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Abstract—In data stream mining, monitoring high-speed users
and segregating their excessive use, known as “Overspeed items,”
is crucial for preventing system overload and maintaining fairness
in messaging and network systems. Current approaches, however,
face scalability challenges with large user bases, primarily due to
increasing memory requirements proportional to user numbers.
We have pinpointed the inefficiency in allocating memory for all
users, recognizing that only a small fraction exhibit overspeed
behavior at any given time. Addressing this, we employed the
sketching technique, a type of approximate algorithm, and
designed the first sketch algorithm for finding Overspeed items,
named SpeedSketch: (1) Scalability. SpeedSketch can scale user
numbers (saving memory space) to a factor of 6430 while
maintaining a low average error rate of 0.1% in real-world
datasets. (2) Accuracy. In theory, SpeedSketch stands out as
the only sketch algorithm offering a per-user relative error
bound. (3) Speed. SpeedSketch is implemented on a high-speed
programmable switch with a throughput capacity of 4.8 billion
items per second. All codes are available on GitHub for reference.

I. INTRODUCTION

In data streams, monitoring high-speed users, such as those

who use substantial network bandwidth [1] or exceed the

processing capability by sending an excessive number of

service requests quickly [2], is crucial for preventing system

overload and maintaining fairness [3]. In this context, detect-

ing their excessive usage (requests), labeled as “Overspeed

items”, is of significant importance. Overspeed items occur

when a user’s items, such as packets or message requests,

arrive faster than it can be processed. However, the challenge

in defining overspeed items arises from the fact that items

arrive at discrete, non-continuous intervals. To address this, a

feasible definition for overspeed items can be derived from the

producer-consumer or bounded buffer model:

Overspeed items. Under the parameters V for average speed

limit and B for burst capacity, each user is assigned an

individual buffer that holds up to B items and processes them

at speed V . A data item, upon arrival, is directed to the buffer

of the user who owns it. If this buffer is full, the item is defined

as an overspeed item; otherwise, it’s added to the buffer and

not considered overspeed. We illustrate the overspeed item in

Figure 1. The aim of detecting overspeed items is to categorize

each incoming item into one of these two categories. This

method is more detailed than existing binary classifications

of user keys, like identifying frequent items, which simply

categorizes all keys as either frequent or infrequent [4], [5].
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In actual implementation, to conserve resources, these buffers

are usually not physically constructed.
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Figure 1: Illustration of OverSpeed Items. In a data stream con-
taining items from two users, x and y, each entering their respective
buffers. User x’s items are within speed limits, whereas user y’s buffer
is full, resulting in newly arriving items being marked as overspeed.

Use case — Network Rate Control: Network operators

restrict users from using the network beyond their paid rates to

protect spare bandwidth and prevent congestion [1]. Overspeed

items are the target of such restriction, with the V and B

parameters matching the SLA-defined Committed Information

Rate and Peak Burst Size [1]. Specifically, modern cloud data

centers usually uses a rate control system to provide per-

formance isolation among multiple simultaneous applications.

Deploying it on the gateway offers several advantages such

as interoperability, which places high demands on scalability

for hosting more than hundreds of applications and millions

of application instances [6]. However, the capacity of a single

machine is limited. A switch with 15MB of SRAM can, at

most, create entries of 8 bytes for fewer than 2 million users.

In the process of scaling, more advanced hardware switches

and distributed devices are introduced. However, such rate

control may not be 100% accurate, with errors arising from

the computational limitations of hardware switches [6] or

synchronization issues in distributed software gateways [7].

As the actual workings of network devices are quite complex,

the overspeed item concept has not been officially defined

until our research. Within network devices, where high-speed

storage comes at a high cost, the detection of overspeed items

requires maximal space efficiency to accommodate more users.

Current methods [6], [8], [9] for detecting overspeed items

struggle to scale up because they require memory that in-

creases linearly with the number of users; our goal is to over-

come this limitation. These methods use individual counters



along with user keys and timestamps to monitor the remaining

space in each key’s buffer, so as to identify overspeed items.

This becomes problematic with a growing number of users,

as the memory required can quickly exceed what is available,

especially on specialized high-speed hardware. For example,

the Intel Tofino V2 switch, which is commonly used for

processing data streams, can handle billions of items every

second but only has a small amount of high speed SRAM (15

MB), making it difficult to support large-scale users [10]–[12].

Our key observation is that it’s not efficient to allocate

memory for all possible users when only a small number

of them have overspeed items. In practice, the total number

of potential users typically exceeds the number of active 1

users (NA) using the service at the same time by more than

a hundredfold. Of these active users, less than 5% (NO) are

overspeed at any given moment [13]. This situation indicates

that we only need to focus on and allocate resources for

those overspeed users, suggesting a significant opportunity for

optimizing the existing linear memory usage approach.

Guided by our observation, we adopt the sketching tech-

nique as our approach. Sketching [14]–[18] has demonstrated

the potential to break away from linear memory usage while

achieving high speed and controllable accuracy in other tasks,

such as finding frequent keys. However, no existing sketch

techniques are capable of detecting overspeed items, necessi-

tating our own design.

In this paper, we propose the first sketch (named SpeedS-

ketch) for finding the overspeed items. It is fast, memory-

efficient, and accurate: (1) Fast: SpeedSketch algorithm is

deployed on a real programmable switch and achieves the

processing speed of 4.8 billion items per second. (2) Memory-

efficient: We reduced the memory cost from O(N) of ex-

isting solutions to O(N ′
O), where N ′

O is the largest-possible

number of concurrent overspeed users (NA � N ′
O � NO).

SpeedSketch supports 10 million users with 1 MB memory in

real datasets. (3) Accurate: SpeedSketch provides tight theory

guarantees and achieves an average error rate of less than 0.1%
easily.

To tackle the problem that existing sketches cannot detect

overspeed items, we developed Basic SpeedSketch. This ap-

proach includes buckets that track each buffer’s status and

calculate the item consumption rate using timestamps. We

drew inspiration from current sketch and Bloom filter designs

for this setup. We enable several users to simultaneously

share a single bucket, optimizing memory use and maintaining

high accuracy by dynamically changing the composition of

the shared users and finely excluding the influence of inactive

users. This design initially demonstrated potential but required

enhancements in memory efficiency. Thereafter, we designed

the Global-Clock, whose core idea is that having everyone hold

a stopwatch is not the most cost-effective method. Instead,

providing a global clock visible to all, where each individual

only needs to record their timing start point, allows for

1Active users refer to those whose buffers are not empty. Note that here, the
buffer is virtually existent, merely used to define which items are overspeed.

the calculation of elapsed time when needed. This approach

significantly improves memory efficiency by eliminating the

space occupied by timestamps. Furthermore, our CounterFlip

technique replaces the high bits of the counter with 1 bit, com-

pressing the counter and further enhancing memory efficiency.

