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Abstract—In network measurement, sliding window measurement has the advantage of providing recent and timely measurement
results. Recently, sketches have become the most popular method of conducting flow-level network measurements due to their
favorable trade-off between small memory overhead and high measurement accuracy. However, it remains a challenge that no current
sketches are able to support unbiased estimation toward flow size measurement, which can improve the performance of tasks
including network diagnoses, delay measurement and heavy hitter detection. In this paper, we propose the first work that achieves
unbiased flow size measurement in sliding windows, namely Unbiased Cleaning sketch (UC sketch). The key technique of the UC
sketch is Unbiased Cleaning which can remove outdated keys from the sliding windows in a balanced way. Besides, we significantly
reduce the variance of flow size by two optimization techniques, namely Linear Scaling and Column Randomizing. To prove the result,
we conduct rigorous mathematical analysis and reasonable experiments. All related source codes are open-sourced at Github.
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1 INTRODUCTION
1.1 Background and Motivation

Sketches are widely used in network measurement [1]–[9]
due to their high accuracy and low memory requirements
(usually less than 1 MB), making them particularly suitable
for memory-constrained environments, such as the L2 cache
in software switches or programmable switches with limited
memory of several 10 MB [10]. Among all measurement
tasks, flow size measurement, which involves counting the
number of packets with the same key (e.g., 5-tuple), is criti-
cal for various system decision-making processes, including
traffic engineering [11], [12] and load balancing [13]–[15].
There are two models for flow size estimation: 1) Fixed win-
dow model: it divides the time into fixed time windows and
estimates sizes of flow that appears in each time window,
and a lot of existing work falls in this category [16]–[19]. 2)
Sliding window model: supports real-time queries on flows
in a time window right before each query, and it is a more
challenging task and has fewer works [20], [21] because it is
challenging to keep track of a sliding window where there
are constantly new packets arriving and outdated packets
getting evicted. This paper focuses on the sliding window
model. We conduct flow size measurement on the most
recent packets (e.g., the latest 10M packets or the packets
in recent 1 second), and captures the latest characteristics of
a data stream in real-time.

Unbiasedness is a widely acknowledged property in
network measurement of practical importance. In theoretical
analysis, the unbiased estimation can eliminate systematical
errors [22] and provide the basis for further analysis, e.g.,
deriving error bounds based on variance and Chebyshev
inequality [23]. In many applications, unbiased flow size
measurement serves well in network diagnoses [24], delay
distribution estimation [25], and heavy hitter detection [4],
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[26]. Therefore, it is practically significant to achieve unbiased
flow size estimation under sliding windows, which is abbrevi-
ated as Unbiased Sliding for convenience.

It is challenging to achieve Unbiased Sliding for two
reasons. First, it is memory-consuming to keep all keys and
then delete them in real time as the past packets move out
of the sliding window. Consider a straightforward approach
that uses a queue to record all keys and delete the tail
record when adding a new record to the head. Another
approach is to use a counter for tracking the flow size
and a timestamp for the arrival time of the last packet of
this flow, while we may scan all counters to remove those
with outdated timestamps. Both approaches are memory-
consuming. Second, unbiasedness must be formally proved,
which turns out to be a challenging task. Among all existing
works, only the Count sketch [27], the CMM sketch [28], and
the CSM [29] sketch have been proven to be unbiased under
the fixed window model. To the best of our knowledge, no
existing work has achieved Unbiased Sliding.

1.2 Proposed Solution

This paper proposes the Unbiased Cleaning sketch, UC
sketch for short, which is the first solution for unbiased
flow size estimation under sliding windows. The key idea
is to let time-dependent deviations (i.e., estimation biases
incurred by removing old keys too early or too late) cancel
each other out. In the first step of our design, assuming
that queries are uniformly distributed over time, we de-
vise an unbiased estimator that neutralizes time-dependent
deviations through randomized key removal. Our second
step will remove the assumption with randomized window
alignment that achieves unbiased estimation for any query
arrival pattern.

One way to implement sliding window is to divide the
time window into d segments and use d+1 counters for each
flow, with one counter tracking the flow sizes in the current



time segment and d counters recording the heaviness of the
flows in the previous d segments. At the end of the current
time segment, the counter for the oldest time segment is
zeroed out, which essentially removes the occurrences of
the flow key during the oldest segment and thus frees up
the counter for the next time segment. When a query about
the key arrives, if we return the sum of the first d counters,
it will be an under-estimation with a negative bias. If we
return the sum of all d + 1 counters, it will be an over-
estimation with a positive bias. These d+1 counters together
form an estimator. To reduce the overall number of counters,
we may share a certain number of estimators for a much
larger number of keys based on a hashing structure such
as the Count sketch [27], which will make our analysis
much more complicated—to illustrate our idea below, we
will leave out estimator sharing.

To remove the negative/positive biases, when answering
a query on the size of a flow, we will include the last counter
with 50% probability at random, which essentially removes
the occurrences of the key in the oldest time segment with
50% probability. We have proved that, under the assumption
that the query arrival is uniformly random, the bias in our
estimation is zero when we set the length of each time
segment to be t = W

d+0.5 , where W is the size of the sliding
window.

To remove the above assumption of random query ar-
rival, we adopt a data structure consisting of several arrays
of estimators that are shared by all keys. These estimators
have different segment beginning times, which are dis-
tributed uniformly at random based on a pseudo-random
mechanism such as hashing; hence, the segment beginning
time of each estimator is predictable. In other words, con-
sidering an arbitrary period of [0, t), the estimators will
each remove its last counter and use the counter for a new
segment at an arbitrary instance during the period. Each key
will be hashed to and recorded by multiple estimators. The
query results from these estimators will differ depending on
when they start their time segments, which causes negative
or positive biases that follow a certain uniform distribution,
allowing us to perform bias removal.

Furthermore, we propose two optimization techniques.
One is called Linear Scaling, which significantly reduces
the variance of our unbiased estimation, as it produces a
median-unbiased flow size estimate, rather than a mean-
unbiased one. The other is called Column Randomizing,
which can further reduce the variance by eliminating errors
due to hash collisions. Based on the unbiased flow size
estimation, we applied Unbiased Cleaning sketch to three
tasks, including heavy hitters, estimating subset sum, and
estimating distributed sum. In this paper, we introduce
related work in Section 2, present our algorithm in Section
3, conduct mathematical analysis in Section 4, and provide
experiment results in Section 5.

2 RELATED WORK

In this section, we show two kinds of algorithms for es-
timating the flow size in the sliding window, sketch-based
algorithms and KV-based algorithms. The sketch-based algo-
rithms save the flow size information through linear pro-

jections. The KV-based algorithms record Key-Value pairs
〈flowkey, flowsize〉 for flows.

