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Abstract Estimating the number of distinct flows, also called the cardinality, is an impor-
tant issue in many network applications, such as traffic measurement, anomaly detection,
etc. The challenge is that high accuracy should be achieved with line speed and small
auxiliary memory. Flajolet-Martin algorithm, LogLog algorithm, and HyperLogLog algo-
rithm form a line of work in this area with improving performance. In this paper, we
propose refined versions of these algorithms to achieve higher accuracy. The key observa-
tions are (1) the “leftmost” hash functions used by these algorithms can be generalized to
reach higher accuracy, (2) the amendment coefficient can be highly biased in some certain
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streams or datasets so dynamically setting the amendment coefficient instead of using the
one derived in pure math can lead to much better accuracy. Experimental results show great
improvement of accuracy and stability of the refined versions over original algorithms.

Keywords Cardinality estimation - Probability counting - Network measurement -
Data streams

1 Introduction
1.1 Background and motivation

Determining the number of distinct items, namely cardinality, is an important issue in many
network applications, such as traffic management [7, 10], anomaly detection, etc. Many
database applications, such as database query optimization [9], require fast and accurate
estimation of cardinality as well.

There are mainly two kinds of algorithms for cardinality estimation. The first kind of
algorithms is based on packet sampling (e.g. Adaptive Sampling [8]). However, these algo-
rithms suffer from low accuracy and are unacceptable in fine-grained applications. The
second kind of algorithms is based on probabilistic counting. One of the earliest probabilis-
tic counting algorithms is Linear Counting [33], proposed by Whang, Zanden, and Taylor.
But its requirement for linear space makes it unpractical in real networks, especially when
the cardinality to record is large. Multiresolution Bitmap [7] and Adaptive Bitmap [7] are
refined versions of Linear Counting and both achieve higher accuracy. However, Multireso-
lution Bitmap requires large space, and Adaptive Bitmap has many restrictions on the target
datasets.

Flajolet and Martin proposed another algorithm, namely Flajolet-Martin algorithm [9],
using d bitmaps, each of log N,y bits, to record estimated cardinality, and reaches a stan-
dard deviation close to 0.78/+/d. In order to achieve a high accuracy, d should be large, and
dlog Ny, bits is costly for the limited memory in routers or switches. This limitation of
FM algorithm motivates another more memory-efficient algorithm called LogLog algorithm
[5], in which each counter only takes up loglog N, bits. However, LogLog algorithm can
only reach a relative accuracy as high as 1.30/+/d. HyperLogLog algorithm is proposed
to address the issue and achieves great success by reducing relative accuracy to 1.04/+/d.
Detailed descriptions of these algorithms are given in Section 2.

1.2 Limitation of prior art and our proposed solution

From the above discussion, we can see that these methods either suffer from low accuracy or
high memory requirement. The key observations are (1) FM algorithm, LogLog algorithm
and HyperLogLog algorithm all suffer from large “record gap”. For example, a bitmap with
leftmost 1 at 18th or 19th position will be regarded as 2! = 262144 or 2! = 524288. Then
if a stream has a real cardinality of around 30000, then the bitmap will give out pretty rough
estimation because the gap of 2 possible records is too large, (2) the amendment coefficient
can be highly biased in some streams or datasets. For example, 20 elements with “leftmost”
hash positions from 0 to 19 can be recorded as 2'° = 524288 with relative error as high
as 26213. Although this example can hardly happen in practice and can be solved using
averaging, we observe that in some real-world datasets, the amendment coefficient is still
far from good.
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The “leftmost” hash functions used by these algorithms can be viewed as a process of
consecutive division by 2. In another view, these hash functions can be regarded as geo-
metrically distributed with the common ratio of 1/2. However, 1/2 is a too coarse-grained
common ratio leading to a huge gap between possible records. For a LogLog algorithm with
d = 64, it can only guarantee an average error of 16.25%. To address this issue, we pro-
pose a generalized version of “leftmost” hash functions, namely geometrically-distributed
hash functions. We use it to replace “leftmost™ hash functions in FM, LogLog and Hyper-
LogLog algorithms in order to make the gap more fine-grained. Another improvement is
that instead of using the amendment coefficient derived by pure math, we dynamically set
the coefficient by learning from a small portion of streams or datasets. This may introduce
extra overheads in the beginning but will greatly benefit the accuracy in the long term.

