VisionEmbedder: Bit-Level-Compact Key-Value Storage with Constant Lookup, Rapid Updates, and Rare Failure

Yuhan Wu*, Feiyu Wang*, Yifan Zhu*, Zhuochen Fan*, Zhiting Xiong†, Tong Yang‡, and Bin Cui*

*School of Computer Science, Peking University, Beijing, China, †Peng Cheng Laboratory, Shenzhen, China, ‡College of Computer, National University of Defense Technology, Changsha, China

Abstract—In key-value storage scenarios where storage space is at a premium, our focus is on a class of solutions that only store the value, which is highly space-efficient. While these solutions have proven their worth in distributed storage, networking, and bioinformatics, they still face two significant issues: one is that their space cost could be further reduced; the other is that their are vulnerable to update failures, which can necessitate a complete table reconstruction.

To address these issues, we introduce VisionEmbedder, a compact key-value embedding with constant-time lookup, fast dynamic updates, and a near-zero risk of reconstruction. VisionEmbedder cuts down the storage requirement from 2.2L bits to just 1.6L bits per key-value pair with an L-bit value, and it significantly reduces the chance of update failures by a factor of n, where n is the number of keys (for instance, 1 million or more). The compromise with VisionEmbedder comes with a minor reduction in query throughput on certain data sizes. The enhancements offered by VisionEmbedder have been theoretically validated and are effective across any dataset. Additionally, we have implemented VisionEmbedder on both FPGA and CPU platforms, with all codes made available as open-source.

I. INTRODUCTION

Key-Value (KV) storage, involving storing KV pairs and the fast lookup of values for user-given keys, plays a crucial role in computer science across various fields, including databases, operating systems, and networking [1]–[7]. In scenarios where high-speed storage space is limited and costly, such as CPU caches, on-chip registers in FPGAs, SRAM in ASIC chips, and local storages in distributed systems, space efficiency becomes the primary concern for KV storage.

Based on differences in space efficiency, we categorize existing works into two types: 1) Key-stored Solutions and 2) Value-Only (VO) tables. This paper focuses on the latter. Key-stored solutions, including cuckoo hashing, RocksDB, and LevelDB, store either the actual key or its hash value, the latter also known as a fingerprint. In contrast, VO tables, also known as multi-set classifiers and filters, like Bloomier [8], Othello [9], and Color [10], do not store the key or its fingerprint. These tables only store or encode the value, resulting in extremely high storage efficiency. For example, Bloomier can use as little as \(1.23L\) bits for each KV pair when the value is \(L\) bits long. A VO table can significantly reduce space requirements, especially when the value’s length is shorter than the key’s, often by one or more orders of magnitude. It comes with a trade-off in handling alien keys\(^1\). This paper focuses on VO tables, and their application scenarios include:

- **Lookup tables** in the networking field, like the MAC address table with 48-bit key and 8-bit value in network switches [11]. Each entry in the MAC address table is a KV pair that records the network device’s MAC address (48 bits) and its corresponding switch port (8 bits). This table is well-suited to be implemented with a VO table.
- **Index for distributed storage** (often with keys larger than 32 bits and values around 4 bits). In KV storage databases, when the data storage demand surpasses the capacity of a single node, the data is distributed across multiple backend nodes. Clients need to know the node’s ID to access the data. Besides using directory servers or direct hash calculation for positioning, one method is to store a very small directory table on the client side. This table records the node ID for all data (or hot data), and is ideal for a VO table since it only needs to locate the storage node, requiring a short value length. The typical work is Smash [12].
- **Others**. In the biological field, SeqOthello [13] has used a VO structure for efficient mapping and querying processes. When the length of the value is one, VO structures can function as binary classifiers. In Log-Structured Merge-trees (LSMs), VO structures might be used to determine which SSTable contains the data.

The performance metrics of VO tables include three aspects:

1) **Space Cost.** Since the VO table is primarily deployed in a hierarchical architecture consisting of limited-space fast storage and ample-space slow storage, such as the data/control plane in network devices, we focus only on the space occupied by fast storage when discussing space, aligning with existing works [9], [10].

2) **Lookup speed.** The table must provide lookup responses with minimal delay (should answer the value of the given key with low latency) and handle a large volume

\(^1\)When queried for a key that has not been inserted or has been deleted, the system does not indicate the key’s absence but returns a meaningless value instead.
of requests efficiently (high throughput). 3) **Update performance.** The table should allow for quick updates to data, including inserting, deleting, or altering KV pairs. Updates need to be executed rapidly to keep pace with changes in the data. If the table may require significant reconstruction during the update process, its probability must be sufficiently low.

However, existing VO tables have not well met the practical requirements of space efficiency, lookup speed, and update performance simultaneously. We categorize them into two types: static solutions that do not support incremental updates and dynamic solutions that do. The typical work of static solutions is the Bloomier filter [8], whereas dynamic solutions include Othello [9] and Color [10]. These solutions, like ours, operate within a fast-slow hierarchical architecture. We compare them in Table I based on the three performance aspects mentioned above. Bloomier offers the best space efficiency, but its update time is \(O(n) \), meaning it takes time proportional to the number of elements when adding a new key. Othello and Color improve the update time from \(O(n) \) to amortized \(O(1) \), which means the average time per operation is constant, but this comes at the cost of almost doubling the space requirement. Moreover, they suffer from a significant drawback: a high probability of update failure, which is a constant rather than a negligible quantity, interrupting the update/lookup process and necessitating an \(O(n) \) time to reconstruct the entire table.

The aim of this paper is to design a solution that excels in space efficiency, lookup speed, and update performance. In comparison to static solutions, we seek to enhance the update speed to a constant time without increasing the probability of needing to reconstruct. Against existing dynamic solutions, our goal is to achieve higher space efficiency and a state-of-the-art near-zero reconstruction risk.

