
Experimental Analysis of Large-scale Learnable Vector Storage
Compression

Hailin Zhang†
Peking University
z.hl@pku.edu.cn

Penghao Zhao†
Peking University

penghao.zhao@stu.pku.edu.cn

Xupeng Miao
Carnegie Mellon University

xupeng@cmu.edu

Yingxia Shao
Beijing University of Posts
and Telecommunications
shaoyx@bupt.edu.cn

Zirui Liu†
Peking University

zirui.liu@pku.edu.cn

Tong Yang†‡
Peking University

yangtongemail@gmail.com

Bin Cui†‡
Peking University
bin.cui@pku.edu.cn

ABSTRACT
Learnable embedding vector is one of the most important applica-
tions in machine learning, and is widely used in various database-
related domains. However, the high dimensionality of sparse data in
recommendation tasks and the huge volume of corpus in retrieval-
related tasks lead to a large memory consumption of the embedding
table, which poses a great challenge to the training and deploy-
ment of models. Recent research has proposed various methods to
compress the embeddings at the cost of a slight decrease in model
quality or the introduction of other overheads. Nevertheless, the
relative performance of these methods remains unclear. Existing
experimental comparisons only cover a subset of these methods and
focus on limited metrics. In this paper, we perform a comprehensive
comparative analysis and experimental evaluation of embedding
compression. We introduce a new taxonomy that categorizes these
techniques based on their characteristics and methodologies, and
further develop amodular benchmarking framework that integrates
14 representative methods. Under a uniform test environment, our
benchmark fairly evaluates each approach, presents their strengths
and weaknesses under different memory budgets, and recommends
the best method based on the use case. In addition to providing
useful guidelines, our study also uncovers the limitations of current
methods and suggests potential directions for future research.

PVLDB Reference Format:
Hailin Zhang, Penghao Zhao, Xupeng Miao, Yingxia Shao, Zirui Liu, Tong
Yang, and Bin Cui. Experimental Analysis of Large-scale Learnable Vector
Storage Compression. PVLDB, 18(1): XXX-XXX, 2024.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/HugoZHL/Hetu/tree/embedmem/tools/EmbeddingM
emoryCompression.

†School of Computer Science & Key Lab of High Confidence Software Technologies,
Peking University
‡National Engineering Laboratory for Big Data Analysis and Applications, Peking
University
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

1 INTRODUCTION
In recent years, embedding techniques have gained significant at-
tention from database communities since they have been widely
used in several database-related research areas, such as cardinality
estimation [48, 61], query optimization [8, 118], language under-
standing [43], entity resolution [21], document retrieval [34], graph
learning [45, 105] and advertising recommendation [68]. These
applications, especially recommendation [30, 32, 82, 108] and re-
trieval [24, 42, 77, 97], often rely on large amount of embedding
vectors to learn semantic representations and extract meaningful
patterns and similarities. However, the sheer volume of learnable
vectors poses considerable storage and retrieval challenges in prac-
tical deployment scenarios. For example, Meta [71] proposed a deep
learning recommendation model (DLRM) equipped with billions of
embedding vectors that can take 96 terabytes memory to serve.

The management of these large amount of learnable vectors has
become a critical concern for database communities (e.g., cloud-
native vector database [27]). One way to address the scalability
issue of large embedding models is to involve multiple distributed
instances, which may also bring significant communication over-
heads [69, 93]. Another way is to compress the embedding vectors
without compromising the accuracy or the utility of models. Dur-
ing the past few years, various compression methods have been
proposed, including hashing, quantization, dimension reduction
and so on. However, the performance and the effectiveness of these
techniques remain largely unexplored. It is still an open question
for data scientists to select from existing compression techniques
when the storage of embeddings becomes unbearable.

Figure 1: An example of input data for DLRMs.

In this paper, we study the above problem by revisiting the em-
bedding compression methods under recommendation and retrieval
scenarios since they have the most severe embedding vector stor-
age pressure due to the high-dimensional sparse data [58] and the
huge volume of corpus. Figure 1 illustrates an example of input
data for DLRMs, which consists of multiple columns of categorical

1

ar
X

iv
:2

31
1.

15
57

8v
1

 [
cs

.L
G

]
 2

7
N

ov
 2

02
3

https://doi.org/XX.XX/XXX.XX
https://github.com/HugoZHL/Hetu/tree/embedmem/tools/EmbeddingMemoryCompression
https://github.com/HugoZHL/Hetu/tree/embedmem/tools/EmbeddingMemoryCompression
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Figure 2: (a) A typical DLRM. (b) A typical retrieval-augmented LLM. (c) An example of inter-feature compression, the original
8 features now share 4 embeddings. (d) An example of intra-feature compression, each embedding is compressed individually.

and numerical features, along with a column of target labels. A
typical DLRM vectorizes the categorical features into dense em-
beddings and feeds the embeddings along with numerical features
into a downstream neural network to make predictions, as shown
in Figure 2(a). The embedding layer maintains embedding vectors
for all categorical features as a trainable parameter matrix. It also
provides embedding read and write primitives which are similar to
the key-value storage [99, 114, 115]. Unfortunately, most existing
key-value storage compression techniques [13, 80] are not suitable
for embedding models because of several special characteristics of
embeddings during training and inference, such as skew distribu-
tion of embedding popularity [68, 69, 81, 96, 111, 113], frequently
accessing and updating of multiple embeddings especially during
training. For example, if trained on the Criteo dataset, embeddings
are accessed and updated more than 30 times per epoch, with the
most popular embeddings being updated almost every iteration. To
address the memory issue, many embedding compression meth-
ods have been proposed and can be classified into two categories:
inter-feature compression and intra-feature compression.

Considering that the storage bottleneck is mainly caused by the
increasing number of unique features, inter-feature compression
forces features to share embeddings within a limited mem-
ory space, as shown in Figure 2(c). Inter-feature compression is
commonly used in industrial applications [114], and it requires an
encoding function to maintain the mapping from features to em-
beddings. According to whether the encoding function is predeter-
mined or updated during training, we further divide these methods
into static encoding [74, 84, 109] and dynamic encoding [14, 17, 40].

Inspired by features’ different importance, intra-feature com-
pression assigns each feature an individually compressed
embedding. Figure 2(d) shows an example, where each feature
has its own embedding of distinct dimensions, and the final em-
beddings are obtained by projection or padding. According to the
compression paradigm, intra-feature compression can be further
divided into quantization, dimension reduction, and pruning. Quan-
tization is a common compression method in deep learning models
that uses data types with fewer bits [28, 53]. Dimension reduc-
tion [25, 64, 117] and pruning [46, 64] provide features with embed-
dings of different dimensions and sparsities, respectively.

Despite the existence of numerous proposed embedding com-
pression methods, a thorough evaluation and analysis of these

techniques remains lacking. To the best of our knowledge, no previ-
ous work provides a comprehensive overview of the current state of
this field. The experiments of existing approaches are often limited
to specific cases with restricted metrics and settings. Consequently,
the advantages, disadvantages, applicability, and future directions
of these compression methods have yet to be explored.While bench-
marks for recommendation systems have been established [75, 121],
they primarily focus on model design and do not consider embed-
ding compression. The absence of a comprehensive evaluation
framework for various compression methods makes it difficult to
reproduce and compare existing techniques, which significantly
undermines the practical value of research in this domain.

In addition to DLRMs, retrieval models also have large embed-
ding tables for similarity-based embedding search. Although exist-
ing work focuses more on designing efficient embedding search
algorithms [7, 79, 86], the emergence of retrieval-augmented large
language models (LLMs) [4, 29, 52] brings new challenges to embed-
ding vector storage. A typical retrieval-augmented LLM is shown
in Figure 2(b). Since LLMs already consume a lot of memory [5, 78],
embedding tables cannot be stored in GPUs or other accelerators,
resulting in high search latency. It is currently unclear whether
existing learnable vector compression methods are suitable for
embeddings generated from retrieval models.

Motivated by the aforementioned issues in this research field,
we aim to provide an in-depth analysis and a comprehensive ex-
perimental evaluation of embedding compression methods. In this
paper, we carry out experiments using a unified evaluation frame-
work to uncover the strengths and weaknesses of each method in
various scenarios. We summarize our contributions as follows:
• We propose a new taxonomy of embedding compressionmethods

according to their unique properties. On this basis, we provide a
new perspective to understand and analyze their characteristics.

• We construct a unified modular evaluation framework for exper-
iments. We build a general pipeline that can implement a wide
variety of compression methods without much effort.

• We comprehensively evaluate representative embedding com-
pression methods using rich metrics in DLRM scenarios. We
further discuss the strengths and weaknesses of these methods.

• We apply the embedding compression methods to a retrieval-
augmented LLM and analyze their performance.

2

• We discuss the guidelines, challenges, and promising research
directions of embedding compression methods.
The rest of the paper is organized as follows. Section 2 elaborates

on the preliminaries. Section 3 surveys all existing embedding com-
pression methods and analyzes their properties. Section 4 presents
our evaluation framework. Section 5 reports the experimental re-
sults and corresponding findings. Section 6 concludes this paper.

2 PRELIMINARIES
In this section, we first introduce DLRMs and retrieval-augmented
LLMs in Section 2.1 and 2.2. We then formalize the compression
problem in Section 2.3 and clarify our research scope in Section 2.4.

2.1 DLRM
The general architecture of DLRM is depicted in Figure 2(a). A
DLRM consists of two parts: an embedding layer mapping each cate-
gorical feature into a dense embedding vector, and a neural network
containing interaction layers and fully connected layers. Numerical
features are fed along with embeddings into the neural network.
Many works have been done to improve the performance of the
neural network part, such as WDL [15], DCN [90], and DIN [119].

In DLRMs, the categorical feature 𝑥 can be interpreted as a one-
hot vector by encoding function I(𝑥) to obtain the corresponding
row vector 𝑒 from the embedding table 𝐸 ∈ R𝑛×𝑑 by 𝑒 = I(𝑥)𝑇 𝐸;
or 𝑒 = E(I(𝑥)) where E denotes the embedding layer function.
Using 𝑘 to denote the number of categorical feature fields, and 𝑥𝑛𝑢𝑚
to denote numerical features, the downstream neural network is a
function 𝑓 with parameters 𝜃 that inputs embeddings and outputs
predictions 𝑦 = 𝑓 (𝑒𝑖1 , 𝑒𝑖2 , ..., 𝑒𝑖𝑘 , 𝑥𝑛𝑢𝑚 ;𝜃) for the loss function L.
After the forward pass, optimizer such as Adam [44] is applied to
update the embeddings and other model parameters. In summary,
the optimization of DLRM can be formalized as:

min
𝐸,𝜃
E(𝑋,𝑦)∼DL(𝑦, 𝑓 (E(I(𝑥)), 𝑥𝑛𝑢𝑚 ;𝜃)) . (1)

The notations are detailed in Table 1.

2.2 Retrieval-augmented LLM
The general structure of retrieval-augmented LLM is depicted in Fig-
ure 2(b). A typical model [4, 29, 52] consists of three parts: a retrieval
model [42, 77, 100], an embedding search algorithm [7, 79, 86], and
an LLM [5, 51, 78]. The retrieval model has two encoders 𝑓𝑞 , 𝑓𝑑 that
encode queries 𝑞 and all documents 𝐷 into embeddings separately.
The embedding search algorithm 𝑆 takes query embedding 𝑓𝑞 (𝑞)
as input, and search similar documents within the embedding table
E = 𝑓𝑑 (𝐷). After obtaining relevant documents 𝑆 (𝑓𝑞 (𝑞𝑖), E), both
the query and the documents serve as input to the LLM 𝑓𝑙𝑙𝑚 . The
size of the corpus used in industrial applications is at least one mil-
lion level [73, 110], resulting in a large amount of memory required
for embedding table storage. For simplicity, we currently focus on
the inference performance of retrieval-augmented LLMs.