Our theoretical analysis revealed a unique aspect: while

existing sketches haven’t been able to provide high-accuracy

per-user relative error bounds for other problems, our design

uniquely achieves this for detecting overspeed items, marking

a significant advancement in sketching techniques.

Finally, we list our key contributions as follows:

1) We formally define the concept of overspeed items in data

streams, inspired by the producer-consumer model.

2) We develop SpeedSketch for detecting overspeed items,

effectively leveraging the core principles of sketch meth-

ods and introducing new designs such as the Global-

Clock Technique and the Counter-Flip Technique.

3) We perform a rigorous mathematical analysis of our

algorithm, reducing the memory cost from O(N) in

existing solutions to O(N ′
O), where N ′

O is the maximum

possible number of concurrent overspeed users (NA �
N ′

O � NO). Additionally, our algorithm is the first sketch

to provide a per-user relative error bound.

4) We evaluate SpeedSketch on four datasets, and the re-

sults show that SpeedSketch can save memory by up to

6430 times while only incurring 0.1% average error rate

(§ V-C1).

5) We prototype SpeedSketch on a switch that can process

4.8 billion items per second. All codes are open-sourced

[19].

II. PRELIMINARY

In this section, we provide a formal definition of the

overspeed item (§ II-A), followed by the real-world application

(§ II-B) and the related algorithms (§ II-C). We also introduce

our target processing platforms (§ II-D).

Furthermore, since there are no existing approximate al-

gorithms or sketches specifically addressing our problem,

we introduce two baseline solutions. The two baselines are

proposed in order to highlight the limitations of existing

solutions in solving our problem, as well as to emphasize the

challenges in designing new algorithms. The first one (§ II-C1)

is a linear method for exact answers while the second one

(§ II-C2) utilizes the the state-of-the-art (SOTA) sketch called

Stingy [20]. While reading the two baselines may cost some

time, readers can choose to skip them and proceed directly to

our solution (§ III).

A. Problem Definition

Definition 1. (Data Stream [21], [22]) The data stream S is

a sequence of items, i.e., S = {〈e1, t1〉, 〈e2, t2〉, . . . }. The x-

th arriving item has a user key ex (ex ∈ U, |U | = N ) and a

timestamp tx.

Definition 2. (Overspeed items.) Under the parameters V for

processing speed limit and B for burst capacity, each user is



Algorithm 1: The linear solution.

Input: An item with user key e and arriving time t.
Output: Answer

1 Function UpdateConsumer(Bucket A):
2 A.C ← max(0, A.C − V × (t−A.T ))
3 A.T ← t
4 return
5 UpdateConsumer(Ae)
6 if Ae.C + 1 � B then
7 Answer ← NOS
8 Ae.C ← Ae.C + 1
9 else

10 Answer ← OS
11 end

assigned an individual buffer that can hold up to B items and

processes them at a rate of V items per second. When a data

item arrives, it is directed to the buffer of its corresponding

user. If this buffer is full, the item is classified as an OverSpeed

(OS) item; otherwise, it is added to the buffer and categorized

as Not OverSpeed (NOS). Every 1/V seconds, the buffer

processes and removes one item from the buffer.

Example. Consider that user A’s items {a, a, a, a, a, a, a, a}
arrive uniformly over seconds 1-8. The PC model has a buffer

capacity of B = 2 and a consumption speed of V = 0.5/s.

According to the definition, the capitalized and bolded items

in the stream {a, a, a,A, a,A, a,A} are marked as OS. This is

because the first two items of ”a” consume the buffer capacity,

and then the items are consumed at a rate of 0.5 item per

second. Hence, within every 2-second interval, one “a” item

is labeled as NOS, with the remainder A labeled as OS.

B. Applications

Beyond the previously mentioned use case of network rate

control, we present two additional use cases.

AWS Message System Fairness: In AWS messaging systems

SQS [23], users send out streams of messages that are queued

for processing. Ensuring every user gets fair service is essen-

tial. Following AWS’s approach to avoiding queue backlogs,

queues are rate-limited to identify excess messages (over-

speed items), which are then moved to spillover queues for

later processing. This system, however, can become resource-

intensive when more users are added [3]. Thus, a more space-

efficient and scalable method for detecting overspeed items

can maintain fairness even as user numbers grow. Similar

situations occur in messaging systems like Kafka [2] and

RabbitMQ [24].

Multi-sensor Rate Adjustment: In Robotic Operating System

(ROS), topic is a major communication method where a

publisher node sends messages to a subscriber node. Messages

not processed in a timely manner by the subscriber node

are stored in a queue for later processing. In large-scale

SLAM tasks [25], sensor fusion [26]–[28] is a common

approach where multiple heterogeneous sensors (e.g. cameras,

lidars, etc.) are used together to enhance feature detection

and optimize path planning. In this setting, multiple sensors

(each deployed as a ROS node) are connected with one unique

mapping system running on a ROS node. Any message sent

from the sensor node that cannot be handled by the mapping

system in a certain amount of time is an overspeed item. These

messages have lost their information timeliness as they spend

too long time queuing, which cannot serve as a useful source

of data for the mapping system. Detecting overspeed items in

real-time can help discard outdated sensing data and adjust the

rates from each sensor.

C. Prior Art

We introduce two types of related algorithms: exact algo-

rithms with linear space complexity, and approximate algo-

rithms with sub-linear space complexity.

• Exact algorithms do not allow for any errors in al-

gorithm design. The existing solutions for finding OS

items are all exact algorithms. They allocate separate

counting resources for each user, ensuring zero-error but

requiring linearly proportional space with the number of

users. However, this approach becomes impractical when

supporting a large number of users.

• Approximate algorithms allow for controllable errors

during their design and have smaller space requirements

compared to exact algorithms. The size of the space

needed for approximate algorithms depends on the al-

lowed error. This article aims to propose the first approx-

imate algorithm for finding OS items.