Since the paper is expanded from its conference version [30], we want to highlight the
new technique contributions here. First, we proposed to dynamically set the amendment
coefficient. Second, we add refined version HyperLoglLog algorithm. Third, we added a
large number of new experiments on real-world datasets to show the efficiency of our
refinements.

Our key contributions

—  We generalize the “leftmost” hash functions to geometrically-distributed hash func-
tions.

—  We propose to dynamically set the amendment coefficient.

—  We apply two techniques to Flajolet-Martin, Logl.og and HyperLogLog algorithm,
and carry out extensive experiments which show great improvement in accuracy and
stability.

2 Related work

In this section, we will introduce Flajolet-Martin, LogLog and HyperLogLog algorithm in
details. The symbols used are shown in Table 1.

Table 1 Symbols used in the

paper Symbol Description
n # of Incoming Elements.
m # of bitmaps or counters.
w # of bits of a bitmap
div dividend used in FM, LogLog and HyperLogLog.
Bli1[j] 7™ bit in i"" bitmap in FM.
o(.) the position of leftmost 1 in bits.
p(B[i]) the position of leftmost 0 in B[i].
Cli] i counter in LogLog or HyperLogLog.
e a coming element like a flow in a stream.
hy(e) Uniformly distributed hash function.
hg(e, div) geometrically distributed hash value.
/" division operation. The result is truncated to integer.
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Table 2 Algorithms, memory cost and relative accuracy

Algorithm Memory (units) Relative Accuracy
Flajolet-Martin m bitmaps (64 bits) 0.78//m
LogLog m counters (1 byte) 1.30//m
HyperLogLog m counters (1 byte) 1.04//m

2.1 The Flajolet-Martin algorithm

Flajolet and Martin proposed a classic algorithm for approximate cardinality counting,
namely Flajolet-Martin algorithm [9]. FM sketches are widely used in network applications
to count flow numbers, such as data dissemination [19, 20] and probabilistic aggregation
[11, 21]. The memory cost and theoretical accuracy of FM algorithm is shown in Table 2.
As shown in Figure 1, FM algorithm is composed of d bitmaps and each bitmap has w
bits. The i'" bitmap is denoted by B[i] and the jth bit of B[i] is denoted by B[i][j]. Each
bitmap B[i] is associated with an independent hash function hg)(., .). Specially, hg) (.,.)is
called “leftmost” hash functions. It maps half of all items to the leftmost bit of the i'* array,
a quarter to bit 1, and so on. The concrete method to generate such functions is discussed
in Section 3.1. For each item e, FM algorithm computes d hash functions hi,’) (e, 2) and sets

Blil[hY (e.2)%w] to 1. To answer a query, FM sketch returns 1.2928 x 21 o #(BliD,
where B[i] denotes the lowest bit with value 0, as derived in [9].

2.2 LogLog and HyperLogLog algorithm

Durand and Flajolet proposed another classic algorithm, namely LogLog algorithm [5], for
cardinality estimation. The auxiliary memory required is extremely small, in the order of
loglog Npax. Nmax is a priori upper bound on cardinality. Flajolet et al. proposed Hyper-
LoglLog algorithm [10] to improve the accuracy of LoglLog algorithm. The memory cost
and theoretical accuracy of Loglog and HyperLogLog algorithm is shown in Table 2.

As shown in Figure 2, Loglog algorithm uses d counters and each counter has
loglog Ny bits. The i'" counter is denoted by C[i]. There is only one hash function A, (.).
The complete hash value of item ¢ is denoted by 2y (¢). The lowest k = log d bits of i, (e) is
denoted by /;(e) and is used to locate a counter. The higher bits Ay, (e) of h, (e) is also used
to generate “leftmost” hash values A4 (e, 2)) with the method discussed in Section 3.1. Then
C[h;(e)] is set to max{C[h;(e)], hg(e, 2)}. To answer a query, LogLog algorithm returns
0gd21 20, where @ = (D(~1/d) 5255~ and T(s) = L [ e7/r°dr, as derived in
[5].

HyperLogLog does many refinements on Loglog from practical perspectives. In this
paper, we only focus on the replacement of arithmetic mean by harmonic mean. The

—d
insertion is the same as LoglLog. To answer a query, HyperLogLog returns acgd2 X 1/Clil,

Figure 1 Structure of a FM
Sketch
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Figure 2 Structure of LogLog
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There are many more sketches in the literature. Interested readers please refer to [2—4, 6,
13,17, 18,25-29, 31, 32, 34].