2.3 Problem Definition
In this section, we discuss the problem of embedding compression
in detail. In DLRMs, we use E∗ to denote the compressed embed-
ding layer with trainable parameters 𝐸∗. The encoding function I∗

for the compressed embedding layer can be one-hot or multi-hot,
depending on actual needs. The problem of learning the parameters
of a DLRM with a compressed embedding layer can be modified to:

Table 1: Commonly used notations.

Notation Explanation

D Set of data samples
𝐸 (∗) Parameters of (compressed) embedding layer
E (∗) (Compressed) embedding layer
𝑘 Number of categorical fields
𝑋 Features of a sample

𝑥, 𝑥𝑛𝑢𝑚 Categorical feature, numerical feature
𝑞 Input query for retrieval-augmented LLM

I (∗) (Compressed) encoding function
𝑉 Set of features
𝑛 Number of features
𝑚 Number of rows in inter-feature compression
𝑑 (′) (Reduced) embedding dimension
𝑒 Embedding vector
𝑟 Density in pruning methods

𝑓 , 𝑓𝑞, 𝑓𝑙𝑙𝑚 Neural network of DLRM, query encoder, LLM
𝑆 Embedding search function

𝐷𝑒𝑐 Embedding decompress function
𝜃 Model parameters except embeddings
𝑦, 𝑦̂ Ground truth label, prediction

L, L𝑙𝑙𝑚 Loss functions for DLRM and LLM
M, 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 Memory usage function, memory budget

𝐶𝑅 Compression ratio

min
E∗,I∗,𝐸∗,𝜃

E(𝑋,𝑦)∼DL(𝑦, 𝑓 (E∗ (I∗ (𝑥)), 𝑥𝑛𝑢𝑚 ;𝜃)),

s.t.M(E∗, 𝑓) ≤ 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 .
(2)

Besides the model parameters 𝐸∗ and 𝜃 , the embedding layer E∗

and the encoding function I∗ are also variables that determine
the loss. The optimization process can be decomposed into two
parts: the first part determines E∗ and I∗ through the compression
method, and the second part trains the model parameters 𝐸∗ and
𝜃 . In this paper, our goal is to provide advice on choosing a proper
compression method in the first part.

In retrieval-augmented LLMs, we use 𝐷𝑒𝑐 to denote the decom-
press function, and abuse some common notations such as E∗ for
compressed embeddings and 𝑦 for labels. Assuming our target is to
minimize the objective functionL𝑙𝑙𝑚 , then the problem of choosing
the most proper compression method can be formed as:

min
E∗
E𝑞∼DL𝑙𝑙𝑚 (𝑦, 𝑓𝑙𝑙𝑚 (𝑞, 𝑆 (𝑓𝑞 (𝑞), 𝐷𝑒𝑐 (E∗)))),

s.t. M(E∗, 𝑓𝑞, 𝑓𝑙𝑙𝑚, 𝑆) ≤ 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 .
(3)

Since we are targeting the inference stage, the only variable is the
compression algorithm. In practical applications, search algorithms
are usually performed in batches, so the decompression can also be
a batch operation to avoid storing the complete embedding table.

The compressed embeddings E∗ should meet the memory con-
straint. The memory function M outputs the memory usage of
the whole model during inference. In real scenarios, especially on-
device situations, the memory budget is often smaller than the
memory usage of models with the full embedding table. Since the
memory usage of other parts is fixed, the memory constraint can be
simplified as M(E∗) ≤ 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 . In addition to inference memory
constraints, more metric constraints can be applied, such as low
latency requirements in online service scenarios, training time or
training memory constraints in time- or memory-limited scenarios.

3

Somemethods cannot compress embedding layers within a given
memory budget; they can only compress to a specific target memory.
For instance, quantization methods directly adopt INT8 or INT16
to replace the original FLOAT32 data type, reducing the memory
usage to 25% or 50%. To measure the compression ability, we define
𝐶𝑅 (compression ratio) as the ratio of the original memory to the
compressed memory as 𝐶𝑅 =

M(E)
M(E∗) .

2.4 Scope
In this section, we discuss the scope of this paper. We focus on
embedding compression for DLRMs and retrieval-augmented LLMs,
with practical applications of at least millions of embeddings. We do
not focus on the embeddings in NLP models. Although works have
been done to compress the memory usage of embedding tables
in NLP [6, 9, 10, 85, 87], the number of unique vocabularies in
mainstream LLMs such as Bert [20] and GPT-3 [5] is no more than
0.1 million, which is not as memory-intensive as DLRMs.

There are several research directions that can be easily confused
with our study: feature selection, embedding search. Although
feature selection [59, 63, 92] does reduce memory usage by directly
pruning useless features, it can be seen as the upstream process
of embedding compression. Embedding search [39, 65, 66] is a
subsequent stage of embedding compression in retrieval tasks, and
its related research is orthogonal to memory compression.
3 OVERVIEW OF EMBEDDING COMPRESSION
In this section, we present an overview and a new taxonomy of
embedding compression methods. We first divide all methods into
inter-feature and intra-feature compression based on whether the
features share parameters or have individually compressed embed-
dings. We further divide the methods according to their properties
and techniques. The detailed information of inter-feature and intra-
feature compression methods is listed in Table 2 and 3, respectively.
3.1 Inter-feature Compression
To address the memory bottleneck caused by the explosive growth
of features, a direct approach is to keep only a small number of
embeddings for features to share, as shown in Figure 2(c). Compres-
sion is generally performed within fields to ensure that features
which share embeddings have similar semantics. Inter-feature com-
pression needs to maintain a new mapping from features to em-
beddings, instead of the original one-hot encoding. Early methods
utilize hash functions [87, 95] to map features into multi-hot vec-
tors, then lookup from hash embedding tables for sub-embeddings
to construct final embeddings. Following this idea, the problem
can be simplified as finding an encoding function I∗, and a corre-
sponding row-compressed embedding layer E∗. Based on whether
the encoding function is fixed during training, the methods can be
further divided into static encoding and dynamic encoding.
3.1.1 Static Encoding. Static encoding uses fixed encoding func-
tions during training. Mapping features into a smaller number of
embeddings is essentially a hashing process. Thus, many hash func-
tions have served as encoding functions in industry [114]. While
early works explored the form of encoding functions, recent works
further explored the form of embedding layers. We use𝑚 to denote
the number of embeddings after compression.
DoubleHash [109] uses two hash functions, and sums the two
sub-embeddings together. More hash functions lead to less collision
rate since the bucket size is enlarged from𝑚 to𝑚2.

CompoEmb [84] recursively divides the original feature index by
the row sizes of hash embedding tables and gets the remainders
as the new indices. As long as the product of row sizes is greater
than the number of features, no features will share the exact same
embedding. The sub-embeddings are aggregated by multiplication.
BinaryCode [102] follows the idea, splitting the binary respresenta-
tion of the original index in succession style or skip style, where the
former is essentially the CompoEmb. Some following work [56] also
adopts CompoEmb to implement lightweight embedding layers.
MEmCom [74] stores scale and bias weights for each feature. Given
a feature as input, a embedding is indexed by a hash function, then
multiplied and added with scale and bias to get the final embedding.

Methods above share some sub-embeddings among features,
resulting in degraded model quality. They only form the encoding
function, enabling simple and flexible memory compression. In
contrast, the following methods design new embedding layers.
DHE (Deep Hash Embedding [41]) radically replaces embedding
tables with multi-layer perceptrons (MLPs). It maps features to
integers using many hash functions and then applies transforma-
tions to approximate a uniform or Gaussian distribution as input
to MLPs. Equipped with complex MLPs, DHE achieves good model
quality, but requires much more time to train and infer. In Table 2,
the symbol 𝑑𝑖 means the number of hidden units in each MLP layer.
TT-Rec (Tensor-Train Recommendation [33, 107]) borrows the idea
of tensor-train decomposition (abbreviated as TT). In TT, a tensor
A ∈ R𝐼1×𝐼2×...𝐼𝑡 can be decomposed A ≈ G1G2 ...G𝑡 , with each
TT-core G𝑖 ∈ R𝑅𝑖−1×𝐼𝑖×𝑅𝑖 , 𝑅0 = 𝑅𝑡 = 1. TT-Rec factorizes the row
size |𝑉 | ≤ Π𝑡

𝑖=1𝑚𝑖 and the column size 𝑑 ≤ Π𝑡
𝑖=1𝑑𝑖 into intergers,

and decomposes the embedding table by 𝐸 ≈ G1G2 ...G𝑡 , where
G𝑖 ∈ R𝑅𝑖−1×𝑚𝑖×𝑑𝑖×𝑅𝑖 . To obtain the embedding, TT-Rec looks up
the tensors and conducts matrix multiplication according to the
decomposition. In supplementary materials, we visualize TT-Rec
and illustrate that it essentially aggregates sub-embeddings from
multiple hash embedding tables. The matrix multiplication requires
much more time than simple aggregation. TT-Rec is adopted by
following work [89] to enable high compression ratios.
ROBE (Random Offset Block Embedding [19]) stores an 1-D array
instead of 2-D matrix for embedding layer. It uses hash functions to
generate indices, then concatenates the sub-embeddings retrieved
at the indices. ROBE can reduce running time with simple design,
but requires more epochs to reach convergence, because the ran-
domness makes the learning task more difficult.

The exploration of embedding layer design is both creative and
effective. They either improve the model quality at the cost of more
computation, or simplify the embedding structure.
Dedup [120] is the most recent work of similarity-based dedupli-
cation [50, 88, 120]. It adopts L2LSH [36], a local-sensitive hashing
algorithm on Euclidean (L2) distance, to efficiently deduplicate
similar parameter blocks. Dedup can only be applied when the
parameters are fixed, so uncompressed embeddings still need to
be trained. We classify Dedup as static encoding, because the en-
coding function is determined by an one-pass LSH process. Since
it deduplicates embeddings directly by value, we do not have to
perform compression within fields to guarantee that features shar-
ing embeddings have similar semantics. Consequently, we directly

4

Table 2: Summary of inter-feature compression. Space Complexity reflects the memory of encoding function and embedding
layer; Time Complexity reflects the time of embedding lookup process; Freq / Impo-aware indicates whether the method is
frequency- or importance-aware; Com Cap shows the compression capability within a certain range of memory budgets.

