
SteadySketch: Finding Steady Flows in Data
Streams

Xiaodong Li∗, Zhuochen Fan∗, Haoyu Li∗, Zheng Zhong∗, Jiarui Guo∗, Sheng Long∗, Tong Yang∗†, Bin Cui∗
∗School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology

and Application, Peking University, Beijing, China †Peng Cheng Laboratory, Shenzhen, China

Abstract—In this paper, we study steady flows in data streams,
which refers to those flows whose arrival rate is always non-
zero and around a fixed value for several consecutive time
windows. To find steady flows in real time, we propose a novel
sketch, SteadySketch, aiming to accurately report steady flows
with limited memory. To the best of our knowledge, this is the
first work to define and find steady flows in data streams. The
key novelty of SteadySketch is our proposed reborn technique,
which reduces the required memory space by 75%. Experimental
results show that SteadySketch improves the Precision Rate (PR)
by 81.1% and reduces the Average Relative Error (ARE) by
955.3× compared with the strawman solution. Finally, we provide
a concrete case: cache prefetch, and prove that SteadySketch
can effectively improve the cache hit ratio. All related codes of
SteadySketch are open-source and available at GitHub.

I. INTRODUCTION

A. Background and Motivation

Nowadays, network measurement and monitoring has be-

come a research hotspot in the network field. It provides

indispensable information for various network management

tasks, such as traffic behavior analysis [1], [2], quality of

service/experience [3], [4], performance diagnosis [5] and

anomaly detection [6]–[9]. Among the tasks mentioned above,

a very important research interest is to define and find new

patterns in high-speed data streams, such as burst flows [10],

periodic flows [11], and quadratic flows [12], etc.
This paper defines a new pattern in network data streams,

namely steady flow. In practical data stream scenarios, data

stream often arrives at high speed, and each flow may appear

many times. We divide the data stream into many time

windows. Given a time window and a flow e in this window,

suppose e appears x times, we define the arrival rate of e as

x. For p continuous time windows, if the arrival rate of a flow

is non-zero and steady (the variance of arrival rate is less than

a given threshold), we call it a steady flow.

Steady flow is an important data stream pattern, and has

many applications. Below we show three typical ones. 1)

Wireless sensor network. Sink node of WSN is responsible

for collecting and processing the data from other sensor nodes.

Generally, the sensor node that sends steady flows would have

higher data reliability, which is important for data processing

of sink nodes. 2) network bandwidth pre-allocate. In the highly

dynamic network, one flow with steady connection and speed

Co-primary authors: Xiaodong Li and Zhuochen Fan. Corresponding au-
thor: Tong Yang (yangtongemail@gmail.com).

often means that it has higher importance than the short flows

which account for the majority of network. Thus, we can pre-

allocate the bandwidth for these flows in advance to improve

the quality of network service. 3) Steady Cache Line. In this

scenario, a flow refers to a cache line in the cache replacement

problem. A steady cache line has a higher probability of

recurrence in the next few time windows. So we can reduce the

cache thrash by avoiding steady cache line from being evicted

[13]. In addition, there are many other applications of steady

flow, for example, it also can be used for preventing network

attacks such as Advanced Persistent Threat (APT) [14], etc.
To the best of our knowledge, this is the first work to define

steady flows, and no existing literature has provided the same

or similar definition. The related problem is finding persistent

flows [15]–[18] and K-persistent spread estimation [19]–[21].

A flow is defined as a persistent flow if the number of time

windows where it appears exceeds a given threshold [18].

Moreover, persistent flows only care whether it appears in a

window, and do not care about the size or variance of arrival

rate. Differently, steady flows focus on the size of arrival

rate and the variance of arrival rate across several continuous

windows. As a result, none of the existing schemes for mining

persistent flows can be directly used for detecting steady flows.

B. Our Proposed Solution

In this paper, in order to find steady flows, we first propose

a strawman solution composed of multiple CM sketches [22].

However, we find that there are limitations in terms of speed,

accuracy, and memory-efficiency. To address these limitations,

we propose the first version to optimize speed. Then, we

propose the second version to optimize accuracy and the third

to further optimize memory usage. Finally, we integrate the

three versions and present the final version, namely SteadyS-

ketch. Our key novelty lies in the memory optimization: reborn
technique (see Section III-D). Below we show the rationale of

the reborn technique.

The key idea of reborn technique is rebirth with offset

variance calculation. In data stream scenarios, flows with large

arrival rate are always more important than flows with small

arrival rate, but we cannot know the size of the arrival rate

in advance. Therefore, it seems that we have to use large

counters (e.g., 32 bits or even 64 bits) for all flow to record

their arrival rate. However, using large counters will make

our data structure too large to be held in a small cache. So

we aim to use small counters to record both small arrival

rates and large arrival rates. If a small counter overflows,

we regard this as a rebirth: a finite cyclic group Z256 in

theory [23]. Once the rebirth occurs, it would cause the loss

of the most significant bit of the frequency, which can further

cause the accuracy loss of variance calculation. For example,

given three counters 253, 254, and 255, suppose the incoming

flow updates the counter of 255 to 0, this is a rebirth. In

this case, the normal variance calculated by the reborn values

(Fv{253, 254, 0}=21421)1 in the counters is very large, while

actually the real variance (Fv{253, 254, 256}=2.33) is very

small. In this way, we propose the offset variance calculation.