3 Methodology

In this section, we give a detailed description of our algorithms. First, we introduce how to
generalize “leftmost” hash functions to geometrically distributed hash functions. Second,
we present how to dynamically set the amendment coefficient. Then, we propose refined
FM algorithm, refined LogLog algorithm and refined HyperLoglLog algorithm which use
geometrically distributed hash functions and dynamic amendment coefficient. The symbols
we use are defined in Table 1.

3.1 Geometrically distributed hash functions

The most widely used hash functions are uniformly distributed hash functions. These hash
functions map the input strings to nearly uniformly distributed binary strings. It is theoret-
ically impossible to find a hash function mapping nonuniform inputs into uniform outputs.
But in practice, we can easily find one that is close enough [16].

In cardinality counting algorithms, a “leftmost” hash function is frequently required. The
Pseudocode is shown in Algorithm 1. “Leftmost” hash function can be viewed as a process
of consecutive division by 2. The hash value is the number of iterations before the remainder
is 0.

Algorithm 1 “Leftmost” Hash Function
1 Function LefiMostHash(e):

2 uniform_hash_value = h,(e);

3 geometrical _hash_value = o (uni form_hash_value);
4 return geometrical_hash_value;

5 end

Table 3 Derived amendment

coefficients Algorithm Amendment Coefficient
Flajolet-Martin 1.29281
LogLog 0.39701
HyperLogLog 0.39701
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Algorithm 2 Geometrically Distributed Hash Function

1 Function ConsecutiveDivide(uniform_hash _value, div):

2 res =0;

3 while uniform_hash_value%r != 0 do

4 uni form_hash_value = uni form_hash_valuel/div;
5 ++res;

6 end

7 return res;

s end

9 Function GDHash(e, div):
10 uniform_hash_value = h,(e);
11 geometrical _hash_value = ConsecutiveDivide(uniform_hash_value, div);,
12 return geometrical_hash_value;
13 end

As shown in Algorithm 2, we extend the algorithm to generate geometrically distributed
hash functions with more choices of common ratio. For a binary string, we define a subrou-
tine called ConsecutiveDivide(.,.). We use ConsecutiveDivide(., .) to replace o (.) in
Algorithm 1, and get the extended algorithm 2. We can see that the hash values should be a
geometrically distributed array with common ratio (div — 1)/div and first term div.

One problem with function ConsecutiveDivide(.,.) is that the modulo operation is
time-consuming and may become a bottleneck for GD Hash(., .). However, if we pick div
as 2¥, then we can use shift operation to replace the modulo operation and get an accelerated
version of ConsecutiveDivide(x,i). Thus, we choose to use geometrically distributed
hash functions with div = 4 in this paper.

3.2 Dynamic amendment coefficient

In order to get unbiased estimate of cardinality, the proposers of FM, LogLog and Hyper-
LogLog derived an amendment coefficient with pure math as shown in Table 3. However,
we observe in practice that these coefficients can be highly biased when facing certain
streams or datasets. We propose to use a small portion of the stream or dataset to learn the
coefficients instead of using the derived ones. The coefficients we use in the experiments
are shown in Table 4.

Table 4 Learned amendment coefficient when n = 1000

Dataset/Algorithm M LogLog HyperLogLog
Synthetic 0.829 4.81 1.95
Self-Collected 0.608 3.541 1.333

CAIDA 0.806 4.680 1.723

Penn Treebank 0.771 9.693 4.743
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3.3 Refined algorithms
3.3.1 Refined Flajolet-Martin algorithm

Refined Flajolet-Martin algorithm is composed of bitmaps initialized to 0. To initialize a
refined FM, three parameters need to be determined: 1) the number of bitmaps: d; 2) the
size of each bitmap in terms of bits: w; 3) the dividend used in geometrically distributed
hash functions: div. The selection of these parameters will determine the capacity, accuracy
and memory efficiency of the refined FM algorithm.

Insertion As shown in Algorithm 3, when an item e is inserted, for each bitmap, we cal-
culate a uniform hash value %, (¢). Then we calculate the geometrical hash value and set the
corresponding bit to 1.