Subcategory Method Techniques Space Complexity Time Complexity Freq / Impo-aware Com Cap

Static
Encoding

CompoEmb [84] Hash 𝑂 (𝑚𝑑 + 𝑛𝑑/𝑚) 𝑂 (𝑑) / Yes
DoubleHash [109] Hash 𝑂 (𝑚𝑑) 𝑂 (𝑑) Frequency-aware Yes
BinaryCode [102] Hash 𝑂 (

√
𝑛 · 𝑑) 𝑂 (𝑑) / No

MemCom [74] Hash 𝑂 (𝑚𝑑 + 𝑛) 𝑂 (𝑑) / Yes
DHE [41] Hash, MLP 𝑂 (𝑑 · 𝑑𝑖 + 𝑑2

𝑖
) 𝑂 (𝑑 · 𝑑𝑖 + 𝑑2

𝑖
) / Yes

TT-Rec [107] TensorTrain (Hash) 𝑂 (𝑅2 ∑(𝑚𝑖 + 𝑑𝑖)) 𝑂 (𝑅2𝑑) Frequency-aware Yes
ROBE [19] Hash, 1-D Array 𝑂 (𝑚𝑑) 𝑂 (𝑑) / Yes
Dedup [120] LSH 𝑂 (𝑛 +𝑚𝑑) 𝑂 (𝑑) / Yes

Dynamic
Encoding

MGQE [40] VQ (PQ) 𝑂 (𝑛𝑘 ′ +𝑚𝑑) 𝑂 (𝑘 ′ + 𝑑) Frequency-aware Yes
LightRec [57] VQ (AQ) 𝑂 (𝑛𝑘 ′ +𝑚𝑑) 𝑂 (𝑘 ′𝑑) / Yes
AdaptEmb [17] Hash, Frequency 𝑂 (𝑚 +𝑚𝑑) 𝑂 (𝑑) Frequency-aware Yes

CEL [14] Clustering 𝑂 (𝑛 + 2𝐵/𝑏 · 𝑑) 𝑂 (𝑏𝑑) Frequency-aware Yes

deduplicate the entire embedding table to speed up both compres-
sion and serving. Dedup hashes the embedding content while other
hashing-based methods hash the input indices, so we distinguish
them explicitly in our experimental analysis.

In summary, static encoding methods are simple, effective, and
capable of compression at any memory budget. Their encoding
functions, which remain constant during training, are often simple
hash functions that take up no storage space. The focus of research
work gradually shifts from hash functions to embedding layers.
The former guarantees memory constraints while the latter further
guarantees model quality. Another line of research is similarity-
based deduplication, which performs post-training compression.
3.1.2 Dynamic Encoding. Dynamic encoding allows encoding func-
tions to be updated during training, which is naturally suitable for
online learning. They adopt trainable indices or build data struc-
tures to store and adjust the mapping. They tend to incorporate
more information but only achieve mediocre compression ratios.
MGQE (Multi-Granularity Quantized Embedding [40]) extends
DPQ (Differentiable Product Quantization) [9] to fit recommenda-
tion data. DPQ is based on PQ (Product Quantization) [37], a VQ
(Vector Quantization) technique in embedding search. PQ splits
embeddings into several parts, clusters the partial embeddings re-
spectively, then reconstructs embeddings with the nearest centroids.
DPQ introduces supervised learning to train the centroids, mini-
mizing the distances between the original and the reconstructed
embeddings. The uncompressed embeddings are kept during train-
ing to determine and update the nearest sub-embeddings. After
training, the uncompressed embeddings are dropped, and the near-
est sub-embeddings are adopted to reconstruct the final embed-
dings. DPQ and other similar works [10, 85] focus on NLP word
embeddings, and MGQE extends DPQ for highly-skewed recom-
mendation data, providing more centroid embeddings for features
with higher frequency. The memory usage can only be reduced
during inference, and the compression ratio is relatively low due to
the storage of centroids indices. Besides PQ, other VQ techniques
such as AQ (Additive Quantization) are also adopted for embedding
compression [57]. The centroids in AQ are summed to reconstruct
embeddings. In Table 2, 𝑘′ is the number of parts in VQ.
AdaptEmb (DeepRec Adaptive Embedding [17]) allocates unique
embeddings for high-frequency features and shared embeddings
for low-frequency features. It dynamically converts the feature’s

embedding from shared to exclusive if the frequency becomes high
enough. AdaptEmb incurs more memory to store high frequency
features during inference.
CEL (Clustered Embedding Learning [14]) compresses the embed-
dings of two special features (users and items) that are clustered
with only one embedding per cluster. During training, items are
dynamically reassigned to the more appropriate clusters based on
their history interactions, and clusters are split if associated with
too many interactions. CEL has limited compression ratios with the
storage of the cluster structure, and takes more training time due to
cluster adjustment. Assuming that the total number of interactions
is 𝐵 and the cluster will split iff it has more than 2𝑑 associated
interactions, the complexity is shown in Table 2.

Dynamic encoding requires extra data structures to store dy-
namic codes, so sometimes only supports limited compression ra-
tios. They incorporate frequency information, but the dynamic
encoding function brings some overheads during training.
3.2 Intra-feature Compression
Instead of sharing embeddings and modifying the encoding func-
tion, intra-feature compression compresses embeddings individ-
ually to form a new embedding layer E∗. These methods can be
further divided into quantization, dimension reduction, pruning.
3.2.1 Quantization. Quantization is a common compression tech-
nique in deep learning training [35, 70] and inference [2]. It is stable
and simple to use, since it does not affect the original training para-
digm; however, low-precision data types will lead to a slight loss of
model quality and limited compression ratios.
FP16 [112] is only used for storage, while during training the re-
trieved embeddings are converted to FP32. When rounding updated
parameters back into FP16, there are two choices: nearest rounding
and stochastic rounding. The former selects the nearest value in
FP16, appearing to have a systematic bias in model update accu-
mulation since a relatively small update will never take effect if
always discarded. The latter first computes the rounded-up value
and the rounded-down value, then draws a random number from a
Bernoulli distribution with the distances to these values; this round-
ing function is not biased yet brings higher variance in optimizer.
In practice, stochastic rounding is chosen for better model quality.
INT8/16 [101, 104] are integer data types of low-precision, treated
as bins of values, where two manually designed parameters scale
and bias are further required to restore the original FP32 value. FP

5

Table 3: Summary of inter-feature compression. Space Complexity reflects the memory of encoding function and embedding
layer; Time Complexity reflects the time of embedding lookup process; Freq / Impo-aware indicates whether the method is
frequency- or importance-aware; Com Cap shows the compression capability within a certain range of memory budgets.

Subcategory Method Techniques Space Complexity Time Complexity Freq / Impo-aware Com Cap

Quantization

FP16 [112] FP16 𝑂 (𝑛𝑑/2) 𝑂 (𝑑) / No
Post4Bits [26] Greedy Search 𝑂 (𝑛𝑑/8) 𝑂 (𝑑) / No

MixedPrec [104] FP16, INT8 𝑂 (𝑛𝑑/4) 𝑂 (𝑑) / No
Int8/16 [101] INT8, INT16 𝑂 (𝑛𝑑/4) 𝑂 (𝑑) / No
ALPT [55] Learnable Scale 𝑂 (𝑛𝑑/4 + 𝑛) 𝑂 (𝑑) Importance-aware No

Dimension
Reduction

NIS [38] Policy Gradient 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑 ′𝑑) Importance-aware Yes
ESAPN [60] Policy Gradient 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑 ′𝑑) Both No
MDE [25] Heuristic 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑 ′𝑑) Frequency-aware Yes

AMTL [103] MLP 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑) Both No
AutoEmb [116] DARTS 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑 ′𝑑) Both No
AutoDim [117] DARTS 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑 ′𝑑) Importance-aware No
SSEDS [76] One-shot NAS 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑 ′𝑑) Importance-aware Yes

OptEmbed [64] One-shot NAS 𝑂 (𝑛𝑑 ′) 𝑂 (𝑑) Importance-aware No

Pruning

DeepLight [18] Structural Prune 𝑂 (𝑟𝑛𝑑) 𝑂 (𝑟𝑑) Importance-aware Yes
DNIS [16] Mask, DARTS 𝑂 (𝑟𝑛𝑑) 𝑂 (𝑟𝑑) Both Yes
PEP [62] Mask, Threshold 𝑂 (𝑟𝑛𝑑) 𝑂 (𝑟𝑑) Importance-aware No
HAM [98] STE, Hard Mask 𝑂 (𝑟𝑛𝑑) 𝑂 (𝑟𝑑) Importance-aware Yes

AutoSrh [46] Mask, DARTS 𝑂 (𝑟𝑛𝑑) 𝑂 (𝑟𝑑) Both Yes

data types have unequal intervals between values, while INT data
types have equal intervals. INT data types also adopt stochastic
rounding for better model quality.

Directly using FP16 or INT8/16 is simple and has almost no over-
head. In order to obtain better model quality, the following methods
try to search or learn the proper scale for INT-type compression.
Post4Bits [26] performs a post-training greedy search on scale and
bias of INT4 data type. The minimum and the maximum values are
searched step by step to minimize the model loss.
ALPT [55] makes the scale alternatively trained with the model
parameters to improve the model quality. The idea of learnable
scale comes from LSQ [22].

In summary, quantization involves little overhead and achieves
certain compression ratios.

3.2.2 Dimension Reduction. Generally, the larger the dimension,
the more information the embedding can represent. As the rec-
ommendation data is highly skewed and follows power-law distri-
bution [111], a natural idea is to assign different dimensions for
features with different frequency or importance. To align the di-
mension of final embeddings for subsequent neural networks, there
are two ways: zero-padding and projection. The second scheme is
inspired by SVD decomposition [6] and is adopted by most methods,
since the learnable projection matrices can represent all the linear
transformations including zero-padding. The symbol 𝑑′ in Table 3
means the reduced dimension of embeddings.
MDE (Mixed Dimension Embedding [25]) represents feature fre-
quency with the inverse of feature cardinality within field. The
dimensions are proportional to 𝑝𝛼 , where 𝑝 is the frequency and 𝛼
is a hyper-parameter.

MDE is the only dimension reduction method that compresses
memory during training, with no learnable structures involved. All
of the following methods adopt learnable structures to determine
dimensions, incurring much more training overhead.
NIS (Neural Input Search [38]) uses a policy network to determine
the dimensions. It splits the embeddings into chunks, and builds

projection matrices for each column. Then it uses a controller to
sample row chunks for each column. In the reward 𝑅 = 𝑅𝑄 −𝜆 ·𝐶𝑀 ,
𝑅𝑄 is the model quality and 𝐶𝑀 is the memory cost at inference.
The chunk-based search is also used in [12].
ESAPN (Embedding Size Adjustment Policy Network [60]) uses
a series of projection matrices to convert dimensions larger and
larger until the final dimension. Each feature field is assigned a
policy network, which inputs the feature frequency and the current
dimension and outputs whether enlarge the dimension. If the di-
mension is enlarged, the transformed vector is used as initialization.
It takes the improvement of the current state as reward.

The above two methods adopt policy network to learn dimen-
sions, incurring much training overhead for the trials of different
settings. The memory budget can be considered in reward function
just as NIS to enforce memory constraint at inference.
AutoEmb [116] formsMLP-based controllers, which take frequency
and other contextual information as input and output probabilities
of dimensions. Controllers and other model parameters are trained
alternatively using DARTS [106] solution for bi-level optimization.
AutoDim [117] defines field-wise architectural weights to com-
pute probabilities of dimensions via gumbel-softmaxing. It also
alternatively trains the architectural weights and the other model
parameters using DARTS. After training, the dimension with the
highest probability is selected for further re-training.

The above two methods both utilize DARTS, incurring lower
training overhead than policy network. However, they cannot
search within a given memory budget.
AMTL (Adaptively-Masked Twins-based Layer [103]) introduces
twoMLPs for features with high- and low-frequency respectively, to
output scores for positions where embeddings should be truncated.
SSEDS (Single-Shot Embedding Dimension Search [76]) multiplies
the pre-trained uncompressed embeddings with field-dimension-
wise masks to conduct single-shot NAS. It uses the masks’ gradients
to represent value importance, which is further used to truncate
the embeddings according to memory budget.

6

Figure 3: Overview of the evaluation framework.

OptEmbed [64] jointly learns masks for both row and column.
Row masks that threshold the embeddings’ 𝐿1 norms are multiplied
onto the original embeddings for supernet training. After determin-
ing the row masks, OptEmbed conducts an evolutionary search to
determine the column masks for embeddings truncation. Then the
compressed embeddings are retrained to fit the masked parameters.

