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Abstract—Video cameras have been widely deployed at city-
scale for security surveillance. However, under poor light con-
dition and limited video resolution, it is often impossible to
determine the identity of a pedestrian by using computer vision
alone. Motivated by the fast and continuous penetration of smart-
phones, in this paper, we explore the feasibility of augmenting
video cameras to ‘see’ the identities of smartphones (e.g., MAC
addresses, cellular IDs, or even phone numbers) carried by
pedestrians. We develop IDCam – a system that integrates a video
camera with a smart antenna array, which leverages spatial-
domain sensing of smartphone’s sleep-talk (i.e., the packets
transmitted by apps while the phone’s screen is off) to match
the angles of smartphone’s packets and pedestrians in the video,
enabling passive identity linking without the cooperation of tar-
get. Experiment results show that IDCam accurately links visual
and wireless identities in a complex deployment environment with
tens of pedestrians and intensive multipath signal propagation.

Index Terms—array signal processing, computer vision, object
detection, sensor fusion

I. INTRODUCTION

On March 7th, 2013, a 5-year old boy was abducted at

a square of Nanchang, the capital city of Jiangxi province,

China. A video footage (as shown in Fig. 1) of the surveillance

camera recorded the whole process. Unfortunately, due to poor

image quality, computer vision cannot identify the suspect ex-

cept giving a coarse profile (sex, height, physique, etc.), which

provided little help in tracking down the criminal. However,

with the rapid and continuous penetration of smartphones1, it

is very likely that the suspect in Fig. 1 may carry a smartphone.

This paper asks the question: can we ‘see’ the wireless identity

(such as MAC address, cellular network ID, or even phone

number) of the suspect’s smartphone to augment security

surveillance? Even if the suspect did not carry a phone or

had the phone turned off, knowing the smartphone identities

of who witnessed the incident would be greatly helpful, as

they may provide a much more detailed profile of the suspect

as well as other critical clues.

On the opposite side, a system capable of seeing smartphone

identities can be rather privacy-intrusive. The operator of a

such augmented surveillance system – either a government

Corresponding author: Jun Huang (jun.huang@cityu.edu.hk).
1According to Newzoo’s Global Mobile Market Report, the number of

smartphone users in China has reached 782,848,000, with a penetration rate
of 55.3%.

Fig. 1. Snapshot of a video footage recording a real incident

of child abduction.

agency, a small business, or a personal camera user – could use

that system to collect and track pedestrians‘ identities without

their notice and permission. Such link of visual and wireless

network identities can be used in a variety of malicious and

selfish ways.

Aside of the good and ugly aspects of a such system,

this paper explores the technical feasibility of augmenting

video surveillance to link pedestrians with wireless identities.

Intuitively, a straightforward solution is to first measure the

angle-of-arrival (AoA) of a wireless packet, extracting its

identity2, and then matches the AoA with the directions of all

pedestrians to determine whose device is the packet sender.

This seems to be technically simple. Measuring the angle of

a visual object is trivial. High-precision AoA measurement

algorithms have been studied for decades.

While the underlying computer vision and signal processing

algorithms are readily available, a key question remains open

– how can we passively link a pedestrian with a wireless

device without asking the device to actively transmit packets?

Fortunately, smartphones ‘talk’ while sleeping (i.e., in deep

power saving mode when the screen is off) as apps intermit-

tently interact with their cloud servers to upload and pull data.

However, a key challenge in exploiting such sleep-talks arises

from the fact that, due to signal reflections in practical environ-

ments, wireless packets may arrive from multiple directions,

making it difficult to identify the line-of-sight (LoS) AoA. In

2In wireless networks, the MAC address of a sender can be obtained from
MAC header, which is typically encryption-free.
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Fig. 2. An overview of IDCam architecture.

particular, in order to precisely measure AoAs and identify the

LoS, it typically requires a large number of packets to smooth

measurements and suppress noise. While we cannot rely on

explicit cooperation from smartphone users (like what previous

wireless localization systems do), we ask – do the sleep-talks

of smartphone apps sufficiently abundant to support passive

identity linking? If not, how do we design a system to tackle

this challenge?