Query As defined in Algorithm 3, when answering a query, each bitmap refined FM will
return amend X di v(%)p""B[i ]. The whole algorithm will return the average of these
estimates.

Algorithm 3 Refined Flajolet-Martin Algorithm

1 struct {

2 bitmap B[d];

3 intdiv;

4 Function Insert(e):

5 uniform_hash_value = h,(e);

6 for each bitmap B[i] do

7 geometrical _hash_value = hg)(uniform,hash,value, div);
8 Blillgeometrical _hash_value] = 1;

9 end
10 end
11 Function Query():
12 float sum = 0;
13 foriinddo

14 pos = p(Bli]);
15 sum = sum + amend X div(%)p‘”B[i];
16 end

17 return sum/d ;
18 end
19 } RefinedF M,

3.3.2 Refined LogLog algorithm

Refined LogLog algorithm is composed of counters initialized to 0. To initialize a refined
LogLog, three parameters need to be determined: 1) the number of counters: d; 2) the size
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of each counter in terms of bits: w; 3) the dividend: div. The selection of these parameters
will determine the capacity, accuracy and memory efficiency of the refined LogLog.

Insertion As shown in Algorithm 4, when an item e is inserted, we calculate the hash
value £, (e). We use h, (e)%d to locate a counter. If GDHash(h, (e)//d) is larger than the
counter value, the counter value will be updated to GDHash(h,(e)//d). Otherwise, the
counter will keep its value.

Query As defined in Algorithm 4, when answering a query, refined LogLog will return
amendy ydiv x d(didv‘%l)”m/d, where sum is the sum of all counters.

Algorithm 4 Refined LogLog Algorithm

1 struct {

2 counter C[d];

3 intdiv;

4 Function /nsert(e):

5 uniform_hash_value = h, (e);

6 index = uniform_hash_value % d; geometrical_hash_value =

GDHash(uniform_hash_value//d, div);

7 Clindex] = max{C[index], geometrical _hash_value};
8 end

9 Function Query():
10 float sum = 0;
1 for iind do
12 ‘ sum =sum + C[i];
13 end
14 return amend x div x d(%)“"”/‘i;
15 end

—

6 } RefinedLoglog;

3.3.3 Refined HyperLogLog algorithm

Refined HyperLoglog is composed of counters initialized to 0. To initialize a refined
HyperLoglLog, three parameters need to be determined: 1) the number of counters: d; 2)
the size of each counter in terms of bits: w; 3) the dividend: div. The selection of these
parameters will determine the capacity, accuracy and memory efficiency of the refined
HyperLoglLog.

Insertion As shown in Algorithm 5, when an item e is inserted, we calculate the hash
value h, (¢). We use hy, (e)%d to locate a counter. If GD Hash(hy,(e)//d) is larger than the
counter value, the counter value will be updated to GDHash(h,(e)//d). Otherwise, the
counter will keep its value.

Query As defined in Algorithm 5, when answering a query, refined HyperLogLog will
return amendy ,div x d (dl.dlf%l)d/ sum where sum is the sum of the inverses of all counters.
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Algorithm S Refined HyperLogLog Algorithm

1
2
3
4
5
6

—
N

struct {
counter C[d];
intdiv;
Function /nsert(e):
uniform_hash_value = h,(e);
index = uniform_hash_value % d; geometrical_hash_value =
GDHash(uniform_hash_value//d, div);
Clindex] = max{Clindex], geometrical _hash_value};
end
Function Query():
float sum = 0;
for iinddo
‘ sum =sum + 1/C[i];
end

return amend x div X d(%)d/”’”;

end
} RefinedHyperLogLog;

4 Experimental results

4.1 Experimental setup

Basic settings We run the experiments on a Dell Inspiron-15 5000 series Notebook PC
with Intel(R) Core(TM) i7- 4510U CPU @2.00GHz 2.60GHz, 8.00 GB memory and
Ubuntu 14.04 LTS Desktop system. All the codes are open-sourced at Github [22].

Metrics We define two metrics to evaluate our algorithm’s performances.

AAE: Average absolute error, defined as the average value of absolute error over the
dataset number, where absolute error is the absolute value of the difference between
accurate value and estimated value.

ARE: Average relative error, defined as the average value of relative error over the
dataset number, where relative error is the absolute value of the difference between
accurate value and estimated value divided by the accurate value.