2.1 Preliminaries

Data Stream: a data stream S is a sequence of keys (e.g., 5-
tuple of packet headers), i.e., S = {e1, e2, e3, . . . }. Each key
appears once or more than once.
Sliding-window Model: A sliding window includes the
keys which appear most recently in the data stream. A
sliding window with size W could be time-based, i.e.,
including the keys appearing in the last W time units, or
count-based, i.e., including the last W keys. The size of flow
e, denoted as fe, is defined as the number of times that key
e appears in the sliding window. An estimation f̂e of fe is
called unbiased only if its expected value is equal to fe (i.e.,
E(f̂e) = fe). As this paper focuses on estimating flow sizes
in the sliding window, for other tasks in the sliding window,
please refer to the literature [30]–[38].

2.2 Sketch-based Algorithms

Sketches [39]–[51] are a kind of probabilistic highly-compact
data structure for inexact flow size estimation. Traditional
sketches are used for flow size estimation in the whole data
stream, and they do not support the sliding window, includ-
ing CM [16], CU [18], Count [27], and Augmented [52].

In fixed-window estimation, there are two types of
sketches that can achieve unbiased estimation: counter-
based sketches (including Count, CMM and CSM) and ID-
based sketches (including Waving [53], USS [54], and Coco
[19]). We will introduce counter-based sketches using Count
Sketch as an example. Count is a sketch that achieves
unbiased flow size estimation. A Count sketch consists of
multiple arrays, each containing many counters. Each array
is associated with two hash functions, including a hash
function h(·) that maps each key to a counter and a hash
function s(·) that maps keys to a value t ∈ {+1,−1}. To
insert a key, for each array, Count maps the key to a counter,
namely mapped counters, by hash function h(·), and maps
the key to a value t by s(·). Then, for each array, Count
adds t to the mapped counter. The value of each counter in
Count is called unbiased sum. To estimate the size of a flow,
the sketch multiplies the value of each mapped counter by
t, and answers the median (known as median-unbiased)
of these products. Count is unbiased in fixed windows,
but it cannot be applied to the sliding window model.
CMM and CSM achieve unbiasedness through the mean,
which is called mean-unbiased. While ID-based sketches,
including Waving [53], USS [54], and Coco [19], can achieve
unbiased estimation in fixed windows by storing keys and
using probabilistic replacements, they differ significantly
from Count. Hence, we will focus on a design based on
Count.

For the sliding window [55]–[63], there are three typical
sketches, the ECM sketch [64], the Proportional Windowed
Count-Min (PROPORTIONAL) [65], and the splitter win-
dowed count-min sketch (SPLITTER) [65]. The ECM sketch
combines the CM sketches and exponential histograms [55].
The exponential histograms divide the sliding window into
smaller windows with different sizes and answer the query
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by summarizing the answer from different smaller win-
dows. The idea of Sliding sketch [66] and SHE [67] is very
similar to that of ECM. PROPORTIONAL, which is based
on the CM sketch, proportionally decreases the counter of
the CM sketch to remove keys outside the sliding window,
while SPLITTER, another CM-based sketch, records the
changes of a cell, including the time and value.

2.3 KV-based Algorithms

There are two typical algorithms for both estimating flow
size and finding heavy hitters in the sliding window,
SWAMP [68] and WCSS [69]. However, both of them are not
unbiased for any task. SWAMP supports multiple functions
in sliding windows at the same time. It uses a cyclic queue to
record all keys in the sliding window and uses a hash table
technique, Tiny Table [70], to update and query information
of keys in the cyclic queue. Instead of storing all keys in
the sliding window, WCSS only stores keys of heavy flows.
WCSS divides the window to multiple fixed time blocks and
uses a novel structure called CSS to record the size of flows
in each time block. But both of them are not unbiased.

TABLE 1: Main Notations Used in Section 3

Notation Meaning
W size of a sliding window
ei ith key in a data stream S
T current time
t size of a time segment, which equals the period of

the scanner
k number of matrices in UC sketch
b number of rows (estimators) in a matrix
d Each estimator has d+ 1 counters (columns).

A[p][q][r] rth counter of qth estimator in pth matrix

3 THE UNBIASED CLEANING SKETCH

In this section, we present the basic version of the Unbiased
Cleaning sketch (UC sketch) with its data structure and
operations. Then, we present the optimized version with
two optimization techniques, namely Linear Scaling and
Column Randomizing. We list main notations used in this
section in Table 1.
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Fig. 1: Data Structure and Insertion Examples.

Algorithm 1: Insertion for the UC sketch

1 Function Insertion(ei):
2 for p = 1 to k do
3 q ← hp(ei) mod b
4 r ← R(T, p, q)
5 A[p][q][r]← A[p][q][r] + sp(ei)
6 end
7 end

3.1 Data Structure of Basic UC sketch
The data structure (Figure 1) of the UC sketch has k matrices
consisting of counters,A[1],A[2], . . . ,A[k]. Each matrixA[p]
has b rows and d + 1 columns. In matrix A[p], the qth row
is denoted by A[p][q], and the counter in row q and column
r is denoted by A[p][q][r]. Each row of the matrices is an
unbiased estimator. Each matrixA[p] has two corresponding
hash functions hp(·) and sp(·), where hp(·) maps each key
into an estimator in A[p], and sp(·) maps each key to a value
in {+1,−1}. In addition, we have a scanner, which scans all
estimators in the k matrices circularly and uniformly with
period t. The scanner will clear the oldest counter in each
estimator periodically. The size of the sliding window is
denoted by W , and the current time is denoted by T . For
each estimator, we divide the timeline into time segments of
size t. Each estimator will record the frequency for at least
the recent d ∗ t time and at most (d + 1) ∗ t time. We set t
as W

d+0.5 , ensuring that each estimator records the average
frequency for the most recent W time.

3.2 Operations of Basic UC sketch
Initialization: All counters are set to 0 initially. The initial
position of the scanner is in estimator A[1][1], and the
scanning period of the scanner equals the size of the time
segment. The time when estimator A[p][q] being scanned
for the first time (launch time) is L(p, q) = b(p−1)+(q−1)

bk · t.
Insertion: To insert key ei, for each matrix A[p], we calculate
hp(ei) to get its mapped row (estimator) A[p][hp(ei)]. As the
scanner scans all estimators periodically and uniformly, in
each estimator A[p][q], we can easily determine the column
index of the most recently cleared counter R(T, p, q) by the
following formula:

R(T, p, q) =

(⌊
T − L(p, q)

t

⌋
mod (d+ 1)

)
+ 1. (1)

Then, For each mapped estimator A[p][q], we add sp(ei)
to counter A[p][q][R(T, p, q)], which is the most recently
cleared counter.
Cleaning: We use a scanner to clear the counters which
could record the out-dated keys. The scanner scans all esti-
mators circularly with period t. Specifically, in each period,
it starts from A[1][1], passes A[1][b], passes A[k][1], and
reaches A[k][b]. When the scanner detects a new estimator,
the scanner will clear the oldest counter in the estimator,
i.e., the counter which has not been cleared by the scanner
for the longest time. Because the oldest counter must be the
next counter of the most recently cleared counter, we can
calculate the column index of the oldest counter O(T, p, q)
by the following formula:

O(T, p, q) = [R(T, p, q) mod (d+ 1)] + 1. (2)
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Query: To query the size of flow ei, we first calculate
h1(ei), h2(ei), ..., hk(ei) to get its k mapped estimators.
Then, For each mapped estimator A[p][q], we sum up
the values of all counters in it and multiplying the sum
by sp(ei) to calculate the estimated flow size sump by
sump = sp(ei) ×

(∑d+1
i=1 A[p][q][i]

)
. Finally, we return the

mean of {sum1, sum2, ..., sumk} as the size of flow ei,
regardless of whether it is negative or not.
Heavy Hitters Query: As is known to all, we can also
implement the function of finding heavy hitters in sliding
windows by adding an additional heap to the data structure.
Subset Sum Query: To query the total flow size of a subset,
we query the size of each flow in the subset and add them
up as the result.
Distributed Sum Query: To query the size of all flows in a
distributed system, we query the size of each flow in each
distributed node and add them up as the result.