SSEDS and OptEmbed utilize one-shot NAS to make the training
process faster. While SSEDS takes the memory budget into consid-
eration, OptEmbed does not support flexible memory budget.

In summary, dimension reduction methods aim to assign a suit-
able dimension for each feature. Except for MDE and AMTL, all
methods require significant time for complex training or retraining.
Except for AMTL and OptEmbed, other methods use projection
matrices, which result in increased inference latency. Only MDE,
NIS and SSEDS can compress to a given memory budget. There are
also other methods that jointly optimize the embedding dimension
and model components using rule [83], DARTS [106] or one-shot
NAS [94], which do not meet our plug-and-play requirement.

3.2.3 Pruning. Pruning is a common technique in the compression
of deep learning models [23, 31, 54]. According to the lottery ticket
hypothesis [23], a dense neural network contains a subnetwork
that can match the test accuracy of the dense network. Similar to
dimension reduction that assigns different dimensions, pruning
assigns different sparsity for different features. The pruned sparse
embeddings are stored in sparse tensor format in practice. The
symbol 𝑟 in Table 3 means the density of embeddings.
DeepLight [18] uses structural pruning, a common pruningmethod
in DL models [1]. It progressively thins out embeddings by filtering
small-magnitude values, until reaching the memory budget.

Except for DeepLight, all the others adopt learning methods,
involving more training overhead for better model quality.
PEP (Plug-in Embedding Pruning [62]) defines a learnable thresh-
old for pruning. After joint training the threshold and the other
parameters, the model is retrained to fit the pruned embeddings.
HAM (Hard Auxiliary Mask [98]) first pre-trains the uncompressed
embeddings with Soft Orthogonal [3] regularizations, then alter-
natively trains learnable masks and other parameters, and finally
re-trains the pruned embeddings.
AutoSrh [16, 46] sorts features by frequency and partitions them
into blocks, with each block assigned with learnable masks for prun-
ing. Masks and other model parameters are alternatively trained
using DARTS. After training, parameters are filtered according to
memory budget, then re-trained to fit the sparse embeddings.

The above methods learn masks or thresholds for pruning. HAM
and AutoSrh update learnable masks alternatively with parameters,

which is similar to SSEDS and OptEmbed in dimension reduction.
Like dimension reduction, pruning attempts to allocate more mem-
ory to more important features. Pruning methods achieve good
model quality with significant training overhead. They are flexibly
adapted to a given memory budget, but require system support for
sparse tensor storage and computation.

4 EVALUATION FRAMEWORK
We design and implement a unified modular evaluation framework
for embedding compression. The overall framework is shown in Fig-
ure 3. Generally, all existing embedding compression methods can
be implemented with these 4 modules: encoding function, embed-
ding layer, scheduler, and auxiliary module. The encoding function
inputs features and outputs one-hot or multi-hot vectors. The em-
bedding layer stores embedding-related parameters, such as one or
several embedding tables, MLPs, 1-D arrays, and sparse matrices,
etc. It outputs the corresponding embeddings based on the encoded
vectors. The embeddings are fed into neural networks along with
numerical features for predictions. We omit the neural network
part in the figure because it is not our focus. The optional auxiliary
module contains data structures that assist model training, such
as the frequency information in dynamic encoding, the learnable
masks in pruning, the architecture weights in dimension reduc-
tion. The scheduler manages the entire training process, switches
training stages, and schedules proper data to train certain parts of
the model. For example, DARTS-based methods use training data
and evaluation data to update model parameters and architecture
weights respectively, while NAS-based methods usually require a
re-training stage for further improvement.

The framework integrates 14 representative methods for ex-
perimental comparison, which are listed in Section 5.1.2. Besides
existing methods, our framework supports any new method that
applies this compression pipeline. We expect more compression
methods to be proposed based on our framework.

The framework is implemented on Hetu [67], an efficient deep
learning system. Our framework consists of 10 thousand lines of
code in Python for encoding functions, embedding layers, sched-
ulers, and auxiliary modules. We also implement some necessary
C++/CUDA computing kernels. The framework does not explicitly
consider distributed training and inference; data parallelism can be
simply applied, while model parallelism that partitions embedding
layers are not necessary because embedding layers have already
been compressed. Some other orthogonal system optimizations
such as data prefetch [68], or DL compilation [11] are not applied,
as they do not affect our analysis.

7

5 EXPERIMENTS AND ANALYSIS
In this section, we experimentally evaluate different embedding
compression methods in DLRM to test their memory compression
capability, model quality, training overhead, and inference latency.
We also design experiments to reveal the influence of neural net-
work models and embedding dimensions. We apply the methods
on retrieval-augmented LLM and analyze their performance. We
later discuss current challenges and promising future directions.

5.1 Experiment Settings of DLRM
5.1.1 Models and Datasets. We conduct the main experiment on a
representative model named DLRM1 [72], which is popular in both
academia and industry. Furthermore, we also experiment with two
widely-used models WDL [15] and DCN [90].

Table 4: Overview of the datasets.

Datasets # Fields # Features # Samples

Avazu 22 9,449,445 40,428,967
Criteo 26 33,762,577 45,840,617

Company 43 66,102,027 35,682,429

We experiment on two public click-through rate (CTR) datasets,
Avazu [91] and Criteo [49], which are widely used in academia
and have been employed in benchmarks for recommendation mod-
els [75, 121]. We also evaluate with a larger commercial CTR dataset
Company, which is collected from a recommendation scenario in
Tencent Inc. containing ad features (e.g., ID, category). The statistics
of the datasets are listed in Table 4.

Feature frequency follows a power law [68, 69, 81, 96, 111, 113].
For example, in Avazu and Criteo, the top 10% features with the
highest frequency account for more than 95% of the occurrences in
samples; on the other hand, for the long-tail part, more than 80% of
the features have less than 5 occurrences. Compression methods
are inspired to allocate different amount of memory to features.
5.1.2 Compared Methods. We choose 14 representative embed-
ding compression methods for comparison. For static encoding,
CompoEmb is a typical method using multiple hash functions,
and DoubleHash, BinaryCode, MEmCom can be regarded as its
variants; TT-Rec is a special variant of CompoEmb that borrows
the idea of tensor-train decomposition; DHE and ROBE are two
novel methods exploring different forms of embeddings; Dedup
is the state-of-the-art similarity-based deduplication method. For
dynamic encoding, MGQE learns the codes of sub-embeddings
and has a simpler PQ structure than LightRec; AdaptEmb adopts
feature frequency and is more general than another frequency-
based method CEL. For quantization, we choose INT8/16 for fixed
quantization with uniform value distribution; ALPT is the state-of-
the-art method that learns the quantization scale. For dimension
reduction, MDE is the only heuristic-based method; AutoDim
and OptEmbed are the state-of-the-art methods using trainable
structural parameters and one-shot NAS respectively; we do not
evaluate policy-gradient-based methods because they are too time
consuming and perform poorly. For pruning,DeepLight is the only
structural pruning method; AutoSrh is the state-of-the-art method
that learns the pruning structure. The configurations are available
on the GitHub page.
1In this section we use the term DLRM to refer to this particular model, rather than
the general deep learning recommendation models in the previous sections.

5.1.3 Environment and Hyperparameters. We use Adam [44] with
a batch size of 64 (for Company) or 128 (for Avazu and Criteo), and
the learning rate is determined by grid-search from [0.001, 0.01,
0.1]. We conduct every single experiment on an Nvidia RTX TITAN
24 GB GPU card. We tested different dimensions on uncompressed
embeddings, and finally selected 16 as the embedding dimension.

For simplicity, we implement all methods on GPU. Theoreti-
cally, the results of model accuracy and memory usage are the
same whether the embeddings are on CPU or GPU. Methods with
complex computations, such as TT-Rec and DHE, already have the
highest latency, and will be slower on CPU. On the other hand, if
the embedding layer is located on CPU, the embeddings need to be
transferred to GPU for subsequent computation, introducing addi-
tional communications. These two factors only affect the absolute
value of processing time, not the relative ranking of each method.
5.1.4 Metrics. We employ a comprehensive metric AUC (area un-
der the ROC curve) to measure model quality. In recommendation
systems, an improvement of 0.001 in AUC is considerable. For mem-
ory usage, we use the actual memory consumption of the embed-
ding layer at inference time, rather than the number of parameters
or the sparsity rate used in previous works. The number of parame-
ters cannot reflect the compression effect of quantization methods,
and the sparsity rate in pruning methods ignores the additional
memory overhead brought by sparse tensor storage. We implement
CSR and COO formats for sparse tensor storage, and the framework
adaptively chooses the format under a given memory budget. For
training memory, we include the memory of the auxiliary modules.
For training time, we measure the total time of training to conver-
gence, including all training stages. Inference latency is the forward
pass time of a batch using well-trained model checkpoints.

5.2 Performance on DLRM
Table 5 shows multiple metrics of 14 representative methods un-
der different inference memory budgets. The experiments are per-
formed on 3 datasets using DLRM. We use the uncompressed em-
bedding table as the baseline method, and its memory usage as the
baseline memory usage. By default, the inference memory budgets
are 50%, 10%, 1%, 0.1% of the baseline memory. Methods that cannot
achieve these compression ratios are compressed as much as pos-
sible, with their actual memory usage listed in parentheses; these
results are not explicitly compared with those normal ones.
5.2.1 Ability of Compression. Hash-based methods (including
LSH) and pruningmethods are themost capable compression
methods, achieving all compression ratios. Static encoding
methods and AdaptEmb can simply adjust the number of rows,
while pruning methods can flexibly change the sparsity. The stor-
age of auxiliary mapping in LSH-based Dedup can be reduced by
using large-sized tensor blocks. All the other methods have cer-
tain limitations on their compression capabilities. Other dynamic
encoding methods need to store feature-to-embedding mappings
with memory proportional to the number of features, leading to an
upper bound of 16× compression ratio. Quantization methods are
limited to several specific compression ratios: 2× and 4× for simple
INT8/16; 1.8× and 3.2× for ALPT which requires more memory for
feature-wise step sizes. Dimension reduction methods learn optimal
dimensions based on model quality rather than memory budgets:
MDE and AutoDim assign features with at least one dimension,

8

Table 5: Overall performance on DLRM.