In this paper, we characterize smartphone’s sleep-talks in

terms of talk frequency and the burst length of each talk for

two popular apps. We then develop IDCam – a system that

fuse a video camera with an antenna array to see smartphone

identities. IDCam leverages machine learning to enable ac-

curate identity linking using only a small amount of sleep-

talk packets in the presence of intensive multipath and noise.

Experiments conducted in a real-world deployment scenario

show that IDCam accurately links visual and wireless identities

in a complex deployment environment with tens of pedestrians

and intensive multipath signal propagation.

II. SYSTEM OVERVIEW

The architecture of IDCam is shown in Fig. 2. The computer

vision module detects pedestrians appeared in the video and

then tracks their angle trajectories relative to the camera. The

antenna array sniffs sleep-talk packets transmitted by nearby

devices and extracts device identities from packet headers (i.e.,
sender MAC addresses). To determine the LoS direction of

a smartphone using only a small number of its sleep-talk

packets, IDCam applies machine learning to analyze noisy

signal AoA, Time-of-Flight (ToF), and received signal strength

indicator (RSSI). Finally, the LoS AoA trace of transmitter is

compared with pedestrians’ angle trajectories to compute a

matching score for each pair of pedestrian and transmitter,

which characterizes the likelihood of identity link.

III. TECHNICAL BACKGROUND

A. Computer Vision-based Pedestrian Tracking

IDCam employs YOLOv3 [1] trained using the MS COCO

dataset [2] for real-time object detection. To obtain angle

trajectories, IDCam first transforms the camera coordinate

system to the physical coordinate system [3], and then uses

Kalman filter [4] to track the angle of detected object relative

to the camera. To further improve accuracy, we apply spline

interpolation to handle trajectory discontinuities caused by low

video quality.

B. Signal AoA Measurement
IDCam sniffs WiFi packets transmitted by pedestrians’

smartphones and then measures their AoAs to enable identity

linking. Although IDCam targets WiFi, its method is appli-

cable to other wireless technologies, such as 4G/5G/LTE.

Specifically, to measure the AoA of received WiFi packets,

IDCam employs a uniform linear antenna array and uses a

Bartlett beamformer [5] to scan signal power coming from all

directions. Compared with other AoA measurement algorithms

such as MUSIC [6] and ESPRIT [7] widely used in wireless in-

door localization systems, Bartlett [5] is more computationally

efficient as it does not require complex matrix computations

like eigen-decomposition, thus allowing for real-time AoA

analysis for WiFi packets transmitted from the devices of a

crowd of pedestrians. Fig. 3 shows the received signal power

of one WiFi packet measured using a Bartlett beamformer.

We observe five significant power peaks corresponding to

the signals coming from five directions, including one LoS

path (i.e., LoS AoA) and four reflections. To link identities

of wireless device and pedestrians, IDCam must identify the

LoS path before performing the match between AoA and the

pedestrian’s angle trajectory.
Previous studies address this problem by measuring the

ToF of signals. For instance, SpotFi [8] measures signal ToF

based on the phase shift between two adjacent subcarriers.

Specifically, the ToF τk of the kth path can be computed

as 2πδfτk, where δf denotes the frequency interval between

subcarriers. Alternatively, based on the fact that the LoS

path signals experience the least attenuation due to free of

obstruction and reflection, one can compare the signal powers

of different paths to identify the LoS signal that has the

highest power. However, accurately measuring ToF and signal

power typically requires the target device to cooperate in



Fig. 3. An example of AoA spectrum measured in a multipath

environment.

suppressing noise by sending a large number of packets, which

is impractical in passive scenarios. To address this limitation,

IDCam applies machine learning on a small volume of sleep-

talk traffic to accurately identify the LoS AoA, as detailed in

Section V.

IV. CHARACTERIZING SMARTPHONES’ SLEEP-TALKS

Smartphones ‘talk’ while sleeping (i.e., in deep power

saving mode when the screen is off) as apps intermittently

interact with their cloud servers to upload and pull data.