Datasets

Synthetic Strings: This dataset contains randomly generated strings within length of
128. The elements in the context are the next string, and the cardinality is the distinct
string number.

Self-Collected Traces: This dataset contains traffic traces collected from a tier-1 router.
We identify flows using the standard 5-tuple. The traces approximately obey zipfian
distribution. The elements in the context are random strings, and the cardinality is the
distinct flow number.

@ Springer
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Figure 3 Experimental results of refined Flajolet-Martin algorithms on synthetic strings

— CAIDA: CAIDA dataset contains anonymous passive traffic traces from CAIDA’s
equinix-chicago monitor on high-speed Internet backbone links. The elements in the
context are the coming packets, and the cardinality is the distinct flow number.

—  Penn TreeBank: The Penn Treebank dataset [23] selected 2,499 stories from a three
year Wall Street Journal (WSJ) collection of 98,732 stories for syntactic annotation.
The elements in the context are words, and the cardinality is the distinct word number.

4.2 Experimental results

Figures 3,4, 5, 6,7, 8,9, 10, 11 12, 13 and 14 show all the experimental results. The first
figure of each line shows a summary-the average of the following 3 figures. The following
three figures show the n = 1000, n = 10000, and n = 100000.
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Figure 4 Experimental results of refined Flajolet-Martin algorithms on self-collected traces
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Figure 5 Experimental results of refined Flajolet-Martin algorithms on CAIDA

4.2.1 Refined Flajolet-Martin algorithm

The experimental results of refined Flajolet-Martin algorithm is shown in Figures 3, 4, 5
and 6.

Synthetic strings As shown in Figure 3, our experimental results show that refined
Flajolet-Martin algorithm can reduce AAE and ARE by 77.88%, 68.47%, 76.15% on syn-
thetic strings datasets with size 1K, 10K, and 0.1M, compared to the original Flajolet-Martin
algorithm.

Self-collected traces As shown in Figure 4, our experimental results show that refined
Flajolet-Martin algorithm can reduce the AAE and ARE by 57.03%, 64.18%, 42.77%
on self-collected traces datasets with size 1K, 10K, and 0.1M, compared to the original
Flajolet-Martin algorithm.
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Figure 6 Experimental results of refined Flajolet-Martin algorithms on Penn TreeBank
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Figure 7 Experimental results of refined LogLog algorithms on synthetic strings

CAIDA As shown in Figure 5, our experimental results show that refined Flajolet-Martin
algorithm can reduce the AAE and ARE by 74.39%, 85.76%, 81.94% on CAIDA datasets
with size 1K, 10K, and 0.1M, compared to the original Flajolet-Martin algorithm.

Penn Treebank As shown in Figure 6, our experimental results show that refined Flajolet-
Martin algorithm can reduce the AAE and ARE by 59.36%, 68.41%, 76.03% on Penn
Treebank datasets with size 1K, 10K, and 0.1M, compared to the original Flajolet-Martin
algorithm.

4.2.2 Refined LogLog algorithm

The experimental results of Refined LogLog algorithm are shown in Figures 7, 8, 9 and 10.

Synthetic strings As shown in Figure 7, our experimental results show that refined
LogLog algorithm can reduce the AAE and ARE by 62.35%, 65.86%, 69.34% on synthetic
strings datasets with size 1K, 10K, and 0.1M, compared to the original LogLog algorithm.

®FM © Refined FM 30000 08 1
0.8
o8 56600 06 075
b3 04 05
- 10000
o2 02 0.25
0 - 0 0 0
K 1K oM ocNvomoNy oNvowony LR
(a) Summary of ARE (b) Relative Error of (c) Relative Error of(d) Relative Error of
Experiments 1K Traces 10K Traces 0.1M Traces
8 FM = Refined FM 500 5000 5000
30000 400 4000 4000
55600 300 3000 3000
200 2000 2000
10000 100 1000 1000
(— —m L 0 0 0
1K 10K 0.1M © N S Y0 0O o T O N WO 0 QIS © o ¥ 0 90 N 3

(e) Summary of AAE(f) Absolute Error of (g) Absolute Error of(h) Absolute Error of
Experiments 1K Traces 10K Traces 0.1M Traces

Figure 8 Experimental results of refined LogLog algorithms on self-collected traces
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Figure 9 Experimental results of refined LogLog algorithms on CAIDA

Self-collected traces As shown in Figure 8, our experimental results show that refined
LoglLog algorithm can reduce the AAE and ARE by 77.11%, 46.05%, 33.56% on self-
collected traces datasets with size 1K, 10K, and 0.1M, compared to the original LogLog
algorithm.