Avazu Criteo Company
Methods Metrics 50% 10% 1% 0.1% 50% 10% 1% 0.1% 50% 1%

AUC 0.7543 (100.0%) 0.8061 (100.0%) 0.7583 (100.0%)
TrainMem 300.0% 300.0% 300.0%
TrainTime 1m36s 8m39s 9m45s

Ba
se
lin

e

Full

Latency 0.56ms 0.88ms 0.61ms
AUC 0.7491 0.7480 0.7472 / 0.8060 0.80533 0.8016 / 0.7503 0.7228

TrainMem 150.0% 30.0% 3.0% / 150.0% 30.0% 3.0% / 150.0% 3.0%
TrainTime 6m42s3 8m51s2 5m23s1 / 54m20s 51m41s3 50m27s3 / 2h20m 1h58m3

CompoEmb

Latency 3.27ms 3.34ms 2.83ms / 4.47ms 3.55ms 3.92ms / 6.67ms 6.57ms
AUC 0.7497 0.7537 0.7542 0.7517 0.7876 0.7993 0.8025 0.7997 0.7255 0.7329

TrainMem 149.3% 29.8% 2.9% 0.3% 149.4% 30.0% 3.0% 0.3% 149.9% 2.9%
TrainTime 7h29m 1h37m 36m32s 40m48s3 12h8m 12h4m 3h29m 4h30m 127h27m 5h53mTT-Rec

Latency 84.41ms 21.28ms 5.00ms 4.28ms 246.39ms 82.72ms 11.99ms 6.10ms 505.89ms 24.05ms
AUC 0.75831 0.75811 0.75861 0.75631 0.8056 0.80533 0.8027 0.8004 0.7532 0.74422

TrainMem 149.9% 30.0% 3.0% 0.3% 150.0% 30.0% 3.0% 0.3% 150.0% 3.0%
TrainTime 3h11m 45m15s 1h12m 12h53m 5h44m 2h10m 4h35m 12h14m 7h45m 34h29mDHE

Latency 5.81ms 3.37ms 3.02ms 5.91ms 12.86ms 6.52ms 6.26ms 8.58ms 17.05ms 20.35ms
AUC 0.6612 0.6522 0.6477 0.6407 0.7510 0.7479 0.7514 0.7490 0.5945 0.5828

TrainMem 150.0% 30.0% 3.0% 0.3% 150.0% 30.0% 3.0% 0.3% 150.0% 3.0%
TrainTime 11m11s 11m51s 1h6m 47m18s 5h13m 5h20m 5h13m 5h21m 8m6s1 8m4s1ROBE

Latency 0.66ms 0.66ms3 0.67ms3 0.65ms 0.92ms1 0.87ms1 0.95ms2 0.91ms2 0.67ms 0.67ms
AUC 0.75472 0.75552 0.75733 0.75602 0.80761 0.80711 0.80573 0.80351 0.75533 0.74203

TrainMem 300% 300% 300% 300% 300% 300% 300% 300% 300% 300%
TrainTime 2m44s2 5m58s1 9m54s2 11m12s1 10m10s2 10m7s1 18m48s1 29m9s1 10m1s2 10m24s2

St
at
ic
En

co
di
ng

Dedup

Latency 0.71ms 0.82ms 0.68ms 0.64ms2 1.29ms 1.04ms3 0.97ms3 0.86ms1 0.69ms 0.65ms3
AUC 0.7286 (16.0%) 0.7332 (11.1%) 0.7908 (16.1%) 0.7891 (11.2%) 0.6881 (16.0%) 0.6477 (11.1%)

TrainMem 322.3% 317.4% 322.7% 317.8% 322.2% 317.4%
TrainTime 20m0s 34m33s 56m37s 37m45s 3h36m 1h13mMGQE

Latency 3.40ms 3.24ms 4.33ms 4.37ms 6.72ms 6.74ms
AUC 0.7513 0.7484 0.7407 0.7302 0.8051 0.8026 0.7990 0.7921 0.75662 0.7136

TrainMem 154.4% 35.3% 9.2% 6.5% 154.4% 35.3% 9.2% 6.5% 154.4% 9.2%
TrainTime 13m58s 10m26s3 13m13s3 45m14s 52m3s 49m43s2 48m36s2 1h46m2 2h7m 2h11m

D
yn

am
ic
En

co
di
ng

AdaptEmb

Latency 4.63ms 3.59ms 3.40ms 3.13ms 5.79ms 4.40ms 5.01ms 4.55ms 7.32ms 7.30ms
AUC 0.75393 0.7524 (25.0%) 0.80712 0.8045 (25.0%) 0.7493 0.7536 (25.0%)

TrainMem 250.0% 225.0% 250.0% 225.0% 250.0% 225.0%
TrainTime 2m24s1 4m31s 9m44s1 8m8s 10m16s3 9m16sINT8/16

Latency 0.65ms3 0.65ms 1.01ms3 0.88ms 0.63ms3 0.58ms
AUC 0.7545 (56.3%) 0.7511 (31.3%) 0.8062 (56.3%) 0.8057 (31.3%) 0.7562 (56.3%) 0.7532 (31.3%)

TrainMem 268.8% 243.8% 268.8% 243.8% 268.8% 243.8%
TrainTime 3m5s 2m51s 15m46s 12m45s 16m28s 17m22sQ

ua
nt
iz
at
io
n

ALPT

Latency 0.63ms 0.64ms 0.92ms 1.01ms 0.59ms 0.61ms
AUC 0.7502 0.7504 (8.1%) 0.8044 0.8033 (9.3%) 0.76321 /

TrainMem 150.0% 24.3% 150.0% 27.9% 150.0% /
TrainTime 7m28s 4m54s 33m48s3 34m58s 1h35m /MDE

Latency 2.66ms 2.82ms 3.86ms 3.02ms 5.18ms /
AUC 0.7504 (46.4%) 0.8036 (46.0%) 0.7595 (37.3%)

TrainMem 562.5% 562.5% 562.5%
TrainTime 1h6m 5h13m 2h27mAutoDim

Latency 1.11ms 2.68ms 5.27ms
AUC 0.7484 (50.0%) 0.8019 (46.3%) 0.7610 (47.0%)

TrainMem 300.0% 300.0% 300.0%
TrainTime 16m17s 30m34s 1h57m

D
im

en
si
on

Re
du

ct
io
n

OptEmbed

Latency 0.57ms 0.79ms 0.65ms
AUC 0.7520 0.75543 0.75792 0.75263 0.8030 0.8050 0.80672 0.80193 0.7536 0.75041

TrainMem 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3%
TrainTime 3h32m 3h45m 5h25m 8h10m 3h11m 8h41m 15h38m 15h41m 31h25m 27h50mDeepLight

Latency 0.59ms2 0.63ms2 0.62ms2 0.64ms2 0.93ms2 0.91ms2 0.91ms1 0.93ms3 0.56ms1 0.58ms1
AUC 0.7518 0.7520 0.7526 0.7507 0.80663 0.80711 0.80681 0.80332 0.7529 0.7215

TrainMem 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3% 306.3%
TrainTime 22m36s 28m43s 29m55s 32m39s2 2h9m 2h2m 2h6m 2h9m3 4h21m 4h43m

Pr
un

in
g

AutoSrh

Latency 0.56ms1 0.57ms1 0.57ms1 0.62ms1 1.43ms 1.36ms 1.49ms 1.44ms 0.57ms2 0.59ms2

9

leading to an upper bound of 16× compression ratio; AutoDim and
OptEmbed achieve specific compression ratios within 2 − 2.7×.
5.2.2 Model AUC. In general, static encoding methods, quan-
tization methods, and pruning methods achieve the best
model AUC. For each memory budget, the methods with top-3
AUC are highlighted in bold, coupled with an underlined rank-
ing. There is no single method that performs best in all situations.
Specifically, quantization methods perform well around 25% or
50% of the baseline memory, since they do not change the original
training paradigm. DHE performs better on Avazu dataset, as it
adopts novel embedding structures with complex computations.
Pruning methods perform better on Criteo dataset, especially when
the memory budget is small. They can use more memory to em-
phasize important features, regardless of memory budgets. Dedup
achieves near-optimal performance on all datasets, demonstrating
the strength of similarity-based deduplication. Dimension reduction
methods can also achieve good model AUC by capturing feature
importance, but the results are mostly not comparable due to differ-
ent compression ratios. Which methods are suitable for different
datasets remains an open question, which we leave as future work.

Not all methods achieve better model AUC with larger memory
budgets. For TT-Rec and DHE, the dimension of matrix multipli-
cation increases as the memory budget increases, making the opti-
mization more difficult. For Dedup, within small memory budgets,
pooly-trained embeddings may be replaced by well-trained ones,
thus improving model quality. For MGQE, larger memory only
means the embeddings are split into more parts, with the centroids
memory unchanged. For pruning, some noisy redundant parame-
ters can be removed as the memory budget decreases, so the AUC
first increases and then decreases.
5.2.3 Training Memory. Static encoding methods (except for
Dedup) and MDE use the least memory during training, only
three times the inference memory budget considering the
optimizer states. Memory consumption during training is differ-
ent from inference. Many methods require training uncompressed
embeddings or other memory-intensive auxiliary modules. For the
Adam optimizer, we also need to store the first- and the second-
order momentum, making the memory usage at least three times
that of the inference process. Training memory is described as a
ratio of the baseline memory, independent of dataset size.

Static encoding methods (except for Dedup) and MDE have no
extra structures, and the trained parameters are directly used for
inference. They have a linear relationship between trainingmemory
and inference memory, where the exact multiple depends on the
optimizer. AdaptEmb records feature frequency during training.
Quantization only quantizes the embeddings, not the optimizer
states, so its training memory is large. MGQE, Dedup, dimension
reduction methods (except MDE) and pruning methods, require
full-embedding training which is at least three times the baseline
memory. Among them, AutoDim requires themostmemory because
it simultaneously trains all candidate dimensions.
5.2.4 Training Time. Simple hash-based methods (including
Dedup) and INT8/16 are fast to converge. We employ the early
stopping strategy and record the time for each method to converge,
including all stages. Methods with top-3 least training time are
highlighted in bold with an underlined ranking. Generally speaking,
the larger the dataset, the longer it takes for DLRM to converge.

Dedup and INT8/16 are the fastest to converge. They do not
change the training paradigm and involve negligible LSH dedupli-
cation and (de)quantization overhead. CompoEmb and AdaptEmb
are also fast to converge, requiring only minor modifications to the
training process. Other inter-feature compression methods either
involve complex computations, or require more epochs to converge
because they relax the abstraction of embedding tables. These also
result in large variance in their training times. Dimension reduction
methods and pruning methods have longer training times due to
the introduction of warm-up, search, and retraining stages. Further-
more, the alternative learning of model parameters and structural
parameters prolongs the training process.

There is not a clear relationship between the training time and
the memory budget. On the one hand, more memory may lead to
greater training complexity; on the other hand, less memory may
make it harder to achieve convergence.
5.2.5 Inference Latency. Dedup, ROBE, OptEmbed, quantiza-
tion methods, and pruning methods have the lowest infer-
ence latency. After training, the model checkpoints are saved for
inference. The methods with top-3 least inference latency are high-
lighted in bold with an underlined ranking. We use the same batch
size in training and inference. Criteo has greater latency than Avazu
with more embeddings to compute. The batch size of Company is
smaller than other datasets, so the latency is not comparable.

Dedup, ROBE, OptEmbed, quantization, and pruning all lookup
the embeddings from only one table (or array), resulting in low
inference latency. Dedup conducts similarity-based deduplication,
with no need to consider field information; ROBE designs an array
to share all embeddings. Except for Dedup and ROBE, inter-feature
compression methods have to perform compression within fields,
considering that features of the same field have similar seman-
tics. TT-Rec and DHE have the largest inference latency due to
time-consuming matrix multiplications. Quantization only incurs
negligible dequantization process during inference. Sparse tensors
in pruning may have fewer memory accesses with no additional
overheads. MDE and AutoDim introduce additional matrix multipli-
cations to align dimensions, thereby increasing inference latency.