3.3 Optimized Version

In this section, we propose the optimized version of our UC
sketch by introducing two optimization techniques, namely
Linear Scaling and Column Randomizing. Compared with the
basic version, the optimized version improves the variance
and achieves the median-unbiased estimation.
Linear Scaling: The Linear Scaling allows us to estimate the
flow size unbiasedly by the median value, and therefore
it significantly reduces the variance. When adopting the
Linear Scaling, the only difference is the query operation.
When querying a key ei, for each mapped estimator A[p][q],
the estimator records the keys in a time range [d, d+ 1)(×t)
randomly. We hope that the estimators record the keys in the
sliding window, whose size equals d + 0.5(×t). To achieve
that, we scale up or down the value of the oldest counter
A[p][q][O(T, p, q)], and get C , which is the value of the
counter after scaling, by the following formula:

C =

[
1.5−

{
T − L(p, q)

t

}]
·A[p][q][O(T, p, q)], (3)

where {x} denotes the fractional part of x. Then, we calcu-
late sump by summing up C and the values of the other
counters and multiplying the sum by sp(ei). Finally, we
return the median of {sum1, sum2, ..., sumk} as the size of
flow ei.
Column Randomizing: The Column Randomizing can
make each column works more independently and there-
fore reduce the variance. For each column in each ma-
trix, we assign it an independent hash function sp,r(·),
where sp,r denotes the hash function for the rth column
in matrix A[p]. To insert key ei, for each mapped estima-
tor A[p][q], we add sp,r(ei) to the most recently cleared
counter A[p][q][R(T, p, q)]. To query the size of flow ei,
for each mapped estimator A[p][q], we calculate sump by
summing up the value of A[p][q][r] × sp,r(ei), where r
values from 1 to d + 1. Then, we return the median of
{sum1, sum2, ..., sumk} as the size of flow ei.

4 MATHEMATICAL ANALYSIS

In this section, we provide theoretical analysis of our Unbi-
ased Cleaning sketch.

4.1 Proof Sketch

Unbiasedness: For a flow ei recorded in a matrix, we notice
that the expectation of the time deviation is 0. Thus, under
the assumption that the data stream is evenly distributed
during the edge of the window, the expectation of error
caused by time deviation is 0. On the other hand, the
expectation of error caused by hash collision is 0. Therefore,
each matrix provides an unbiased estimation and thus our
Unbiased Cleaning sketch provides an unbiased flow size
estimation. The detailed proof is shown in Section 4.2.
Variance: For further analysis, we assume the flow size is
proportional to the duration. Then we can express the error
of our estimation and thus calculate the variance of a matrix.
The details are shown in Section4.3.
Error Bound: Given the variance, we can easily get the error
bound of estimation by a matrix, based on which we can
further give out the error bound of our Unbiased Cleaning
sketch taking either the mean or the median of the estimated
flow size of matrices. The details and the proof are provided
in Section 4.4.
Robustness: We show that our algorithm guarantees the
superiority of flows whose estimated size exceeds a certain
percentage of the total in Section 4.5, which indicates that
our Unbiased Cleaning sketch has a property of robustness.
Zipfian Distribution: We do an analysis of the case of
Zipfian distribution in Section 4.6.

4.2 Proof of Unbiasedness

We assume that the data stream is evenly distributed during
the edge of the window, i.e., the data stream is evenly
distributed during (T − (d + 1)t, T − dt). Below we prove
that for each flow ei, its estimated flow size is unbiased.

Theorem 1. Let f̂i be the estimation of the size of flow ei in a
matrix, then f̂i is unbiased, i.e., E(f̂i) = fi.

Proof. For a specific estimator in a matrix, let F1(T1, T2) be
the flow sizes during time period [T1, T2] whose s(·) is +1,
and F−1(T1, T2) be the flow sizes whose s(·) is −1. If T1 >
T2, then we take F1(T1, T2) = −F1(T2, T1), and the same
for F−1(T1, T2). Let T be the current time, and TC be the
last time before T that we clean a counter in this estimator.

For a given key ei, without loss of generality, we take
s(ei) = 1. Then our estimation for ei in matrix A[p]
(p ∈ {1, 2, . . . , k}) is the result recorded in the estimator
A[p][hp(ei)] during period (TC − dt, T ), i.e.,

f̂i = F1(TC − dt, T )− F−1(TC − dt, T ). (4)

Let f̂i
′

be the estimation of size of flow ei if there is
no time deviation, which means f̂i

′
is the result recorded

during period (T − (d+ 0.5)t, T ), i.e.,

f̂i
′

= F1(T − (d+ 0.5)t, T )− F−1((T − (d+ 0.5)t, T ).
(5)

To prove f̂i is unbiased, we divide E(f̂i) − fi into two
parts as shown in Equation 6:

E(f̂i)− fi = E(f̂i − f̂i
′
) + E(f̂i

′
− fi). (6)

Below we prove that E(f̂i − f̂i
′
) = 0 and E(f̂i

′
− fi) = 0.
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First, for the former term (f̂i − f̂i
′
), which is the error

caused by time deviation , we have

f̂i − f̂i
′

=F1(TC − dt, T − (d+ 0.5)t)

− F−1(TC − dt, T − (d+ 0.5)t).
(7)

Let T1 be TC − dt and T2 be T − (d + 0.5)t, then we have
f̂i − f̂i

′
= F1(T1, T2)− F−1(T1, T2). For T1, T2, we have

T2 − T1 = (T − (d+ 0.5)t)− (TC − dt) = T − 0.5t− TC .
(8)

Because of the randomness of TC , TC follows a uniform dis-
tribution U(T − t, T ). Thus, T2−T1 = T −0.5t−TC follows
a uniform distribution U(−0.5t, 0.5t), which indicates that
T1 follows U(T2 − 0.5t, T2 + 0.5t). Since the flow sizes are
evenly distributed during the edge of the sliding window,
i.e., (T2 − 0.5t, T2 + 0.5t), we can get

E(F1(T1, T2)) =

∫ 0.5t

−0.5t
F1(T2 − x, T2) dx = 0. (9)

Similarly, we have E(F−1(T1, T2)) = 0. Thus, for the first
part in Equation 6, we have

E(f̂i − f̂i
′
) = E(F1(T1, T2))− E(F−1(T1, T2)) = 0. (10)

On the other hand, for the latter term in Equation 6,
i.e.(f̂i

′
− fi), which is the error caused by hash collisions,

we have
f̂i
′
− fi =

∑
eij

fij · s(eij ), (11)

where eij is key inserted in this estimator other than ei and
fij is the size of flow eij during period (T − (d + 0.5)t, T ).
s(eij ) has same chance to be 1 and −1 and is independent
of fij . Thus, for the second part in Equation 6, we have

E(f̂i
′
− fi) =

∑
eij

[E(fij ) · E(s(eij ))] = 0. (12)

Therefore, by combining Equation 10 and Equation 12,
we can get that

E(f̂i)− fi = E(f̂i − f̂i
′
) + E(f̂i

′
− fi) = 0, (13)

which indicates that the estimated size f̂i is unbiased.