Towards the design goal, this paper introduces a compact data structure, which we refer to as VisionEmbedder. 1) **In terms of space cost,** VisionEmbedder utilizes only 1.6\(L \) bits for each value that is \(L \) bits in length. This is a reduction of 0.6\(L \) from the space taken by current dynamic update algorithms like Othello & Color, which use 2.2\(L \) bits, and is only 0.37\(L \) more than the most space-efficient static algorithm, the Bloomier filter. 2) **Regarding lookup speed,** VisionEmbedder performs comparably to the fastest Othello & Color, with each having its strengths and weaknesses under various datasets, placing them on an equal footing. 3) **Most notably, in the aspect of update failures,** VisionEmbedder reduces the theoretical update failure probability of Othello & Color by \(n \) times. Extensive empirical testing has demonstrated that VisionEmbedder decreases the average number of failures from approximately one per operation, as seen with Othello & Color, to a mere 0.001.

The working process of VisionEmbedder is essentially to solve a set of equations: For each key, select three variables from \(m \) variables by hashing\(^2\), and establish an equation that the XOR (exclusive or) sum of the selected variables equals to the value in the KV pair. For \(n \) inserted KV pairs, there are \(n \) equations and there should be enough variables (e.g., \(m > 1.6n \)) so that a feasible solution can be found. Actually, it is not challenging to solve such a set of equations statically.

The challenge is constantly incremental update: In amortized constant time, find a new solution when one equation (KV pair) changes or when a new equation (KV pair) is added. Specifically, when inserting a new equation, we need to modify one of its three variables to make it hold. All other equations that include the modified variable will be affected. To make these affected equations hold, for each one, we need to modify one of the other two unmodified variables. A modified variable may incur new affected equations. We repeat this process iteratively, and each iteration is one step. If the number of affected equations tend to decrease in iterations, then the update can be completed constantly.

To constantly find a new solution, our key technique, namely vision update, foresees a fast path with the least affected equations. A basic update strategy is to modify the variable included by the least number of equations. When the number of variables \(m \) is much larger than \(n \), this method can find the new solution in a few steps. But the basic strategy is a local decision with only one-step vision. It cannot distinguish which is better when two variables are included by the same number of equations. What is worse, it is possible that less affected equations incurs more affected equations in the next step. Therefore, we use the Depth First Search (DFS) to look forward more steps and foresee the cost of modifying each variable, i.e., the number of affected equations after more steps. The more steps (depth) we look forward, we will get a better choice while consume more time. We balance the time cost of looking forward and modifying the variables. With more inserted KV pairs, we dynamically increase the depth we look forward, to achieve the best overall efficiency.

We have implemented the VisionEmbedder on FPGA. The update scheme is calculated by the CPU, and the FPGA takes update message and performs high-speed lookup operation. The lookup scheme is FPGA friendly, which only needs three parallel hash calculations and memory reads, and then the lookup results can be obtained by XOR summing up the read results.

Key contribution:
- We devise VisionEmbedder, which is the first VO scheme with amortized constant update time and \(O(\frac{1}{n}) \) failure

\(^2\)We use three independent hash function to map one key to three variables, and select them.

TABLE I: Algorithm Comparison.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Space per L-bit value</th>
<th>Lookup Time</th>
<th>Update Performance</th>
<th>Amortized Time</th>
<th>Failure Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloomier</td>
<td>1.23L (bits)</td>
<td>(O(1))</td>
<td>(O(\frac{1}{n}))</td>
<td>(O(n))</td>
<td></td>
</tr>
<tr>
<td>Othello&Color</td>
<td>2.33L, 2.2L</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>1.6L (bits)</td>
<td>(O(1))</td>
<td>(O(\frac{1}{n}))</td>
<td>(O(1))</td>
<td></td>
</tr>
</tbody>
</table>
probability. It is also space efficient, with a 1.6L-bit space cost per KV pair with L-bit value.

- We prove our results by rigorous mathematical analysis and large-scale experiments. VisionEmbedder reduces update failure frequency from 1 to < 0.001, saves 50% redundant space, and achieves comparable update and lookup speed.
- We implement VisionEmbedder on an FPGA and achieve 279 million lookups per second for about 1 million key value pairs. All codes are available at Github [14].

II. PRELIMINARIES AND MOTIVATION

Hierarchical Storage. VO tables are designed for a hierarchical storage, comprising two parts: (1) Slow space like DRAM, offering large space, and (2) Fast but limited space space such as SRAM. For instance, in network devices or FPGAs, the data plane is associated with fast space, and the control plane with slow space. In distributed storage, the local client corresponds to fast space, while the remote server represents slow space. Both parts have their own computing resources. Unless specified otherwise, when discussing space costs, we are specifically referring to the costs associated with the fast space.

VO Table Overview. VO tables consist of two parts: a compact Value Table in the fast space and a large Assistant Table in the slow space. Lookup operations only access the Value Table, while update operations access both the Value Table and the Assistant Table.

Value Table. We introduce a commonly used Value Table design, integral to various other data structures such as Bloomier filters [8], XOR filters [15], and Invertible Bloom Lookup Tables [16]. The Value table is a structure comprising three arrays, each containing w integers of L-bits in length. Within this structure, the t-th integer of the j-th array is denoted as $A_j[t]$. Each array is independently linked to a unique hash function, denoted as $h_j(\cdot)$, which maps an input key to one of the indices ranging from 1 to w within its corresponding array.

