) [67], and LD-Sketch [24]. On

finding persistent items, we compare WavingSketch with

PIE [18], Small-Space [29], and On-Off Sketch [63]. On

finding Super-Spreaders, we compareWavingSketch with

One-level Filtering (OLF) [54], Two-level Filtering (TLF)

[54], OpenSketch [61], and SpreadSketch [52].

Settings: For WavingSketch, we set d = 8 and c = 16.

For other algorithms, we set their parameters accord-

ing to the recommendation of their authors. On finding

heavy changes, we set the memory of FR and FR+CF

to be 10× larger than that of WavingSketch, as they

cannot decode all flows under small memory. As in § 6.1,
we configure the initial memory of LD-Sketch to be the

same as WavingSketch, meaning that its actual mem-

ory usage is significantly larger than that marked in

Figure 19 (at least 10× larger). We use the IP Trace

dataset, and use the tuple of source and destination IP

addresses (4+4 bytes) of each packet as the ID field.

Finding heavy changes (Figure 19(a)-19(b)): We

find that even just using 1/10 times of memory, the ac-

curacy and throughput of WavingSketch are still signifi-

cantly higher than that of FR, FR+CF, and LD-Sketch.

When using 2MB of memory, WavingSketch has the F1

score of 98.22%. By contrast, under >20MB memory,

the F1 score of FR, FR+CF, and LD-Sketch are 0.40%,

1.17%, and 56.13%, respectively. The throughput of

WavingSketch is around 1.44×, 2.05×, and 43.44× higher

than that of FR, FR+CF, and LD-Sketch.

2.0 2.5 3.0 3.5 4.0
Memory Usage (MB)

0.0

0.5

1.0

F1
 S

co
re

Waving
FR

FR+CF
LD-Sketch

(a) F1 score

2.0 2.5 3.0 3.5 4.0
Memory Usage (MB)

0

10

20

30

Th
ro

ug
hp

ut
 (M

op
s) Waving

FR
FR+CF
LD-Sketch

(b) Throughput

Fig. 19 Performance on finding heavy changes (Note that
the memory of “FR” and “FR+CF” is 10× larger than that
marked in the figure, and the memory of LD-Sketch is > 10×
larger than that marked in the figure).

Finding persistent items (Figure 20(a)-20(b)):

We find that the accuracy of WavingSketch is signifi-

cantly higher than that of Small-Space, PIE, and On-

Off Sketch, and the throughput of WavingSketch is close

to Small-Space, which is slower than On-Off Sketch and

faster than PIE. When using 80KB memory, the F1

Score of WavingSketch, Small-Space, PIE, and On-Off

Sketch are 97.23%, 6.54%, 0.53%, and 35.80%, respec-

tively. The throughput of WavingSketch is close to that

of Small-Space, which is around 1.55× slower than that

of On-Off Sketch and 27.95× faster than that of PIE.

40 80 120 160 200
Memory Usage (KB)

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

Waving
Small-Space

PIE
On-Off

(a) F1 score

40 80 120 160 200
Memory Usage (KB)

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

op
s) Waving

Small-Space
PIE
On-Off

(b) Throughput

Fig. 20 Performance on finding persistent items.

Finding Super-Spreaders (Figure 21(a)-21(b)):

We find that the accuracy of WavingSketch is higher

than that of OpenSketch, TLF, OLF, and SpreadS-

ketch, and the throughput of WavingSketch is higher

than OpenSketch and SpreadSketch but lower than TLF

and OLF. When using 600KB memory, the F1 score of

WavingSketch, TLF, OLF, OpenSketch, SpreadSketch

are 99.57%, 16.23%, 13.11%, 77.75%, and 83.43%. And

the throughput of WavingSketch, TLF, OLF, OpenS-

ketch, SpreadSketch are 24.04 Mops, 78.38 Mops, 80.16

Mops, 11.48 Mops, and 8.24 Mops.