The key idea is to offset the values in the counters by a fixed

value, and recalculate the variance of these offset values to

make the calculated variance close to the real value. In the

above example, we can offset the values {253, 254, 0} by 128,

and get {125, 126, 128} (−128 = 128 in Z256) respectively.

The variance calculated is the same as the real value, i.e.,
Fv{253, 254, 256}=Fv{125, 126, 128}. Therefore, if a flow is

a steady flow, we can always accurately report it as a steady

flow.

Further, our experimental results show that we obtain

much higher accuracy because we can accommodate much

more counters in the same memory size. Compared with the

strawman solution, SteadySketch is memory efficient, accurate

and fast: it achieves a 95% Precision Rate (PR) with 50KB

memory in the CAIDA Dataset for finding steady flows, and

the throughput has been improved by 1.73×. Finally, we

implement SteadySketch on cache replacement scenario, and

results show that SteadySketch can significantly improve the

performance of cache hit ratio. More details are provided in

Section IV. We have released our source code at GitHub [24].

Key Contributions:
• We propose and define a new problem namely finding steady

flows in data streams, which has not been studied before but

is important in many applications.

• We propose a novel sketch named SteadySketch to address

the above problem with high accuracy and high speed in

small memory.

• We conduct extensive experiments, and the results show

that our solution significantly outperforms the strawman

solution. Particularly, SteadySketch improves the precision

rate by 81.1% for finding steady flows and decreases the

Average Relative Error (ARE) by 995.3×.

II. PROBLEM STATEMENT & RELATED WORK

A. Problem Statement

The symbols frequently used in this paper are shown in

Table I.

Steady refers to the situation which continues or develops

gradually without any interruptions and is not likely to change

quickly. In data streams, it manifests as the arrival rate of a

flow which fluctuates slightly around a fixed value without

1Fv(.) is the function of variance calculation and return the calculated
variance value

interruption for a period of time. Therefore, we characterize

the steady flow from two aspects: continuity and stability.

TABLE I: Symbols frequently used in this paper.

Notation Meaning
e a distinct flow in data streams

t current time window

w the number of bits or counters in each bucket

gk(.) kth hash function of the SteadyFilter

fd(.) dth hash function of the RollingSketch

P the probability of replacing the flow in stage 2

〈e, t〉 the steady flow e reported with the time window of t

〈e, ts, te〉 the persistent steady flow reported with the start time
of ts and the end time of te

Temporary steady flow: Given a data stream, we divide it

into fixed-width time windows w1, w2, w3, Given a flow

e and a variance threshold H , the arrival rate of e in the

time windows are r1, r2, r3, The function of Fv(.) is

to calculate the variance and return the variance value. If

there exist p consecutive time windows wt−p+1, . . . , wt−1, wt,

where

Fv(rt−p+1, . . . , rt−1, rt) � H

and

ri > 0, ∀i ∈ {t, t− 1, . . . , t− p+ 1}
then e is one steady flow, and we report it as < e, t >. t is

the time window of e becoming a standard steady flow.

Persistent steady flow: The data stream is divided into

multiple fixed-width time window. In each time window, there

could be multiple temporary steady flows. Given a series

of temporary steady flows {〈e1, t1〉 , 〈e2, t1〉 , 〈e1, t2〉 ...}, we

could try to merge steady flows with the same flow ID.

Persistent steady flows 〈e, t1, t2〉 will be reported, only when

the steady flows 〈e, t〉 (t1 � t � t2) are all found. It indicates

that the steady process of e lasts from t1 to t2.

B. Membership Query

Bloom filter: A Bloom filter [25] is a compact data structure

with high spatial efficiency. It uses bit groups to represent a

set concisely, and can judge whether a flow belongs to the

set. It consists of an array of m bits and is associated with

k independent hash functions. Given a flow, it is hashed to k
different mapped bits and set to 1. For membership query,

the Bloom filter checks whether all k mapped bits are 1.

Because it is space-saving and efficient, it is widely used and

has produced many variants [26]–[28].

C. Finding Frequent Flows

CM sketch: CM sketch [22] consists of d arrays Ai(1 � i �
d), each array consists of w counters, and Ai is associated with

a hash function hi(.). Given an incoming flow e, it increments

the d mapped counter Ai[hi(e)] by 1. To query e, CM sketch

only reports minimum one among the d mapped counters. CM

sketch has been widely used in many scenarios and has derived

2

… … …

… … …

… … …

… … …

… … …

… … …26 30 29
44
43

35
47

26
25

111
 ,

Fig. 1: Examples of insertion in strawman solution with 3 hash

functions and w CM sketches. The counters marked green are

frequencies of previous p time windows and the sketch CM2

is selected to represent the current time window.

many variants, such as CU [29], Count [30], and many other

typical sketches [10], [31]–[34]

Space-Saving and Unbiased Space-Saving: Both Space-

Saving [35] and Unbiased Space-Saving [36] use a data

structure called Stream-Summary to keep the top-k frequent

flows. When the Stream-Summary is full and a non-recorded

flow arrives, Space-Saving directly replaces the least frequent

flow with this new flow, while Unbiased Space-Saving uses

probability to replace the least frequent flow to achieve unbi-

ased estimation.

