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Abstract—In key-value storage scenarios where storage space
is at a premium, our focus is on a class of solutions that only store
the value, which is highly space-efficient. While these solutions
have proven their worth in distributed storage, networking, and
bioinformatics, they still face two significant issues: one is that
their space cost could be further reduced; the other is their are
vulnerable to update failures, which can necessitate a complete
table reconstruction.

To address these issues, we introduce VisionEmbedder, a com-
pact key-value embedder with constant-time lookup, fast dynamic
updates, and a near-zero risk of reconstruction. VisionEmbedder
cuts down the storage requirement from 2.2L bits to just 1.6L bits
per key-value pair with an L-bit value, and it significantly reduces
the chance of update failures by a factor of n, where n is the
number of keys (for instance, 1 million or more). The compromise
with VisionEmbedder comes with a minor reduction in query
throughput on certain data sizes. The enhancements offered
by VisionEmbedder have been theoretically validated and are
effective across any dataset. Additionally, we have implemented
VisionEmbedder on both FPGA and CPU platforms, with all
codes made available as open-source.

I. INTRODUCTION

Key-Value (KV) storage, involving storing KV pairs and the

fast lookup of values for user-given keys, plays a crucial role

in computer science across various fields, including databases,

operating systems, and networking [1]–[7]. In scenarios where

high-speed storage space is limited and costly, such as CPU

caches, on-chip registers in FPGAs, SRAM in ASIC chips, and

local storages in distributed systems, space efficiency becomes

the primary concern for KV storage.

Based on differences in space efficiency, we categorize

existing works into two types: 1) Key-stored Solutions and 2)

Value-Only (VO) tables. This paper focuses on the latter. Key-

stored solutions, including cuckoo hashing, RocksDB, and

LevelDB, store either the actual key or its hash value, the latter

also known as a fingerprint. In contrast, VO tables, also known

as multi-set classifiers and filters, like Bloomier [8], Othello

[9], and Color [10], do not store the key or its fingerprint.

These tables only store or encode the value, resulting in

extremely high storage efficiency. For example, Bloomier can

use as little as 1.23L bits for each KV pair when the value

is L bits long. A VO table can significantly reduce space
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requirements, especially when the value’s length is shorter than

the key’s, often by one or more orders of magnitude. It comes

with a trade-off in handling alien keys1. This paper focuses

on VO tables, and their application scenarios include:

• Lookup tables in the networking field, like the MAC

address table with 48-bit key and 8-bit value in network

switches [11]. Each entry in the MAC address table is a

KV pair that records the network device’s MAC address

(48 bits) and its corresponding switch port (8 bits). This

table is well-suited to be implemented with a VO table.

• Index for distributed storage (often with keys larger

than 32 bits and values around 4 bits). In KV storage

databases, when the data storage demand surpasses the

capacity of a single node, the data is distributed across

multiple backend nodes. Clients need to know the node’s

ID to access the data. Besides using directory servers or

direct hash calculation for positioning, one method is to

store a very small directory table on the client side. This

table records the node ID for all data (or hot data), and

is ideal for a VO table since it only needs to locate the

storage node, requiring a short value length. The typical

work is Smash [12].

• Others. In the biological field, SeqOthello [13] has used

a VO structure for efficient mapping and querying pro-

cesses. When the length of the value is one, VO struc-

tures can function as binary classifiers. In Log-Structured

Merge-trees (LSMs), VO structures might be used to

determine which SSTable contains the data.

The performance metrics of VO tables include three aspects:

1) Space Cost. Since the VO table is primarily deployed

in a hierarchical architecture consisting of limited-space fast

storage and ample-space slow storage, such as the data/control

plane in network devices, we focus only on the space occupied

by fast storage when discussing space, aligning with existing

works [9], [10]. 2) Lookup speed. The table must provide

lookup responses with minimal delay (should answer the value

of the given key with low latency) and handle a large volume

1When queried for a key that has not been inserted or has been deleted, the
system does not indicate the key’s absence but returns a meaningless value
instead.



TABLE I: Algorithm Comparison.

Algorithm Space per
L-bit value

Lookup
Time

Update Performance

Failure
Probablity

Amortized
Time

Bloomier 1.23L (bits) O(1) O( 1
n
) O(n)

Othello&Color 2.33L, 2.2L O(1) O(1) O(1)

Ours 1.6L (bits) O(1) O( 1
n
) O(1)

of requests efficiently (high throughput). 3) Update perfor-
mance. The table should allow for quick updates to data,

including inserting, deleting, or altering KV pairs. Updates

need to be executed rapidly to keep pace with changes in the

data. If the table may require significant reconstruction during

the update process, its probability must be sufficiently low.

However, existing VO tables have not well met the practical

requirements of space efficiency, lookup speed, and update

performance simultaneously. We categorize them into two

types: static solutions that do not support incremental updates

and dynamic solutions that do. The typical work of static

solutions is the Bloomier filter [8], whereas dynamic solutions

include Othello [9] and Color [10]. These solutions, like

ours, operate within a fast-slow hierarchical architecture. We

compare them in Table I based on the three performance

aspects mentioned above. Bloomier offers the best space

efficiency, but its update time is O(n), meaning it takes time

proportional to the number of elements when adding a new

key. Othello and Color improve the update time from O(n) to

amortized O(1), which means the average time per operation

is constant, but this comes at the cost of almost doubling the

space requirement. Moreover, they suffer from a significant

drawback: a high probability of update failure, which is a

constant rather than a negligible quantity, interrupting the

update/lookup process and necessitating an O(n) time to

reconstruct the entire table.

The aim of this paper is to design a solution that excels

in space efficiency, lookup speed, and update performance. In

comparison to static solutions, we seek to enhance the update

speed to a constant time without increasing the probability of

needing to reconstruct. Against existing dynamic solutions, our

goal is to achieve higher space efficiency and a state-of-the-art

near-zero reconstruction risk.

Towards the design goal, this paper introduces a compact

data structure, which we refer to as VisionEmbedder. 1) In
terms of space cost, VisionEmbedder utilizes only 1.6L bits

for each value that is L bits in length. This is a reduction

of 0.6L from the space taken by current dynamic update

algorithms like Othello & Color, which use 2.2L bits, and is

only 0.37L more than the most space-efficient static algorithm,

the Bloomier filter. 2) Regarding lookup speed, VisionEm-

bedder performs comparably to the fastest Othello & Color,

with each having its strengths and weaknesses under various

datasets, placing them on an equal footing. 3) Most notably,
in the aspect of update failures, VisionEmbedder reduces

the theoretical update failure probability of Othello & Color

by n times. Extensive empirical testing has demonstrated that

VisionEmbedder decreases the average number of failures

from approximately one per operation, as seen with Othello

& Color, to a mere 0.001.