600 700 800 900 1000
Memory Usage (KB)

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

Waving
TLF
OLF

OpenSketch
SpreadSketch

(a) F1 score

600 700 800 900 1000
Memory Usage (KB)

0

25

50

75

100

125

Th
ro

ug
hp

ut
 (M

op
s) Waving

TLF
OLF

OpenSketch
SpreadSketch

(b) Throughput

Fig. 21 Performance on finding Super-Spreaders.

Summary and analysis: 1) On finding heavy changes,

WavingSketch achieves higher accuracy than FR, FR+CF,

and LD-Sketch while using < 1
10 memory. This is be-

cause finding heavy changes is based on estimating the

frequencies of items. Since WavingSketch provides more

accurate estimation, it naturally performs better in this

task. 2) On finding persistent items, WavingSketch has

higher accuracy than Small-Space, PIE, and On-Off

Sketch. For Small-Space, when using small memory, the

inevitable undersampling magnifies its errors. For PIE,

22 Zirui Liu, et al.

its accuracy is significantly degraded by hash collisions.

For On-Off Sketch, it combines CM sketch and Space-

Saving to build a top-k sketch and uses this data struc-

ture to record item persistence. The accuracy of this

structure on persistence estimation is lower than Wav-

ingSketch, so On-Off sketch has lower F1 score. But

On-Off sketch has faster speed. 3) On finding Super-

Spreaders, the accuracy of WavingSketch also outper-

forms OpenSketch, OLF, TLF, and SpreadSketch. One

main reason is that prior algorithms use a lot of memory

to remove duplicates. For example, OpenSketch uses

bitmaps, OLF and TLF use hash-tables. By contrast,

our solution uses a Bloom filter, which is more memory-

efficient. SpreadSketch also uses multi-resolution bitmap

[20] to remove duplicates. Moreover, as discussed in

§ 2.2.4, each super-spreader can be recorded d times

in its data structure, making it not memory efficient.

6.4.2 Experiments on Join-aggregate Estimation

We show the performance of WavingSketch on join-

aggregate estimation. The experiments are conducted

on two 1-minute IP trace datasets. We use the multi-

counter WavingSketch with d = 16 and c = 16, and

compare it with FAGMS [15], Skimmed sketch [22], and

JoinSketch [55]. We compare the four algorithms under

the same memory usage, and use the relative error (RE)

as the metric, which is defined as |J − Ĵ |/J where J is

the join-aggregate result of the two data streams.

100 120 140 160 180 200
Memory Usage (KB)

0

2

4

6

8

10

R
E

(x
10

3)

Waving
FAGMS

Skimmed
JoinSketch

(a) Relative Error

100 120 140 160 180 200
Memory Usage (KB)

10
2

10
1

10
0

10
1

Jo
in

 T
im

e
(m

s)

Waving
FAGMS

Skimmed
JoinSketch

(b) Join Time

Fig. 22 Performance on join-aggregate estimation.

Experimental results (Figure 22): We find that the

relative error of WavingSketch is smaller than FAGMS

and Skimmed but larger than JoinSketch, and the pro-

cessing speed of WavingSketch is faster than Skimmed

and JoinSketch but slower than FAGMS. When us-

ing 100KB memory, the relative error of WavingSketch,

FAGMS, Skimmed, and JoinSketch are 4.8×10−2, 8.6×
10−2, 7.2× 10−2, and 7.4× 10−3. And the join time of

WavingSketch, FAGMS, Skimmed, and JoinSketch are

0.15 ms, 0.019 ms, 5.33 ms, and 1.10 ms. FAGMS has

faster speed because it does not separate frequent and

infrequent items, and thus its error is the largest. On the

other hand, JoinSketch separate items into three parts,

and thus has the smallest error and slow speed. By

contrast, WavingSketch separate items into two parts,

which strikes an balance between FAGMS and JoinS-

ketch. Therefore, its relative error and processing time

are also between that of FAGMS and JoinSketch.

6.4.3 Experiments on Subset Query

We evaluate the accuracy on subset query on the syn-

thetic dataset, and compare WavingSketch with two al-

gorithms with overestimated error for top-k items: SS

[38] and USS [53]. We build 100 subsets with a size of

1000. Each subset is built by randomly selecting 1000

items from the top-2000 items. We evaluate the error on

reporting subset sum/average, and report the average

relative error (ARE) on the 100 subsets.