III. THE STEADYSKETCH

In this section, we introduce different solutions for finding

steady flows. First, we propose the strawman solution based

on CM sketch [22]. Further, we propose optimization schemes

and present the final version in III-E. Finally, we discuss the

difference of temporary and persistent steady flows, and add

a new data structure for finding persistent steady flows.

A. The Strawman Solution

As shown in Figure 1, our strawman solution is based on

CM sketch [22]. We construct the strawman solution with

w CM sketches, in which p sketches to contain the flow

information in past p time windows, one CM sketch is used

to contain the flow information of current time, and the other

is reserved for the next time window. Thus, the w must be set

greater than p+ 2.

For each incoming flow e with time window t, the CM

sketch (Section II-C) representing the current time hash it to a

bucket in each array, and increment the counters by 1. Then,

the variance of frequency is calculated by the counters of the

mapped buckets in previous p sketches. If the variance is less

than the steady threshold H , we report the steady flow 〈e, t〉.
The strawman solution could indeed be used to report steady

flows. However, its low accuracy, low throughput, and high

memory consumption make it difficult to apply in practice.

B. Speed Optimization

For calculating the variance, the strawman solution needs

multiple access to the sketches, which highly reduce the

throughput. Inspired by the principle of locality, we set the

counters in the same location of different sketches into one

bucket. Thus, we merge the multiple sketches to one sketch,

and reduce the time complexity to O(1), which greatly im-

proves the throughput.

C. Accuracy Optimization

The key idea of accuracy optimization lies in continuity

checking. It refers to checking if the flow appears consecu-

tively in previous p time windows. Due to limited memory and

hash collisions, it is hard to determine whether it is interrupted

for some small flows. Thus, we propose SteadyFilter to be

responsible for continuity checking. Inspired by the Bloom

Filter [25], we construct the buckets of array with multiple bits

to record the appearance of a flow in multiple time windows,

which greatly improve the accuracy.

D. Memory Optimization

The key novelty of this paper lies in this optimization. The

main innovation is the proposal of the reborn technique. In

SteadySketch, we reduce the counters to 8 bits and utilize

the reborn technique to deal with the overflow caused by

elephant flows. The key of reborn technique is rebirth and

offset variance calculation.

Rebirth: Inspired by the concept of group, the value of an

8-bit counter can be regarded as a finite cyclic group G =
Z256 = {0, 1, · · · , 255}. Once the frequency is greater than

255, the rebirth is triggered and the value increments from 0
again.

Offset Variance Calculation: Once the rebirth is performed,

it indicates that the frequency has not been well recorded.

Thus, we propose the offset variance calculation to ensure the

accuracy of variance calculation. First, we calculate the normal

variance using the raw data as usual. Next, we calculate the

offset variance. The innovation is that we offset the frequencies

by a fixed value: we increment the values by 128.

Example: A steady flow appears 248, 258, 260 times in three

time windows, respectively, and it is recorded as 248, 2, 4 in

counters. In the normal variance calculation, the variance result

is 13339, while the real frequency variance is 27. It is greatly

larger than the real value. In the offset variance calculation, the

frequency is recalculated as 120, 130, 132, and the variance

value is the same as the real variance.

E. Our Final Version

Integrating the above three techniques, SteadySketch in-

cludes two parts: a SteadyFilter and a RollingSketch. We

would introduce the two parts in details below.

1) SteadyFilter:
Similar to the typical Bloom filter [25], SteadyFilter consists

of k bucket arrays A1, A2, · · · , Ak, and k hash functions

g1(.), g2(.), · · · , gk(.). Each bucket consists of w bits, which

represent the appearance of a flow in w time windows. When

querying, if the ith bit in the bucket is set, it indicates that the

flow has reached in the ith time window.

Figure 2 shows the data structure of SteadyFilter with the

version of one hash function. In this figure, e1,e2 and e3 are

the flows inserted into SteadyFilter at time of t1, t2 and t3
respectively. The bits marked red represent the time windows

of t1, t2 and t3 in the mapped buckets, while the green ones

3

Fig. 2: Examples of insertion in SteadyFilter with one hash

function. All the buckets are initialized to (1, 1, 0, 1, 0, · · · ,

1). The bits marked red represent the current time window,

while the green ones are previous p time windows.

6

,

 c

128

Fig. 3: Examples of insertion in RollingSketch with one hash

function. The array consist of m slots and w cells in each slot

and the parameter p is set as 4. In addition, � � � � in the

figure represent the sequence of insertion.

are the previous p time windows. If a flow is recognized as

uninterrupted and first come in the current time window, it

would be marked with Tpf , like e2 in Figure 2.

2) RollingSketch:
RollingSketch consists of d arrays, and each array is associ-

ated with a hash function. Figure 3 shows the data structure of

RollingSketch with one array, which looks like a cylinder. In

this paper, the cylinder is set to be cut into m slots, and each

slot consists of w cells. Each cell records the flow frequency

in a time window. Thus, a slot can record the flow frequencies

of w time windows.

Insertion (Algorithm 1): We first select the slots B1[f1(e)],
B2[f2(e)], · · · , Bd[fd(e)] in each array with hash functions

f1(.), f2(.), · · · , fd(.). We use the Si(1 � i � d) to denote

the slot selected in each array. Then, we select the cell Si[t%w]
and increment it by 1. The insertion process is shown in Figure
3 and marked as � � and �.