Static Construction. The table can be built for a static set of n key-value (KV) pairs. For each pair (k_i, v_i), it picks three integers via hash functions: $A_1[h_1(k_i)]$, $A_2[h_2(k_i)]$, and $A_3[h_3(k_i)]$, aiming to have their XOR sum equal the value v_i. This forms a series of equations for all pairs, simplified as $A_1[h_1(k)] \oplus A_2[h_2(k)] \oplus A_3[h_3(k)] = v$ for each k. To solve these equations efficiently, the Bloomier filter uses a fast, greedy algorithm, achieving linear time complexity ($O(n)$) with nearly 100% success if the table’s capacity (m) is more than 1.23 times the number of KV pairs. This capacity helps minimize collisions and is effective for large datasets. Throughout this process, the complete KV pair and other information required by the algorithm are stored in the Assistant Table. However, Bloomier does not support dynamic updates effectively: Adding or modifying a KV pair necessitates the addition/alteration of an equation. For a long period, there has been no rapid method to adjust the table for such updates.

Dynamic Update. In recent advancements [9], [10] enabling dynamic updates, the structure of the value table has been modified from containing three arrays to just two. This modification, which simplifies the equations, enables the use of methods similar to cuckoo hashing [17] and the ‘two choices’ [18] principle, effectively facilitating rapid updates. During this process, the full KV pair and additional information are also stored in the Assistant Table. However, this approach comes with a significant trade-off in the form of a high failure probability. When two different key-value pairs hash to the same integer and their values differ, the equations become unsolvable, leading to a failure. In such cases, the data structure must switch hash functions and undergo a complete reconstruction. According to the birthday paradox [19], the probability of such occurrences is not infinitesimally small but rather a constant. This flaw is inherent in systems that rely on two-hash schemes.

Therefore, to circumvent this limitation, our choice is to employ a value table with three arrays (or potentially more) and to develop an algorithm that allows for dynamic updates. This approach aims to balance the need for efficient updates with the robustness of the data structure, minimizing the likelihood of failure while accommodating changes in the dataset.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of inserted KV pairs (Number of equations)</td>
</tr>
<tr>
<td>m</td>
<td>Number of integers (variables) in the value table</td>
</tr>
<tr>
<td>$A_j[t]$</td>
<td>The t-th integer of the j-th array in the value table</td>
</tr>
<tr>
<td>$S_j[t]$</td>
<td>The set of all KV pairs hashed to $A_j[t]$</td>
</tr>
<tr>
<td>$C_j[t]$</td>
<td>Size of the set $S_j[t]$</td>
</tr>
</tbody>
</table>

TABLE II: Key Symbols Used in This Paper.

![Figure 1: Overview that covers the hierarchical structure and lookup workflow with dynamic updates, and an example of a value table where the width is 7 and each integer is 1 bit.](image)
III. SYSTEM OVERVIEW FOR VISIONEMBEDDER

In this section, we present the overview for VisionEmbedder: the workflow for lookup and dynamic updates, and the components of the data structure. We illustrate these aspects in Figure I and list key symbols in Table II.

Like other VO tables, VisionEmbedder is designed for a hierarchical storage structure. It has two tables, a compact Value Table in the fast space and a large Assistant Table in the slow space.

Workflow of Lookup and Dynamic Updates. VisionEmbedder supports various operations, including looking up the value of a key, inserting a new KV pair, modifying the value of an existing key, with the latter two categorized as dynamic updates. Similar to existing work, VisionEmbedder prioritizes lookup performance, focusing on throughput and latency, over the efficiency of dynamic updates. Thus, when looking up a key’s value, only the fast space’s value table needs to be accessed. This approach significantly enhances lookup performance by circumventing the slower space. For dynamic updates, the procedure starts with accessing and updating the assistant table in the slow space, figuring out what needs to be changed in the value table, and then updating the value table.

Value Table. The structure of the value table is as previously described (refer to Section II), comprising three arrays of integers. An equation is established for each KV pair:

\[A_1[h_1(k_i)] \oplus A_2[h_2(k_i)] \oplus A_3[h_3(k_i)] = v_i \tag{1} \]

When looking up key \(k_i \), the computation \(A_1[h_1(k_i)] \oplus A_2[h_2(k_i)] \oplus A_3[h_3(k_i)] \) is performed to obtain the result \(v \). If the key has already been inserted, then the lookup result is guaranteed to be correct. Conversely, the result is a meaningless number, leaving the user unaware of the key’s absence. Lookup optimization can be achieved by parallelizing hash function computations and simultaneous integer reads, enhancing throughput and latency.

Assistant Table. In the assistant table, located in the slow space with ample space, for each integer (denoted as \(A_j[t] \)) of the value table \(A \), the assistant table records the number of keys mapped to \(A_j[t] \) using a counter \(C_j[t] = \sum h_j(k_i) = t \). It also keeps track of the set of keys mapped to each integer in a bucket

\[S_j[t] = \{ (k_i, v_i) | h_j(k_i) = t \}. \]

This design ensures that the value table, located separately from the slow space, is effectively supported by the detailed record-keeping of the assistant table.

IV. UPDATE ALGORITHMS OF VISIONEMBEDDER

In this section, we start by proposing a simple strategy for updates, which allows for fast addition or change of key-value pairs. However, this method needs a larger table, resulting in about 140% more space usage. Then, we present a more refined update method, Vision Update. This approach is not only fast but also more space-efficient, requiring only 30% extra space compared to the static construction. This extra space is a reasonable trade-off for the benefit of dynamic updating in various scenarios. Lastly, we introduce other operations of VisionEmbedder.

A. Simple Update Algorithm

Inserting or modifying a KV pair is referred to as a dynamic update. Each such update for a key \(k_i \) results in the formation of a new equation, as outlined in Equation (1). If this new equation does not happen to hold, it becomes necessary to modify at least one of the integers from the set \(S_{All} = \{ A_1[h_1(k_i)], A_2[h_2(k_i)], A_3[h_3(k_i)] \} \). The main challenge in this process is minimizing the impact of these modifications on the other equations.

Our simple strategy is guided by two principles: (1) Limit the number of modified integers to reduce the ripple effect on other equations; (2) Quickly determine the integer to be modified to ensure high update performance. Following that, when an update requires changes to the equation, we choose to modify just one integer. This integer is selected randomly to boost the update process’s speed and efficiency. This method is inspired by the ‘randomly kick’ technique found in Cuckoo hashing, which has rapid and effective decision-making in modifications.