50 100 150 200 250
Memory Usage (KB)

10
8

10
6

10
4

10
2

10
0

A
R

E
Waving
SS

USS

(a) ARE on subset sum

50 100 150 200 250
Memory Usage (KB)

10
5

10
3

10
1

10
1

10
3

A
R

E

Waving
SS

USS

(b) ARE on subset average

Fig. 23 Performance on subset query.

Experimental results (Figure 23): We find that on

both subset sum task and subset average task, Wav-

ingSketch achieves significantly smaller ARE than SS

and USS. When using 200KB memory, WavingSketch,

SS, and USS have 5.72× 10−7, 5.53× 10−4, and 3.38×
10−4 ARE on subset sum task and 4.36×10−4, 0.58, and

0.61 ARE on subset average task. As discussed in § 2.3,
when aggregating the estimated results on a subset, the

overestimated error and underestimated error of unbi-

ased WavingSketch can offset each other, which leads

to high accuracy. By contrast, the overestimated error

of SS and USS will accumulate, resulting in their poor

accuracy. Recall that although USS achieves the unbi-

asedness property for all items, its estimation for fre-

quent items is biased upward. Therefore, when query-

ing the aggregate results on a subset of top-k frequent

items, it still suffers large accumulated error.

6.4.4 Experiments on Global Top-k Problem

We evaluate the accuracy on finding global top-k items

in disjoint data streams, and compare WavingSketch

with two algorithms with overestimated error for top-

k items: Space-Saving [38] and Unbiased Space-Saving

[53]. Following prior work [66], we divide the synthetic

dataset into N disjoint data streams S1, · · · ,SN with

size m1, · · · ,mN . For each algorithm, we deploy one

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 23

of its copy on each data stream to detect local top-

k items, and then aggregate the results to find global

top-k items. Memory sizes of all the copies on differ-

ent data streams are set the same. For Figure 24, we

create N = 10 data streams of equal size by setting

m1 = · · · = mN = m
N , where m =

∣∣∪N
i=1Si

∣∣. We set

k = 5000 and vary the local memory usage of can-

didate algorithms. For Figure 25, we create N = 100

data streams of skewed size by setting m1 = r ·m and

mi = 1−r
N−1 · m,∀i ⩾ 2 where r ⩾ 1

N represents the

skewness of the size distribution across different data

streams. In this setup, there are one heavy streams S1

with large size and 99 light streams S2 ∼ S100 with

small size. We set k = 2000 and set the memory of each

algorithm on each data stream to 10KB.

10 15 20 25 30 35 40
Memory Usage (KB)

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

Waving SS USS

(a) F1 Score

10 15 20 25 30 35 40
Memory Usage (KB)

10
5

10
3

10
1

10
1

10
3

A
R

E

Waving SS USS

(b) ARE

Fig. 24 Performance of finding global top-k items in data
streams of equal size.

Performance on data streams of equal size (Fig-

ure 24): We find that compared to the biased algo-

rithms (SS, USS), our unbiased WavingSketch achieves

significantly higher F1 score and smaller ARE. When

using 15KB local memory, the F1 score of WavingS-

ketch, SS, and USS are 97.27%, 37.49%, and 37.42%,

and the ARE for global top-k items of WavingSketch,
SS, and USS are 3.6×10−3, 3.09, and 3.32. SS and USS

have poor accuracy because they provide highly overes-

timated frequency estimation under small memory, so

they cannot accurately find global top-k items. By con-

trast, our unbiased WavingSketch maintains high accu-

racy even under small memory.

0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.4 0.5
Skewness (r)

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

Waving SS USS

(a) F1 Score

0.010.020.030.05 0.1 0.2 0.3 0.4 0.5
Skewness (r)

10
6

10
4

10
2

10
0

A
R

E

Waving SS USS

(b) ARE

Fig. 25 Performance of finding global top-k items in data
streams of skewed size.