We will now proceed to introduce these two types in detail:

1) Exact Algorithms (Linear):
The existing work [6], [8], [9] capable of finding overspeed

items are linear solutions (Pseudocode in Algorithm 1): In a

hash table, each user is allocated a bucket denoted by Ae,

where e represents the user key. Each bucket Ae consists of

a counter Ae.C to record the usage and a timestamp Ae.T to

track the latest update time. When an item e arrives at time t,
the following steps are performed in its bucket Ae:

1) Remove items (update bucket): The update interval is

calculated as t − Ae.T , and V × (t − Ae.T ) items are

consumed. If the remaining item quantity Ae.C decreases

to 0, the consumption will stop. Consequently, Ae.C
is updated as max(0, Ae.C − V × (t − Ae.T )), where

max(0, x) sets any real number x to a non-negative

value. Additionally, the timestamp Ae.T is updated to

the current time t.
2) Insert items: Check whether there are enough space,

i.e., Ae.C + 1 � B. If so, Ae.C is incremented by 1.

Otherwise, the item is marked as an overspeed item and

Ae.C remains unchanged.

The linear solution incurs a memory cost that scales linearly

with the number of users N , limiting its ability to support a

large number of users (N > 107) on high-speed hardware

platforms (§ II-D).

Despite being considered exact algorithms from the per-

spective of algorithm design, these solutions introduce a small

degree of error when deployed on production equipment.



(a) Top 500 Users Frequently
Reporting Overspeed Items

(b) Average Per-User Overspeed
Item Mark Deviation

Figure 2: Comparison between Stingy (SOTA Sketch) and Our

Solution: SOTA can roughly locate users with many OS Items,

but cannot accurately mark OS items.

This is because compromises are necessary to accommodate

hardware limitations, such as floating-point calculations [6],

or to address issues in distributed systems, such as real-

time synchronization problems [7], as detailed in Section VII.

Therefore, it can be demonstrated that adopting approximation

algorithms with controllable errors is acceptable, especially if

they bring significant scalability and cost benefits.

2) Approximate Algorithms (Sub-linear):
In the processing of streaming data, approximate algorithms

have gained widespread attention and recognition due to their

small memory overhead, fast processing speed, and control-

lable accuracy. For convenience, we collectively refer to these

algorithms as ”sketches.” Existing sketches have proven effec-

tive in tackling numerous critical patterns, including frequent

items, heavy changes, bursts, persistent items, etc. Despite the

abundance of sketch schemes, none of them can be readily

adapted to efficiently detect OS items.

When considering patterns comparable to the OS item,

the frequent item (also referred to as frequent user or heavy

hitter) stands out as it denotes the user key whose frequency

surpasses a pre-defined threshold F within a specified time

window, with options including either fixed or sliding win-

dows. For example, considering the aforementioned stream

{a, a, a, a, a, a, a, a} in time [1, 8], “a” with a frequency of

8 would be the frequent user under a threshold of F = 2.

Although a large number of sketches can estimate the

user’s frequency and identify frequent users, they struggle

to pinpoint which specific items are overspeed. To illustrate

this, consider a straightforward solution that uses a sketch

(e.g., the state-of-the-art (SOTA) sketch called Stingy [20])

to continuously record the frequency of each user. Subse-

quently, any subsequent items from a user are labeled as

overspeed once their frequency exceeds a specified threshold,

such as 2. To ensure long-term smooth processing, we clear

the sketch and restarts counting every W (e.g., W = 4)

seconds, where each W -second interval is referred to as a

fixed window. In our example, the capitalized and bolded

segments in [a, a,A,A], [a, a,A,A] would be marked as OS.

With this approach, OS items cluster towards the end of each

time window, leading to detrimental periodic network traffic

fluctuations and other potential issues.

We further propose a smarter improvement using the idea of

sliding windows, but its performance remains unsatisfactory.

To enhance accuracy, we reduce the magnitude of the window

size W and maintain M stingy sketches to track the number

of NOS items attributed to each user in the most recent M
windows. When a new item arrives, we query the frequency of

NOS items for its user key within the previous M windows.

Based on the buffer capacity B and consumption speed V of

the PC model, we simulate whether the current buffer would

be empty after processing these M windows. This simulation

is used to label the new item. However, as depicted in the

experiment results, this approach only approximates which

users are with the most OS items (Figure 2b) and fails to

accurately identify the specific OS items (Figure 2b). The total

count of OS items labeled for each user significantly deviates

from the correct answer. Despite extensive attempts to utilize

existing sketches as tools to address the problem of OS items,

the results have been unsatisfactory. Therefore, we decide to

design a new algorithm.

D. Processing Platforms

Our goal is to design a common algorithm for multiple plat-

forms including both CPU software and high-speed hardware

platforms (i.e., FPGA and programmable switches). Among

them, programmable switches have the highest processing

speed and the strongest design constraints. In other words,

as long as the algorithm we designed can be implemented

on a switch, it can be implemented on other platforms. Intel

Tofino V2 switch is a popular programmable switch with total

15MB of memory. Any algorithm successfully deployed on it,

including ours, can achieve a processing speed of 4.8 billion

items per second.

Table I: Key symbols in this paper.

Symbol Meaning
N Number of distinct users potentially present
B Capacity of a single user buffer
V Rate at which items are consumed from a buffer
C Usage of a single buffer
G Global counter
D Total number of items in the data stream
S Speed of the data stream (items per second)

III. SPEEDSKETCH DESIGN

To find overspeed items under strict memory constraints,

we propose two solutions as follows:

1) Basic SpeedSketch, a memory-efficient solution inspired

by sketches and the Bloom filters [29], [30], greatly

reduces the memory cost with bounded accuracy loss.

2) Advanced SpeedSketch further saves memory utilizing

the techniques of Global-Clock and Thrift. We also pro-

pose another two extension techniques that can be added

to SpeedSketch when necessary.

A. The Basic SpeedSketch

Methodology. In the linear solution, one bucket can only serve

one user at any time, which has become the bottleneck of its

performance. Our approach is allowing multiple users to share

one bucket at the same time. At a high level, when all users



Algorithm 2: The basic SpeedSketch.