Report (Algorithm 1): First, we select the values in the cells

of Si[(t− j)%w](1 � j � p) and perform the offset variance
calculation (Section III-D) to calculate the variance V0 and

V1. Once one of the two variances is less than the threshold

H , we report the flow e as the steady flow 〈e, t〉, where t
represents the time when the flow e becomes a steady flow.

Clear Strategy (Algorithm 2): As the time window increases,

Algorithm 1: Operations Procedure for RollingSketch

Input: input a coming flow e with the timestamp t
Output: output the steady flow (e, t)

1 for i ← 1 to d do
2 B[fi(e)][t % w] + +;

3 if Tpf == 1 then
4 for j ← 1 to p do
5 tl = (t − j) %w;

G[0][j] ← min(G[0][j], B[fi(e)][tl]);
G[1][j] ← G[0][j] + 128;

6 V0 = Fv(G[0]); // Fv is the function of
variance calculation

7 V1 = Fv(G[1]);
8 if V0 < H ‖ V1 < H then
9 report steady flow < e, t >;

Algorithm 2: Clear Procedure

Input: current time window t and the time window tp
of last flow

1 if t �= tp then
2 for each i ∈ [1, d] do
3 tn = (t + 1) % w;

4 for each j ∈ [0, len(Ai)] do
5 Ai[j][tn] = 0;

6 for each j ∈ [0, len(Bi)] do
7 Bi[j][tn] = 0;

there are not enough bits and cells in each bucket to satisfy all

time windows. If we select the cells representing the current

time window to clear, we have to put the incoming packets

into the buffer queue first, which is not practical in high-speed

data streams. Therefore, we select the bits and cells of the next

time window in the SteadyFilter and RollingSketch, and set

them to 0 when the time window switches. In this way, the

clear operation can be implemented in parallel without much

impact on throughput.

3) Summary :
In SteadySketch, we separately design different processing

schemes for various types of flows in data streams as follows:

Case 1: The elephant flows. They might lead to overflows

in counters. We propose the reborn technique to offset the

accuracy loss caused by overflow.

Case 2: The medium-size flows. Their frequencies can be

well recorded and calculated by the counters normally.

Case 3: The small flows. It is hard to identify the continuity

of a flow in limited memory. In this case, we use SteadyFilter

to specifically identify the continuity of flows.

F. Finding Temporary and Persistent Steady flows

As for finding temporary steady flows, the above algorithm

is fully capable. However, it cannot effectively report persistent

4

5 15 21 26
11 16 11 17

15 20 15 21
0 0 0 25 30, 30

, 21

, 26
, 17

, 5,15

Fig. 4: Insertion examples in Stage 2 and the parameter p is

set as 5.

steady flows. Thus, we add Stage 2 after the RollingSketch

for finding persistent steady flows. Figure 4 shows the data

structure and the insertion process of stage 2. Below we show

the details.

Data Structure: Stage 2 is constructed with an array of l
buckets, and each bucket has four cells. Let Gi be the ith

bucket, and Gi[j] be the jth cell in bucket Gi. For each cell,

it is designed with the following three fields: 1) A flow_ID
field Gi[j].ID records the ID of the steady flows, and we

call the flow in the cell as the residing flow. 2) A start
time field Gi[j].ts records the start time of the steady flow

as a residing flow. 3) A recent time field Gi[j].te records

the recent time of the steady flow as a residing flow. The

duration of a steady flow is represented by the interval ΔT ,

i.e., ΔT = Gi[j].te −Gi[j].ts.

Insertion: When inserting flow e into Stage 2, we first map

the flow to a bucket Gv by computing the hash function h(e).
Next, we try to insert it. There are four cases as follows:

Case 1: Insertion. If e is not in the bucket and there is

still at least one empty cell. We select an empty cell, insert

〈e, t〉 into the bucket, and set the ID of e to Gv[j].ID, the

timestamp ts, te to t− p and t, respectively.

Case 2: Eviction. If the recent time te of the residing flow

ep in the cell is not the last time t − 1, it means that ep is

no longer steady. Thus, we report the flow ep as a persistent

steady flow 〈ep, Gv[j].ts, Gv[j].te〉. Then, the fields in cell are

replaced by [e, t− p, t], respectively.

Case 3: Increment. If e is in the bucket, and Gv[j].te equals

to t − 1. It shows that e is still steady. We increment Gv[j].te
by 1.

Case 4: Replacement. If the bucket cannot satisfy the above

three cases, it means that all flows in the bucket are still steady.

In that case, we use ΔT to find the shortest persistent steady

flow, and replace it with a certain probability. Then, we kick

the residing flow with P , and replace Gv[j].ID and Gv[j].te
with 〈e, t〉, respectively, without Gv[j].ts replacement. The

definition of P is shown in Equation (1):

P =
1

te − ts − p
(1)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Datasets: We use a total of three real-world datasets and one

synthetic dataset as follows.

1) CAIDA Dataset: This dataset is streams of anonymized

IP traces collected by CAIDA [37]. For CAIDA Dataset, there

are around 30M flows and 900K distinct flows.

2) Campus Dataset: This dataset is comprised of IP pack-

ets captured from the network of our campus. For Campus

Dataset, there are 10M flows in total, belonging to 1M distinct

flows.

3) MAWI Dataset: This real traffic traces data is provided

by the MAWI Working Group [38]. For MAWI Dataset, there

are around 13M flows.