Performance on data streams of skewed size (Fig-

ure 25): We find that compared to the biased algo-

rithms (SS, USS), our unbiased WavingSketch achieves

significantly higher F1 score and smaller ARE. On the

skewness r = 0.1, the F1 score of WavingSketch, SS,

and USS are 98.57%, 91.86%, and 91.47%, and the ARE

for global top-k items of WavingSketch, SS, and USS

are 1.36×10−3, 0.176, and 0.186. As discussed in § 2.3,
SS and USS have poor accuracy because of their over-

estimated error for local top-k items. In this way, local

top-k candidates in heavy streams tend to be highly

overestimated, so even if an item in heavy stream has

small real frequency, its estimated frequency might still

be high enough to be falsely selected as a global top-k

item. With items in heavy streams falsely selected as

global top-k items and items in light streams ignored,

the F1 Scores of SS and USS become unacceptably low

when skewness is large. By contrast, for unbiased Wav-

ingSketch, the frequency of a local top-k item has the

same chance to be overestimated or underestimated, so

the global top-k result is no longer influenced by the size

of local data stream. Therefore, WavingSketch achieves

higher F1 score under data streams of skewed size.

6.5 Experiments on Apache Flink

We implementWavingSketch on Apache Flink [13], show-

ing WavingSketch can be easily integrated into modern

stream processing framework. We build a Flink clus-

ter with 1 master node and 5 worker nodes. We deploy

one WavingSketch on each of these nodes, and evalu-

ate the streaming processing speed in both local mode

and cluster mode. As shown in Figure 26, WavingS-

ketch achieves satisfactory throughput (1.2 ∼ 1.8 mil-

lion events per second) in our Flink cluster. We present

the details of the experimental setup and discuss the ex-

perimental results in our supplementary materials [5].

1 2 3 4 5
Number of parallel instances

1.0

1.2

1.4

1.6

Ev
en

ts
/s

 (×
10

6)

(a) Local mode

1 2 3 4 5
Number of nodes

1.0

1.2

1.4

1.6

1.8

2.0

Ev
en

ts
/s

 (×
10

6)

(b) Cluster mode

Fig. 26 Throughput of WavingSketch on Apache Flink.

7 Conclusion

In this paper, we propose an algorithm called WavingS-

ketch for finding top-k items. WavingSketch provides

unbiased estimation and outperforms the state-of-the-

art algorithm on both accuracy and speed. We theo-

24 Zirui Liu, et al.

retically prove the unbiasedness property of WavingS-

ketch and analyze its error, and we apply WavingSketch

to five applications. Experimental results show that,

compared with Unbiased Space-Saving, WavingSketch

achieves 10× faster insertion speed and 103× smaller

error in finding frequent items.

Acknowledgements This work is supported by National Key
R&D Program of China (No. 2022YFB2901504), National
Natural Science Foundation of China (NSFC) (No. U20A20179,
62372009, 623B2005), and research grant No. SH-2024JK29.

References

1. CAIDA [on line]. Available: http://www.caida.org/home.
2. Murmur hashing source codes. https://github.com/

aappleby/smhasher/blob/master/src/MurmurHash3.cpp.
3. Real-life transactional dataset. http://fimi.ua.ac.be/

data/.
4. Source code related to WavingSketch. https://github.

com/WavingSketch/Waving-Sketch.
5. Supplementary materials of wavingsketch. https:

//github.com/WavingSketch/Waving-Sketch/blob/master/

WavingSketch_Supplementary.pdf.
6. The Network dataset Internet Traces. http://snap.

stanford.edu/data/.
7. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.

Tracking join and self-join sizes in limited storage. In
Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems,
pages 10–20, 1999.

8. A.Shokrollahi. Raptor codes. IEEE Transactions Infor-

mation Theory, 52(6), 2006.
9. K. Balachander, S. Subhabrata, Z. Yin, and C. Yan.

Sketch-based change detection: methods, evaluation, and
applications. In Proceedings of the 3rd ACM SIGCOMM

conference on Internet measurement, pages 234–247. ACM,
2003.