The working process of VisionEmbedder is essentially to

solve a set of equations: For each key, select three variables
from m variables by hashing2, and establish an equation that

the XOR (exclusive or) sum of the selected variables equals

to the value in the KV pair. For n inserted KV pairs, there

are n equations and there should be enough variables (e.g.,
m > 1.6n) so that a feasible solution can be found. Actually,

it is not challenging to solve such a set of equations statically.

The challenge is constantly incremental update: In amor-

tized constant time, find a new solution when one equation

(KV pair) changes or when a new equation (KV pair) is

added. Specifically, when inserting a new equation, we need

to modify one of its three variables to make it hold. All other

equations that include the modified variable will be affected.

To make these affected equations hold, for each one, we

need to modify one of the other two unmodified variables. A

modified variable may incur new affected equations. We repeat

this process iteratively, and each iteration is one step. If the

number of affected equations tend to decrease in iterations,

then the update can be completed constantly.

To constantly find a new solution, our key technique, namely

vision update, foresees a fast path with the least affected

equations. A basic update strategy is to modify the variable

included by the least number of equations. When the number

of variables m is much larger than n, this method can find

the new solution in a few steps. But the basic strategy is a

local decision with only one-step vision. It cannot distinguish

which is better when two variables are included by the same

number of equations. What is worse, it is possible that less

affected equations incurs more affected equations in the next

step. Therefore, we use the Depth First Search (DFS) to look

forward more steps and foresee the cost of modifying each

variable, i.e., the number of affected equations after more

steps. The more steps (depth) we look forward, we will get a

better choice while consume more time. We balance the time

cost of looking forward and modifying the variables. With

more inserted KV pairs, we dynamically increase the depth

we look forward, to achieve the best overall efficiency.

We have implemented the VisionEmbedder on FPGA. The

update scheme is calculated by the CPU, and the FPGA takes

update message and performs high-speed lookup operation.

The lookup scheme is FPGA friendly, which only needs three

parallel hash calculations and memory reads, and then the

lookup results can be obtained by XOR summing up the read

results.

Key contribution:
• We devise VisionEmbedder, which is the first VO scheme

with asmortized constant update time and O( 1n ) failure

2We use three independent hash function to map one key to three variables,
and select them.



probability. It is also space efficient, with a 1.6L-bit space

cost per KV pair with L-bit value.

• We prove our results by rigorous mathematical analysis

and large-scale experiments. VisionEmbedder reduces

update failure frequency from 1 to < 0.001, saves 50%
redundant space, and achieves comparable update and

lookup speed.

• We implement VisionEmbedder on an FPGA and achieve

279 million lookups per second for about 1 million key

value pairs. All codes are available at Github [14].

II. PRELIMINARIES AND MOTIVATION

Hierarchical Storage. VO tables are designed for a hierarchi-

cal storage, comprising two parts: (1) Slow space like DRAM,

offering large space, and (2) Fast but limited space space

such as SRAM. For instance, in network devices or FPGAs,

the data plane is associated with fast space, and the control

plane with slow space. In distributed storage, the local client

corresponds to fast space, while the remote server represents

slow space. Both parts have their own computing resources.

Unless specified otherwise, when discussing space costs, we

are specifically referring to the costs associated with the fast

space.

VO Table Overview. VO tables consist of two parts: a

compact Value Table in the fast space and a large Assistant

Table in the slow space. Lookup operations only access the

Value Table, while update operations access both the Value

Table and the Assistant Table.

Value Table. We introduce a commonly used Value Table de-

sign, integral to various other data structures such as Bloomier

filters [8], XOR filters [15], and Invertible Bloom Lookup

Tables [16]. The Value table is a structure comprising three

arrays, each containing w integers of L-bits in length. Within

this structure, the tth integer of the jth array is denoted as

Aj [t]. Each array is independently linked to a unique hash

function, denoted as hj(·), which maps an input key to one

of the indices ranging from 1 to w within its corresponding

array.

Static Construction. The table can be built for a static set

of n key-value (KV) pairs. For each pair 〈ki, vi〉, it picks

three integers via hash functions: A1[h1(ki)], A2[h2(ki)], and

A3[h3(ki)], aiming to have their XOR sum equal the value

vi. This forms a series of equations for all pairs, simplified

as A1[h1(k)] ⊕ A2[h2(k)] ⊕ A3[h3(k)] = v for each k.

To solve these equations efficiently, the Bloomier filter uses

a fast, greedy algorithm, achieving linear time complexity

(O(n)) with nearly 100% success if the table’s capacity (m) is

more than 1.23 times the number of KV pairs. This capacity

helps minimize collisions and is effective for large datasets.

Throughout this process, the complete KV pair and other in-

formation required by the algorithm are stored in the Assistant

Table. However, Bloomier does not support dynamic updates

effectively: Adding or modifying a KV pair necessitates the

addition/alteration of an equation. For a long period, there has

been no rapid method to adjust the table for such updates.

Dynamic Update. In recent advancements [9], [10] enabling

dynamic updates, the structure of the value table has been

modified from containing three arrays to just two. This mod-

ification, which simplifies the equations, enables the use of

methods similar to cuckoo hashing [17] and the ‘two choices’

[18] principle, effectively facilitating rapid updates. During

this process, the full KV pair and additional information are

also stored in the Assistant Table. However, this approach

comes with a significant trade-off in the form of a high

failure probability. When two different key-value pairs hash

to the same integer and their values differ, the equations

become unsolvable, leading to a failure. In such cases, the data

structure must switch hash functions and undergo a complete

reconstruction. According to the birthday paradox [19], the

probability of such occurrences is not infinitesimally small but

rather a constant. This flaw is inherent in systems that rely on

two-hash schemes.

Therefore, to circumvent this limitation, our choice is to

employ a value table with three arrays (or potentially more)

and to develop an algorithm that allows for dynamic updates.

This approach aims to balance the need for efficient updates

with the robustness of the data structure, minimizing the

likelihood of failure while accommodating changes in the

dataset.

Symbol Description
n Number of inserted KV pairs (Number of equations)
m Number of integers (variables) in the value table

Aj [t] The t-th integer of the j-th array in the value table
Sj [t] The set of all KV pairs hashed to Aj [t]
Cj [t] Size of the set Sj [t]

TABLE II: Key Symbols Used in This Paper.

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 1 0

• Store the Assistant Table
• Calculate how to update the value table: 

including the Update, GetDirection, and 
GetCost functions in the final version.

=
Figure 1: Overview that covers the hierarchical structure and

lookup workflow with dynamic updates, and an example of a

value table where the width is 7 and each integer is 1 bit.