IDCam exploits smartphones’ sleep-talk for passive identity

linking. In this section, we present measurement results to

characterize sleep-talk traffic of smartphones.

We record traffics of smartphones transmitted during sleep

mode using Wireshark [9], and then separate the traffics of

different apps based on destination IP addresses. We then

measure the response time interval between two bursts of

sleep-talk packets, and then count the number of packets in

each burst.

Fig. 4 shows measurement results for two popular smart-

phone apps in the categories of instant messaging and video

sharing, anonymously named as APP_1 and APP_2, respec-

tively. We observe that both apps transmit sleep-talk packets

every tens of seconds in more than 50% and 25% cases.

Each burst of sleep-talk contains a couple to tens of packets.

Although both apps transmit sleep-talk packets consistently

over time, the limited volume of traffic presents a significant

challenge for accurately measuring signal AoAs in noisy

environments.

V. DESIGN OF IDCAM

A. Identifying LoS AoA

We propose a machine learning-based method that uses a

small number of packets to identify the LoS AoA of the packet

transmitter in noisy and multipath-intensive environments. For

each received packet, we steer a Bartlett beamformer towards

all directions to measure signal powers, and then use a peak

detector to extract angles along which signal powers are higher

than the noise floor. The extracted angles and the correspond-

ing received powers constitute a multipath AoA spectrum, as

Table I: 5-fold Cross-validation of model performances

Precision Rate Recall Rate F1 Score

Fine Tree 0.888 0.892 0.890

Kernal Naive Bayes 0.783 0.722 0.751

Fine Gaussian SVM 0.887 0.871 0.879

Weighted KNN 0.903 0.904 0.903

Bagged Tree 0.931 0.910 0.921

RUSBoosted Tree 0.780 0.950 0.857

shown in Fig. 3. For each path, we further estimate the ToF

based on the phase shift between adjacent subcarriers. The

obtained AoA, ToF, and signal power are used as features for

each path. Intuitively, the LoS path should exhibit the highest

signal power, the shortest ToF, and the smallest variance in

AoA due to its resilience against reflections from moving

objects. Although the measurements of AoA, ToF, and signal

powers can be polluted by noise, we intend to leverage the

power of machine learning to identify LoS path using only a

limited number of noisy measurements.

To achieve this, we train a machine learning model as fol-

lows. First, we deploy WiFi transmitters at different locations

of the surveillance environment and record the transmitter’s

angle relative to the antenna array as the groundtruth. We

then receive signals from deployed transmitters and process

the CSI array to obtain AoA, ToF, and signal powers of each

path. Based on the groundtruth of transmitter angle, multipath

signal AoAs are labelled as LoS and NLoS before feeding a

supervised binary classifier for training. We choose six widely

used machine learning algorithms, as listed in Table. I. The

collected AoA traces are divided into training and testing

sets. A 5-fold cross-validation is then performed to evaluate

the performance of selected machine learning algorithms. We

compare these algorithms based on three metrics, including

precision rate (PR), recall rate (RR), and F1 Score.

The results are reported in Table I. We observe that Bagged

Tree [10] achieves the highest F1 score of 0.931 and a good

trade-off between PR and RR, which are 0.910 and 0.921,

respectively. Fig. 5(a) shows an example of the input and

output of Bagged tree. The multipath AoA trace is measured

at one location in our deployment site where the transmitter

is deployed at 120°. The LoS AoA trace identified by the

Bagged Tree is shown in Fig. 5(b), which accurately match

the grondtruth.

B. Identity Linking

To link the identities of a wireless transmitter to a pedestrian

in the video, we match LoS AoAs and pedestrians’ angle

trajectories to calculate a matching score for each pedestrian.