10. B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–
426, 1970.

11. T. Buddhika, M. Malensek, S. L. Pallickara, and S. Pal-
lickara. Synopsis: A distributed sketch over voluminous
spatiotemporal observational streams. IEEE Transactions

on Knowledge and Data Engineering, 29(11):2552–2566,
2017.

12. W. Cai, M. Balazinska, and D. Suciu. Pessimistic cardi-
nality estimation: Tighter upper bounds for intermediate
join cardinalities. In Proceedings of the 2019 International

Conference on Management of Data, pages 18–35, 2019.
13. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,

S. Haridi, and K. Tzoumas. Apache flink: Stream and
batch processing in a single engine. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineer-

ing, 36(4), 2015.
14. M. Charikar, K. Chen, and M. Farach-Colton. Finding

frequent items in data streams. In Automata, Languages

and Programming. Springer, 2002.
15. G. Cormode and M. Garofalakis. Sketching streams

through the net: Distributed approximate query track-
ing. In Proceedings of the 31st international conference on

Very large data bases, pages 13–24, 2005.

16. G. Cormode and M. Hadjieleftheriou. Finding frequent
items in data streams. Proceedings of the VLDB Endow-

ment, 1(2):1530–1541, 2008.
17. G. Cormode and S. Muthukrishnan. An improved data

stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55(1), 2005.

18. H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong. Finding
persistent items in data streams. Proceedings of the VLDB

Endowment, 10(4):289–300, 2016.
19. C. Estan and G. Varghese. New directions in traffic

measurement and accounting. ACM SIGMCOMM CCR,
32(4), 2002.

20. C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms
for counting active flows on high speed links. In Pro-

ceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 153–166, 2003.

21. M. Flynn. Some computer organizations and their effec-
tiveness. ieee trans comput c-21:948. Computers, IEEE
Transactions on, C-21:948 – 960, 10 1972.

22. S. Ganguly, M. Garofalakis, and R. Rastogi. Processing
data-stream join aggregates using skimmed sketches. In
International Conference on Extending Database Technol-

ogy, pages 569–586. Springer, 2004.
23. S. Ganguly, D. Kesh, and C. Saha. Practical algorithms

for tracking database join sizes. In International Confer-

ence on Foundations of Software Technology and Theoretical
Computer Science, pages 297–309. Springer, 2005.

24. Q. Huang and P. P. Lee. Ld-sketch: A distributed sketch-
ing design for accurate and scalable anomaly detection in
network data streams. In IEEE INFOCOM 2014-IEEE

Conference on Computer Communications, pages 1420–
1428. IEEE, 2014.

25. Y. Izenov, A. Datta, F. Rusu, and J. H. Shin. Compass:
Online sketch-based query optimization for in-memory
databases. In Proceedings of the 2021 International Con-
ference on Management of Data, pages 804–816, 2021.

26. R. M. Karp, S. Shenker, and C. H. Papadimitriou. A sim-
ple algorithm for finding frequent elements in streams and
bags. ACM Transactions on Database Systems (TODS),
28(1):51–55, 2003.

27. W. Kim, J. Yun, and H. Jung. Evaluation of high-
frequency financial transaction processing in distributed
memory systems. In Proceedings of the 2014 Conference on
Research in Adaptive and Convergent Systems, pages 362–
364, 2014.

28. K. Kutzkov, M. Ahmed, and S. Nikitaki. Weighted sim-
ilarity estimation in data streams. In Proceedings of the

24th ACM International on Conference on Information and

Knowledge Management, pages 1051–1060, 2015.
29. B. Lahiri, J. Chandrashekar, and S. Tirthapura. Space-

efficient tracking of persistent items in a massive data
stream. Statistical Analysis and Data Mining, 7:70–92,
2011.

30. V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper,
and T. Neumann. How good are query optimizers, really?
Proceedings of the VLDB Endowment, 9(3):204–215, 2015.