III. SYSTEM OVERVIEW FOR VISIONEMBEDDER

In this section, we present the overview for VisionEmbed-

der: the workflow for lookup and dynamic updates, and the

components of the data structure. We illustrate these aspects

in Figure 1 and list key symbols in Table II.

Like other VO tables, VisionEmbedder is designed for a

hierarchical storage structure. It has two tables, a compact

Value Table in the fast space and a large Assistant Table in

the slow space.

Workflow of Lookup and Dynamic Updates. VisionEm-

bedder supports various operations, including looking up the

value of a key, inserting a new KV pair, modifying the

value of an existing key, with the latter two categorized as

dynamic updates. Similar to existing work, VisionEmbedder

prioritizes lookup performance, focusing on throughput and

latency, over the efficiency of dynamic updates. Thus, when

looking up a key’s value, only the fast space’s value table needs

to be accessed. This approach significantly enhances lookup

performance by circumventing the slower space. For dynamic

updates, the procedure starts with accessing and updating the

assistant table in the slow space, figuring out what needs to be

changed in the value table, and then updating the value table.

Value Table. The structure of the value table is as previously

described (refer to Section II), comprising three arrays of

integers. An equation is established for each KV pair:

A1[h1(ki)]⊕A2[h2(ki)]⊕A3[h3(ki)] = vi (1)

When looking up key ki, the computation A1[h1(ki)] ⊕
A2[h2(ki)] ⊕ A3[h3(ki)] is performed to obtain the result

v. If the key has already been inserted, then the lookup

result is guaranteed to be correct. Conversely, the result is

a meaningless number, leaving the user unaware of the key’s

absence. Lookup optimization can be achieved by parallelizing

hash function computations and simultaneous integer reads,

enhancing throughput and latency.

Assistant Table. In the assistant table, located in the slow

space with ample space, for each integer (denoted as Aj [t])
of the value table A, the assistant table records the number of

keys mapped to Aj [t] using a counter Cj [t] =
∑

∀ki
[hj(ki) =

t]. It also keeps track of the set of keys mapped to each integer

in a bucket

Sj [t] = {〈ki, vi〉|hj(ki) = t.}
This design ensures that the value table, located separately

from the slow space, is effectively supported by the detailed

record-keeping of the assistant table.

IV. UPDATE ALGORITHMS OF VISIONEMBEDDER

In this section, we start by proposing a simple strategy for

updates, which allows for fast addition or change of key-value

pairs. However, this method needs a larger table, resulting

in about 140% more space usage. Then, we present a more

refined update method, Vision Update. This approach is not

only fast but also more space-efficient, requiring only 30%

extra space compared to the static construction. This extra

space is a reasonable trade-off for the benefit of dynamic

updating in various scenarios. Lastly, we introduce other

operations of VisionEmbedder.

A. Simple Update Algorithm

Inserting or modifying a KV pair is referred to as a

dynamic update. Each such update for a key ki results in

the formation of a new equation, as outlined in Equation (1).

If this new equation does not happen to hold, it becomes

necessary to modify at least one of the integers from the

set SAll = {A1[h1(ki)], A2[h2(ki)], A3[h3(ki)]}. The main

challenge in this process is minimizing the impact of these

modifications on the other equations.

Our simple strategy is guided by two principles: (1) Limit

the number of modified integers to reduce the ripple effect

on other equations; (2) Quickly determine the integer to be

modified to ensure high update performance. Following that,

when an update requires changes to the equation, we choose

to modify just one integer. This integer is selected randomly to

boost the update process’s speed and efficiency. This method

is inspired by the ’randomly kick’ technique found in Cuckoo

hashing, which has rapid and effective decision-making in

modifications.

The update process for a key-value pair consists of three

steps, executed recursively: Step 1: Identifying a potential

integer to modify, Step 2: Modifying this chosen integer, and

Step 3: Updating all other keys impacted by this modification.

They are outlined in Algorithm 1.

The Update Function is designed to accept three pa-

rameters: key, value, and SFix. Its function is to update the

value of key to the new value. The parameter SFix serves as

an auxiliary tool, indicating one integer that not be modified,

thus preventing the algorithm from repeatedly modifying the

same integer.

Initially, the user provides the key and value to be modified,

with SFix starting null. We then compute the hashes to locate

the three integers linked to key, which are gathered in SAll.

If SFix is not empty, it is excluded from SAll. Following this,

we employ a decision function to choose one of the integers

from SAll for modification.

Step 1: In the simple update algorithm, the decision function,

named GetDirection, selects an integer at random, with equal

probability. This selected integer is designated as Aj [t].

Step 2: We then modify Aj [t] according to the formula

Aj [t] = value ⊕ ⊕
x∈SAll\{Aj [t]}

x. This modification ensures

that a lookup for the key will now correctly return the updated

value.

Step 3: After modifying the integer Aj [t], we use the assistant

table to identify all KV pairs associated with it by Sj [t], which

includes all pairs hashed to Aj [t]. Then, the set for further

updates is thus Sj [t]\{〈key, value〉}. Each pair in this refined

set is then updated using the same function, ensuring that Aj [t]
is not modified again, which would otherwise result in an

infinite loop. The update process is deemed complete when

no additional keys or equations require updating.



Algorithm 1: Update Procedure

1 Procedure Update(key, value, SFix):
2 SAll ← {A1[h1(key)], A2[h2(key)], A3[h3(key)]};
3 Aj [t] ← GetDirection(SAll \ SFix);
4 Aj [t] ← value⊕ ⊕

x∈SAll\{Aj [t]}
x;

5 for 〈k, v〉 ∈ Sj [t] \ {〈key, value〉} do
6 Update(k, v, {Aj [t]});

7 Function GetDirection(S):
8 return RandomSelect(S);

B. Vision Update Algorithm

The simple update algorithm is effective only when the

number of inserted KV pairs is small within a fixed value table

size. This is because it lacks sophistication in choosing which

integer to modify, leading to an ever-increasing number of

modifications and making it difficult to terminate the process.

To enable the insertion of more KV pairs and to minimize

the number of modified integers for faster updates, a more

advanced decision-making process is necessary. This process

entails assessing the impact of modifying each integer and

selecting the one with the least impact. A straightforward

approach is to use the count of equations linked to an integer,

indicated by Cj [t] in the assistant table, as a measure of

its modification cost. Then, our decision function selects the

integer with the lowest Cj [t].