We take the mean of estimation in k matrices as the
estimated size of our Unbiased Cleaning sketch. We have

E(mean(f̂i)) = E(
1

k

∑
f̂i) =

1

k

∑
E(f̂i) =

1

k
· kfi = fi,

(14)
here

∑
f̂i is to sum k matrices. We can get the theorem

below.

Theorem 2. The estimation of the flow size of ei by our Unbiased
Cleaning sketch,mean(f̂i), is unbiased, i.e.,E(mean(f̂i)) = fi.

Below we prove that the theorems still hold for two opti-
mizations. Without loss of generality, we still take s(ei) = 1
in each counter.
Column Randomizing: When adopting the option, we can
prove that Theorem 1 and Theorem 2 still hold.

Proof. Let f̂i,1, · · · , f̂i,d+1 be the estimated flow size dur-
ing period (TC − dt, TC − (d − 1)t), · · · , (TC , T ), which

corresponds to (d+ 1) counters. And let fi,1, · · · , fi,d+1 be
the real flow size of ei during corresponding periods.

Same as the proving process of E(f̂i
′
− fi) = 0 in

Theorem 1, we can get that the estimation is unbiased if
there is no time deviation. Thus, we have

E(f̂i,j − fi,j) = 0. (15)

Let fi,0 be the flow size of ei during period (T − (d +
0.5)t, TC − (d − 1)t), and f̂ ′i,1 be the estimation given by
a counter during corresponding period if there is no time
deviation, i.e.,

f̂ ′i,1 =F1(T − (d+ 0.5)t, TC − (d− 1)t)

− F−1(T − (d+ 0.5)t, TC − (d− 1)t).
(16)

Similar to the above, we have E(f̂ ′i,1 − fi,0) = 0.
For f̂ ′i,1 and f̂i,1, we have

f̂i,1 − f̂ ′i,1 =F1(TC − dt, T − (d+ 0.5)t)

− F−1(TC − dt, T − (d+ 0.5)t).
(17)

Same as the proving process of Equation 9 in Theorem 1, we
can get that

E(F1(TC − dt, T − (d+ 0.5)t)

− F−1(TC − dt, T − (d+ 0.5)t)) = 0.
(18)

Thus, we have E(f̂i,1 − f̂ ′i,1) = 0, from which and Equation
15 we can derive that

E(f̂i,1 − fi,0) = E(f̂i,1 − f̂ ′i,1) + E(f̂ ′i,1 − fi,0) = 0. (19)

For our estimation f̂i, by combining the results of Equa-
tion 15 and Equation 19, we can get that

E(f̂i)− fi = E(
d+1∑
j=1

f̂i,j)− (fi,0 +
d+1∑
j=2

fi,j)

= E(f̂i,1 − fi,0) +
d+1∑
j=2

E(f̂i,j − fi,j) = 0.

(20)

Therefore, we have E(f̂i) − fi = 0, i.e., the estimated
flow size f̂i is unbiased. Same as the proof of Theorem 2, we
can get that mean(f̂i) is also unbiased.

Linear Scaling: When adopting the option, we need to
strengthen the assumption to that data stream is evenly
distributed during (T − (d+1)t, T − (d−1)t). We can prove
that Theorem 1 and Theorem 2 still hold. Moreover, our
estimation is still unbiased if we take the median of f̂i in k
matrices,i.e., E(median(f̂i)) = fi.

Proof. We continue to use the mark in the case of Column
Randomizing. Here our estimation for the size of flow ei is

f̂i = f̂i,1 ·
(TC − (d− 1)t)− (T − (d+ 0.5)t)

t
+
d+1∑
j=2

f̂i,j

= f̂i,1 ·
1.5t− (T − TC)

t
+
d+1∑
j=2

f̂i,j .

Let f̂ ′i,1 be f̂i,1 · 1.5t−(T−TC)
t . Since the data stream is

evenly distributed during (T − (d + 1)t, T − (d − 1)t), let
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v1, v2, · · · , vn be the flow size of e1, e2, · · · , en in unit time
during (T − (d+ 1)t, T − (d− 1)t). Thus, we have

fi,0 = vi[(TC − (d− 1)t)− (T − (d+ 0.5)t)]

= (1.5t− (T − TC))vi,
(21)

and also

f̂i,1 =
n∑
j=1

vj · t · s(ej) = t
n∑
j=1

vjs(ej). (22)

Since TC is independent of sj(·), we can get the expecta-
tion of (f̂ ′i,1 − fi,0) that

E(f̂ ′i,1 − fi,0) = E[(1.5t− (T − TC)) ·
∑
j 6=i

vjs(ej)]

= E(1.5t− (T − TC)) ·
∑
j 6=i

vjE(s(ej)) = 0.
(23)

Same as the proving process in the case of Column Random-
izing, we have E(f̂i,j − fi,j) = 0. For our estimation f̂i, We
can get that

E(f̂i)− fi = E(f̂ ′i,1 +
d+1∑
j=2

f̂i,j)− (fi,0 +
d+1∑
j=2

fi,j)

= E(f̂ ′i,1 − fi,0) +
m∑
j=2

E(f̂i,j − fi,j) = 0.

(24)

Therefore, we have E(f̂i) − fi = 0, i.e., the estimated
flow size f̂i is unbiased. Same as the proof of Theorem 2, we
can get that mean(f̂i) is also unbiased.

Moreover, when TC is fixed and we only calculate the
mathematical expectation about sj(·), the above proving
process still holds. Since sj(·) has the same probability
of being +1 and −1, we notice that (f̂i − fi) is sym-
metrical about 0 for any fixed TC . Thus, when TC is not
fixed we still have (f̂i − fi) is symmetrical about 0. So
median(f̂i−fi) is symmetrical about 0, which indicates that
E(median(f̂i)) − fi = 0. Therefore, E(median(f̂i)) = fi,
i.e., our estimation is still unbiased if we take the median of
f̂i in k matrices.

4.3 Variance
For further analysis, we assume that the increment of the
flow size is stable over a period of time. In particular,
we assume the flow size is proportional to duration. Let
v1, v2, · · · , vn be the flow size of e1, e2, · · · , en in unit time.
We show the estimated variance of f̂i below.