4) Synthetic Datasets: We generate a synthetic dataset that

follows the Zipf [39] distribution using Web Polygraph [40], an

opensource performance testing tool. For Synthetic Datasets,

there are around 32M flows, and the skewness is 1.5.

For the above datasets, we divide each dataset into multiple

time windows, and set the window size around 10K flows.

Implementation: We implement SteadySketch and the straw-

man solution in C++. The hash functions are implemented

using the 32-bit Murmur Hash (obtained from the open-source

website [41]) with different initial seeds.

Computation Platform: We conduct all the experiments on

a machine with one 8-core processor (8 threads, Intel(R)

Core(TM) i7-9700U CPU @ 3.00GHz) and 16 GB DRAM

memory. The processor has 512KB L1 cache, 2MB L2 cache

for each core, and 12MB L3 cache shared by all cores.

Metrics:
1) Precision Rate (PR): PR is the ratio of the number of

correctly steady flows to the number of steady flows reported.

2) Recall Rate (CR): CR is the ratio of the number of

correctly reported steady flows to the number of correctly

steady flows.

3) Mean Squared Error (MSE): We define the MSE as
1
n

∑n
i=1

(
Vi − V̂i

)2

, where Vi is the real variance of steady

flow ei, V̂i is the estimated variance of steady flow, and the n
is the correct number of steady flows reported.

4) Average Relative Error (ARE): We define the ARE as
1
|Ψ|

∑
ei∈Ψ

|fi−f̂i|
fi

, where fi is the real duration of persistent

steady flow ei, f̂i is its estimated duration of persistent steady

flow, and Ψ is the query set.

5) Throughput: We use Million of operations (insertions) per

second (Mops) to measure the throughput. Experiments are

repeated 10 times and the average throughput is reported.

B. Experiments on Parameter Settings

Main Parameters: 1) The number of hash functions k in

SteadyFilter; 2) The ratio r of the memory size of SteadyFilter

to the memory size of the whole SteadySketch; 3) The number

of hash functions d in GroupSketch; 4) The the variance

threshold H for the steady flows; and 5) The threshold p for

time window period.

5

Parameter Settings: We set k = 3, r = 20%, d = 2, H = 5,

and p = 5.

C. Finding Temporary Steady Flows

In this section, we compare the performance of SteadyS-

ketch in finding temporary steady flows with the strawman

solutions in the metrics below.

1) PR (Figure 5(a) - 5(d)): This experiment shows that the PR
of SteadySketch is greatly outperforms the strawman solution.
We find that, on the synthetic dataset, the PR of SteadySketch

is around 83.3% higher than the strawman solution on average.

On the three real-world datasets, the PR of SteadySketch is

around 81.1% higher than the strawman solution on average.

2) CR (Figure 6(a) - 6(d)): This experiment shows that the CR
of SteadySketch is much higher than the strawman solution.
We find that, on the synthetic dataset, the CR of SteadySketch

is around 16.6% higher than the strawman solution on average.

On the three real-world datasets, the CR of SteadySketch is

around 29.9% higher than the strawman solution on average.

3) MSE (Figure 7(a) - 7(d)): This experiment shows that the
MSE of SteadySketch is obviously lower than the strawman
solution. We find that, on the synthetic dataset, the MSE

of SteadySketch is around 2.93× lower than the strawman

solution on average. On the three real-world datasets, the MSE

of SteadySketch is around 3.22× lower than the strawman

solution on average.

4) Throughput (Figure 8(a) - 8(d)): This experiment shows
that the throughput of SteadySketch is significantly higher than
the strawman solution. We find that, on the synthetic dataset,

the throughput of SteadySketch is around 1.64× higher than

the strawman solution on average. On the three real-world

datasets, the throughput of SteadySketch is around 1.62×
higher than the strawman solution on average.

Analysis: Our experimental results show that SteadySketch

achieves higher accuracy and higher throughput.

Compared with the strawman solution, SteadySketch reduce

the size of the counter to one quarter, thereby increasing the

number of counters by 4×. The reborn technique makes the

frequent flows not cause the accuracy loss of variance. Thus,

more counters in the same space without loss of accuracy

leads to the MSE variance significantly reduced. In addition,

compared with the huge superiority of strawman in precision

rate, the advantage in recall is not so significant, especially

in synthetic dataset. By comparing the results reported by

Strawman and SteadySketch, it is found that Strawman reports

dozens of times more steady flows than the groundtruth, which

contains most steady flows. The reason for this is that there

are too many small flows hash collision. As for the synthetic

dataset, it follows the Zipf distribution and the skewness is set

to 1.5. It would have more small flows compared with the real-

world dataset such as CAIDA, which makes the phenomenon

more serious.

D. Finding Persistent Steady Flows

In this section, we compare the performance of SteadyS-

ketch in finding persistent steady flows with the strawman

solutions in the metrics below. Here, m refers to the memory

of Stage 2. The total memory varies from 300KB to 600KB,

and m has been included and fixed as 150KB.

5) PR (Figure 9(a)-9(d)): This experiment shows that the PR
of SteadySketch is largely outperforms the strawman solution.
we find that the PR of SteadySketch is 53.6%, 70.6%, 43.9%,

and 62.2% higher than the strawman solution on average on

CAIDA, campus, MAWI, synthetic dataset, respectively.