However, this method is still not advanced enough. Firstly,

if two candidate integers have the same Cj [t], the method

struggles to determine the better option. Secondly, an integer

(denoted as a) with a smaller Cj [t] (where Cj [t] > 0) doesn’t

necessarily imply fewer future modifications. For instance,

integer a might be linked to only one equation (i.e., Cj [t] = 1),

but the other two integers in that equation could be associated

with many more equations. While modifying a impacts just

one equation initially, the subsequent steps could affect several

others.
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High-cost path

Depth=2

Depth=3

Depth=4

Low-cost path Depth=1
Same KV pair in 

three buckets

Figure 2: An example of finding a low-cost modification path.

Our method involves looking ahead a few steps to better

estimate the modification cost. We predict the impact of

modifications multiple steps forward, evaluate the costs of

different modification paths, and then select the most efficient

one.

Example. Before delving into the details of the algorithm,

we present a specific example in Figure 2 to facilitate readers’

understanding of the update process. In this figure, each bucket

Sj [t] in the assistant table corresponds to an integer in the

value table, and the cubes inside the bucket are KV pairs

mapped to that integer. Cubes of the same color in the figure

represent identical KV pairs. Each key corresponds to an

equation, so in our example, integers ‘a’, ‘b’, and ‘c’ are linked

to the same equation marked by the yellow cube. Integers

connected to the same equation are joined by line segments.

Dashed lines represent modification paths with higher costs,

while solid lines represent those with lower costs. If ‘a’ has

been modified, we need to choose between modifying ‘b’ and

‘c’ to satisfy the equation with the yellow cube. We calculate

the modification costs for both ‘b’ and ‘c’. When evaluating

‘c’, the function recursively assesses the costs of modifying

‘h’ and ‘i’. Thus, the cost for modifying ‘c’ involves two

integers: ‘c’ and ‘i’. Modifying ‘b’ would require changing ‘e’,

and either ‘f’ or ‘g’, resulting in three integers. Therefore, we

choose to modify ‘c’ and ‘i’, concluding the update process.

Cost Estimation. The essence of our vision update is to

accurately estimate the cost of modifying an integer, aiming

for nearly optimal modification decisions. As detailed in

Algorithm 2 (function GetCost), the total cost of modifying

an integer includes the base cost of “1” for the integer itself,

plus the number of equations impacted by this modification.

To begin, we identify equations linked to integer a that have

not yet been updated. For each of these equations, we have

a choice to modify one of two integers. We then recursively

call our estimation function on these options and choose the

one with the lower estimated cost. This chosen cost is added

to the total cost associated with modifying integer a, enabling

us to determine how to modify a to minimize overall impact.

Our cost calculation process is designed to be finite; we

limit the recursion to a maximum depth, MaxDepth, to

avoid excessive decision-making time. If the current recursion

reaches MaxDepth, we use the number of equations related to

the current integer a (indicated by Cj [t]) as the cost estimate.

This approach ensures a balance between decision accuracy

and efficiency.

Vision Update. To this end, we can devise a new decision

function based on our estimation of modification costs (as

outlined in the pseudo-code ”GetCost”). This function operates

by selecting the variable with the lowest estimated cost of

modification from two (or three) options. By integrating this

GetDirection function into the previously mentioned Update

workflow, we arrive at the complete algorithm for VisionEm-

bedder (as detailed in Algorithm 2).

Update Speed Optimization— Dynamic Depth. To optimize

overall performance, we have developed a mixed strategy that

dynamically adjusts the MaxDepth parameter in response



Algorithm 2: Our Final Algorithm

1 Function GetCost(Depth, a, key, value):
2 if Depth = MaxDepth then
3 return Cj [t];

4 TotalCost ← 0;
5 for 〈k, v〉 ∈ Sj [t] \ {〈key, value〉} do
6 SAll ← {A1[h1(k)], A2[h2(k)], A3[h3(k)]};
7 {b, c} ← SAll \ {a};
8 CostB ← GetCost(Depth+ 1, b, k, v);
9 CostC ← GetCost(Depth+ 1, c, k, v);

10 TotalCost ← TotalCost+min(CostB,CostC);

11 return TotalCost+ 1;

12 Function GetDirection(S, key, value):
13 return argminx∈S GetCost(1, x, key, value);

14 Procedure Update-SingleThread(key, value, SFix):
15 SAll ← {A1[h1(key)], A2[h2(key)], A3[h3(key)]};
16 Aj [t] ← GetDirection(SAll \ SFix, key, value);
17 Aj [t] ← value⊕ ⊕

x∈SAll\{Aj [t]}
x;

18 for 〈k, v〉 ∈ Sj [t] \ {〈key, value〉} do
19 Update-SingleThread(k, v, {Aj [t]});

20 Procedure ConcurrentBranches(key, value,SΔ):
21 SAll ← {A1[h1(key)], A2[h2(key)], A3[h3(key)]};
22 Aj [t] ← GetDirection(SAll \ SΔ, key, value);
23 ReadLock(Aj[t]);
24 SΔ ← SΔ ∪Aj[t];
25 for 〈k, v〉 ∈ Sj [t] \ {〈key, value〉} do
26 ConcurrentBranches(k, v, SΔ);

27 Procedure Update-Concurrent(key, value):
28 SAll ← {A1[h1(key)], A2[h2(key)], A3[h3(key)]};
29 WriteLock(Ak[hk(key)],k ∈ {1,2,3});
30 Update Sk[hk(key)], Ck[hk(key)](k ∈ {1, 2, 3}) in the

Assistant Table;
31 VΔ = value⊕ ⊕

x∈SAll

x;

32 WriteUnLock(SAll);
33 SΔ ← ∅;
34 ConcurrentBranches(key, value, SΔ);
35 for Aj [t] ∈ SΔ do
36 Atomic Update Aj [t] ← Aj [t]⊕ VΔ;
37 ReadUnLock(Aj[t]);

to the insertion of more KV pairs. This approach effectively

balances the trade-off between accommodating additional KV

pairs and managing the time expended in the update process.

Looking ahead more steps (i.e., a greater MaxDepth)

increases the success probability of inserting more KV pairs,

thereby enhancing VisionEmbedder’s space efficiency. Space

efficiency, defined as Total size of all values
Total size of the value table

= n
m , is a crucial

metric. Higher space efficiency means more KV pairs can be

accommodated.

However, a deeper lookahead also requires more processing

time. Therefore, we adjust the MaxDepth based on the

current level of space efficiency. Specifically:

• When space efficiency is less than 0.2, we set

MaxDepth = 1. This minimal depth allows for faster

updates when the space is less utilized.

• For space efficiency in the range of [0.2, 0.4), we in-

crease the depth to MaxDepth = 2. This intermediate

depth offers a balance between update speed and space

utilization.

• When space efficiency exceeds 0.4, we set MaxDepth =
3. This maximum depth is used to maximize space effi-

ciency, allowing for the insertion of the greatest number

of KV pairs.