Input: An item with user key e and arriving time t.
Output: Answer

1 Initially, MinUsage is MAXV ALUE.
2 for i = 1, 2, · · · , k do
3 UpdateConsumer( A

hi(e)
i )

4 MinUsage ← min(MinUsage,A
hi(e)
i .C)

5 end
6 if MinUsage+ 1 � B then
7 Answer ← NOS
8 for i = 1, 2, · · · , k do
9 Ahi(e).C ← min(B,Ahi(e).C + 1)

10 end
11 else
12 Answer ← OS
13 end

( )
( )

Figure 3: An example of the Basic SpeedSketch with n = 5, k = 3
and B = 3. For an arriving item e, we access all its mapped buckets
and update their usage to the latest state, i.e., 0, 3, 1. The minimum
usage is 0, which is less than B. Thus the item is not an overspeed
one and we increment all its usages by one (but the usage should be
no more than B).

sharing a bucket are slow, they can perfectly use a bucket

at the same time. Otherwise, we can repeatedly change the

composition of the shared users until the error is small and

controllable.

Data Structure. The basic version of SpeedSketch consists of

k arrays and each array contains n buckets. The j-th bucket in

the i-th array is denoted as Aj
i , i ∈ [1, k], j ∈ [1, n]. There are

nk buckets in total, which is much smaller than the number

of buckets in the linear solution. Each bucket has a counter

A
hi(e)
i .C to record the usage, and a timestamp A

hi(e)
i .t to

record the latest update time. There are k independent hash

functions: h1(·), . . . , hk(·). For the arriving item with user key

e, the i-th function maps the user key to a random mapped
bucket in the i-th array, i.e., Aj

i , j = hk(e).

Insert. For each arriving item, we first calculate the hash to

find the k mapped buckets. Then, for all mapped buckets,

we update the usage after the consumption in the same way

as introduced in Straw-man, and find the minimum usage

MinUsage = min∀i(A
hi(e)
i .C). Among all recorded usages

in the mapped buckets, MinUsage is the most accurate one

in depicting the real usage of user e, which is explained later.

Then, we identify the overspeed item by judging whether

MinUsage+ 1 reaches capacity B. If MinUsage+ 1 � B,

the arriving item is not an overspeed one and we increment all

usages in its mapped buckets by one. Otherwise, the arriving

item is reported as an overspeed one. We show an example in

Algorithm 3: The advanced SpeedSketch.

Input: An item with user key e and arriving time t.
Output: Answer

1 G ← �V × t�
2 MinUsage ← MAXV ALUE
3 for i = 1, 2, · · · , k do
4 C ← max(0, A

hi(e)
i .cnt−G)

5 MinUsage ← min(MinUsage, C)
6 if C + 1 � B and C � MinUsage then
7 C ← C + 1
8 end
9 A

hi(e)
i .cnt ← C +G

10 end

11 Answer ←
{

NOS MinUsage+ 1 � B
OS Otherwise.

Figure 3.

From what is stated above, we can see that the usage

recorded in one bucket is the total usage of all users hashed

to it. As an increasing number of other users share the same

bucket with e, the recorded usage will become larger with

time. Any usage in the mapped buckets of e is no less than

the real usage of e (i.e., the usage of e in the linear solution).

Therefore, the minimum usage is the most accurate one and

thus we use it to identify the overspeed item. At a high level,

SpeedSketch has the following properties:

1) Inactive users who have no items do not incur overhead.

Inactive users neither increment any counter nor are

allocated with any fixed resources.

2) Slow users can share one bucket with no error. When only

slow users enter a bucket and their total speed and burst

size are less than V and B respectively, no overspeed

item will be reported, which is perfectly exact.

3) One-side and small error. SpeedSketch has a one-side

error that it never miss any overspeed item, and we

mathematically prove that the error is small in § IV.

B. The Advanced SpeedSketch

The advanced SpeedSketch is the optimized version of the

basic SpeedSketch featuring two techniques: the Global-Clock
and the Thrift. It is worth mentioning that the utilization of

these two techniques does not introduce additional drawbacks.

Global-Clock reduces the memory cost of every single bucket

without incurring additional errors, while Thrift reduces the

error without changing the data structure.

The Global-Clock Technique. Reducing the cost of the

bucket can always benefit SpeedSketch as a whole. The

Global-Clock technique tries to remove the timestamp and to

record only one counter in each bucket. The timestamp serves

for consuming items, i.e., the consumed amount is determined

by how long ago it was last updated. After the removal of

timestamp, we need an alternative way to consume items. A

straightforward way is to use an additional background thread

to scan all buckets and consume items periodically, but it will

increase the computing cost and reduce the throughput. Our

approach is to maintain a global number of consumed items

that can update all buckets simultaneously. The details are as

follows.



We add a new global counter G that grows at the speed of

V and has no upper limit, and let each bucket only record a

counter Aj
i .cnt (= Aj

i .C + G) for the number of consumed

items, rather than the usage Aj
i .C (i.e., the number of items

not consumed). Therefore, C = Aj
i .cnt − G is the usage in

bucket Aj
i as before. Besides, C should not be less than 0, so

we calculate the usage C by max(0, Aj
i .cnt−G).

As shown in Algorithm 3, for the arriving item e, we access

each mapped bucket in sequence and work as follows: First,

we calculate C by max(0, A
hi(e)
i .cnt − G). Then, we update

the MinUsage by C as before. Next, we try to increment

C to record the arriving item and ensure that it does not

exceed B. Note that C should be no greater than MinUsage,

which is the Thrift-Update Technique detailed later. So far, the

calculation of C in this bucket has been completed. Since C
is a temporary variable that is not stored, we save it through

A
hi(e)
i .cnt = C + G. Finally, in the same way as the basic

version, we report NOS if MinUsage+ 1 � B. Otherwise,

we report OS.

The Thrift Technique. The Thrift technique can reduce the

repeated increment in the mapped buckets, so as to improve

the accuracy. The operation of Thrift is quite simple (Line 6

in Algorithm 3): Do not increment C when C > MinUsage.

The justifications are as follows: Recall our goal of approx-

imating the real usage of e by C. Define u to denote the real

usage of e before inserting the arriving item, i.e., u = Ae.C,

where Ae.C is the counter in the linear solution. C should

be made as small as possible while being no less than u. If

so, we have u � Ci∀i, where Ci is the C in the i-th mapped

bucket2, and thus u � MinUsage. The new real usage after

the arrival of the new item is u′ = u+1. If C is greater than

MinUsage, we have u′ = u+1 � MinUsage+1 < C +1.