6) CR (Figure 10(a)-10(d)): This experiment shows that the
CR of SteadySketch is much better than the strawman solution.
We find that the CR of SteadySketch is 34.6%, 49.1%, 27.3%,

and 41.8% higher than the strawman solution on average on

four datasets, respectively.

7) ARE (Figure 11(a)-11(d)): This experiment shows that the
ARE of SteadySketch is obviously lower than the strawman
solution. We find that the ARE of SteadySketch is 825.3×,

585.3×, 121.8×, and 2288.7× lower than the strawman solu-

tion on average, repectively. It is up to 1947× in the CAIDA

Dataset, and 5129× in the Synthetic Dataset. On average, the

ARE of SteadySketch is 955.3× smaller than the strawman

solution.

8) Throughput (Figure 12(a)-12(d)): This experiment shows
that the throughput of SteadySketch is obviously higher than
the strawman solution. We find that the throughput of SteadyS-

ketch is 1.73×, 1.78×, 1.63×, and 1.67× higher than the

strawman solution, respectively.

Analysis: As the result shows that our solution gets better

performance in accuracy, throughput and ARE. Since the

superior performance of stage 1, the flows inserted into stage 2

are in high accuracy. Compared with SteadySketch, strawman

solution reports a large number of false positive flows in stage

1, which results in lower throughput and accuracy.

E. Cache Replacement Optimization

To the best of our knowledge, modern caches often adopt

Least Recently Used (LRU) eviction strategy. In this section,

however, we creatively introduce SteadySketch to predict the

coming cache line and thus improve the cache hit rate 2. Our

success depends on a reasonable hypothesis: Once we consider

a cache line is steady, it is probably fetched in the near future.

Experimental Setup: We use LRU as the comparison replace-

ment strategy and carry out C++ simulation experiment. In our

algorithm, we divide the cache into 3 parts: A SteadySketch

(100KB, k = 3, d = 2, H = 5 and p = 5), a fully-associative

steady part and a fully-associative general part. Both the

steady part and the general part can be seen as a small LRU

cache. When we fetch a new cache line, we first insert its

address into the SteadySketch to check if it is a steady cache

line: A steady cache line will be fetched into the steady part

and will not be evicted by unsteady ones; While an unsteady

cache line will be fetched into the general part and will not

be evicted by steady ones.

Experimental on Real-World Dataset: We conduct experi-

ments on Campus dataset, and use PM% to denote the case

2The cache hit rate can be calculated as (the number of cache hits)/(the
number of memory accesses).

6

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

SteadySketch
Strawman

(a) CAIDA

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

SteadySketch
Strawman

(b) Campus

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

SteadySketch
Strawman

(c) MAWI

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 5: Temporary Steady Flows: Precision Rate (PR) vs. memory.

50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

C
R

Memory (KB)

SteadySketch
Strawman

(a) CAIDA

50 60 70 80 90 100
0.2

0.4

0.6

0.8

1
C
R

Memory (KB)

SteadySketch
Strawman

(b) Campus

50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

C
R

Memory (KB)

SteadySketch
Strawman

(c) MAWI

50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

C
R

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 6: Temporary Steady Flows: Recall Rate (CR) vs. memory.

50 60 70 80 90 100
0
1
2
3
4
5
6
7
8

M
SE

Memory (KB)

SteadySketch
Strawman

(a) CAIDA

50 60 70 80 90 100
0
1
2
3
4
5
6
7
8

M
SE

Memory (KB)

SteadySketch
Strawman

(b) Campus

50 60 70 80 90 100
0
1
2
3
4
5
6
7
8

M
SE

Memory (KB)

SteadySketch
Strawman

(c) MAWI

50 60 70 80 90 100
0
1
2
3
4
5
6
7
8

M
SE

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 7: Temporary Steady Flows: Mean Squared Error (MSE) vs. memory.

50 60 70 80 90 100
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

SteadySketch
Strawman

(a) CAIDA

50 60 70 80 90 100
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

SteadySketch
Strawman

(b) Campus

50 60 70 80 90 100
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

SteadySketch
Strawman

(c) MAWI

50 60 70 80 90 100
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 8: Temporary Steady Flows: Throughput vs. memory.

when the general part takes up M% of the memory of the

cache. The experimental results are shown in Figure 13(a): We

find that under a limited cache memory, using SteadySketch

can significantly improve the cache hit rate by up to 13.02%

in a wide range of cache size. So our SteadySketch provides

a new way to optimize cache replacement problem.

Experimental On Steady-Synthetic Dataset: Our Steady-

Synthetic Dataset a mixture of steady flows and non steady

flows and has 107 flows totally. The PS(%) is the ratio of

steady flows in the dataset, while the other flows are random

flows, most of them only appear for a short time. In the

Steady-Synthetic Dataset experimental, we fix the cache size

as 12K and increase the ratio of steady flows in the dataset

to observe the cache hit rate of different algorithms. The

experimental results are shown in Figure 13(b). As we can

see, SteadySketch can significantly improve the cache hit ratio

7

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

StableSketch
Strawman

(a) CAIDA

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

StableSketch
Strawman

(b) Campus

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

StableSketch
Strawman

(c) MAWI

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 9: Persistent Steady Flows: Precision Rate (PR) vs. memory.