By employing this strategy, we achieve a balance between

rapid updates and high space efficiency, ensuring that Vi-

sionEmbedder operates effectively under varying space con-

ditions. Here, space efficiency is not equivalent to the load

factor of ordinary hash tables. When the key and value are the

same length, a VO table with 0.5 space efficiency consumes

the same space as a ordinary hash table with 100% load factor.
Update Failure. When the update process does not complete

quickly, for example when the Update function loops more

than 50 times, this is defined as an update failure. If space

efficiency is below 0.6, we consider this failure as random and

suggest reconstructing the table with a different hash function.

If not, we report a lack of space and advise the user to remove

some entries or resize the table.
Concurrency. VisionEmbedder has a high performance design

in multithreading. The primary challenge lies in resolving

conflicts arising when multiple threads are responsible for

updating different keys. We conducted a detailed analysis of

conflict scenarios and applied locking minimally to mitigate

the impact of locks.
Initially, we reduce frequent reads from the value table

A during updates through an equivalent modification. When

inserting a KV pair and modifying Aj [t], we note that the

modification increment is fixed. At the start, changing integer

a to a′ with an increment equal to value⊕⊕
x∈SAll

x, denoted

as VΔ, ensures the new equation is valid. For other equations

like a ⊕ b ⊕ c = v, modifying b to a′ ⊕ b′ ⊕ c = v or

c to a′ ⊕ b ⊕ c′ = v works since their increments satisfy:

b ⊕ b′ = a ⊕ a′, c ⊕ c′ = a ⊕ a′. Thus, recording VΔ

initially avoids frequent reads from A. All integers requiring

modification (modification path) are added to a set SΔ, which

are all incremented by VΔ after the search concludes.
The update process is divided into two parts: 1) Adding

a new key to the Assistant Table and calculating the XOR

value increment VΔ needed for modifying integers. 2) Finding

the modification path (SΔ) and modifying it according to

VΔ. Each integer Aj [t] and its Assistant Table entries Sj [t]
and Cj [t] are protected by a dedicated Reader-Writer lock

(Shared Mutex), termed a ”unit.” In part 1, we apply a ”write

lock” to three units, exclusive to that unit and mutually

exclusive with other threads’ read and write locks, released

at the end. In part 2, a read lock (compatible with other

threads’ read locks) is applied to each unit in the modification

path. Updates to Aj [t] are made with atomic write operations

(without needing a write lock), and the read lock is then

released.
This design ensures high performance and correctness: 1)

Part 2 is the most time-consuming, but read locks allow

different threads’ part 2 to run entirely independently. Part



1’s scope, which cannot be reduced, hardly allows concurrent

operations with any operation within other threads’ parts 1 and

2. 2) Except for GetCost, the described locks provide adequate

protection. GetCost is only affected by part 1, possibly leading

to a suboptimal update direction. However, its occurrence is

low enough (O(T/n), where T is the number of threads) to be

manageable when n is significantly larger than T . For smaller

n, we implemented a search backtrack feature in the code

(not shown in the pseudocode) to avoid failures caused by

inaccurate GetCost.

C. Other Operations

Delete Operation. Since VisionEmbedder, like other VO

tables, returns a meaningless value for the alien key, the

deletion of KV pairs does not need to modify the value table

in the fast space. We only need to update the assistant table,

including subtracting 1 from the counters of the three positions

indexed by this key, and deleting this key from the table

that records the set of keys mapped to each position. After

deletion, the removed KV pair no longer occupies space or

affects subsequent updates.

Reconstruct Operation. When an update failure occurs, users

have the option to reconstruct the entire table. This involves

changing all hash functions and then reconstructing both the

assistant table and the value table. The construction of the

value table can either use the existing static construction

method of Bloomier or our dynamic update scheme to insert

KV pairs one by one.

V. THEORETICAL ANALYSIS

In this section, we present the theoretical analysis for

VisionEmbedder. Our focus is on two main achievements:

the space efficiency we can attain and our very low failure

probability. The key results we have proven are as follows:

1) High Space Efficiency. VisionEmbedder with

MaxDepth=1 can successfully perform dynamic updates,

i.e., stop in amortized constant time, when the space

usage is greater than 1.756L per L-bit value. Here, 1.756

represents m
n , indicating the space required to encode

per 1-bit value and is inverse to space efficiency ( n
m ).

2) Low Failure Rate. For n consecutive insertions, the

probability of encountering an update failure is O( 1n ).

A. High Space Efficiency

The goal of analyzing Space Efficiency is to find a threshold

of n/m ( the ratio of equations to variables), below which the

update algorithm of VisionEmbedder can successfully operate,

specifically, stopping in amortized constant time. In detail,

when updating a KV pair, VisionEmbedder selects the variable

with the lowest modification cost among three for adjustment

to meet the equation. However, this modified variable impacts

other equations. If this chain of effects leads to a progressively

decreasing number of variables needing modification, then the

count of variables to be adjusted exponentially declines, reach-

ing zero within amortized constant time, ensuring a successful

VisionEmbedder update. If not, the VisionEmbedder update is

likely to never terminate.

Consider a scenario where n pairs have been inserted into

VisionEmbedder which contains m variables/integers/buckets.

Given that each key is mapped to 3 buckets, the total number

of hashed positions is 3n. With each key having an equal

probability 1
m of being hashed to any bucket, and considering

the independence of each bucket, the number of keys hashed

to a single bucket can be represented by a random variable X .

We assume X follows a Poisson distribution with parameter

λ = 3n/m, i.e., X ∼ Pois(λ).
The update process involves recursively modifying the

bucket with the lowest modification cost to satisfy the equa-

tions. Changing a bucket’s value necessitates considering all

keys hashed to this bucket in subsequent recursions. The

number of keys hashed to the chosen bucket is crucial in this

recursion. The algorithm selects the bucket with the minimum

number of hashed keys. We denote the number of hashed keys

in the selected bucket as Xmin. The algorithm converges if and

only if the expected value E[Xmin] is less than 1.

Theorem 1. If the ratio of m/n exceeds 1.756, the update
algorithm (MaxDepth=1) is expected to converge.

Proof.

E [Xmin] =

n∑
k=1

k × P (Xmin = k) (2)

Since P (Xmin = i) = P (Xmin ≥ i) − P (Xmin ≥
i + 1), from the above equation we have E[Xmin] =∑n

k=1 P (Xmin ≥ k).