The update process for a key-value pair consists of three steps, executed recursively: **Step 1:** Identifying a potential integer to modify, **Step 2:** Modifying this chosen integer, and **Step 3:** Updating all other keys impacted by this modification. They are outlined in Algorithm 1.

The Update Function is designed to accept three parameters: key, value, and \(S_{Fix} \). Its function is to update the value of key to the new value. The parameter \(S_{Fix} \) serves as an auxiliary tool, indicating one integer that is not modified, thus preventing the algorithm from repeatedly modifying the same integer.

Initially, the user provides the key and value to be modified, with \(S_{Fix} \) starting null. We then compute the hashes to locate the three integers linked to key, which are gathered in \(S_{All} \). If \(S_{Fix} \) is not empty, it is excluded from \(S_{All} \). Following this, we employ a decision function to choose one of the integers from \(S_{All} \) for modification.

Step 1: In the simple update algorithm, the decision function, named GetDirection, selects an integer at random, with equal probability. This selected integer is designated as \(A_j[t] \).

Step 2: We then modify \(A_j[t] \) according to the formula

\[A_j[t] = value \oplus \bigoplus_{x \in S_{All} \backslash \{A_j[t]\}} x \]

This modification ensures that a lookup for the key will now correctly return the updated value.

Step 3: After modifying the integer \(A_j[t] \), we use the assistant table to identify all KV pairs associated with it by \(S_j[t] \), which includes all pairs hashed to \(A_j[t] \). Then, the set for further updates is thus \(S_j[t] \backslash \{(key, value)\} \). Each pair in this refined set is then updated using the same function, ensuring that \(A_j[t] \) is not modified again, which would otherwise result in an infinite loop. The update process is deemed complete when no additional keys or equations require updating.
Our method involves looking ahead a few steps to better estimate the modification cost. We predict the impact of modifications multiple steps forward, evaluate the costs of different modification paths, and then select the most efficient one.

Example. Before delving into the details of the algorithm, we present a specific example in Figure 2 to facilitate readers' understanding of the update process. In this figure, each bucket $S_i(t)$ in the assistant table corresponds to an integer in the value table, and the cubes inside the bucket are KV pairs mapped to that integer. Cubes of the same color in the figure represent identical KV pairs. Each key corresponds to an equation, so in our example, integers ‘a’, ‘b’, and ‘c’ are linked to the same equation marked by the yellow cube. Integers connected to the same equation are joined by line segments. Dashed lines represent modification paths with higher costs, while solid lines represent those with lower costs. If ‘a’ has been modified, we need to choose between modifying ‘b’ and ‘c’ to satisfy the equation with the yellow cube. We calculate the modification costs for both ‘b’ and ‘c’. When evaluating ‘c’, the function recursively assesses the costs of modifying ‘b’ and ‘i’. Thus, the cost for modifying ‘c’ involves two integers: ‘c’ and ‘i’. Modifying ‘b’ would require changing ‘e’, and either ‘f’ or ‘g’, resulting in three integers. Therefore, we choose to modify ‘c’ and ‘i’, concluding the update process.

Cost Estimation. The essence of our vision update is to accurately estimate the cost of modifying an integer, aiming for nearly optimal modification decisions. As detailed in Algorithm 2 (function GetCost), the total cost of modifying an integer includes the base cost of “1” for the integer itself, plus the number of equations impacted by this modification. To begin, we identify equations linked to integer a that have not yet been updated. For each of these equations, we have a choice to modify one of two integers. We then recursively call our estimation function on these options and choose the one with the lower estimated cost. This chosen cost is added to the total cost associated with modifying integer a, enabling us to determine how to modify a to minimize overall impact.

Our cost calculation process is designed to be finite; we limit the recursion to a maximum depth, $MaxDepth$, to avoid excessive decision-making time. If the current recursion reaches $MaxDepth$, we use the number of equations related to the current integer a (indicated by $C_j[t]$) as the cost estimate. This approach ensures a balance between decision accuracy and efficiency.

Vision Update. To this end, we can devise a new decision function based on our estimation of modification costs (as outlined in the pseudo-code “GetCost”). This function operates by selecting the variable with the lowest estimated cost of modification from two (or three) options. By integrating this GetDirection function into the previously mentioned Update workflow, we arrive at the complete algorithm for VisionEmbedder (as detailed in Algorithm 2).

Update Speed Optimization—Dynamic Depth. To optimize overall performance, we have developed a mixed strategy that dynamically adjusts the $MaxDepth$ parameter in response to the overall performance.
to the insertion of more KV pairs. This approach effectively balances the trade-off between accommodating additional KV pairs and managing the time expended in the update process.

Looking ahead more steps (i.e., a greater MaxDepth) increases the success probability of inserting more KV pairs, thereby enhancing VisionEmbedder’s space efficiency. Space efficiency, defined as \(\frac{\text{Total size of all values}}{\text{size of the value table}} \), is a crucial metric. Higher space efficiency means more KV pairs can be accommodated.

However, a deeper lookahead also requires more processing time. Therefore, we adjust the MaxDepth based on the current level of space efficiency. Specifically:

- When space efficiency is less than 0.2, we set MaxDepth = 1. This minimal depth allows for faster updates when the space is less utilized.
- For space efficiency in the range of [0.2, 0.4], we increase the depth to MaxDepth = 2. This intermediate depth offers a balance between update speed and space utilization.
- When space efficiency exceeds 0.4, we set MaxDepth = 3. This maximum depth is used to maximize space efficiency, allowing for the insertion of the greatest number of KV pairs.