Since both u and C are integers, we have u′ � C. Therefore,

when C > MinUsage, we do not increment C just to ensure

that C is no less than the real usage and as small as possible.

C. Extensions

We propose two extension techniques of SpeedSketch: 1.

The Weight Technique, which aims at supporting customized

size of item, instead of the traditional “1”. 2. The Counter-

Flip Technique, which can solve the integer overflow problem

that may be encountered when running the sketch for a long

time. The pseudo-code of SpeedSketch with two extensions is

shown in Algorithm 4.

The Weight Technique. In some scenarios, each item may

have a different weight (e.g., the size of the data packet in

the network is between 64 Bytes and 1500 Bytes), making

it meaningful to consider the overspeed item of the weighted

version: The x-th arriving item has a user key ex, the current

timestamp tx, and its weight wx, where wx ∈ [0,W ] and W is

the maximum possible weight. The total weight of all items in

the same buffer should not exceed the capacity B. The item

incapable of entering the buffer is defined as an overspeed

item.

2Ci = max(0, A
hi(e)
i .cnt−G)

Algorithm 4: The advanced SpeedSketch with two

extensions.
Input: An item with user key e, time t, and weight w.
Output: Answer

1 G ← �V × t�
2 G′ ← G mod MaxG
3 Flag =

⌊
G

MaxG

⌋
mod 2

4 P ′ ←
{

1 w.p. w
W

0 Otherwise
5 MinUsage ← MAXV ALUE
6 for i = 1, 2, · · · , k do
7 if Ahi(e)

i .F �= Flag then
8 A

hi(e)
i .F ← Flag

9 A
hi(e)
i .cnt ← A

hi(e)
i .cnt−MaxG

10 end
11 C ← min(B,max(0, A

hi(e)
i .cnt−G))

12 MinUsage ← min(MinUsage, C)
13 if C + 1 � B and C � MinUsage then
14 C ← C + P
15 end
16 A

hi(e)
i .cnt ← C +G

17 end

18 Answer ←
{

NOS MinUsage+ 1 � B
OS Otherwise.

We solve the weighted version by sampling technique. Let

each unit of the usage counter C represent a weight of W . For

each arriving item with weight w, increment the usage by one

with a probability of w
W , and otherwise leave it as it is. In other

words, we just replace “C ← C + 1” in line 6 of Algorithm

3 with “C ← C + P ”, where P =

{
1 w.p. w

W
0 Otherwise.

The

sampling introduces additional errors, but considering the huge

number of items, the central limit theorem tells us that the error

is small and tolerable.

The Counter-Flip Technique. If SpeedSketch has been run-

ning for a long time, G and A
hi(e)
i .cnt may grow until the

integer overflow. The Counter-Flip Technique can solve the

potential error of the overflow, and reduce the size of A
hi(e)
i .cnt

to further save memory. Specifically, we limit G (denoted

as G′) to grow circularly in the interval [0,MaxG) (e.g.,

MaxG = 216 = 65536), and use a global one-bit Flag
(initially 0) to record the parity (odd/even) of the number of

cycles G′s. Specifically, every time G′ exceeds MaxG, we

reset it to 0 and Flag will be flipped (Flag = 1 − Flag).

In every bucket, we append a local one-bit flag A
hi(e)
i .F to

record the value of Flag when last accessed. Every time an

item accesses its mapped bucket, we first check whether the

global flag is the same as the local flag. If so, we just insert the

item in the same manner as before (Line 4-9 in Algorithm 3).

Otherwise, we know that after undergoing an extra cycle, G′

has become a smaller value, whilst A
hi(e)
i .cnt has not. In this

case, we perform additional operations of updating the local

flag to the global one and decreasing A
hi(e)
i .cnt by MaxG.

Then we insert the item as before. Only in rare cases, when

there are two Gs, namely G1 and G2, that corresponds to two

consecutive updates of a bucket, and their difference G2-G1 is

close enough to a multiple of 2 ·MaxG, will the counter-flip



be unable to reduce the overflow error to zero. Even in such

cases, the errors are strictly no greater than B, making them

almost negligible.

Counter-Flip limits both G and A
hi(e)
i .cnt to less than

MaxG+B, which not only eliminates most overflow errors,

but also further reduces the size of the counter A
hi(e)
i .cnt to

log2(MaxG+B) bits.

IV. MATHEMATICAL ANALYSIS

In this section, we comprehensively show the theoretical

features of the SpeedSketch, including accuracy, space com-

plexity and time complexity. Our analysis is based on the basic

version of SpeedSketch, but since the advanced version of

SpeedSketch (Algorithm 3) outperforms the basic one in all

aspects, all theoretical results are applicable to both versions.

We define some symbols as follows. For the data stream

with N users and D items, the set of user keys is S =
{e1, e2, . . . , eN}. Define fi that denotes the number of items

with ei, i.e., the size of ei. Define gi that denotes the number

of items that are not overspeed among all ei’s items, i.e.,

the ground-truth. Define ĝi that denotes the number of items

marked as not overspeed in the basic SpeedSketch, i.e., our

estimation.

We first give a simple error bound for a single user. The

derivation process is simple and radical, and the optimization

related to arrival time is not used, so the result is relatively

weak.

Lemma 1. (Weak Per-user Absolute Error Bound) Given
a basic SpeedSketch with n = �e/ε�, k = �ln( 1δ )�, with
probability at least 1− δ, for any user,

AbsoluteError = |gi − ĝi| � εD, and ĝi � gi (1)

Proof. Give an indicator function

I(i, j, k) =

{
1 i 	= k ∧ hj(ei) = hj(ek)
0 Otherwise

which outputs 1 if user ei and ek collide at the j-th array. Let

Xi,j be the total size of users collided with user ei in the j-th

bucket, Xi,j =
∑n

k=1 I(i, j, k)fk. Let ĝi,j be the estimated

number of ei’s non-overspeed items in the j-th bucket. In the

best case, no collision occurs (i.e., ĝi,j = gi). If collision

occurs, ĝi,j decreases, but the decrement will not exceed the

total collisions, i.e., gi−Xi,j � ĝi,j � gi. Since the estimation

depends on the MinUsage, ĝi must be no smaller than any

ĝi,j , ∀j. Therefore, we have

gi − ĝi � min
j=1...k

Xi,j , Xi,j =

n∑
k=1

I(i, j, k)fk

For Xi,j , we have:

E[I(i, j, k)] = Pr[hj(i) = hj(k) ∧ i 	= k] � 1

n
=

ε

e

E[Xi,j ] = E

(
n∑

k=1

I(i, j, k)fk

)
=

n∑
k=1

E[I(i, j, k)]fk � ε

e
D

By the Markov inequality, Pr [Xi,j > εD] <
E[Xi,j ]

εD = 1
e .