If the time complexity is constant, the inference latency hardly
changes with the memory budget. In contrast, TT-Rec and DHE
perform more complex computations with larger memory budgets,
resulting in greater inference latency. However, when the memory
budget is too small, more fields may participate in compression,
also leading to greater latency.
5.2.6 Commercial Dataset. After analyzing the results on the
commercial dataset Company, we find that the conclusions
are consistent with those of the public datasets, despite some
minor differences. The training time variance is larger on Com-
pany, mainly because the larger Company dataset is more difficult
for compression methods to train. Compression methods perform
similarly on three datasets, because 1) the public datasets are also
collected from real recommendation scenarios; 2) our conclusions
are robust enough to be generalized to larger datasets. Since we
use compression ratios to study the performance, the absolute size
of the embedding table has little impact on the conclusions.
5.2.7 Discussion on Taxonomy. The current taxonomy is based
on the compression paradigm, which determines the imple-
mentation. For example, dynamic encoding requires recording

10

Figure 4: AUC of WDL and DCN.
dynamic mappings, quantization adopts low-precision data types,
and pruning stores embeddings in sparse tensor formats. In ex-
periments, methods of the same category have a certain degree of
similarity, but there may be differences in some metrics due to dif-
ferent specific techniques used. From the perspective of techniques,
inter-feature compression can be divided into simple hashing, com-
plex computation, similarity-based deduplication, vector quantiza-
tion; intra-feature compression can be divided into heuristic-based,
policy-gradient-based, DARTS-based, one-shot-NAS-based com-
pression. Our analysis considers both paradigms and techniques,
making the conclusions more comprehensive.
5.3 Impact of Neural Network Model
For another two recommendation models WDL [15] and DCN [90],
we plot the AUC of each compression method at each inference
memory budget in Figure 4. Despite minor differences compared to
DLRM, the ranking of the methods remains almost the same. The
neural networks’ memory consumption and processing time have
minor differences and do not impact the conclusions.

From the experimental results, we can see that the optimization
of the model and the selection of the compression method are
orthogonal, as the compression methods are decoupled from the
downstream neural network. Therefore, the conclusions we draw
on DLRM can be applied to other models as well.

Figure 5: AUC vs dimension. Figure 6: Allocation.

5.4 Impact of Dimension
In Section 5.2, we align the embedding dimension to the baseline.
However, methods that capture feature frequency or importance
generally prefer larger dimensions to allocate more memory for
more important features [12, 46, 55, 62, 64, 76]. In this section, we
enlarge the dimension to explore the potential of these methods.

Figure 5 shows the AUC for each compression method with di-
mension 16, 32, and 64. The inference memory budget is fixed at
10% of the baseline memory with dimension 16. In general, meth-
ods that adopt feature importance, including dynamic encoding,
dimension reduction, and pruning, have a certain increase in AUC
as the dimension increases. In contrast, static encoding methods
mostly do not benefit from larger dimensions.

In Figure 6, we visualize the actual memory allocated for each
feature in AutoSrh. Each point represents a feature: the x-axis is

its frequency, and the y-axis is the number of assigned parameters.
The allocated memory does not necessarily depend on frequency,
as frequency is only one factor of feature importance. As the dimen-
sion becomes larger, AutoSrh allocates more memory to important
features, explaining the effect of dimension increase.

On the other hand, when the dimension is enlarged, MGQE and
pruning methods also increase the training memory despite better
AUC. Their training memory scales linearly with the dimension.
Therefore, the choice of dimensions requires a careful trade-off
between model quality and training overhead.
5.5 Performance on Retrieval-augmented LLM
In this section, we apply compression methods to generated embed-
dings in a retrieval-augmented LLM. These generated embeddings
are different from parametric embeddings in DLRM: (1) the former
are the output of neural networks, while the latter are trainable
parameters; (2) the former are generated only after the training
stage when the parameters are fixed, while the latter are present
throughout the training process. Therefore, compression methods
that involve the training process, such as AutoML-based methods,
are not suitable for generated embeddings.

We select applicable compression methods or their variants for
evaluation, including TT (tensor-train decomposition), Dedup
(LSH-based deduplication), PQ (product quantization), MagPQ
(product quantization within embedding groups that are split by
magnitude), INT8/16 (quantization), SVD (dimension reduction),
MagSVD (SVD within embedding groups that are split by magni-
tude), Pruning (pruning values of low magnitude). MagPQ and
MagSVD are variants of MGQE and MDE respectively, replacing
missing frequency information with embeddings’ L2-norms.

We experiment with RAG [52] which uses DPR [42] for retrieval
and BART [51] for generation. We experiment on the open-domain
QA dataset Natural Questions (NQ) [47], with cleaned Wikipedia
articles (21 million) as the search corpus, following previous re-
search [24, 42, 52, 77, 110]. We retrieve top 10 documents for each
query. The embedding dimension is 768, which is much larger than
DLRM. Since the entire embeddings are generated after training,
we apply compression methods at the inference stage. Each exper-
iment is conducted on an Nvidia A100 40GB GPU card. Table 6
presents three metrics: Exact Match (EM) score, compression time,
and batched-decompression latency with a batch size of 1024.
5.5.1 Ability of Compression. TT,Dedup, andPruning can reach
all compression ratios. Similar to the DLRM experiment, we com-
press under four memory budgets. TT essentially performs two
SVD decompositions with moderate dimensions to enable a wide
range of compression ratios. In contrast, (Mag)SVD cannot support
too small memory budgets, because their memory scales linearly
with the corpus cardinality. Pure SVD cannot support too large

11

memory budgets, because decompositions with too large interme-
diate dimensions are difficult to compute. Dedup and Pruning have
adjustable thresholds, making them applicable for almost any mem-
ory budget. (Mag)PQ cannot support too large compression ratios
due to complex computations in clustering. INT8/16 support only
several compression ratios with fixed data types.
5.5.2 EmbeddingQuality. INT8/16, (Mag)SVD, Pruning achieve
best EM scores under large memory budget, while (Mag)PQ
achieve best EM scores under small memory budget. INT8/16
and PQ have been implemented in the well-known embedding
search library Faiss [39] due to their excellent embedding qual-
ity. MagPQ shows similar or even better performance than PQ
with less memory, demonstrating the effects of magnitude-aware
compression. MagSVD is also comparable to SVD and has better
compression capability. TT uses two SVD decompositions, which
greatly degrades performance. Dedup’s block-wise deduplication
may not perform well on this retrieval-related task.
5.5.3 Compression Time. INT8/16 has the smallest compres-
sion time, followed by Pruning. INT8/16 requires almost no
computation. Pruning uses an efficient binary search algorithm
to determine the threshold. Dedup uses L2LSH for deduplication
which is only efficient under large memory budgets when the block
size is large. (Mag)SVD is only efficient under small memory bud-
gets when the intermediate dimensions are small. TT and (Mag)PQ
are computationally expensive, resulting in long compression times.
5.5.4 Batched-decompression Latency. INT8/16 has the small-
est latency, followed by Pruning, Dedup, and (Mag)PQ. The
decompression of INT8/16 and CSR-format Pruning is fast with
little overhead. When the memory budget is small, Pruning uses
COO format, which is very slow for high-dimensional embeddings.
Dedup and (Mag)PQ look up embeddings from tensor blocks or
centroids, with no computation overhead. TT and (Mag)SVD adopt
matrix multiplication, leading to large decompression latency.

Table 6: Overall performance on RAG.
Methods Metrics 50% 10% 1% 0.1%

Full EM 41.14 (100.00%)
EM 22.02 11.47 6.54 4.38
Time 1h35m 42m46s 18m11s 13m22sTT
Latency 39.54s 9.14s 2.21s 482.77ms
EM 25.93 15.57 5.51 4.68
Time 11m3s 11m29s 33m36s 2h34mDedup
Latency 4.14ms 3.55ms 3.00ms 2.63ms
EM 35.32 (3.14%) 24.57 (1.58%)
Time 43m21s 40m33sPQ
Latency 8.29ms 9.09ms
EM 35.29 (2.99%) 33.99 (1.57%)
Time 1h9m 40m30sMagPQ
Latency 11.52ms 10.71ms
EM 41.02 38.06 (25.00%)
Time 4m60s 5m3sINT8/16
Latency 0.0513ms 0.0472ms
EM / 31.02 3.88 /
Time / 25m48s 10m4s /SVD
Latency / 16.86ms 11.58ms /
EM 41.11 30.89 4.04 /
Time 50m6s 17m16s 13m0s /MagSVD
Latency 65.83ms 35.56ms 25.57ms /
EM 37.29 17.15 4.24 4.04
Time 14m37s 11m2s 12m13s 13m25sPruning
Latency 3.13ms 3.42ms 3.23ms 1.33s

5.6 Further Discussions and Future Directions
5.6.1 Challenges. Currently, all compression methods have cer-
tain drawbacks, requiring users to carefully trade-off based on
practical needs. For DLRM, there is no method that combines good
model AUC, compression capability, low training overhead, and fast
processing. For retrieval-augmented LLM, research on embedding
compression is still in its early stages, with only a few specialized
compression methods available. Therefore, more comprehensive
and advanced methods are expected in both fields.

On the other hand, the relationship between datasets and com-
pression methods has not been studied. Our experiments show that
different methods perform better on different datasets in DLRM,
but it is unclear why. It is currently difficult to determine a proper
method for a given dataset without actual experiments.
5.6.2 Future Directions. A straightforward idea is to combine the
advantages of different compression methods in DLRM. For dy-
namic encoding, state-of-the-art static encoding and pruning meth-
ods can be integrated to achieve better model quality in online
scenarios. Quantization can be used as a plug-in module, contribut-
ing a fixed compression ratio with very low cost; another possible
improvement is to assign data types with different bits to differ-
ent features, borrowing ideas of capturing feature importance. Di-
mension reduction and pruning require pre-training, where static
encoding can be applied to avoid large training memory.

Currently, embedding compression for retrieval tasks mainly
uses quantization or PQ [39]. To the best of our knowledge, we
are the first to study other embedding compression methods for
retrieval. We anticipate that compression methods specifically de-
signed for retrieval will emerge in the future and can be combined
with embedding search to further improve performance. Inspired
by data skewness in DLRM, we are also curious whether retrieval
datasets also have such properties, which we leave as future work.

Moreover, studying the impact of recommendation data distri-
bution on compression methods is also a promising direction. At
present, for a given dataset we can only determine compression
methods experimentally. A deeper understanding of data will not
only help in the selection of compression methods, but also inspire
the development of more advanced methods.
6 CONCLUSION
In this paper, we surveyed existing embedding compression meth-
ods and proposed a new taxonomy. We modularized the compres-
sion pipeline and implemented a unified evaluation framework. We
conducted a comprehensive experimental evaluation to analyze
the performance of each method under different memory budgets.
The experimental results reveal the pros and cons of each method,
provide suggestions for method selection in different situations,
and shed light on promising research directions.

ACKNOWLEDGMENTS
This work is supported by National Key R&D Program of China
(2022ZD0116315), National Natural Science Foundation of China
(U22B2037 and U23B2048), and PKU-Tencent joint research Lab.
Yingxia Shao’s work is supported by the National Natural Science
Foundation of China (Nos. 62272054, 62192784), Beijing Nova Pro-
gram (No. 20230484319), the Fundamental Research Funds for the
Central Universities (No. 2023PY11) and Xiaomi Young Talents Pro-
gram. Bin Cui and Xupeng Miao are the co-corresponding authors.

12

REFERENCES
[1] Sajid Anwar, Kyuyeon Hwang, andWonyong Sung. 2017. Structured Pruning of

Deep Convolutional Neural Networks. ACM Journal on Emerging Technologies
in Computing Systems 13, 3 (2017), 32:1–32:18.

[2] Ron Banner, Yury Nahshan, and Daniel Soudry. 2019. Post training 4-bit quanti-
zation of convolutional networks for rapid-deployment. In Advances in Neural
Information Processing Systems 32 (NeurIPS).

[3] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. 2018. Can We Gain More
from Orthogonality Regularizations in Training Deep Networks?. In Advances
in Neural Information Processing Systems 31 (NeurIPS).

[4] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman
Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cas-
sirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon
Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. 2022.
Improving Language Models by Retrieving from Trillions of Tokens. In Proceed-
ings of the 39th International Conference on Machine Learning (ICML).