Theorem 3. For the sake of brevity, let d′ = d + 0.5. The
estimation of the variance of f̂i satisfies that

V ar(f̂i) =
1

b

∑
j 6=i

v2j · (d′2 +
1

12
)t2 +

1

12
v2i t

2. (25)

Proof. Let ei1 , ei2 , · · · , eil be the keys inserted to the same
estimator as ei, and vi1 , vi2 , · · · , vil be the flow size of
ei1 , ei2 , · · · , eil in unit time. Without loss of generality, we
take s(ei) = 1. As proved in 1, E(f̂i) = fi. Thus, for the
variance, we have

V ar(f̂i) = E(f̂i − E(f̂i))
2 = E(f̂i − fi)2

= E((f̂i − f̂i
′
) + (f̂i

′
− fi))2.

(26)

For the former term, i.e., (f̂i − f̂i
′
), we have f̂i − f̂i

′
=

F1(T1, T2)− F−1(T1, T2), so we can get that

f̂i − f̂i
′

= (
l∑

j=1

vijs(eij ) + vi) · wt, (27)

here wt is the deviation of time, which satisfies a uniform
distribution U(−0.5t, 0.5t) due to our assumption,i.e., w
satisfies a uniform distribution U(−0.5, 0.5).

On the other hand, for the latter term in Equation 26, i.e.,
(f̂i
′
− fi), we have

f̂i
′
− fi =

∑
eij

f ′ijs(eij ) = (
l∑

j=1

vijs(eij )) · d′t. (28)

Therefore, for the variance V ar(f̂i), we can get the
following results that

V ar(f̂i) = E[(
l∑

j=1

vijs(eij ) + vi) · wt+
l∑

j=1

vijs(eij ) · d′t]2

= E[
l∑

j=1

vijs(eij ) · (w + d′)t+ vi · wt]2

= E[
l∑

j=1

vijs(eij ) · (w + d′)t]2 + E[vi · wt]2.

(29)
In Equation 29, it’s because s(eij ) has same chance to be 1
and −1 and is independent of other variables so that

E[(
l∑

j=1

vijs(eij ) · (w + d′)t) · (vis(ei) · wt)] = 0. (30)

Then we first calculate mathematical expectation in
Equation 29 on w. Since w satisfies a uniform distribution
U(−0.5, 0.5), we have

V ar(f̂i) = E[(
l∑

j=1

vijs(eij ))2 · (w + d′)2t2] + E[v2i · w2t2]

=

∫ 0.5

−0.5
E[(

l∑
j=1

vijs(eij ))2t2](d′ + w)2 + v2i t
2w2 dw

=E[(
l∑

j=1

vijs(eij ))2t2] · (d′2 +
1

12
) +

1

12
v2i t

2.

(31)
For mathematical expectation on s(eij ), since s(eij ) has

same chance to be 1 and −1 and is independent from each
other, cross terms in E(

∑l
j=1 vijs(eij ))2 are 0. Thus, we

have E(
∑l
j=1 vijs(eij ))2 =

∑l
j=1 v

2
ij

. Therefore, we can get
that

V ar(f̂i) =
l∑

j=1

v2ij · (d
′2 +

1

12
)t2 +

1

12
v2i t

2. (32)

Moreover, since there are b estimators in each ma-
trix and each key is hashed into one estimator, we have
E(
∑l
j=1 v

2
ij

) = 1
b

∑
j 6=i v

2
j . Therefore, the estimated vari-

ance satisfies

V ar(f̂i) =
1

b

∑
j 6=i

v2j · (d′2 +
1

12
)t2 +

1

12
v2i t

2. (33)
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Below we prove that the theorems still hold for two opti-
mizations. Without loss of generality, we still take s(ei) = 1
in each counter.
Column Randomizing: When adopting the option, s(·) in
each column are independent. Thus, similar to the proving
process above, we have

V ar(f̂i) =E[(

l∑
j=1

vij s(eij ))
2] · ((wt)2 + d′ · t2) + E[v2i · w2t2]

=

l∑
j=1

v2ij · (d
′ +

1

12
)t2 +

1

12
v2i t

2.

(34)
Therefore, when adopting Column Randomizing, we have

the variance V ar(f̂i) follows

V ar(f̂i) =
1

b

∑
j 6=i

v2j · (d′ +
1

12
)t2 +

1

12
v2i t

2. (35)

Linear Scaling: When adopting the option, we eliminate the
error caused by the deviation of time. Thus, we can get that

V ar(f̂i) = E[(
l∑

j=1

vijs(eij ))2 · d′2t2] =
l∑

j=1

v2ij · d
′2t2. (36)

Therefore, when adopting Linear Scaling, we have the vari-
ance V ar(f̂i) follows

V ar(f̂i) =
1

b

∑
j 6=i

v2j · d′2t2. (37)

4.4 Error Bound

In this section, we show the error bound of f̂i in Theorem
4, and then we show the error bound of our Unbiased
Cleaning sketch in Theorem 5 if we take the mean and in
Theorem 6 if we take the median. In addition, for the median
case, we also show a more accurate error bound written in
summation form in Theorem 7.

Theorem 4. For a given ε that ε > 0, we have

Pr{
∣∣∣f̂i − fi∣∣∣ > ε} 6 1

ε2
V ar(f̂i). (38)

Proof. As proved in theorem 1, E(f̂i) = fi. According to
Chebyshev inequality, we can easily get that

Pr{
∣∣∣f̂i − fi∣∣∣ > ε} 6 1

ε2
V ar(f̂i)

=
1

ε2b

∑
j 6=i

v2j · (m′2 +
1

12
)t2 +

1

12ε2
v2i t

2,
(39)

from which we get the error bound of f̂i, i.e., the error bound
of the estimated flow size by a matrix .

If we take the mean, i.e., the estimation of the flow size
ei by our Unbiased Cleaning sketch is mean(f̂i), we can
derive an error bound for our Unbiased Cleaning sketch.

Theorem 5. For a given ε that ε > 0, we have

Pr{
∣∣∣mean(f̂i)− fi

∣∣∣ > ε} 6 1

ε2k
V ar(f̂i). (40)

Proof. For mean(f̂i), we can get the variance that
V ar(mean(f̂i)) = 1

kV ar(f̂i). Since mean(f̂i) is unbiased,
according to Chebyshev inequality, we have

Pr{
∣∣∣mean(f̂i)− fi

∣∣∣ > ε} 6 1

ε2
V ar(mean(f̂i))

=
1

ε2k
V ar(f̂i).

(41)

If we take the median, i.e., the estimation of the flow
size ei by our Unbiased Cleaning sketch is median(f̂i), let
∆fi be f̂i − fi. We can also derive an error bound for our
Unbiased Cleaning sketch. Here we just consider the case
that the number of the arrays is odd. Otherwise, we can
only use k − 1 arrays.

Theorem 6. For a given ε that ε >
√

2V ar(f̂i), we derive an
error bound of our Unbiased Cleaning sketch that

Pr{
∣∣∣median(f̂i)− fi

∣∣∣ > ε}

6
(2r + 1)!