Since P (X = k) = λk

k! e
−λ as X ∼ Pois(λ), we have

P (Xmin ≥ k) = P (X ≥ k)2 = (
∞∑
i=k

λi

i!
e−λ)2

E[Xmin] =

n∑
k=1

P (Xmin ≥ k) =

n∑
k=1

( ∞∑
i=k

λi

i!
e−λ

)2

(3)

According to Equation (3), the convergence depends on the

parameter λ = 3n
m . E[Xmin] and parameter λ have positive

correlation. Therefore, there must exist a threshold λ′ such that

E[Xmin] < 1 if λ < λ′. We conduct a numerical simulation

to solve for λ′ and the result shows that λ′ ≈ 1.709. The

corresponding
(
m
n

)′
= 1.756. Thus, if the ratio of m/n

exceeds 1.756, the update algorithm is expected to converge.

B. The Probability of Update Failure

In this section, we analyze the probability of update failure,

which includes two cases. The first case is when the equation

itself has no solution. The second case is when the update

process chooses an incorrect path, creating an endless loop

and leading to failure. We prove that both scenarios happen

with a likelihood of O
(
1
n

)
, as detailed in Theorem 2 and



Theorem 3. This proves that the chance of an update failure

is also O
(
1
n

)
.

For the first case where the equation has no solution, we

calculate a basic unsolvable situation known as collision error.

Although this is a simple case, it has been demonstrated in

existing studies to have the highest probability of occurrence

compared to other unsolvable scenarios, which are considered

mathematically negligible [16], [20]. Therefore, demonstrating

that the probability of a collision error is O
(
1
n

)
can prove

that the probability of the first scenario (the equation being

unsolvable) is also O
(
1
n

)
.

A collision error refers to the situation where two different

keys are hashed to the same three variables, which means the

VisionEmbedder structure cannot find a solution. The formal

definition is as follows:

Definition 1. Collision Error. Given m representing the total
number of buckets (assuming m is divisible by 3 for simplic-
ity), a key ki is hashed to three buckets indexed as ki1, ki2, ki3.
Each kij falls within the range [(j − 1) ∗m/3, j ∗m/3 − 1]
for j = 1, 2, 3. If two different keys ka, kb hash to the same
indices kaj = kbj for j = 1, 2, 3, it results in a collision error.

Lemma 1. For two keys, the probability of an error collision
is denoted by P (E) and calculated as

P (E) =

(
m

3
×
(

1
m
3

)2
)3

=

(
3

m

)3

(4)

Theorem 2. For n consecutive insertions, the probability of
encountering a collision error is O

(
1
n

)
.

Proof. With n keys independently hashed to 3 buckets, and

referring to Equation (4), the probability of no collision is

P (no collision) = (1− P (E))
C2

n ≈
(
1−

(
3

m

)3
)n2

2

=

(
1−

(
3

m

)3
)(m

3 )
3
( 3

m )
3×n2

2

≈ e−(
3
m )

3×n2

2 = 1−O(
n2

m3
)

(5)

According to Formula 5, for n consecutive insertions, the

probability of encountering a collision error is O
(
1
n

)
.

The second case is an endless loop leading to update

failure. We follow the situation described in Theorem 1, which

states that the update procedure will eventually converge. It

is reasonable to assume that an update process requires z
modifications, where z is a constant and does not depend on

n.

Lemma 2. For one update, the probability of the endless loop
is O( 1

n2 ).

Proof. The modification to a bucket requires all keys hashed

to this bucket to be further updated. There are two candidate

buckets to select and modify, because the third one has just

been modified. An endless loop occurs if both candidate

buckets have already been modified in this update. Since

hash operations are independent, we can assume that each

modification is independent from the others. Given m buckets

and n keys, the probability of an endless loop for each

modification is P (F1) =
1
n2 . As there are z modifications in

total and they are all independent, the probability of an endless

loop, P (F2), is (1− 1
n2 )

z ≈ 1− (1− z× 1
n2 ) =

z
n2 = O( 1

n2 ),
assuming z is constant.

Theorem 3. For t consecutive updates, the probability of the
endless loop is O( t

n2 ).

Proof. Considering t consecutive update, the probability of

update failure is 1−(1− z
n2 )

t ≈ 1−(1−t× z
n2 ) =

zt
n2 . Since z

is constant, the probability of update failure for t consecutive

update is O( t
n2 ).

VI. EXPERIMENT RESULTS

In this section, we compare our algorithm with other Value-

Only solutions, including Bloomier [8], Othello [9], Ludo

[21], and Coloring Embedder [10]. Regarding space cost and

failure probability, we conducted experiments on a CPU server,

demonstrating that it can achieve 1.58L bits per L-bit value

and a failure probability of O(1/n). Additionally, we evaluated

the lookup and update performance, as well as robustness,

across various datasets. To showcase versatility across multiple

platforms, we also present a case study on FPGA platforms

to demonstrate its suitability for specialized hardware.

A. Experiment Setup

1) Methodology: We compare VisionEmbedder with prior

art from five aspects: space cost, the frequency of update

failure, update performance, look performance, and robustness

against datasets. It’s worth noting that we use the frequency of

update failures to assess the stability of these algorithms during

update operations. Furthermore, we employ both throughput

and latency as metrics to evaluate the performance of lookup

and update operations. The specific definitions of key metrics

are as follows:

• Throughput: Million Operations Per Second (Mops). We

use Throughput to evaluate the average lookup/update speed.

• Latency. We use the percentiles of latency to evaluate to

performance of lookup/update operations. The tail latency

can show the update performance when the data structures

are nearly full.

• Space Cost = the space of the value table
the number of KV pairs×the value length

. We use the

space cost incurred per bit of value encoded to evaluate

the space efficiency of each algorithm. Lower space cost

indicates an algorithm has better space efficiency.

2) Datasets: We use synthetic random datasets and three

real-world datasets for experiments. The synthetic random

datasets consist of varying numbers of KV pairs with dif-

ferent value lengths in our experiments. These datasets are

sufficiently persuasive since our algorithm does not utilize any

distribution characteristics of the key-value pairs. Randomly

creating these pairs makes sure our results are consistently



good across all dataset distributions, matching or surpassing

the outcomes of other datasets. It’s important to note that

malicious activities, such as stealing hash functions to delib-

erately create collisions, are outside the scope of this paper.

We establish some terminologies for clarity: “dataset size”

refers to the number of KV pairs and the “value length” is

L. We vary the L from 1 bit to 10 bit to study how the L
influences the performance of algorithms. We use three real-

world datasets in experiments, including:

• MACTable. This dataset is drawn from the MAC table file

in [22], which consists of 2731 distinct KV pairs. The key

is a MAC address and the value represents the type field

(static or dynamic). The value length of MACTable is 1 bit.