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, JeffreyWu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. In Advances in Neural Information Processing Systems 33 (NeurIPS).

[6] Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-Jui Hsieh. 2018.
GroupReduce: Block-Wise Low-Rank Approximation for Neural Language
Model Shrinking. In Advances in Neural Information Processing Systems 31
(NeurIPS).

[7] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In Advances in Neural Information
Processing Systems 34 (NeurIPS).

[8] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned
Optimizer towards Generating Efficient and Robust Query Execution Plans.
Proceedings of the VLDB Endowment 16, 7 (2023), 1777–1789.

[9] Ting Chen, Lala Li, and Yizhou Sun. 2020. Differentiable Product Quantization
for End-to-End Embedding Compression. In Proceedings of the 37th International
Conference on Machine Learning (ICML).

[10] Ting Chen, Martin Renqiang Min, and Yizhou Sun. 2018. Learning K-way
D-dimensional Discrete Codes for Compact Embedding Representations. In
Proceedings of the 35th International Conference on Machine Learning (ICML).

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-
End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[12] Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang.
2021. Learning Elastic Embeddings for Customizing On-Device Recommenders.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining (KDD).

[13] Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, and
Tong Zhang. 2021. KallaxDB: A Table-less Hash-based Key-Value Store on
Storage Hardware with Built-in Transparent Compression. In Proceedings of the
17th International Workshop on Data Management on New Hardware (DaMoN).

[14] Yizhou Chen, Guangda Huzhang, Anxiang Zeng, Qingtao Yu, Hui Sun, Heng-Yi
Li, Jingyi Li, Yabo Ni, Han Yu, and Zhiming Zhou. 2023. Clustered Embedding
Learning for Recommender Systems. In Proceedings of the Web Conference
(WWW).

[15] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the
1st Workshop on Deep Learning for Recommender Systems (DLRS@RecSys).

[16] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020. Differentiable Neural
Input Search for Recommender Systems. CoRR abs/2006.04466 (2020).

[17] DeepRec. 2021. Adaptive Embedding. https://github.com/alibaba/DeepRec/blo
b/main/docs/docs_en/Adaptive-Embedding.md.

[18] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang
Lin. 2021. DeepLight: Deep Lightweight Feature Interactions for Accelerating
CTR Predictions in Ad Serving. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining (WSDM).

[19] Aditya Desai, Li Chou, and Anshumali Shrivastava. 2022. Random Offset
Block Embedding (ROBE) for compressed embedding tables in deep learning
recommendation systems. In Proceedings of Machine Learning and Systems
(MLSys).

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT).

[21] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. Proceedings of the VLDB Endowment 11, 11 (2018), 1454–1467.

[22] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Ap-
puswamy, and Dharmendra S. Modha. 2020. Learned Step Size quantization. In
8th International Conference on Learning Representations (ICLR).

[23] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In 7th International Conference on
Learning Representations (ICLR).

[24] Luyu Gao and Jamie Callan. 2021. Condenser: a Pre-training Architecture for
Dense Retrieval. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

[25] Antonio A. Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James
Zou. 2021. Mixed Dimension Embeddings with Application to Memory-Efficient
Recommendation Systems. In IEEE International Symposium on Information
Theory (ISIT).

[26] Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park, and Hector Yuen. 2019.
Post-Training 4-bit Quantization on Embedding Tables. InWorkshop on Systems
for ML at NeurIPS.

[27] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang Qiao,
Ting Wang, Bo Tang, and Charles Xie. 2022. Manu: A Cloud Native Vector
Database Management System. Proceedings of the VLDB Endowment 15, 12
(2022), 3548–3561.

[28] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
32nd International Conference on Machine Learning (ICML).

[29] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang.
2020. Retrieval Augmented Language Model Pre-Training. In Proceedings of the
37th International Conference on Machine Learning (ICML).

[30] Peng Han, Silin Zhou, Jie Yu, Zichen Xu, Lisi Chen, and Shuo Shang. 2023.
Personalized Re-ranking for Recommendation with Mask Pretraining. Data
Science and Engineering 8, 4 (2023), 357–367.

[31] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both
Weights and Connections for Efficient Neural Network. In Advances in Neural
Information Processing Systems 28 (NeurIPS).

[32] Teng-Yue Han, Pengfei Wang, and Shaozhang Niu. 2023. Multimodal Interactive
Network for Sequential Recommendation. Journal of Computer Science and
Technology 38, 4 (2023), 911–926.

[33] Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena D. Orlova,
and Ivan V. Oseledets. 2020. Tensorized Embedding Layers. In Findings of the
Association for Computational Linguistics (EMNLP).

[34] Ruihong Huang, Shaoxu Song, Yunsu Lee, Jungho Park, Soo-Hyung Kim, and
Sungmin Yi. 2020. Effective and Efficient Retrieval of Structured Entities. Pro-
ceedings of the VLDB Endowment 13, 6 (2020), 826–839.

[35] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations. The Journal of Machine Learning Research
18 (2017), 187:1–187:30.

[36] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality. In Proceedings of the 30th Annual
ACM Symposium on the Theory of Computing (STOC).

[37] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117–128.

[38] Manas R. Joglekar, Cong Li, Mei Chen, Taibai Xu, XiaomingWang, Jay K. Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V. Le. 2020. Neural Input Search for
Large Scale Recommendation Models. In Proceedings of the 26th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD).

[39] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-Scale Similarity
Search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[40] Wang-Cheng Kang, Derek Zhiyuan Cheng, Ting Chen, Xinyang Yi, Dong Lin,
Lichan Hong, and Ed H. Chi. 2020. Learning Multi-granular Quantized Em-
beddings for Large-Vocab Categorical Features in Recommender Systems. In
Companion Proceedings of The Web Conference.

[41] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting
Chen, Lichan Hong, and Ed H. Chi. 2021. Learning to Embed Categorical
Features without Embedding Tables for Recommendation. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD).

[42] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP).

13

https://github.com/alibaba/DeepRec/blob/main/docs/docs_en/Adaptive-Embedding.md
https://github.com/alibaba/DeepRec/blob/main/docs/docs_en/Adaptive-Embedding.md

[43] Hyeonji Kim, Byeong-Hoon So,Wook-ShinHan, andHongrae Lee. 2020. Natural
language to SQL: Where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737–1750.

[44] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In 3rd International Conference on Learning Representations (ICLR).

[45] Adrian Kochsiek and Rainer Gemulla. 2021. Parallel Training of Knowledge
Graph Embedding Models: A Comparison of Techniques. Proceedings of the
VLDB Endowment 15, 3 (2021), 633–645.

[46] Shuming Kong,Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2023. AutoSrh:
An Embedding Dimensionality Search Framework for Tabular Data Prediction.
IEEE Transactions on Knowledge and Data Engineering 35, 7 (2023), 6673–6686.

[47] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,
Ankur P. Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang,
Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural
Questions: a Benchmark for Question Answering Research. Transactions of the
Association for Computational Linguistics 7 (2019), 452–466.

[48] Suyong Kwon, Woohwan Jung, and Kyuseok Shim. 2022. Cardinality Estimation
of Approximate Substring Queries using Deep Learning. Proceedings of the
VLDB Endowment 15, 11 (2022), 3145–3157.

[49] Criteo Labs. 2014. Kaggle display advertising challenge dataset. https://labs.cri
teo.com/2014/02/kaggle-display-advertising-challenge-dataset.

[50] Seulki Lee and Shahriar Nirjon. 2020. Fast and scalable in-memory deep multi-
task learning via neural weight virtualization. In Proceedings of the 18th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys).

[51] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural LanguageGeneration,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL).

[52] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Infor-
mation Processing Systems 33 (NeurIPS).

[53] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Gold-
stein. 2017. Training Quantized Nets: A Deeper Understanding. In Advances in
Neural Information Processing Systems 30 (NeurIPS).

[54] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
2017. Pruning Filters for Efficient ConvNets. In 5th International Conference on
Learning Representations (ICLR).

[55] Shiwei Li, Huifeng Guo, Lu Hou, Wei Zhang, Xing Tang, Ruiming Tang, Rui
Zhang, and Ruixuan Li. 2023. Adaptive Low-Precision Training for Embeddings
in Click-Through Rate Prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

[56] Yang Li, Tong Chen, Peng-Fei Zhang, and Hongzhi Yin. 2021. Lightweight
Self-Attentive Sequential Recommendation. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management (CIKM).

[57] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing
Xie. 2020. LightRec: A Memory and Search-Efficient Recommender System. In
Proceedings of the Web Conference (WWW).

[58] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong Wang, Yongjun He,
Honghuan Wu, Lei Sun, Haodong Lyu, Chengjun Liu, Xing Dong, Yiqiao Liao,
Mingnan Luo, Congfei Zhang, Jingru Xie, Haonan Li, Lei Chen, Renjie Huang,
Jianying Lin, Chengchun Shu, Xuezhong Qiu, Zhishan Liu, Dongying Kong,
Lei Yuan, Hai Yu, Sen Yang, Ce Zhang, and Ji Liu. 2022. Persia: An Open,
Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion
Parameters. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (KDD).

[59] Weilin Lin, Xiangyu Zhao, Yejing Wang, Tong Xu, and Xian Wu. 2022. AdaFS:
Adaptive Feature Selection in Deep Recommender System. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD).

[60] Haochen Liu, Xiangyu Zhao, Chong Wang, Xiaobing Liu, and Jiliang Tang.
2020. Automated Embedding Size Search in Deep Recommender Systems. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR).

[61] Jie Liu,Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and Accu-
rate Deep Ensembles with Uncertainty for Cardinality Estimation. Proceedings
of the VLDB Endowment 14, 11 (2021), 1950–1963.

[62] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable
Embedding sizes for Recommender Systems. In 9th International Conference on
Learning Representations (ICLR).

[63] Fuyuan Lyu, Xing Tang, Dugang Liu, Liang Chen, Xiuqiang He, and Xue Liu.
2023. Optimizing Feature Set for Click-Through Rate Prediction. In Proceedings
of the Web Conference (WWW).

[64] Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming
Tang, and Xue Liu. 2022. OptEmbed: Learning Optimal Embedding Table for
Click-through Rate Prediction. In Proceedings of the 31st ACM International

Conference on Information & Knowledge Management (CIKM).
[65] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61–68.

[66] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approx-
imate Nearest Neighbor Search Using Hierarchical Navigable Small World
Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4
(2020), 824–836.

[67] Xupeng Miao, Xiaonan Nie, Hailin Zhang, Tong Zhao, and Bin Cui. 2023. Hetu:
a highly efficient automatic parallel distributed deep learning system. Science
China Information Sciences 66, 1 (2023).

[68] Xupeng Miao, Yining Shi, Hailin Zhang, Xin Zhang, Xiaonan Nie, Zhi Yang, and
Bin Cui. 2022. HET-GMP: A Graph-based System Approach to Scaling Large
Embedding Model Training. In Proceedings of the International Conference on
Management of Data (SIGMOD).

[69] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao,
and Bin Cui. 2022. HET: Scaling out Huge Embedding Model Training via
Cache-enabled Distributed Framework. Proceedings of the VLDB Endowment 15,
2 (2022), 312–320.

[70] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich
Elsen, David García, Boris Ginsburg,Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In 6th International
Conference on Learning Representations (ICLR).

[71] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang,
Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,
Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang,
Ellie Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts,
Krishna Dhulipala, K. R. Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar
Matam, Adi Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Kr-
ishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya,
Petr Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy,
Bill Jia, and Vijay Rao. 2022. Software-hardware co-design for fast and scalable
training of deep learning recommendation models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (ISCA).