We divide the sequence of LoS AoAs into M equal-sized

time windows. Denote the number of LoS AoAs in the kth

window as mk (1 ≤ k ≤ M,k ∈ Z
+). Denote the video angle

trajectory of a pedestrian as θ, and the angle at the time

tj (1 ≤ j ≤ T, j ∈ Z
+) as φj . Then, we compute the matching

score at tj as scoretj = (1 − | θ(tj)180 − φj

180 |)3. Note that the

calculation of scoretj can also use Euclidean distance, Cosine



0 2000 4000 6000 8000
0

0.25

0.5

0.75

1
C
D
F

Response Time Interval (s)

APP_1 APP_2

(a) Response time interval.

0 5 10 15 20 25 30 35
0

0.25

0.5

0.75

1

C
D
F

Number of Packets

APP_1 APP_2

(b) Number of packets.
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Fig. 5. An example of LoS AoA identification using Bagged Tree.

Similarity or their deformation [11], [12], etc. The evaluation

of different matching score computation methods is left for

our future work.

VI. EVALUATION

In this section, we report the experiment setup and evalua-

tion results of IDCam.

A. Experiment Setup

IDCam is installed on the roof of a five-story building,

which allows the camera to monitor a wide area of 2,500

m2. The surveillance environment is a busy campus site

where typically about 50 to 80 pedestrians appear in the

video scene during working hours. IDCam consists of an off-

the-shelf video camera and a linear 8-element antenna array

composed of 8 software radios. Each software radio has two

receive chains, in which one chain is used for calibration and

synchronization, while the other is used for sniffing. During

evaluation, a target carrying a sleep-mode WiFi smartphone

walks around in the surveillance site in working hours. The

MAC address of the target device is known, which provides

the groundtruth for evaluating IDCam performance.

B. Experimental Results
To evaluate the performance of IDCam, we compare the

matching scores of top-2 candidates identified by IDCam.

We find that the true target has the highest matching score

throughout the experiments. The difference of the target’s

score and the second highest score reflects IDCam’s confidence

of identity link.
Fig. 6 and Fig. 7 show the matching results after observing

one and two bursts of sleep-talk packets of APP_1 and

APP_2, respectively. We observe that in both cases the match-

ing score of the true target (the solid red line) is significantly

higher than the second highest matching score. Observing two

bursts allows IDCam to further improve identification accuracy

by about 10%. We note that the performance of IDCam can

be further improved if the target’s smartphone is installed with
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more apps, which will lead to an increased amount of sleep-

talk traffic.

VII. RELATED WORK

Pure wireless-based human identification systems like WiFi-

ID [13], WFID [14], and Wii [15] analyze WiFi CSI to sense

human behaviors like walking style, and then apply machine

learning for human identification. However, these systems are

sensitive to intensive signal reflections and variations in dy-

namic environments, therefore suffering poor performance in

differentiating multiple pedestrians in the same environment.

Previously, the idea of fusing wireless sensing and com-

puter vision to establish an identity link has been studied in

only cooperative settings. For example, IdentityLink [16] and

RGB-W [17] fuse computer vision and WiFi packet RSSI

to associate a wireless device with people appeared in the

video. They require the target device to actively transmit a

large number of packets in order to suppress the noise in

RSSI measurements. Similar to IDCam, EyeFi [18] fuses

computer vision with AoA and uses a neural network to

improve AoA estimation accuracy. Different from EyeFi that

targets cooperative scenarios and bases on SpotFi [8] for AoA

estimation, IDCam exploits only the sleep-talk of smartphones,

uses a fast Bartlett-based algorithm for real-time AoA analysis

of pedestrians’ packets, and engineers features accordingly to

enable the application of machine learning.

VIII. CONCLUSION

This paper presents IDCam, a surveillance system that

integrates computer vision and WiFi signal sensing for linking

visual and wireless identities. Unlike conventional systems that

require target wireless devices to cooperate by actively trans-

mitting packets, IDCam exploits the sleep-talk of smartphone

apps and therefore is completely passive. Experiment results

show that IDCam achieves accurate identity linking in a noisy

multipath wireless environment where 50 to 80 pedestrians



are featured in the video scene. Our results demonstrate

the feasibility of augmented security surveillance as well as

potential privacy threats that call for further studies.
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