(r!)2

(
1− V ar(f̂i)

ε2

)r (
V ar(f̂i)

ε2

)r+1

.
(42)

Proof. Let k = 2r + 1. We can get a f̂i from each array and
they are i.i.d. Let f(x) be the probability density function
of ∆fi = f̂i − fi, and F (x) be the cumulative distribution
function of ∆fi.

Let f̂i from (2r + 1) arrays be f̂i
(1)
, f̂i

(2)
, · · · , f̂i

(2r+1)

in order from small to large. Then we have median(f̂i) =

f̂i
(r+1)

. Let f (r+1)(x) be the probability density function of
∆f

(r+1)
i = median(f̂i) − fi, and F (r+1)(x) be the cumu-

lative distribution function of ∆f
(r+1)
i . By the theorem of

order statistics, we can get that

f (r+1)(x) =
(2r + 1)!

(r!)2
F (x)r(1− F (x))rf(x). (43)

We have F (x) = 1 − Pr{∆fi > x} for x > 0 and
F (x) = Pr{∆fi 6 x} for x 6 0. Let P (x) be Pr{∆fi > x}
when x > 0 and Pr{∆fi 6 x} when x 6 0. Then we have
F (x)(1 − F (x)) = P (x)(1 − P (x)). We can also get that
P (x) 6 Pr{|∆fi| > |x|}.

As proved in Theorem 4, Pr{|∆fi| > |x|} 6 1
x2V ar(f̂i).

For x that |x| >
√

2V ar(f̂i), we have

P (x) 6 Pr{|∆fi| > |x|} 6
1

x2
V ar(f̂i) 6

1

2
. (44)

from which we can derive that

F (x)(1− F (x)) 6 (1− Pr{|∆fi| > x})Pr{|∆fi| > x}

6 (1− 1

x2
V ar(f̂i))(

1

x2
V ar(f̂i)).

(45)
Therefore, for the median f (r+1)(x), we can get that

f (r+1)(x) 6
(2r + 1)!

(r!)2

(
1− V ar(f̂i)

x2

)r (
V ar(f̂i)

x2

)r
f(x).

(46)

For a given ε that ε >
√

2V ar(f̂i) and for x that |x| > ε,
since 1

x2V ar(f̂i) 6 1
ε2V ar(f̂i) 6 1

2 , we have the inequality
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(1− 1
x2V ar(f̂i))(

1
x2V ar(f̂i)) 6 (1− 1

ε2V ar(f̂i))(
1
ε2V ar(f̂i)).

Thus, we can get that∫ +∞

ε

f (r+1)(x) dx

6
∫ +∞

ε

(2r + 1)!

(r!)2

(
1− V ar(f̂i)

x2

)r (
V ar(f̂i)

x2

)r
f(x) dx

6
∫ +∞

ε

f(x) dx · (2r + 1)!

(r!)2

(
1− V ar(f̂i)

ε2

)r (
V ar(f̂i)

ε2

)r
.

(47)
Similarly, we have∫ −ε
−∞

f (r+1)(x) dx

6
∫ −ε
−∞

f(x) dx · (2r + 1)!

(r!)2

(
1− V ar(f̂i)

ε2

)r (
V ar(f̂i)

ε2

)r
.

(48)

From the above results in Equation 47 and Equation 48,
we can get that median(f̂i) follows

Pr{
∣∣∣median(f̂i)− fi∣∣∣ > ε}

=

∫ +∞

ε

f (r+1)(x) dx+

∫ −ε
−∞

f (r+1)(x) dx

6Pr{
∣∣∣f̂i − fi∣∣∣ > ε} · (2r + 1)!

(r!)2

(
1− V ar(f̂i)

ε2

)r (
V ar(f̂i)

ε2

)r

6
(2r + 1)!

(r!)2

(
1− V ar(f̂i)

ε2

)r (
V ar(f̂i)

ε2

)r+1

.

(49)

Therefore, for a given ε that ε >
√

2V ar(f̂i), our Unbi-
ased Cleaning sketch has an error bound that

Pr{
∣∣∣median(f̂i)− fi

∣∣∣ > ε}

6
(2r + 1)!

(r!)2

(
1− V ar(f̂i)

ε2

)r (
V ar(f̂i)

ε2

)r+1

.
(50)

Theorem 6 shows an error bound that can be directly
calculated. In addition to that, we can derive a more accurate
error bound written in summation form.

Theorem 7. Let Pε = V ar(f̂i)/ε
2. For a given ε that ε >√

2V ar(f̂i), we can derive an error bound for median(f̂i) that

Pr{
∣∣∣median(f̂i)− fi

∣∣∣ > ε}

6
2r+1∑
k=r+1

(
2r + 1

k

)
· P kε (1− Pε)2r+1−k

(51)

Proof. If the error of our estimation is greater than ε, i.e.,∣∣∣median(f̂i)− fi
∣∣∣ > ε, then there are at least (r + 1) arrays

satisfy that f̂i − fi > ε or at least (r + 1) arrays satisfy
that f̂i − fi 6 −ε. Thus, at least (r + 1) arrays satisfy that∣∣∣f̂i − fi∣∣∣ > ε. According to theorem 4, we have

Pr{
∣∣∣f̂i − fi∣∣∣ > ε} 6 Pε. (52)

Let n0 be the number of arrays that satisfy
∣∣∣f̂i − fi∣∣∣ > ε.

For a given ε that ε >
√

2V ar(f̂i), we have Pε 6 1
2 . We can

get that

Pr{n0 > r + 1} =
2r+1∑
k=r+1

Pr{n0 = k}

=
2r+1∑
k=r+1

(
2r + 1

k

)
Prk(1− Pr)2r+1−k

6
2r+1∑
k=r+1

(
2r + 1

k

)
P kε (1− Pε)2r+1−k.

(53)

Here Pr = Pr{
∣∣∣f̂i − fi∣∣∣ > ε}. Therefore, we can derive an

error bound written in summation form that

Pr{
∣∣∣median(f̂i)− fi

∣∣∣ > ε} 6 Pr{n0 > r + 1}

6
2r+1∑
k=r+1

(
2r + 1

k

)
P kε (1− Pε)2r+1−k.

(54)

4.5 Analysis of Robustness
In this section, we show that our Unbiased Cleaning sketch
has a property of robustness, which guarantees superiority
of estimation for keys whose flow size exceeds a certain
percentage of the total.

Let f ′i be the exact flow size of key ei recorded in the
estimator in a matrix, i.e., the size of flow ei during period
(Tc − dt, T ). Without loss of generality, we take f ′1 > f ′2 >
· · · > f ′n.

Theorem 8. If f ′1 > 0.5
∑n
i=1 f

′
i , then e1 is the key with largest

estimated flow size by this matrix, i.e., f̂1 = max16i6n f̂i.

Proof. Without loss of generality, we take s(e1) = 1. Below
we prove that for any key ei other than e1, we always have
f̂i 6 f̂1.