• MachineLearning. This dataset is a dataset for binary

classification tasks from UCI machine learning repository

[23]. Each KV pair represents an entry in the training set

and the value is the label of the entry. The dataset size is

359874 and the value length is 1 bit.

• DBLP: This dataset is drawn from DBLP [24]. We use the

“key” attribute as the key. The value represents whether a

record is from a journal or a conference. The dataset consists

of 829119 distinct KV pairs and the value length is 1.

3) Implementation: We implement VisionEmbedder in

C++. During all of the experiments, we use the well-known

MurmurHash [25] as the hash function in VisionEmbedder. We

utilized the open-source implementation of prior art and fixed

their bugs. The parameters of Othello, Ludo, and Color are

configured according to their original papers. Specifically, by

default, Bloomier, Othello, Color, Ludo, and VisionEmbedder

consume space of 1.23L*(n+100), 2.3L*n, 2.22L*n, (3.76 +

1.05L)*n bits, and 1.7L*n bits for L-bit values, respectively.

We perform our experiments on a server with an 18-core

CPU (Intel® Core™ i9-10980XE @3.00 GHz) and 128 GB

memory. We deploy our algorithm on the FPGA platform as

a case study.

(a) Varying n (b) Varying L

Figure 3: Space cost under different dataset size & value

length. The y-axis is the space of the value table
the number of KV pairs*the value length

, indicating

the storage cost incurred per bit of value encoded.

B. Space Cost Comparison

We assess the space cost by the minimum fast space

required by these five algorithms to function effectively. This

minimal space was determined by initially providing each

algorithm with ample space, then incrementally reducing this

space until the update failure frequency exceeded five times

throughout the entirety of the data insertion.
Figure 3 illustrates that our algorithm, VisionEmbedder,

requires the least space (1.58 bits) for 1-bit values. The 1.58L,

compared to the existing 2.2L, reduces redundancy towards

the optimal L by 50%. By default, we will set the space for

VisionEmbedder at 1.7L to achieve the best overall perfor-

mance. Ludo’s efficiency, at 3.76 + 1.05L bits, may be better

for L values over 6 bits, but our approach, VisionEmbedder,

remains valuable for larger L sizes for two reasons: it can

improve Ludo’s space efficiency to approximately 3.1 + 1.05L

bits by replacing its internal Othello component, and it has a

significantly lower update failure probability.

(a) Varying n (b) Varying L

Figure 4: Update failure frequency.

C. Update Failure Frequency Comparison
Existing VO solutions suffer from the update failure, which

requires changing the hash seed and reconstructing the entire

data structure, a process that is extremely time-consuming.

We first assess the frequency of update failures, and then

in § VI-D, we measure the impact of update failures on

update throughput and latency. To assess these algorithms’

update failure frequency, we inserted the entire dataset and

recorded how often each algorithm had to reconstruct itself.

This process was repeated 100,000 times to ensure reliable

results. For space occupancy, we used the aforementioned

default settings.
Figure 4 illustrates that our algorithm, VisionEmbedder, ex-

periences far fewer update failures compared to other synamic

solutions. This demonstrates that VisionEmbedder offers more

stable insertions, fewer update failures, and, consequently, bet-

ter dynamic performance. At the same time, it can be observed

that the update failure rate of VisionEmbedder approximately

decreases linearly with the increase in dataset size n, which

is consistent with our theoretical expectations. The reason

Bloomier performs well at smaller values of n is that its space

overhead includes an added constant of 100, as recommended

in the original paper, to ensure a significant success rate even

when n is small.

D. Update Performance Comparison
Figure 5 shows that VisionEmbedder achieves the best

throughput among all algorithms. Compared to Othello, Vi-



(a) Varying n (b) Varying L

Figure 5: Overall update throughput including reconstruction.

(a) Varying n (b) Varying L

Figure 6: Update throughput excluding reconstruct time

sionEmbedder (utilizing 2.3L of space) is faster at the same

space cost. Under its default configuration, VisionEmbedder

uses less space, making updates more challenging and slower,

and is therefore comparable to Othello in performance. Vi-

sionEmbedder with the default configuration still outperforms

Othello under large-scale datasets.

The aforementioned throughput includes the time spent on

reconstructions due to update failures. However, in Figure 6,

we have excluded the time for reconstructions. The results

show that the throughput of Othello, Color, and Ludo has

improved to a certain extent because they have a higher

probability of requiring reconstruction.

The distribution of update latency are shown in Figure 7.

The tail latency of Othello, Ludo, and Color is significantly

higher than that of VisionEmbedder. Users employing these

algorithms may have to endure significant latency inflation,

with a high likelihood of encountering such issues. On the

other hand, VisionEmbedder exhibits a relatively lower prob-

ability of significant tail latency.

E. Lookup Performance Comparison

Figure 8 show that the lookup throughputs of VisionEm-

bedder and Othello are comparable, and both are faster than

Ludo, Color, and Bloomier.

Figure 8(a) shows the performance of various algorithms

under different values of n when L=1. The results indicate that

at smaller values of n, VisionEmbedder outperforms Othello

due to its smaller space allowing for better cache utilization.

As n increases, Othello gains an advantage because it requires

only two memory accesses, compared to our three. These

factors affect throughput, making VisionEmbedder and Othello

comparable. From an algorithm design perspective, Bloomier

Figure 7: The distribution curve of update latency with n =
64k(216), L = 1. The figure illustrates the probability of

update latency exceeding a certain time (on the x-axis).

(a) Varying n (b) Varying L

Figure 8: Lookup throughput.

and Vision should achieve similar lookup speeds, as Vision is

an enhancement of Bloomier for dynamic updates. However,

due to poor implementation of existing Bloomier, the actual

throughput is not high.

Figure 8(b) shows that as L increases with n fixed at

1M, the lookup performance of Vision, Bloomier, and Ludo

remains essentially unchanged, while Othello and Color show

a significant decrease in throughput. This is because their time

consumption is directly proportional to L.

F. Robustness

Robustness against datasets. We perform experiments across

three real-world datasets and three corresponding synthetic

datasets of the same scale. These test datasets are derived

from existing work, with their queries sampled from the

key set according to a Zipf distribution with α = 1.0,

since the datasets did not include queries. The queries in the

synthetic datasets are uniformly distributed. Figure 9 shows

that whether the dataset is synthetic or not does not affect

VisionEmbedder’s space cost and update performance. When

query keys are not uniformly random but skewed, the presence

of cache leads to a slight improvement in lookup throughput.

Stability. We demonstrate that the performance of Vi-

sionEmbedder remains stable under the influence of random-

ness arising from varying hash seeds:

• Speed. We conducted update and lookup operations on

VisionEmbedder using various hash seeds. The results,

as depicted in Figure 10 and Figure 11, indicate that

VisionEmbedder maintains stable performance across dif-



(a) Space cost. (b) Updata failure frequency. (c) Update throughput. (d) Lookup throughput.