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

C
R

Memory (KB)

StableSketch
Strawman

(a) CAIDA

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1
C
R

Memory (KB)

StableSketch
Strawman

(b) Campus

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

C
R

Memory (KB)

StableSketch
Strawman

(c) MAWI

300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

C
R

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 10: Persistent Steady Flows: Recall Rate (PR) vs. memory.

300 350 400 450 500 550 600
10-4

10-3

10-2

10-1

100

101

AR
E

Memory (KB)

StableSketch
Strawman

(a) CAIDA

300 350 400 450 500 550 600
10-4

10-3

10-2

10-1

100

101

AR
E

Memory (KB)

StableSketch
Strawman

(b) Campus

300 350 400 450 500 550 600
10-4

10-3

10-2

10-1

100

101

AR
E

Memory (KB)

StableSketch
Strawman

(c) MAWI

300 350 400 450 500 550 600
10-4
10-3
10-2
10-1
100
101

AR
E

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 11: Persistent Steady Flows: Average Relative Error (ARE) vs. memory.

300 350 400 450 500 550 600
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

StableSketch
Strawman

(a) CAIDA

300 350 400 450 500 550 600
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

StableSketch
Strawman

(b) Campus

300 350 400 450 500 550 600
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

StableSketch
Strawman

(c) MAWI

300 350 400 450 500 550 600
2

4

6

8

Th
ro
ug
hp
ut
(M
op
s)

Memory (KB)

SteadySketch
Strawman

(d) Synthetic

Fig. 12: Persistent Steady Flows: Throughput vs. memory.

compared with typical LRU, especially when the PM% is

relatively small. It means that the larger the proportion of

SteadySketch, the more significant the effect will be, when

the PS is set to 30%, the accuracy increased by an average of

44×.

V. CONCLUSION

Finding steady flows in high-speed data streams in real-time

is important in many applications. In this paper, we propose

a novel algorithm called SteadySketch for real-time steady

flows detection, which is fast, memory-efficient, and accurate.

Experimental results show that the SteadySketch can achieve

81.1% higher PR, 1.73× higher throughput, and up to 955.3×
lower ARE than the strawman solution. Finally, we implement

our SteadySketch on a concrete case: cache replacement, and

the experiment verifies that SteadySketch can significantly

improve the Cache hit ratio.

8

4000 8000 12000 16000
40

45

50

55

C
ac
he
H
it
R
at
io
(%
)

Cache Size

LRU
LRU+SteadySketch, PM%=30%
LRU+SteadySketch, PM%=50%
LRU+SteadySketch, PM%=70%

(a) Campus

10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

C
ac
he
H
it
R
at
io
(%
)

PS (%)

LRU
LRU+SteadySketch, PM%=30%
LRU+SteadySketch, PM%=50%
LRU+SteadySketch, PM%=70%
LRU+SteadySketch, PM%=90%

(b) Steady-Synthetic

Fig. 13: The Cache hit ratio comparison.

ACKNOWLEDGMENT

This work was supported in part by the Key-Area Research

and Development Program of Guangdong Province under

Grant 2020B0101390001 and in part by the National Natural

Science Foundation of China (NSFC) under Grant U20A20179

and Grant 61832001.

REFERENCES

[1] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen,
and R. Mijumbi, “A measurement study on multi-path tcp with multiple
cellular carriers on high speed rails,” in Proc. SIGCOMM, 2018, pp.
161–175.

[2] L. Li, K. Xu, D. Wang, C. Peng, Q. Xiao, and R. Mijumbi, “A
measurement study on tcp behaviors in hspa+ networks on high-speed
rails,” in Proc. INFOCOM, 2015, pp. 2731–2739.

[3] J. Fan, X. Ming-wei, C. Yong, and X. Ke, “Real-time measurement of
local qos states,” in Proc. TENCON, vol. 100, 2004, pp. 48–51.

[4] M. Shen, J. Zhang, K. Xu, L. Zhu, J. Liu, and X. Du, “Deepqoe:
Real-time measurement of video qoe from encrypted traffic with deep
learning,” in Proc. IWQoS, 2020, pp. 1–10.

[5] Y. Lei, L. Yu, V. Liu, and M. Xu, “Printqueue: performance diagnosis
via queue measurement in the data plane,” in Proc. SIGCOMM, 2022,
pp. 516–529.

[6] M. Wyss, G. Giuliari, M. Legner, and A. Perrig, “Secure and scalable
qos for critical applications,” in Proc. IWQoS, 2021, pp. 1–10.

[7] M. Chen, M. Xu, Q. Li, and Y. Yang, “Measurement of large-scale bgp
events: Definition, detection, and analysis,” Computer Networks, vol.
110, pp. 31–45, 2016.

[8] M. Chen, M. Xu, Y. Yang, and Q. Li, “A measurement study on the
distribution disparity of bgp instabilities,” in Proc. LCN, 2016, pp. 19–
27.

[9] Q. Huang and P. P. Lee, “Ld-sketch: A distributed sketching design for
accurate and scalable anomaly detection in network data streams,” in
Proc. INFOCOM, 2014, pp. 1420–1428.

[10] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “Burstsketch:
Finding bursts in data streams,” in Proc. SIGMOD, 2021, pp. 2375–
2383.