Therefore, the error is bounded with high probability:

Pr [gi − ĝi > εD] � Pr

[(
min

j=1...k
Xi,j

)
> εD

]
� (Pr [Xi,j > εD])

k
= e−k � δ

Lemma 1 does not take into account the time characteristics

of item arrival, and thus only derives the bound from the total

size of each user. We further propose these observations:

1) In the proof of Lemma 1, the ground-truth overspeed

items from other users will not cause additional errors

to the observed user ei, so they can be excluded from the

bound.

2) For a user ei that is not active for a long time, we only

need to focus on the nearby items that arrive at the same

time or a little earlier (the time difference is no more than
B
V ). Compared to the large number of total items D in

Lemma 1, we only need a small number of nearby items

to safely bound the error of ei.
3) For user ei with gi non-overspeed items, the worst pattern

which results in most error is as follows: Fill the buffer

with B items instantaneously, and then continue to insert

items at the speed of V until a total of gi, in the time

interval of gi−B
V . This pattern ensures that the buffer is

always full and therefore escalates every collision with

other users’ items to an error of 1.

Based on the above three observations, we can replace the

D in Lemma 1 by a much smaller Di as follows: Let S be the

speed of the data stream including all users. The length of time

interval that will cause the most errors is Ti =
gi−B
V +B

V = gi
V .

Thus Di = STi =
Sgi
V . We obtain the following theorem.

Theorem 1. (Per-user Error Bound) Given a basic SpeedS-
ketch with n =

⌈
e
γ · S

V

⌉
, k = �ln( 1δ )�, with probability at

least 1− δ, for user ei,

Absolute Error = |gi − ĝi| � γgi (2)

Relative Error =
∣∣∣∣gi − ĝi

gi

∣∣∣∣ � γ (3)

According to the central limit theory, for N > 100 users,

we can use the expectation of relative error to approximate the

average relative error. Besides, we get the total absolute error

by accumulating the absolute error of each user.

Theorem 2. (The Overall Error) Given a basic SpeedSketch
with n =

⌈
e
γ · S

V

⌉
, k = �ln( 1δ )�, with probability at least

1− δ − o(N−0.5),

Average Relative Error =
1

N

∑
i

∣∣∣∣gi − ĝi
gi

∣∣∣∣ � γ

e
(4)

Total Absolute Error =
∑
i

|gi − ĝi| � γ

e
·D (5)

Complexity: Our space complexity is O(nk) = O(S ln(δ−1)
γV ),

in which γ and δ are accuracy parameters. Since a total speed



of S can support up to N ′
O = S

V overspeeding users (each of

which must have a speed no less than V ), the space complexity

can also be written as O(γ−1 ln(δ−1)N ′
O), where N ′

O is the

largest-possible number of concurrent overspeeding users. The

time complexity of inserting any item is O(k) = O(ln(δ−1)).
Existing sketches could only guarantee absolute error, not

relative error. Guaranteeing relative error is more challenging.

This is because when the absolute error is very small, the

relative error can be large due to the base being small. We

can provide bounds for both relative and absolute errors on a

per-user basis.

V. EVALUATION

In this section, we conduct experiments for SpeedSketch and

present the results. Firstly, we describe the experiment setup

and introduce the stra-wman solution. Secondly, we apply

SpeedSketch to detect overspeed items, evaluating its accuracy

and throughput. Codes of SpeedSketch are open-source on

Github [19] anonymously.

A. Experiment Setup

Evaluation Metrics.
• Absolute Error:

∑
ei∈U

|f(ei) − f̂(ei)|, where U is the set

of overspeeding users, f(ei) is the total size of user ei’s
OS item (ground truth), and f̂(ei) is the total size of all

reported OS items. And the Average Absolute Error (AAE)

is 1
|U |

∑
ei∈U

|f(ei)− f̂(ei)|.
• Relative Error:

∑
ei∈U

|f(ei)− f̂(ei)|/f(ei). And the Aver-

age Relative Error (ARE) is 1
|U |

∑
ei∈U

|f(ei)− f̂(ei)|/f(ei).
• False Positive Rate: |Ω−Ψ|

|U | , where Ψ is the set of over-

speed users (i.e., users with OS items) and Ω is the set of

reported overspeed users. It refers to the ratio of the number

of correctly reported answers to that of all users.

• Throughput: N/T , where N is the number of operations

and T is the time consumption. Mips is an acronym for

Million Instructions Per Second.

Datasets.
• IP Trace: An anonymized dataset comprised of IP packets

collected from [31]. We identify a user by its source and

destination IP addresses. The dataset is a 23-second-long

stream with 26.6M items and about 1.3M users

• University Data Center: An anonymized packet trace from

university data center [32]. It is a one-hour-long stream

with 19.8M items and about 0.7M users. To standardize

the number of concurrent users, we compress the timeline

of the dataset by 1000×.

• Synthetic Dataset I (Zipf): We generate one synthetic

packet trace dataset, the sizes and speeds of users are

empirically generated according to Zipf distribution. The

arrival times of items are generated according to b-model

[33]. The dataset is a 8-second-long stream with 10M items

and about 0.45M users.

• Synthetic Dataset II (Burst): We generate an additional

synthetic dataset that only includes burst users. The dataset

is a 4-second-long stream with 10M items and about 12K

users.

Implementation(Software). We implement SpeedSketch and

related algorithms in C++. Each bucket of SpeedSketch con-

sists of a 32-bit counter. According to the study in § V-C, we

set k=3 by default for the accuracy-throughput tradeoff. For

all algorithms, we set V =10Mbps by default, and B=25KB

to make sure the tolerance interval of a bucket B/V =0.02s.

All the software experiments are conducted on our server with

Intel CPU i9-10980XE CPU (18 cores, 36 threads, 3.00 GHz,

1MB L1 cache, 16MB L2 cache, 25MB L3 Cache) and 128GB

DRAM. Executable files are compiled with O2 optimization

on.