31. V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. Query optimization
through the looking glass, and what we found running the
join order benchmark. The VLDB Journal, 27(5):643–668,
2018.

32. J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai,
and G. Zhang. Wavingsketch: An unbiased and generic
sketch for finding top-k items in data streams. In Proceed-

ings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 1574–1584,
2020.

http://www.caida.org/home
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
https://github.com/WavingSketch/Waving-Sketch
https://github.com/WavingSketch/Waving-Sketch
https://github.com/WavingSketch/Waving-Sketch/blob/master/WavingSketch_Supplementary.pdf
https://github.com/WavingSketch/Waving-Sketch/blob/master/WavingSketch_Supplementary.pdf
https://github.com/WavingSketch/Waving-Sketch/blob/master/WavingSketch_Supplementary.pdf
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/

WavingSketch: An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams 25

33. Y. Li, R. Miao, C. Kim, and M. Yu. Flowradar: a better
netflow for data centers. In USENIX NSDI, pages 311–
324. USENIX Association, 2016.

34. Y. Li, F. Wang, X. Yu, Y. Yang, K. Yang, T. Yang, Z. Ma,
B. Cui, and S. Uhlig. Ladderfilter: Filtering infrequent
items with small memory and time overhead. Proceedings
of the ACM on Management of Data, 1(1):1–21, 2023.

35. Z. Liu, C. Kong, K. Yang, T. Yang, R. Miao, Q. Chen,
Y. Zhao, Y. Tu, and B. Cui. Hypercalm sketch: One-
pass mining periodic batches in data streams. In 2023

IEEE 39th International Conference on Data Engineering

(ICDE). IEEE, 2023.
36. Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and

V. Braverman. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings

of the 2016 ACM SIGCOMM Conference, pages 101–114,
2016.

37. G. Lukasz, D. David, D. E. D, L. Alejandro, and M. J.
Ian. Identifying frequent items in sliding windows over
on-line packet streams. In IMC. ACM, 2003.

38. A. Metwally, D. Agrawal, and A. El Abbadi. Efficient
computation of frequent and top-k elements in data
streams. In International Conference on Database Theory.
Springer, 2005.

39. R. Miao, Y. Zhang, G. Qu, K. Yang, T. Yang, and
B. Cui. Hyper-uss: Answering subset query over multi-
attribute data stream. In Proceedings of the 29th ACM

SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 1698–1709, 2023.

40. M. Nishad and P. Themis. Frequent items in streaming
data: An experimental evaluation of the state-of-the-art.
Data & Knowledge Engineering, 2009.

41. K. Park and H. Lee. On the effectiveness of route-based
packet filtering for distributed dos attack prevention in
power-law internets. ACM SIGCOMM computer commu-

nication review, 31(4):15–26, 2001.
42. D. M. Powers. Applications and explanations of Zipf’s

law. In Proc. EMNLP-CoNLL. Association for Computa-
tional Linguistics, 1998.

43. R. Pratanu, K. Arijit, and A. Gustavo. Augmented
sketch: Faster and more accurate stream processing. In
Proc. ACM SIGMOD, 2016.

44. G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. Es-
timating training data influence by tracing gradient de-
scent. Advances in Neural Information Processing Systems,
33:19920–19930, 2020.

45. Y. Rekhter, T. Li, and S. Hares. A border gateway pro-
tocol 4 (bgp-4). Technical report, 2006.

46. A. Rousskov and D. Wessels. High-performance bench-
marking with web polygraph. Software: Practice and Ex-
perience, 2004.

47. F. Rusu and A. Dobra. Statistical analysis of sketch esti-
mators. In Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, pages 187–198,
2007.

48. F. Rusu and A. Dobra. Sketches for size of join esti-
mation. ACM Transactions on Database Systems (TODS),
33(3):1–46, 2008.

49. R. Schweller, Z. Li, Y. Chen, et al. Reversible sketches:
enabling monitoring and analysis over high-speed data
streams. IEEE/ACM Transactions on Networking (ToN),
15(5):1059–1072, 2007.