If ei and e1 are hashed in the same estimator, let f̂ be the
number recorded in this estimator. We have f̂i = f̂ · s(ei)
and f̂1 = f̂ · s(e1) = f̂ . Thus, the estimated flow size for ei
and e1 satisfy f̂i = f̂1 or f̂i = −f̂1. Since s(e1) = 1, we have

f̂ =
n∑
j=1

f ′j · s(ej) > f ′1 −
n∑
j=2

f ′j > 0, (55)

thus f̂1 > 0. Therefore, we can get that f̂1 > f̂i.
Next, we consider the case that they are in different

estimators, i.e., h(ei) 6= h(e1). Let ei1 , ei2 , · · · , eil be the keys
inserted to the same estimator as ei, and e11 , e12 , · · · , e1l′ be
the keys inserted to the same estimator as e1. Then we have
the estimation of size of flow ei that

f̂i = (f ′i · s(ei) +
l∑

j=1

f ′ij · s(eij )) · s(ei), (56)

and the estimation of the flow size of e1 that

f̂1 = (f ′1 · s(e1) +
l′∑
j=1

f ′1j · s(e1j )) · s(e1)

= f ′1 +
l′∑
j=1

f ′1j · s(e1j ).

(57)
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For key ej , it’s inserted into at most one estimator. Thus, we
can derive that

f̂1 − f̂i =f ′1 +
l′∑
j=1

f ′1j · s(e1j )− (f ′i · s(ei) +
l∑

j=1

f ′ij · s(eij ))s(ei)

>f̂1 −
l′∑
j=1

f ′1j − f
′
i −

l∑
j=1

f ′ij > f ′1 −
n∑
j=2

f ′j > 0.

(58)

Therefore, we always have f̂i 6 f̂1. In other words, e1
is the key with the largest estimated flow size given by this
matrix, i.e., f̂1 = max16i6n f̂i.

According to analysis in theorem 1, we have Tc − (m −
1)t ∈ (T − mt, T − (m − 1)t]. Thus, if ∀Tc − (m − 1)t ∈
(T −mt, T − (m − 1)t] we have f ′1 > 0.5

∑n
i=1 f

′
i , then we

get f̂1 = max16i6n f̂i in each matrix. We can derive the
theorem below.

Theorem 9. If ∀Tc − (m− 1)t ∈ (T −mt, T − (m− 1)t] we
have f ′1 > 0.5

∑n
i=1 f

′
i , then e1 is always the key with the largest

flow size due to estimation of our Unbiased Cleaning sketch, either
we take the median or the mean.

Proof. First, if we take the mean, since in each ma-
trix we have f̂1 = max16i6n f̂i, then mean(f̂1) =
max16i6nmean(f̂i).

Second, if we take the median, we assume that there
exists an key ei that satisfies median(f̂i) > median(f̂1),

i.e., f̂i
(r+1)

> f̂1
(r+1)

. Thus, for 1 6 l1 6 r + 1 and r +

1 6 l2 6 2r + 1, we have f̂1
(l1)

6 f̂1
(r+1)

< f̂i
(r+1)

6

f̂i
(l2)

. Since f̂1
(l1)

and f̂i
(l2)

are both from (r + 1) different

matrices, there is at least a matrix which contains both f̂1
(l1)

and f̂i
(l2)

. In this matrix, we have f̂1 < f̂i, which contradicts
the conclusion that f̂1 = max16i6n f̂i in each matrix. This
indicates that our assumption is not true. Thus, We always
have median(f̂1) = max16i6nmedian(f̂i).

Therefore, under either cases we always have the con-
clusion that e1 is the key with the largest flow size due to
estimation of our Unbiased Cleaning sketch.

Particularly, under the assumption that the flow size
is proportional to duration over a period of time, if v1 >
0.5
∑n
i=1 vi, then we havef̂1 = max16i6n f̂i in each matrix.

We can easily prove that mean(f̂1) = max16i6nmean(f̂i)
and median(f̂1) = max16i6nmedian(f̂i), which indicates
that e1 is always the key with the largest estimated flow
size due to our Unbiased Cleaning sketch. This inference
still holds for two optimizations.

4.6 Analysis for Zipfian Distribution

In this section, we assume that the flow sizes complies
with Zipfian distribution. Under the assumption that the
flow size is proportional to duration, the flow size in unit
time v1, v2, · · · , vn also comply with Zipfian distribution.
Let v1, v2, · · · , vn satisfy vi = c

iz .
Below we show that Theorem 9 about the robustness is

satisfied under the assumption of Zipfian distribution, and
we also give out the magnitude of the variance.

Theorem 10. For Zipfian distribution with parameter z, i.e.,
vi = c

iz , if z > 2, then e1 is always the key with the largest flow
size due to estimation by our Unbiased Cleaning sketch.

Proof. In the case that z > 2, we have
n∑
i=2

vi 6
n∑
i=2

c

i2
6

n∑
i=2

c

(i− 1)× i
6 c = v1 (59)

Therefore, we have v1 > 0.5
∑n
i=1 vi. According to

Theorem 9, e1 is always the key with the largest flow size
due to estimation by our Unbiased Cleaning sketch.

Theorem 11. For Zipfian distribution with parameter z, i.e.,
vi = c

iz , the magnitude of the variance satisfies that

V ar(f̂i) =


O(n1−2z) z <

1

2

O(log(n)) z =
1

2

O(1) z >
1

2

. (60)

Proof. In Equation 33 we have V ar(f̂i) = O(
∑
v2i ). For the

magnitude of
∑
v2i =

∑n
i=1

c
i2z , we have

n∑
i=1

c

i2z
∼
∫ n

1

c

x2z
dx =


1

1− 2z
(n1−2z − 1) z 6= 1

2

c · log(n) z =
1

2

. (61)

Here z and c are fixed constant. We have the magnitude
of V ar(f̂i) equals to the magnitude of

∑
v2i . Therefore, we

can get that the magnitude of V ar(f̂i) is O(n1−2z) when
z < 1

2 , O(log(n)) when z = 1
2 , and O(1) when z > 1

2 , as
shown in Equation 60.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Implementation: We have implemented the Unbiased
Cleaning sketch and all other algorithms in C++. The hash
functions are the 32-bit Bob Hash [71] with random seeds.
Datasets: We use two kinds of datasets in the experiments:
the CAIDA dataset and the synthetic Zipfian dataset. The
CAIDA dataset is streams of anonymized IP traces col-
lected in 2016 and 2018 by CAIDA [72]. CAIDA-2016 has
30 million packets from 0.6 million flows, while CAIDA-
2018 has 27 million packets from 1.3 million flows. We use
the pair of source IP address (4 bytes) and destination IP
address (4 bytes) as an 8-byte key, which is a common
flow identifier. The synthetic Zipfian dataset is generated by
ourselves and follows the Zipfian distribution by using Web
Polygraph [73], an open-source performance testing tool.
Each Zipfian dataset has 32 million keys, the skewness of
datasets varies from 0.3 to 3.0, and the length of each key is
4 bytes.
Computation Platform: We conducted all the experiments
on a machine with two 6-core processors (12 threads, Intel
Xeon CPU E5-2620 @2 GHz) and 64 GB DRAM memory.
Each processor has three levels of cache memory: one 32KB
L1 data caches and one 32KB L1 instruction cache for each
core, one 256KB L2 cache for each core, and one 15MB L3
cache shared by all cores.
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Metrics:
1) Average Relative Error (ARE): 1