B. Straw-man Solution

Since the aforementioned baseline (§ II-C2) showed un-

satisfactory results, we made some simple improvements to

the linear solution using the ideas of sketches. This was

undertaken to provide a point of reference highlighting the

superiority of our final proposal.

Our straw-man solution, an intuitive improvement of the

linear solution, makes better use of memory by allowing active

users to preempt storage space for statistics, but loses all

statistics on users who fail in the preemption.

Data Structure. Straw-man has an array of n buckets, where

the j-th bucket is denoted as Aj , j ∈ [1, n]. Each bucket Aj

has three fields: a key field Aj .Key recording which user

occupies this bucket, a counter Aj .C recording the usage, and

a timestamp Aj .t recording the latest update time. A hash

function h(·) maps each user key e to a bucket (called the

mapped bucket), i.e., Ah(e).

Insert. For each arriving item with user key e, we insert it

as follows: We calculate the hash to find the mapped bucket

Ah(e), and update the usage after the consumption to the latest

state in the same manner as the linear solution. Then, for the

most critical step of Straw-man, we check whether the bucket

can be cleared and preempted by new user e. The criterion

is whether the usage Ah(e).C is 0. If so, we know that all

items have been consumed, so we assign it to the new user.

Otherwise, we remain the old one. Finally, we try to record

the arriving item. If the bucket is not occupied by this user

(Ah(e).Key 	= e), we have no information and thus report

NOS for the arriving item. If the bucket is occupied, on the

other hand, we check whether the usage will reach the capacity

(Ah(e).C + 1 � B). If not, we report NOS and increment

Ah(e).C. Otherwise, we report OS.

C. Experiments on Accuracy

In this section, we apply SpeedSketch to overspeed item

detection and compare SpeedSketch with other solutions.

1) Impact of Memory:
We find that SpeedSketch achieves high accuracy and

memory-efficiency in overspeed item detection, compared with

other solutions. Specially, the linear solution in § II-C1 has no



(a) IP Trace (b) University Data Center (c) Synthetic - Zipf (d) Synthetic - Burst

Figure 4: ARE of Overspeed Item Detection.

(a) IP Trace (b) University Data Center (c) Synthetic - Zipf (d) Synthetic - Burst

Figure 5: AAE of Overspeed Item Detection.

estimation error, while the memory requirement of it is associ-

ated with the number of total users. It requires about 14.72MB,

7.86MB, 5.04MB, and 0.14MB memory respectively for the

four datasets IP Trace, University Data Center, Synthetic-Zipf,

and Synthetic-Burst (the load rate of hash table estimated at

70%), which is far higher than other solutions.

ARE vs. Memory Size (Figure 4a, 4b, 4c, 4d): It is shown

that SpeedSketch(k=3) keeps ARE below 10−4 when the

memory sizes are 30KB, 50KB, 300KB, and 900KB on the

four datasets respectively. With the same memory size, AREs

of SpeedSketch(k=1) and the straw-man solution are about

more than 102× higher.

AAE vs. Memory Size (Figure 5a, 5b, 5c, 5d): It is

shown that SpeedSketch also controls AAE to a satisfying

level. For example, when the memory size is 10KB, AAE of

SpeedSketch(k=3) is far lower than an MTU (1500Bytes by

default) on the two real world datasets, while the AAEs of

others are approximately 101 ∼ 102× higher.

False Positive Rate vs. Memory Size (Figure 6a, 6b):
Once an item from a user without OS items is mistakenly

reported as an OS item, we call it a false positive. It shows

that false positive rate is also controlled well with restricted

memory. When the memory sizes are 30KB and 40KB on

IP Trace and University Data Center datasets respectively,

SpeedSketch(k=3) offers no error estimation. The straw-man

solution has no false positive error, but it reports false negative

instead.

Minimal Memory Usage (Figure 7a, 7b): We also examine

the minimal memory cost required to achieve different target

error rates. On real datasets, SpeedSketch achieves memory

savings of 6430 and 1503 times compared to the existing
linear solution, with only a 0.1% reduction in accuracy

(AAE). This is primarily due to the fact that the number

(a) IP Trace (b) University Data Center

Figure 6: False Positive Rate of Overspeeding User Detection.

of active users in real datasets is relatively small (less than

1%) compared to the total number of users. In synthetic

datasets, where the proportion of active users is higher, the

advantage of SpeedSketch diminishes and can even fall behind

the linear method. Furthermore, as the tolerance for reduction

in accuracy decreases, the advantages of SpeedSketch become

less pronounced (Figure 7b). For a detailed analysis regarding

the proportion of active users, please refer to § V-C4.
2) Impact of Hash Function:
We implement three common hash functions (Bob Hash

[34] , Murmur Hash [35], and xxHash [36]) to SpeedSketch,

vary the memory size, and compare the accuracy on IP Trace

dataset and Zipf synthetic dataset.

AAE vs. Memory Size (Figure 8a, 8b): It shows that the

selection of hash functions has no significant influence on

accuracy, and different hash functions affect throughput more

than accuracy. Finally, we choose 32-bit Murmur Hashing for

overall performance.
3) Error Distribution:
We further conduct several experiments on SpeedSketch to

illustrate the factors related to the error.

Error vs. User Size (Figure 9): We count AAE and ARE of

users with similar size on IP Trace dataset. The figures show

that as the user size gradually becomes larger, the size of the



(a) Impact of Datasets (with 10Kbps (0.1% AE) Tolerance).

(b) Impact of Error Tolerance (with IP Trace).

Figure 7: Minimal Memory Requirement.

(a) IP Trace (b) Synthetic - Zipf

Figure 8: AAE of SpeedSketch with Different Hash Functions.

overspeed part also increases, so the AAE rises accordingly.

No significant change in ARE is observed, which indicates the

relative error of SpeedSketch is insensitive to user size.

Error vs. # Concurrent Users (Figure 10): We generate

several independent Zipf synthetic datasets in the similar way,

altering the number of concurrent users only. The figures show

that AAE and ARE are both positively correlated with the

number of concurrent users. Indeed, the errors are mainly

Figure 9: Error Distribution by Item Size.

Figure 10: Error Variation by User Density.

from the hash collisions between the overspeeding users. As

the number of concurrent users increases, the overspeeding

users increase subsequently, thus the collisions and errors.

Therefore, in real deployment of SpeedSketch, it is prudent

to pay attention to the user density beforehand.

Figure 11: Error Distribution in Ascending Order.