50. M. G. Singh and M. Rajeev. Approximate frequency
counts over data streams. In Proc. VLDB, pages 346–
357, 2002.

51. J. L. Sobrinho. Network routing with path vector proto-
cols: Theory and applications. In Proceedings of the 2003
conference on Applications, technologies, architectures, and

protocols for computer communications, pages 49–60, 2003.

52. L. Tang, Q. Huang, and P. P. Lee. Spreadsketch: Toward
invertible and network-wide detection of superspreaders.
In IEEE INFOCOM 2020-IEEE Conference on Computer

Communications, pages 1608–1617. IEEE, 2020.
53. D. Ting. Data sketches for disaggregated subset sum and

frequent item estimation. In SIGMOD Conference, 2018.
54. S. Venkataraman, D. X. Song, P. B. Gibbons, and

A. Blum. New streaming algorithms for fast detection
of superspreaders. In NDSS, 2005.

55. F. Wang, Q. Chen, Y. Li, T. Yang, Y. Tu, L. Yu, and
B. Cui. Joinsketch: A sketch algorithm for accurate
and unbiased inner-product estimation. Proceedings of

the ACM on Management of Data, 1(1):1–26, 2023.
56. Y. Wang and K. Yi. Secure yannakakis: Join-aggregate

queries over private data. In Proceedings of the 2021 Inter-
national Conference on Management of Data, pages 1969–
1981, 2021.

57. Z. Wei, G. Luo, K. Yi, X. Du, and J.-R. Wen. Persistent
data sketching. In Proc. ACM SIGMOD, pages 795–810.
ACM, 2015.

58. D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux. D
2̂2 histosketch: Discriminative and dynamic similarity-
preserving sketching of streaming histograms. IEEE

Transactions on Knowledge and Data Engineering,
31(10):1898–1911, 2018.

59. T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li.
Heavyguardian: Separate and guard hot items in data
streams. In SIGKDD, 2018.

60. T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou,
R. Miao, X. Li, and S. Uhlig. Elastic sketch: Adaptive and
fast network-wide measurements. In ACM SIGCOMM

2018, pages 561–575, 2018.
61. M. Yu, L. Jose, and R. Miao. Software defined traffic

measurement with opensketch. In NSDI 2013, 2013.
62. H. Zhang, Z. Liu, B. Chen, Y. Zhao, T. Zhao, T. Yang,

and B. Cui. Cafe: Towards compact, adaptive, and fast
embedding for large-scale recommendation models. In

Proceedings of the 2024 ACM International Conference on
Management of Data (SIGMOD), 2024.

63. Y. Zhang, J. Li, Y. Lei, T. Yang, Z. Li, G. Zhang, and
B. Cui. On-off sketch: A fast and accurate sketch on per-
sistence. Proceedings of the VLDB Endowment, 14(2):128–
140, 2020.

64. Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao,
P. Liu, R. Zhang, and J. Jiang. Cocosketch: High-
performance sketch-based measurement over arbitrary
partial key query. In Proceedings of the 2021 ACM SIG-

COMM 2021 Conference, pages 207–222, 2021.
65. B. Zhao, X. Li, B. Tian, Z. Mei, and W. Wu. Dhs: Adap-

tive memory layout organization of sketch slots for fast
and accurate data stream processing. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 2285–2293, 2021.

66. Y. Zhao, W. Han, Z. Zhong, Y. Zhang, T. Yang, and
B. Cui. Double-anonymous sketch: Achieving top-k-
fairness for finding global top-k frequent items. Proceed-

ings of the ACM on Management of Data, 1(1):1–26, 2023.
67. Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and

S. Uhlig. Cold filter: A meta-framework for faster and
more accurate stream processing. In SIGMOD Confer-
ence, 2018.

68. Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and
S. Uhlig. Cold filter: A meta-framework for faster and
more accurate stream processing. In Proceedings of the

2018 International Conference on Management of Data,
pages 741–756, 2018.

	Introduction
	Background and Related Work
	The WavingSketch Algorithm
	Mathematical Analysis
	Application
	Experimental Results
	Conclusion