By employing this strategy, we achieve a balance between rapid updates and high space efficiency, ensuring that VisionEmbedder operates effectively under varying space conditions. Here, space efficiency is not equivalent to the load factor of ordinary hash tables. When the key and value are the same length, a VO table with 0.5 space efficiency consumes the same space as an ordinary hash table with 100% load factor.

Update Failure. When the update process does not complete quickly, for example when the Update function loops more than 50 times, this is defined as an update failure. If space efficiency is below 0.6, we consider this failure as random and suggest reconstructing the table with a different hash function. If not, we report a lack of space and advise the user to remove some entries or resize the table.

Concurrency. VisionEmbedder has a high performance design in multithreading. The primary challenge lies in resolving conflicts arising when multiple threads are responsible for updating different keys. We conducted a detailed analysis of conflict scenarios and applied locking minimally to mitigate the impact of locks.

Initially, we reduce frequent reads from the value table A during updates through an equivalent modification. When inserting a KV pair and modifying \(A_j[t] \), we note that the modification increment is fixed. At the start, changing integer \(a \) to \(a' \) with an increment equal to \(\text{value} \oplus \bigoplus_{x \in S_{A_{A_j}}} x \), denoted as \(V_\Delta \), ensures the new equation is valid. For other equations like \(a + b + c = v \), modifying \(b \) to \(b' + b' + c = v \) or \(a' + b' + c' = v \) works since their increments satisfy: \(b + b' = a + a' \), \(c + c' = a + a' \). Thus, recording \(V_\Delta \) initially avoids frequent reads from \(A \). All integers requiring modification (modification path) are added to a set \(S_\Delta \), which are all incremented by \(V_\Delta \) after the search concludes.

The update process is divided into two parts: 1) Adding a new key to the Assistant Table and calculating the XOR value increment \(V_\Delta \) needed for modifying integers. 2) Finding the modification path \(S_\Delta \) and modifying it according to \(V_\Delta \). Each integer \(A_j[t] \) and its Assistant Table entries \(S_j[t] \) and \(C_j[t] \) are protected by a dedicated Reader-Writer lock (SharedMutex), termed a “unit.” In part 1, we apply a “write lock” to three units, exclusive to that unit and mutually exclusive with other threads’ read and write locks, released at the end. In part 2, a read lock (compatible with other threads’ read locks) is applied to each unit in the modification path. Updates to \(A_j[t] \) are made with atomic write operations (without needing a write lock), and the read lock is then released.

This design ensures high performance and correctness: 1) Part 2 is the most time-consuming, but read locks allow different threads’ part 2 to run entirely independently. Part
1’s scope, which cannot be reduced, hardly allows concurrent operations with any operation within other threads’ parts 1 and 2. 2) Except for GetCost, the described locks provide adequate protection. GetCost is only affected by part 1, possibly leading to a suboptimal update direction. However, its occurrence is low enough ($O(T/n)$, where T is the number of threads) to be manageable when n is significantly larger than T. For smaller n, we implemented a search backtrack feature in the code (not shown in the pseudocode) to avoid failures caused by inaccurate GetCost.

C. Other Operations

Delete Operation. Since VisionEmbedder, like other VO tables, returns a meaningless value for the alien key, the deletion of KV pairs does not need to modify the value table in the fast space. We only need to update the assistant table, including subtracting 1 from the counters of the three positions indexed by this key, and deleting this key from the table that records the set of keys mapped to each position. After deletion, the removed KV pair no longer occupies space or affects subsequent updates.

Reconstruct Operation. When an update failure occurs, users have the option to reconstruct the entire table. This involves changing all hash functions and then reconstructing both the assistant table and the value table. The construction of the value table can either use the existing static construction method of Bloomier or our dynamic update scheme to insert KV pairs one by one.

V. THEORETICAL ANALYSIS

In this section, we present the theoretical analysis for VisionEmbedder. Our focus is on two main achievements: the space efficiency we can attain and our very low failure probability. The key results we have proven are as follows:

1) High Space Efficiency. VisionEmbedder with MaxDepth=1 can successfully perform dynamic updates, i.e., stop in amortized constant time, when the space usage is greater than 1.756L per L-bit value. Here, 1.756 represents $\frac{n}{m}$, indicating the space required to encode per 1-bit value and is inverse to space efficiency ($\frac{m}{n}$).

2) Low Failure Rate. For n consecutive insertions, the probability of encountering an update failure is $O\left(\frac{1}{n}\right)$.

A. High Space Efficiency

The goal of analyzing Space Efficiency is to find a threshold of n/m (the ratio of equations to variables), below which the update algorithm of VisionEmbedder can successfully operate, specifically, stopping in amortized constant time. In detail, when updating a KV pair, VisionEmbedder selects the variable with the lowest modification cost among three for adjustment to meet the equation. However, this modified variable impacts other equations. If this chain of effects leads to a progressively decreasing number of variables needing modification, then the count of variables to be adjusted exponentially declines, reaching zero within amortized constant time, ensuring a successful VisionEmbedder update. If not, the VisionEmbedder update is likely to never terminate.

Consider a scenario where n pairs have been inserted into VisionEmbedder which contains m variables/indices/buckets. Given that each key is mapped to 3 buckets, the total number of hashed positions is $3n$. With each key having an equal probability $\frac{1}{3m}$ of being hashed to any bucket, and considering the independence of each bucket, the number of keys hashed to a single bucket can be represented by a random variable X. We assume X follows a Poisson distribution with parameter $\lambda = 3n/m$, i.e., $X \sim \text{Pois}(\lambda)$.

The update process involves recursively modifying the bucket with the lowest modification cost to satisfy the equations. Changing a bucket’s value necessitates considering all keys hashed to this bucket in subsequent recursions. The number of keys hashed to the chosen bucket is crucial in this recursion. The algorithm selects the bucket with the minimum number of hashed keys. We denote the number of hashed keys in the selected bucket as X_{min}. The algorithm converges if and only if the expected value $E[X_{\text{min}}]$ is less than 1.