Figure 9: Robustness against datasets. The SynX refers to the synthetic dataset of the same scale as dataset X.

ferent hash seeds, even with changing dataset sizes and

value lengths.

• Space Efficiency. We alter hash seeds to test the space

consumption of VisionEmbedder, employing a methodol-

ogy similar to that of Figure 3. The experiment results,

as shown in Figure 12, indicate that the hash seed has

nearly no impact on space efficiency.

(a) L=1 (b) L=8

Figure 10: Lookup throughput with different hash seeds.

(a) L=1 (b) L=8

Figure 11: Update throughput with different hash seeds.

(a) 1-bit VL (b) 8-bit VL

Figure 12: Space cost with different hash seeds. The y-axis

is the space of the value table
the number of KV pairs*the value length

, indicating the storage cost

incurred per bit of value encoded.

G. Deletion Performance
Similar to Figure 5, we test the deletion performance of

VisionEmbedder at n=256k, 512k, 1M, 2M, 4M, achieving

throughputs of 6.60, 5.62, 5.35, 5.10, 4.92 MOPS, respectively.

At n=256k, with space usage set to 1.7L, 1.9L, 2.1L, and 2.3L,

the throughputs are 6.60, 6.61, 6.53, and 6.24, respectively.

Overall, deletion throughput is lower than that for lookups but

higher than for updates, mainly depending on the access speed

of slow memory.

H. Multi-threading
We assess the performance of VisionEmbedder’s multi-

threaded concurrency by varying the data scale under 1 to

16 threads, evaluating the throughput for updates and lookups

separately. The results (Figure 13) demonstrate that both up-

date and lookup operations in VisionEmbedder are well-suited

for acceleration using multithreading. At a data scale of 1M, 2,

4, 8, and 16 threads achieved respective speedups of 1.96, 3.84,

7.37, and 8.61 times for update acceleration, and 1.91, 3.65,

6.41, and 7.61 times for lookup acceleration. We observed that

the multithreaded version’s update failures and space cost did

not show noticeable changes compared to the single-threaded

version, with no differences found in relevant tests, hence the

corresponding experiment figures are not shown. Note that

the update performance of VisionEmbedder under 1 thread is

worse than the result in Figure 5 due to the overhead caused

by multithreading.

(a) Lookup. (b) Update.

Figure 13: Update and lookup throughput with different num-

ber of threads.

I. A Case Study: FPGA Implementation

We implement the VisionEmbedder algorithm on an FPGA

platform as a case study, to demonstrate that VisionEmbedder

can indeed be implemented in hierarchical structures beyond

CPU servers. The FPGA integrated with the platform is
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Figure 14: FPGA Implementation Architecture.

XCVU13P-L2FLGA2577 with 1728000 CLB LUTS, 3456000

CLB Register, and 2688 Block RAM.

1) Architecture Design (Figure 14): The scheme mainly

consists of 2 hardware modules: hash module and VisionEm-

bedder module. The lookup procedure first processes the

input key with CRC-32 in the hash module. VisionEmbedder

module then locates 3 positions in RAM, combines them

using exclusive OR operation, and outputs the value stored

corresponding to the key. The insert procedure consists of two

phases. In phase I, the control plane (slow space in CPU)

conducts the insert algorithm and generates several update

messages (location, value) to indicate the modification in

fast space (FPGA implementation). In phase II, fast space

updates RAM accordingly.

TABLE III: FPGA Implementation Results.

Module CLB
LUTS

CLB
Register

Block
RAM

Frequency
(MHz)

Hash 76 66 0 279.64

VisionEmbedder 505 631 385 279.64

Total 581 697 385 279.64

Usage 0.03% 0.02% 14.32%

2) Evaluation Result: Table III shows the evaluation result

of FPGA-based VisionEmbedder. According to the synthesis

report, when the depth of RAM is 2E19, i.e., it can store about

0.95 million KV pairs with 8-bit value, the clock frequency

of our implementation in FPGA is 279.64 MHz, meaning the

throughput of lookup can be 279.64 Mops. Meanwhile, the

logic usage is 0.03% and the space usage is 14.32%.

VII. RELATED WORK

We classify existing works into two categories: 1) Key-

stored Solutions, and 2) Value-Only (VO) tables. Our focus

in this paper is on the latter, which we further divide into

static solutions that do not support incremental updates and

dynamic solutions that do.

Static VO solutions include Bloomier filter [8] and Perfect

Hashing methods [26]–[30]. Among these, Bloomier filters are

noted for their high memory efficiency, but they suffer from a

long update time of O(n). Our value table bears resemblance

to Bloomier filter’s Table1, yet we do not employ a mask. The

similarity stops there. Beyond this similarity, the innovative

aspect of our work lies in the method of updating the table.

Like Bloomier filters, most perfect hashing methods do not

support constant time updates. Although recent developments

in perfect hashing, such as the MapEmbed [31], allow for

dynamic updates, they represent a special case of perfect

hashing that stores keys.

Dynamic VO solutions include Othello [9], Ludo [21] and

Color [10]. They can update in amortized constant time.

Different from Bloomier, their approach is to select only two

variables per key to establish equations. This approach makes

constant time update possible, but introduces a high probability

of update failure: With constant probability, the equations have

no feasible solution. In this case, when inserting a specific KV

pair, the algorithm should change the hash function and rebuild

the whole table. We call this update failure. The update failure

causes some insert operations to experience a long pause, and

pause the lookup. The rebuilt is unacceptable for real-time

applications. Our work, as a dynamic VO solution, can operate

independently as well as become a component of other data

structures such as ChainedFilter [32].

Key-stored Solutions are not the focus of our study, as they

are less space efficient in scenarios where keys are long and

values are short. Compared to VO tables, their main advantage

lies in the ability to detect outliers, meaning they can return a

”non-existent” response when queried for keys that have not

been inserted. In contrast, VO tables respond to queries for

such outlier keys with a random answer. Typical key-stored

solutions include RocksDB [33], [34], Redis [35], Memcached

[36], Twemcache [37], and more [38]–[49].

VIII. CONCLUSION

This paper presents VisionEmbedder, the first value-only

key-value lookup solution with amortized constant update

time and O( 1n ) failure probability. Compared with existing

solutions, it reduces the update failure by n times, saves 50%
redundant memory from 2.2L bits to 1.6L bits, and achieves

comparable update/lookup speed. We prove our results by

rigorous mathematical analysis and extensive experiments. We

also implement VisionEmbedder in FPGA.
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