[72] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia
Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr
Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia,
Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation
Model for Personalization and Recommendation Systems. CoRR abs/1906.00091
(2019).

[73] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of the Workshop on Cognitive
Computation at NeurIPS (CoCo@NeurIPS).

[74] Niketan Pansare, Jay Katukuri, Aditya Arora, Frank Cipollone, Riyaaz Shaik,
Noyan Tokgozoglu, and Chandru Venkataraman. 2022. Learning Compressed
Embeddings for On-Device Inference. In Proceedings of Machine Learning and
Systems (MLSys).

[75] NVIDIA AI platform. 2020. MLPerf Benchmark. https://mlperf.org.
[76] Liang Qu, Yonghong Ye, Ningzhi Tang, Lixin Zhang, Yuhui Shi, and Hongzhi

Yin. 2022. Single-shot Embedding Dimension Search in Recommender System.
In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR).

[77] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao,
Daxiang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized
Training Approach to Dense Passage Retrieval for Open-Domain Question
Answering. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT).

[78] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. The
Journal of Machine Learning Research 21 (2020), 140:1–140:67.

[79] Jie Ren, Minjia Zhang, and Dong Li. 2020. HM-ANN: Efficient Billion-Point
Nearest Neighbor Search on Heterogeneous Memory. In Advances in Neural
Information Processing Systems 33 (NeurIPS).

[80] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-
Efficient Key-Value Storage Engine For Semi-Sorted Data. Proceedings of the
VLDB Endowment 10, 13 (2017), 2037–2048.

[81] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and
Carole-Jean Wu. 2022. RecShard: statistical feature-based memory optimization
for industry-scale neural recommendation. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

14

https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset
https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset
https://mlperf.org

[82] Pengyang Shao, Le Wu, Lei Chen, Kun Zhang, and Meng Wang. 2022. FairCF:
fairness-aware collaborative filtering. Science China Information Sciences 65, 12
(2022).

[83] Jiayi Shen, Haotao Wang, Shupeng Gui, Jianchao Tan, Zhangyang Wang, and
Ji Liu. 2021. UMEC: Unified model and embedding compression for efficient
recommendation systems. In 9th International Conference on Learning Represen-
tations (ICLR).

[84] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.
2020. Compositional Embeddings Using Complementary Partitions for Memory-
Efficient Recommendation Systems. In Proceedings of the 26th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD).

[85] Raphael Shu and Hideki Nakayama. 2018. Compressing Word Embeddings via
Deep Compositional Code Learning. In 6th International Conference on Learning
Representations (ICLR).

[86] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-
hankar Krishnaswamy, and Rohan Kadekodi. 2019. Rand-NSG: Fast Accurate
Billion-point Nearest Neighbor Search on a Single Node. In Advances in Neural
Information Processing Systems 32 (NeurIPS).

[87] Dan Svenstrup, Jonas Meinertz Hansen, and Ole Winther. 2017. Hash Embed-
dings for Efficient Word Representations. In Advances in Neural Information
Processing Systems 30 (NeurIPS).

[88] Manasi Vartak, Joana M. F. da Trindade, Samuel Madden, and Matei Zaharia.
2018. MISTIQUE: A System to Store and Query Model Intermediates for Model
Diagnosis. In Proceedings of the International Conference on Management of Data
(SIGMOD).

[89] QinyongWang, Hongzhi Yin, Tong Chen, Zi Huang, HaoWang, Yanchang Zhao,
and Nguyen Quoc Viet Hung. 2020. Next Point-of-Interest Recommendation
on Resource-Constrained Mobile Devices. In Proceedings of the Web Conference
(WWW).

[90] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross
Network for Ad Click Predictions. In Proceedings of the ADKDD’17.

[91] Steve Wang and Will Cukierski. 2014. Avazu Click-Through Rate Prediction.
https://kaggle.com/competitions/avazu-ctr-prediction.

[92] Yejing Wang, Xiangyu Zhao, Tong Xu, and Xian Wu. 2022. AutoField: Automat-
ing Feature Selection in Deep Recommender Systems. In Proceedings of the Web
Conference (WWW).

[93] Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias Langer, Fan Yu, Jie Liu,
Shijie Liu, Daniel G. Abel, Xu Guo, Jianbing Dong, Ji Shi, and Kunlun Li. 2022.
Merlin HugeCTR: GPU-accelerated Recommender System Training and In-
ference. In Proceedings of the 16th ACM Conference on Recommender Systems
(RecSys).

[94] Zhikun Wei, Xin Wang, and Wenwu Zhu. 2021. AutoIAS: Automatic Integrated
Architecture Searcher for Click-Trough Rate Prediction. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management
(CIKM).

[95] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola,
and Josh Attenberg. 2009. Feature hashing for large scale multitask learning. In
Proceedings of the 26th International Conference on Machine Learning (ICML).

[96] Carole-Jean Wu, Robin Burke, Ed H. Chi, Joseph A. Konstan, Julian J. McAuley,
Yves Raimond, and Hao Zhang. 2020. Developing a Recommendation Bench-
mark for MLPerf Training and Inference. CoRR abs/2003.07336 (2020).

[97] ZhijingWu, Yiqun Liu, Jiaxin Mao, Min Zhang, and ShaopingMa. 2022. Leverag-
ing Document-Level and Query-Level Passage Cumulative Gain for Document
Ranking. Journal of Computer Science and Technology 37, 4 (2022), 814–838.

[98] Tesi Xiao, Xia Xiao, Ming Chen, and Youlong Chen. 2022. Field-wise Embedding
Size Search via Structural Hard Auxiliary Mask Pruning for Click-Through Rate
Prediction. In Proceedings of the Workshop on Deep Learning for Search and
Recommendation (DL4SR) at CIKM.

[99] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, BihaiWu, Jiazhen
Lin, Hongbo Ao, Wanhong Xu, and Jiwu Shu. 2020. Kraken: memory-efficient
continual learning for large-scale real-time recommendations. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

[100] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In 9th International
Conference on Learning Representations (ICLR).

[101] Zhiqiang Xu, Dong Li, Weijie Zhao, Xing Shen, Tianbo Huang, Xiaoyun Li,
and Ping Li. 2021. Agile and Accurate CTR Prediction Model Training for
Massive-Scale Online Advertising Systems. In Proceedings of the International
Conference on Management of Data (SIGMOD).

[102] Bencheng Yan, Pengjie Wang, Jinquan Liu, Wei Lin, Kuang-Chih Lee, Jian Xu,
and Bo Zheng. 2021. Binary Code based Hash Embedding for Web-scale Appli-
cations. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management (CIKM).

[103] Bencheng Yan, PengjieWang, Kai Zhang, Wei Lin, Kuang-Chih Lee, Jian Xu, and
Bo Zheng. 2021. Learning Effective and Efficient Embedding via an Adaptively-
Masked Twins-based Layer. In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management (CIKM).

[104] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, and Andrew
Tulloch. 2020. Mixed-Precision Embedding Using a Cache. CoRR abs/2010.11305
(2020).

[105] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and Sourav S.
Bhowmick. 2020. Scaling Attributed Network Embedding to Massive Graphs.
Proceedings of the VLDB Endowment 14, 1 (2020), 37–49.

[106] Yao Yao, Bin Liu, Haoxun He, Dakui Sheng, Ke Wang, Li Xiao, and Huanhuan
Cao. 2023. i-Razor: A Differentiable Neural Input Razor for Feature Selection
and Dimension Search in DNN-Based Recommender Systems. IEEE Transactions
on Knowledge & Data Engineering 01 (2023), 1–14.

[107] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. 2021. TT-Rec: Tensor
Train Compression for Deep Learning Recommendation Models. In Proceedings
of Machine Learning and Systems (MLSys).

[108] Zhiyang Yuan, Wenguang Zheng, Peilin Yang, Qingbo Hao, and Yingyuan Xiao.
2023. Evolving Interest with Feature Co-action Network for CTR Prediction.
Data Science and Engineering 8, 4 (2023), 344–356.

[109] Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay
Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
Prasang Upadhyaya, Ferenc Huszar, and Wenzhe Shi. 2020. Model Size Reduc-
tion Using Frequency Based Double Hashing for Recommender Systems. In
Proceedings of the 14th ACM Conference on Recommender Systems (RecSys).

[110] Hailin Zhang, Yujing Wang, Qi Chen, Ruiheng Chang, Ting Zhang, Ziming
Miao, Yingyan Hou, Yang Ding, Xupeng Miao, Haonan Wang, Bochen Pang,
Yuefeng Zhan, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Xing Xie, Mao
Yang, and Bin Cui. 2023. Model-enhanced Vector Index. CoRR abs/2309.13335
(2023).

[111] Jia-Dong Zhang and Chi-Yin Chow. 2015. GeoSoCa: Exploiting Geographical,
Social and Categorical Correlations for Point-of-Interest Recommendations. In
Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR).

[112] Jian Zhang, Jiyan Yang, and Hector Yuen. 2018. Training with low-precision
embedding tables. In Workshop on Systems for ML at NeurIPS.

[113] Yuanxing Zhang, Langshi Chen, Siran Yang, Man Yuan, Huimin Yi, Jie Zhang,
JiamangWang, Jianbo Dong, Yunlong Xu, Yue Song, Yong Li, Di Zhang, Wei Lin,
Lin Qu, and Bo Zheng. 2022. PICASSO: Unleashing the Potential of GPU-centric
Training for Wide-and-deep Recommender Systems. In 38th IEEE International
Conference on Data Engineering (ICDE).

[114] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming
Sun, and Ping Li. 2020. Distributed Hierarchical GPU Parameter Server for
Massive Scale Deep Learning Ads Systems. In Proceedings of Machine Learning
and Systems (MLSys).

[115] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
2019. AIBox: CTR Prediction Model Training on a Single Node. In Proceedings of
the 28th ACM International Conference on Information & Knowledge Management
(CIKM).

[116] Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang,
Ming Chen, Xudong Zheng, Xiaobing Liu, and Xiwang Yang. 2021. AutoEmb:
Automated Embedding Dimensionality Search in Streaming Recommendations.
In IEEE International Conference on Data Mining (ICDM).

[117] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2021. AutoDim: Field-aware Embedding Di-
mension Searchin Recommender Systems. In Proceedings of the Web Conference
(WWW).

[118] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proceedings of the
VLDB Endowment 15, 8 (2022), 1658–1670.

[119] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma,
Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network
for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD).

[120] Lixi Zhou, Jiaqing Chen, Amitabh Das, Hong Min, Lei Yu, Ming Zhao, and Jia
Zou. 2022. Serving Deep Learning Models with Deduplication from Relational
Databases. Proceedings of the VLDB Endowment 15, 10 (2022), 2230–2243.

[121] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open
Benchmarking for Click-Through Rate Prediction. In Proceedings of the 30th
ACM International Conference on Information &KnowledgeManagement (CIKM).

15

https://kaggle.com/competitions/avazu-ctr-prediction

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 DLRM
	2.2 Retrieval-augmented LLM
	2.3 Problem Definition
	2.4 Scope

	3 Overview of Embedding Compression
	3.1 Inter-feature Compression
	3.2 Intra-feature Compression

	4 Evaluation Framework
	5 Experiments and Analysis
	5.1 Experiment Settings of DLRM
	5.2 Performance on DLRM
	5.3 Impact of Neural Network Model
	5.4 Impact of Dimension
	5.5 Performance on Retrieval-augmented LLM
	5.6 Further Discussions and Future Directions

	6 Conclusion
	Acknowledgments
	References