Theorem 1. If the ratio of n/m exceeds 1.756, the update algorithm (MaxDepth=1) is expected to converge.

Proof.

\[
E[X_{\text{min}}] = \sum_{k=1}^{n} k \times P(X_{\text{min}} = k) \tag{2}
\]

Since $P(X_{\text{min}} = i) = P(X_{\text{min}} \geq i) - P(X_{\text{min}} \geq i + 1)$, from the above equation we have $E[X_{\text{min}}] = \sum_{k=1}^{n} P(X_{\text{min}} \geq k)$.

Since $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ as $X \sim \text{Pois}(\lambda)$, we have

\[
P(X_{\text{min}} \geq k) = P(X \geq k)^2 = \left(\sum_{i=k}^{\infty} \frac{\lambda^i}{i!} e^{-\lambda} \right)^2
\]

\[
E[X_{\text{min}}] = \sum_{k=1}^{n} P(X_{\text{min}} \geq k) = \sum_{k=1}^{n} \left(\sum_{i=k}^{\infty} \frac{\lambda^i}{i!} e^{-\lambda} \right)^2 \tag{3}
\]

According to Equation (3), the convergence depends on the parameter $\lambda = \frac{3n}{m}$. $E[X_{\text{min}}]$ and parameter λ have positive correlation. Therefore, there must exist a threshold λ' such that $E[X_{\text{min}}] < 1$ if $\lambda < \lambda'$. We conduct a numerical simulation to solve for λ' and the result shows that $\lambda' \approx 1.709$. The corresponding $\left(\frac{3n}{m}\right)' = 1.756$. Thus, if the ratio of m/n exceeds 1.756, the update algorithm is expected to converge.

B. The Probability of Update Failure

In this section, we analyze the probability of update failure, which includes two cases. The first case is when the equation itself has no solution. The second case is when the update process chooses an incorrect path, creating an endless loop and leading to failure. We prove that both scenarios happen with a likelihood of $O\left(\frac{1}{n}\right)$, as detailed in Theorem 2 and
Theorem 3. This proves that the chance of an update failure is also \(O\left(\frac{1}{n}\right)\).

For the first case where the equation has no solution, we calculate a basic unsolvable situation known as collision error. Although this is a simple case, it has been demonstrated in existing studies to have the highest probability of occurrence compared to other unsolvable scenarios, which are considered mathematically negligible [16], [20]. Therefore, demonstrating compared to other unsolvable situations, which are considered existing studies to have the highest probability of occurrence

Although this is a simple case, it has been demonstrated in calculating a basic unsolvable situation known as collision error.

Theorem 3. For \(t\) consecutive updates, the probability of the endless loop is \(O\left(\frac{1}{n^2}\right)\).

Proof. Considering \(t\) consecutive updates, the probability of update failure is \(1-(1-\frac{1}{n^2})^t \approx 1-(1-t\times\frac{1}{n^2}) = \frac{z^t}{n^2}\). Since \(z\) is constant, the probability of update failure for \(t\) consecutive update is \(O\left(\frac{1}{n^2}\right)\). □

VI. EXPERIMENT RESULTS

In this section, we compare our algorithm with other Value-Only solutions, including Bloomier [8], Othello [9], Ludo [21], and Coloring Embedder [10]. Regarding space cost and failure probability, we conducted experiments on a CPU server, demonstrating that it can achieve 1.58L bits per L-bit value and a failure probability of \(O(1/n)\). Additionally, we evaluated the lookup and update performance, as well as robustness, across various datasets. To showcase versatility across multiple platforms, we also present a case study on FPGA platforms to demonstrate its suitability for specialized hardware.

A. Experiment Setup

1) Methodology: We compare VisionEmbedder with prior art from five aspects: space cost, the frequency of update failure, update performance, look performance, and robustness against datasets. It’s worth noting that we use the frequency of update failures to assess the stability of these algorithms during update operations. Furthermore, we employ both throughput and latency as metrics to evaluate the performance of lookup and update operations. The specific definitions of key metrics are as follows:

- **Throughput:** Million Operations Per Second (Mops). We use Throughput to evaluate the average lookup/update speed.

- **Latency:** We use the percentiles of latency to evaluate to performance of lookup/update operations. The tail latency can show the update performance when the data structures are nearly full.

- **Space Cost** = \(\frac{\text{the space of the value table}}{\text{the number of KV pairs \times the value length}}\). We use the space cost incurred per bit of value encoded to evaluate the space efficiency of each algorithm. Lower space cost indicates an algorithm has better space efficiency.

2) Datasets: We use synthetic random datasets and three real-world datasets for experiments. The synthetic random datasets consist of varying numbers of KV pairs with different value lengths in our experiments. These datasets are sufficiently persuasive since our algorithm does not utilize any distribution characteristics of the key-value pairs. Randomly creating these pairs makes sure our results are consistently
good across all dataset distributions, matching or surpassing the outcomes of other datasets. It’s important to note that malicious activities, such as stealing hash functions to deliberately create collisions, are outside the scope of this paper. We establish some terminologies for clarity: “dataset size” refers to the number of KV pairs and the “value length” is \(L \). We vary the \(L \) from 1 bit to 10 bit to study how the \(L \) influences the performance of algorithms. We use three real-world datasets in experiments, including:

- **MACTable.** This dataset is drawn from the MAC table file in [22], which consists of 2731 distinct KV pairs. The key is a MAC address and the value represents the type field (static or dynamic). The value length of MACTable is 1 bit.

- **MachineLearning.** This dataset is a dataset for binary classification tasks from UCI machine learning repository [23]. Each KV pair represents an entry in the training set and the value is the label of the entry. The dataset size is 359874 and the value length is 1 bit.

- **DBLP.** This dataset is drawn from DBLP [24]. We use the “key” attribute as the key. The value represents whether a record is from a journal or a conference. The dataset consists of 829119 distinct KV pairs and the value length is 1.