CAIDA As shown in Figure 9, our experimental results show that refined LogLog algo-
rithm can reduce the AAE and ARE by 80.91%, 81.47%, 74.69% on CAIDA datasets with
size 1K, 10K, and 0.1M, compared to the original Loglog algorithm.

Penn Treebank As shown in Figure 10, our experimental results show that refined
Loglog algorithm can reduce the AAE and ARE by 7.43%, 44.68%, 4.48% on Penn
Treebank datasets with size 1K, 10K, and 0.1M, compared to the original LogLog algorithm.
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Figure 10 Experimental results of refined LogLog algorithms on Penn TreeBank
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Figure 11 Experimental results of refined HyperLogLog algorithms on synthetic strings

4.2.3 Refined HyperLogLog algorithm

The experimental results of Refined HyperLogLog algorithm are shown in Figure 11, 12,
13 and 14. We can tell that except a few exceptions, refined algorithms show a stable
improvement in accuracy compared the original algorithms.

Synthetic strings As shown in Figure 11, our experimental results show that refined
HyperLoglLog algorithm can reduce the AAE and ARE by 71.29%, 42.47%, 17.75% on syn-
thetic strings datasets with size 1K, 10K, and 0.1M, compared to the original HyperLogLog
algorithm.

Self-collected traces As shown in Figure 12, our experimental results show that refined
HyperLogLog algorithm can reduce the AAE and ARE by 12.76%, 8.00%, 45.93% on
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Figure 12 Experimental results of refined HyperLoglog algorithms on self-collected traces
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Figure 13 Experimental results of refined HyperLogLog algorithms on CAIDA

self-collected traces datasets with size 1K, 10K, and 0.1M, compared to the original
HyperLogLog algorithm.

CAIDA As shown in Figure 13, our experimental results show that refined HyperLogLog
algorithm can reduce the AAE and ARE by 57.88%, -7.53%, -29.18% on CAIDA datasets
with size 1K, 10K, and 0.1M, compared to the original HyperLogLog algorithm.

Penn Treebank As shown in Figure 14, our experimental results show that refined Hyper-
LogLog algorithm can reduce the AAE and ARE by 19.48%, -64.92%, -192.76% on Penn
Treebank datasets with size 1K, 10K, and 0.1M, compared to the original HyperLoglLog
algorithm. Note that refined HyperLogl.og on CAIDA and Penn Treebank are the only two
experiments showing refined algorithm has lower accuracy than original algorithm. This
illustrates that although refined algorithms are better in most cases, we cannot guarantee
them to be always better than original ones.
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Figure 14 Experimental results of refined HyperLogLog algorithms on Penn TreeBank
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5 Conclusion

Due to the high requirement of speed and memory in network applications, estimating the
cardinality has always been a challenging and important task for algorithm scientists. The
state-of-the-art either suffers from low accuracy [8] or specific requirement for datasets
[7]. The most widely used data structures for cardinality estimating are FM algorithm [9],
LogLog algorithm [5] and HyperLogLog algorithm [10]. They are widely used in the real
networks and other applications [5, 12, 14, 15, 19, 24] , and have many variants [1, 10, 35].

Motivated by FM [9], LogLog [5] and HyperLogLog [10], we observe that the key prob-
lem is (1) the common ratio—2 is too coarse-grained for the cardinality estimation, (2) the
amendment coefficient can sometimes be highly biased. In this paper, we propose to use a
much more fine-grained common ratio to replace 2, and reach a higher accuracy and sta-
bility. We also propose to set amendment coefficient dynamically, which can accommodate
various network environments.

We perform extensive experiments and the experimental results show that refined FM,
Loglog and HyperLogLog significantly reduce the fluctuation and reach a much better
accuracy.

There are extensive work to do about refined FM, Loglog and HyperLogLog algorithms,
like more detailed mathematical analysis and further experiments. We are convinced that
refined FM, LogLog and HyperLogLog will be widely used in network applications in the
near future.
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