[11] Z. Fan, Y. Zhang, T. Yang, M. Yan, G. Wen, Y. Wu, H. Li, and B. Cui,
“Periodicsketch: Finding periodic items in data streams,” in Proc. ICDE,
2022, pp. 96–109.

[12] J. Liu, H. Dai, R. Xia, M. Li, R. B. Basat, R. Li, and G. Chen, “Duet:
A generic framework for finding special quadratic elements in data
streams,” in Proc. WWW, 2022, pp. 2989–2997.

[13] R. Huysegems, B. De Vleeschauwer, K. De Schepper, C. Hawinkel,
T. Wu, K. Laevens, and W. Van Leekwijck, “Session reconstruction for
http adaptive streaming: Laying the foundation for network-based qoe
monitoring,” in Proc. IWQoS, 2012, pp. 1–9.

[14] E. Cole, Advanced Persistent Threat: Understanding the Danger and
How to Protect Your Organization. Syngress Publishing, 2012.

[15] B. Lahiri, S. Tirthapura, and J. Chandrashekar, “Space-efficient tracking
of persistent items in a massive data stream,” The ASA Data Science
Journal, vol. 7, no. 1, pp. 70–92, 2014.

[16] H. Dai, M. Shahzad, A. X. Liu, M. Li, Y. Zhong, and G. Chen,
“Identifying and estimating persistent items in data streams,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2429–2442, 2018.

[17] H. Dai, M. Li, A. X. Liu, J. Zheng, and G. Chen, “Finding persistent
items in distributed datasets,” IEEE/ACM Transactions on Networking,
pp. 1–14, 2019.

[18] Y. Zhang, J. Li, Y. Lei, T. Yang, Z. Li, G. Zhang, and B. Cui, “On-off
sketch: A fast and accurate sketch on persistence,” Proc. VLDB Endow.,
vol. 14, no. 2, pp. 128–140, 2020.

[19] H. Huang, Y.-E. Sun, S. Chen, S. Tang, K. Han, J. Yuan, and W. Yang,
“You can drop but you can’t hide: k-persistent spread estimation in
high-speed networks,” in Proc. INFOCOM, 2018, pp. 1889–1897.

[20] H. Huang, Y.-E. Sun, C. Ma, S. Chen, Y. Zhou, W. Yang, S. Tang,
H. Xu, and Y. Qiao, “An efficient k-persistent spread estimator for
traffic measurement in high-speed networks,” IEEE/ACM Transactions
on Networking, vol. 28, no. 4, pp. 1463–1476, 2020.

[21] Y.-E. Sun, H. Huang, S. Chen, Y. Zhou, K. Han, and W. Yang, “Privacy-
preserving estimation of k-persistent traffic in vehicular cyber-physical
systems,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8296–8309,
2019.

[22] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[23] S. Shahriar, Algebra in Action: A Course in Groups, Rings, and Fields.
American Mathematical Soc., 2017, vol. 27.

[24] “The source code of SteadySketch.” [Online]. Available: https://github.
com/steadysketch/SteadySketch

[25] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[26] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting bloom filter,” IEEE/ACM Transactions on Networking, vol. 22,
no. 4, pp. 1092–1105, 2013.

[27] J. Lu, T. Yang, Y. Wang, H. Dai, X. Chen, L. Jin, H. Song, and B. Liu,
“Low computational cost bloom filters,” IEEE/ACM Transactions on
Networking, vol. 26, no. 5, pp. 2254–2267, 2018.

[28] Y. Wu, J. He, S. Yan, J. Wu, T. Yang, O. Ruas, G. Zhang, and
B. Cui, “Elastic bloom filter: deletable and expandable filter using elastic
fingerprints,” IEEE Transactions on Computers, vol. 71, no. 4, pp. 984–
991, 2021.

[29] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems, vol. 21, no. 3, pp. 270–313, 2003.

[30] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” Theoretical Computer Science, vol. 312, no. 1, pp. 3–15,
2004.

[31] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proc. SIGCOMM, 2018, pp. 561–575.

[32] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang,
and J. Jiang, “Cocosketch: High-performance sketch-based measurement
over arbitrary partial key query,” in Proc. SIGCOMM, 2021, pp. 207–
222.

[33] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet process-
ing,” in Proc. SIGCOMM, 2017, pp. 113–126.

[34] L. Tang, Q. Huang, and P. P. Lee, “A fast and compact invertible sketch
for network-wide heavy flow detection,” IEEE/ACM Transactions on
Networking, vol. 28, no. 5, pp. 2350–2363, 2020.

[35] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. ICDT, 2005, pp.
398–412.

[36] D. Ting, “Data sketches for disaggregated subset sum and frequent item
estimation,” in Proc. SIGMOD, 2018, pp. 1129–1140.

[37] “The CAIDA Anonymized Internet Traces.” [Online]. Available: http:
//www.caida.org/data/overview/

[38] “MAWI Working Group Traffic Archive.” [Online]. Available: http:
//mawi.wide.ad.jp/mawi/

[39] D. M. Powers, “Applications and explanations of zipf’s law,” in Proc.
NeMLaP3/CoNLL, 1998.

[40] A. Rousskov and D. Wessels, “High-performance benchmarking with
web polygraph,” Software: Practice and Experience, vol. 34, no. 2, pp.
187–211, 2004.

[41] “The source code of Murmur Hash.” [Online]. Available: https://github.
com/aappleby/smhasher

9