3) **Implementation:** We implement VisionEmbedder in C++. During all of the experiments, we use the well-known MurmurHash [25] as the hash function in VisionEmbedder. We utilized the open-source implementation of prior art and fixed their bugs. The parameters of Othello, Ludo, and Color are configured according to their original papers. Specifically, by default, Bloomier, Othello, Color, Ludo, and VisionEmbedder consume space of \(1.23L(n+100) \), \(2.3Ln \), \(2.22Ln \), \((3.76 + 1.05L)n \) bits, and \(1.7Ln \) bits for \(L \)-bit values, respectively. We perform our experiments on a server with an 18-core CPU (Intel® Core™ i9-10980XE @3.00 GHz) and 128 GB memory. We deploy our algorithm on the FPGA platform as a case study.

![Figure 3: Space cost under different dataset size & value length.](image)

B. Space Cost Comparison

We assess the space cost by the minimum fast space required by these five algorithms to function effectively. This minimal space was determined by initially providing each algorithm with ample space, then incrementally reducing this space until the update failure frequency exceeded five times throughout the entirety of the data insertion.

Figure 3 illustrates that our algorithm, VisionEmbedder, requires the least space (1.58 bits) for 1-bit values. The 1.58L, compared to the existing 2.2L, reduces redundancy towards the optimal \(L \) by 50%. By default, we will set the space for VisionEmbedder at 1.7L to achieve the best overall performance. Ludo’s efficiency, at 3.76 + 1.05L bits, may be better for \(L \) values over 6 bits, but our approach, VisionEmbedder, remains valuable for larger \(L \) sizes for two reasons: it can improve Ludo’s space efficiency to approximately 3.1 + 1.05L bits by replacing its internal Othello component, and it has a significantly lower update failure probability.

![Figure 4: Update failure frequency.](image)

C. Update Failure Frequency Comparison

Existing VO solutions suffer from the update failure, which requires changing the hash seed and reconstructing the entire data structure, a process that is extremely time-consuming. We first assess the frequency of update failures, and then in § VI-D, we measure the impact of update failures on update throughput and latency. To assess these algorithms’ update failure frequency, we inserted the entire dataset and recorded how often each algorithm had to reconstruct itself. This process was repeated 100,000 times to ensure reliable results. For space occupancy, we used the aforementioned default settings.

Figure 4 illustrates that our algorithm, VisionEmbedder, experiences far fewer update failures compared to other dynamic solutions. This demonstrates that VisionEmbedder offers more stable insertions, fewer update failures, and, consequently, better dynamic performance. At the same time, it can be observed that the update failure rate of VisionEmbedder approximately decreases linearly with the increase in dataset size \(n \), which is consistent with our theoretical expectations. The reason Bloomier performs well at smaller values of \(n \) is that its space overhead includes an added constant of 100, as recommended in the original paper, to ensure a significant success rate even when \(n \) is small.

D. Update Performance Comparison

Figure 5 shows that VisionEmbedder achieves the best throughput among all algorithms. Compared to Othello, Vi-
Figure 5: Overall update throughput including reconstruction.

Figure 6: Update throughput excluding reconstruct time

The aforementioned throughput includes the time spent on reconstructions due to update failures. However, in Figure 6, we have excluded the time for reconstructions. The results show that the throughput of Othello, Color, and Ludo has improved to a certain extent because they have a higher probability of requiring reconstruction.

The distribution of update latency are shown in Figure 7. The tail latency of Othello, Ludo, and Color is significantly higher than that of VisionEmbedder. Users employing these algorithms may have to endure significant latency inflation, with a high likelihood of encountering such issues. On the other hand, VisionEmbedder exhibits a relatively lower probability of significant tail latency.

E. Lookup Performance Comparison

Figure 8 show that the lookup throughputs of VisionEmbedder and Othello are comparable, and both are faster than Ludo, Color, and Bloomier.

Figure 8(a) shows the performance of various algorithms under different values of n when L=1. The results indicate that at smaller values of n, VisionEmbedder outperforms Othello due to its smaller space allowing for better cache utilization. As n increases, Othello gains an advantage because it requires only two memory accesses, compared to our three. These factors affect throughput, making VisionEmbedder and Othello comparable. From an algorithm design perspective, Bloomier and Vision should achieve similar lookup speeds, as Vision is an enhancement of Bloomier for dynamic updates. However, due to poor implementation of existing Bloomier, the actual throughput is not high.

Figure 8(b) shows that as L increases with n fixed at 1M, the lookup performance of Vision, Bloomier, and Ludo remains essentially unchanged, while Othello and Color show a significant decrease in throughput. This is because their time consumption is directly proportional to L.

F. Robustness

Robustness against datasets. We perform experiments across three real-world datasets and three corresponding synthetic datasets of the same scale. These test datasets are derived from existing work, with their queries sampled from the key set according to a Zipf distribution with \(\alpha = 1.0 \), since the datasets did not include queries. The queries in the synthetic datasets are uniformly distributed. Figure 9 shows that whether the dataset is synthetic or not does not affect VisionEmbedder’s space cost and update performance. When query keys are not uniformly random but skewed, the presence of cache leads to a slight improvement in lookup throughput.

Stability. We demonstrate that the performance of VisionEmbedder remains stable under the influence of randomness arising from varying hash seeds:

- Speed. We conducted update and lookup operations on VisionEmbedder using various hash seeds. The results, as depicted in Figure 10 and Figure 11, indicate that VisionEmbedder maintains stable performance across different datasets.
different hash seeds, even with changing dataset sizes and value lengths.

• Space Efficiency. We alter hash seeds to test the space consumption of VisionEmbedder, employing a methodology similar to that of Figure 3. The experiment results, as shown in Figure 12, indicate that the hash seed has nearly no impact on space efficiency.