|Ψ|
∑
ei∈Ψ |fi − f̂i|/fi,

where fi is the real flow size of ei, f̂i is its estimated flow
size, and Ψ is the query set. Here, we randomly pick a
checkpoint to stop inserting, query the actual flow sizes in
the sliding window, and calculate ARE.
2) Average Absolute Error (AAE): 1

|Ψ|
∑
ei∈Ψ |fi−f̂i|, where

fi is the real flow size of ei, f̂i is its estimated flow size, and
Ψ is the query set. Here, we randomly pick a checkpoint
to stop inserting, query the actual flow sizes in the sliding
window and calculate AAE.
3) Throughput: Million insertions per second (Mips). All the
experiments about throughput are repeated 10 times and the
average throughput is reported.

5.2 Experimental Evaluation

In this section, we present the AAE, ARE, and throughput to
evaluate the performance of the Unbiased Cleaning sketch.
We additionally show the result of heavy flows because
heavy flows are often what we care about in application.
Here we define heavy flows as flows that account for over
0.5% of the total number of packets. We change the settings
of the number of matrices, the number of counters per
estimator, the memory size, the window size, and the data
skewness to show how the performance of the UC sketch
depends on parameters. The default values of above param-
eters are as follows: number of matrices k = 2, number
of counters per estimator m = 4, memory size = 500KB,
window size = 1×104 and the default dataset is the CAIDA-
2016 dataset.
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Fig. 2: Impact of Number of Matrices.

Impact of Number of Matrices (Figure 2(a)-2(b)): We find
that the ARE and AAE of all flows goes higher when the
number of matrices (k) goes larger, while the ARE and AAE
of the heavy flows goes lower when the number of matrices
goes larger. The reason for this is that, under a fixed total
memory, increasing the value of k leads to a larger average
size of the counters, which can decrease the accuracy of
light flows. However, heavy flows can reduce the error more
effectively with a larger value of m, because their sizes are
much larger than the average counter size. The category
”Basic” refers to the UC Sketch without the LS or the CR
optimizations. The category ”OPT” refers to the UC Sketch
with both the LS and the CR optimizations. Based on the
default settings, we change the number of matrices from 1
to 6. The ARE of Basic is on average 0.19 time higher than
the ARE of OPT on all flows. The AAE of Basic is on average
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(a) Number of Counters per Esti-
mator
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Fig. 3: Impact on Accuracy.
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Fig. 4: Comparison with Sliding Sketch.
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Fig. 5: Impact on Throughput.

0.03 time higher than the AAE of OPT on all flows. The ARE
and AAE of Basic and OPT are similar on heavy flows.
Impact of Number of Counters per Row (Figure 3(a)): We
find that the ARE goes higher when the number of counters
per row (m) goes too large or too small. If m is too large,
hash collisions can cause significant errors, while if m is too
small, the window bias can cause significant errors. Based
on the default settings, we change the number of counters
per row from 1 to 6. The ARE of Basic is on average 0.07
time higher than the ARE of OPT on all flows. The ARE of
Basic and OPT are similar on heavy flows.
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Fig. 6: Performance of Sum Queries.

Impact of Memory Sizes (Figure 3(b)): We find that the ARE
goes lower when the memory size goes larger. Based on the
default settings, we change the memory size from 100KB to
500KB. The ARE of Basic is on average 0.19 time higher than
the ARE of OPT on all flows. The ARE of Basic is on average
0.18 time higher than the ARE of OPT on heavy flows.
Impact of Window Sizes (Figure 3(c)): We find that, when
the memory is fixed, for all flows, the ARE is in nearly direct
ratio to the window size as it goes larger. For heavy flows,
the ARE also goes higher when the window size goes larger.
Based on the default settings, we change the window size
from 1 × 104 to 16 × 104. The ARE of Basic is on average
0.25 time higher than the ARE of OPT on all flows. The ARE
of Basic and OPT are similar on heavy flows.
Impact of Data Skewness (Figure 3(d)): We find that, for all
flows, the ARE goes lower when the data skewness goes
higher. For heavy flows, the ARE goes higher when the
data skewness goes higher. Here, we use synthetic Zipfian
dataset to show the performance of Unbiased Cleaning
sketch under different the data skewness. Based on the
default settings, we change the data skewness from 0.6 to
3.0. The ARE of Basic is on average 0.27 time higher than
the ARE of OPT on all flows. The ARE of Basic is on average
0.30 time higher than the ARE of OPT on heavy flows.
Comparison with Sliding Sketch (Figure 4(a)-4(b)): The
experiment results show that our UC Sketch performs much
better than Sliding Sketch on both the time-based sliding
window and the count-based sliding window. We use the
dataset CAIDA-2018 to conduct the time-based experiment,
and CAIDA-2016 to conduct the count-based experiment.
The ARE of Sliding Sketch is on average 3.92 higher than
the ARE of UC Sketch on the time-based sliding window.
The ARE of Sliding Sketch is on average 1.68 higher than
the ARE of UC Sketch on the count-based sliding window.
Experiments on Throughput (Figure 5(a)-5(b)): We find
that the throughput goes lower when the number of ma-
trices goes larger. The LS and CR optimizations bring little
throughput loss. In Figure 5(a), we change the number
of matrices from 1 to 21. The throughput is higher than
1.03Mips when the number of matrices is not larger than
13. In Figure 5(b), the LS optimization brings nearly no
throughput loss, and the CR optimization brings less than
3% throughput loss.
Performance of Sum Queries (Figure 6(a)-6(b)): We applied
our algorithm to subset sum query and distributed sum
query. We set the subset size from 1 to 256, exponentially,
and the number of distributed nodes from 1 to 16, expo-
nentially. We find that, the ARE goes lower when the subset

size goes larger in subset sum query, and the ARE also goes
lower when the number of sketches (nodes) goes larger in
distributed sum query. Note that here in distributed sum
query, a key is taken into account only when it appears in
every sketch.

6 CONCLUSION

The sliding window model can capture the latest charac-
teristics of network data streams in real-time. Achieving
unbiased estimation in sliding windows is challenging and
significant in network measurement. In this paper, we pro-
pose an algorithm called Unbiased Cleaning sketch. It is
the first work that achieves unbiased flow size estimation
in sliding windows. The Unbiased Cleaning sketch is both
mean-unbiased and median-unbiased. Its two optimization
techniques, Linear Scaling and Column Randomizing, drasti-
cally reduce the variance. By strict mathematical analysis,
we prove the unbiasedness and show other properties of
the Unbiased Cleaning sketch. The experiment results are
consistent with the theory. All related source codes are open-
sourced at Github [74].
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