Figure 9: Robustness against datasets. The SynX refers to the synthetic dataset of the same scale as dataset X.

Figure 10: Lookup throughput with different hash seeds.

Figure 11: Update throughput with different hash seeds.

Figure 12: Space cost with different hash seeds. The y-axis is the number of KV pairs/the value length, indicating the storage cost incurred per bit of value encoded.

G. Deletion Performance
Similar to Figure 5, we test the deletion performance of VisionEmbedder at n=256k, 512k, 1M, 2M, 4M, achieving throughputs of 6.60, 5.62, 5.35, 5.10, 4.92 MOPS, respectively. At n=256k, with space usage set to 1.7L, 1.9L, 2.1L, and 2.3L, the throughputs are 6.60, 6.61, 6.53, and 6.24, respectively. Overall, deletion throughput is lower than that for lookups but higher than for updates, mainly depending on the access speed of slow memory.

H. Multi-threading
We assess the performance of VisionEmbedder’s multi-threaded concurrency by varying the data scale under 1 to 16 threads, evaluating the throughput for updates and lookups separately. The results (Figure 13) demonstrate that both update and lookup operations in VisionEmbedder are well-suited for acceleration using multithreading. At a data scale of 1M, 2, 4, 8, and 16 threads achieved respective speedups of 1.96, 3.84, 7.37, and 8.61 times for update acceleration, and 1.91, 3.65, 6.41, and 7.61 times for lookup acceleration. We observed that the multithreaded version’s update failures and space cost did not show noticeable changes compared to the single-threaded version, with no differences found in relevant tests, hence the corresponding experiment figures are not shown. Note that the update performance of VisionEmbedder under 1 thread is worse than the result in Figure 5 due to the overhead caused by multithreading.

I. A Case Study: FPGA Implementation
We implement the VisionEmbedder algorithm on an FPGA platform as a case study, to demonstrate that VisionEmbedder can indeed be implemented in hierarchical structures beyond CPU servers. The FPGA integrated with the platform is
TABLE III: FPGA Implementation Results.

<table>
<thead>
<tr>
<th>Module</th>
<th>CLB LUTS</th>
<th>CLB Register</th>
<th>Block RAM</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>76</td>
<td>66</td>
<td>0</td>
<td>279.64</td>
</tr>
<tr>
<td>VisionEmbedder</td>
<td>505</td>
<td>631</td>
<td>385</td>
<td>279.64</td>
</tr>
<tr>
<td>Total</td>
<td>581</td>
<td>697</td>
<td>385</td>
<td>279.64</td>
</tr>
<tr>
<td>Usage</td>
<td>0.03%</td>
<td>0.02%</td>
<td>14.32%</td>
<td></td>
</tr>
</tbody>
</table>

2) Evaluation Result: Table III shows the evaluation result of FPGA-based VisionEmbedder. According to the synthesis report, when the depth of RAM is 2E19, i.e., it can store about 0.95 million KV pairs with 8-bit value, the clock frequency of our implementation in FPGA is 279.64 MHz, meaning the throughput of lookup can be 279.64 Mops. Meanwhile, the logic usage is 0.03% and the space usage is 14.32%.

VII. RELATED WORK

We classify existing works into two categories: 1) Key-stored Solutions, and 2) Value-Only (VO) tables. Our focus in this paper is on the latter, which we further divide into static solutions that do not support incremental updates and dynamic solutions that do.

Static VO solutions include Bloomier filter [8] and Perfect Hashing methods [26]–[30]. Among these, Bloomier filters are noted for their high memory efficiency, but they suffer from a long update time of $O(n)$. Our value table bears resemblance to Bloomier filter’s Table1, yet we do not employ a mask. The similarity stops there. Beyond this similarity, the innovative aspect of our work lies in the method of updating the table. Like Bloomier filters, most perfect hashing methods do not support constant time updates. Although recent developments in perfect hashing, such as the MapEmbed [31], allow for dynamic updates, they represent a special case of perfect hashing that stores keys.

Dynamic VO solutions include Othello [9], Ludo [21] and Color [10]. They can update in amortized constant time. Different from Bloomier, their approach is to select only two variables per key to establish equations. This approach makes constant time update possible, but introduces a high probability of update failure: With constant probability, the equations have no feasible solution. In this case, when inserting a specific KV pair, the algorithm should change the hash function and rebuild the whole table. We call this update failure. The update failure causes some insert operations to experience a long pause, and pause the lookup. The rebuilt is unacceptable for real-time applications. Our work, as a dynamic VO solution, can operate independently as well as become a component of other data structures such as ChainedFilter [32].

Key-stored Solutions are not the focus of our study, as they are less space efficient in scenarios where keys are long and values are short. Compared to VO tables, their main advantage lies in the ability to detect outliers, meaning they can return a “non-existent” response when queried for keys that have not been inserted. In contrast, VO tables respond to queries for such outlier keys with a random answer. Typical key-stored solutions include RocksDB [33], [34], Redis [35], Memcached [36], Twemcache [37], and more [38]–[49].

VIII. CONCLUSION

This paper presents VisionEmbedder, the first value-only key-value lookup solution with amortized constant update time and $O(\frac{1}{n})$ failure probability. Compared with existing solutions, it reduces the update failure by n times, saves 50% redundant memory from $2.2L$ bits to $1.6L$ bits, and achieves comparable update/lookup speed. We prove our results by rigorous mathematical analysis and extensive experiments. We also implement VisionEmbedder in FPGA.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their constructive feedback. Thanks to Tianbao Zhou and Bowen Ye for their help during the revision stage. This work was supported in part by the National Key R&D Program of China (No. 2022YFB2901504), in part by the National Natural Science Foundation of China (NSFC) (No. U20A20179, 62372009), and in part by the China Postdoctoral Science Foundation (No. 2023TQ0010, GZC20230055).
REFERENCES