Error per User (Figure 11): We count absolute errors and

relative errors of overspeeding users on IP Trace dataset and

sort them in ascending order. The memory usage is fixed to

10KB. The figures indicate that only a very small number

of users suffer from large errors. On the other hand, when

k = 1 ∼ 3, the increase in k can significantly reduce hash

collisions and thus the error. Therefore, it is recommended to

set k = 3 for the accuracy-throughput tradeoff.

4) Impact of Dataset:
We alter the synthetic datasets, change the user density, and

try to estimate the minimal memory usage to keep error lower

than 0.1% of speed limit V . Specially, the linear solution

is not affected by the number of concurrent users and only

concentrate on the number of total users.

Memory Usage vs. Proportion of Active Users (Figure
12a, 12b): We find that the minimal memory usage of

SpeedSketch(k = 3) is far less than others when the proportion

of active users is not extremely high. Notice that in most

application scenarios, active users in recent 20ms will be a tiny

fraction of overall users. When 5% of the users are recently

active, for Zipf synthetic dataset, SpeedSketch(k = 3) requires

about 0.56MB memory, about 14.8× less than others. For

Burst synthetic dataset, SpeedSketch(k = 3) requires 0.41MB

memory, about 7.9× less than others.

Memory Usage vs. # Concurrent Users (Figure 13a, 13b):
We find that the minimal memory usage is essentially linearly

correlated with the number of concurrent users, and SpeedS-

ketchwith k = 3 requires far less memory than the others.

For Zipf synthetic dataset, SpeedSketch(k=3) requires 0.39MB

memory when the number of concurrent users is 20M/s, about

3.21× less than the straw-man solution. For Burst synthetic

(a) Synthetic - Zipf (b) Synthetic - Burst

Figure 12: Result under Different User Activity.



(a) Synthetic - Zipf (b) Synthetic - Burst

Figure 13: Result under Different User Densities.

dataset, SpeedSketch(k = 3) requires 0.60MB memory, while

the others requires more than 10MB.

D. Experiments on Throughput

In this section, we conduct experiments with two different

datasets to illustrate the processing speed of SpeedSketch.

We find that SpeedSketch is more memory efficient while

achieving a throughput comparable to that of other solutions.

Process Throughput (Figure 14): The figure shows that

the process throughput of SpeedSketch(k=3) is 32.3Mips on

IP Trace dataset, which is comparable with the linear solu-

tion. Thanks to fewer hash function calls, SpeedSketch(k=1)

achieves 49.9Mips throughput, which is close to the per-

formance of the straw-man solution. The throughput of

SpeedSketch(k=3) on Zipf synthetic dataset is 31.7Mips, the

conclusion is the same as above and does not change signifi-

cantly.

VI. A CASE STUDY: NETWORK RATE CONTROL

In this section, we implement SpeedSketch on the Tofino

switch to demonstrate its effectiveness in Network Rate Con-

trol applications and present the experiment results.

The experiments on the Tofino switch can also demonstrate

the wide applicability of SpeedSketch on various platforms.

Among the four common platforms: 1) CPU, 2) GPU, 3)

FPGA, and 4) Programmable switches, it is the programmable

switches that impose the strongest restrictions. An algorithm

that can be deployed on programmable switches is considered

to be applicable for deployment on other platforms as well.

In the experiments, the Tofino switch and servers are

connected with 40GbE links. Each server is equipped with two

Xeon(R) Silver 4116 CPUs (12 cores, 2.1GHZ, and 16.5MB

L3 cache), 256 GB RAM (2400MHZ), and a Mellanox

Connectx-3 NIC (40GbE).

A. Implementation
As a specific programming hardware, the Intel Tofino switch

has many limitations for a program to run on its platform.

• The built-in multiplication unit has limited precision,

which only guarantees the unbiasedness for the multi-

plication/division of one 4b variable and one constant.

It would introduce errors for other cases, which pose

a severe impact on the correctness of the Answer in

Algorithm 4.

• The Stateful ALU only supports the update of a pair of

up to 32b registers with two conditions, and there are

Figure 14: Throughput Evaluation.

Figure 15: Per-user Error on Tofino Switch.

restrictions on the expression of the new register values.

It limits the number of operations that can be performed

between the reading and writing to the same register,

making it difficult to express the update of A
hi(e)
i .cnt.

• There are only 12 stages in our Tofino switch, each sup-

porting the add/subtract/mask/shift triple operations for

only up to 32b integers. We must design the parallelism of

the operations to limit the diameter of the computational

graph.

We implement the advanced SpeedSketch with ˜500 lines of

P416 language and compile it on the ASIC within 10 stages.

To improve the accuracy of the calculation, we use a pre-

configured lookup table, which has 216 entries, to replace the

multiplication unit. To meet all above-mentioned constraints,

we record a counter A
hi(e)
i .C2 = A

hi(e)
i .cnt − B in every

bucket A
hi(e)
i , instead of recording A

hi(e)
i .cnt directly. Then

the update of one bucket is approximate to

C2 ←
{

C2 + 1 V̂ � C2 < MinUsage+ 1

max{V̂ , C2} Otherwise.

MinUsage ← min(MinUsage, C2)

where V̂ = G − B + 1. We still identify the overspeed item

according to MinUsage as before (Algorithm 4). There is

a little error in the approximate calculation, but the error is

negligible according to our following experiments.

B. Results

Resource Usage (Table II): It shows the occupancy of critical

hardware resources on the Tofino ASIC. Including the ability

to distinguish different users, the whole system takes 10 stages

and only 25 actions. It uses 6.5% SRAM and 32.5% ALU

(Arithmetic Logic Unit) of the ASIC. PHV(Packet Header

Vector) is used to pass variable values between stages. The

system only needs 396B PHV and it accounts for 9.67%.

It demonstrates the feasibility of SpeedSketch on the Tofino

ASIC and actually leaves a lot of resources free.



Table II: The Tofino switch resource usage (Percentages in

brackets are fractions of the total resource.)

#Stages #Actions #SRAM #Meter ALUs PHV/Bytes

10 25 52 (6.50%) 13 (32.50%) 396 (9.67%)

Figure 16: Per-user Speed on Tofino Switch.

Relative Error vs. Target Speed (Figure 15): It shows the

average, median and 95-ile relative error for different target

speeds. We range the speed from about 45Mbps to 400Mbps.

The average and median relative errors are below 1% for

almost all cases, and 95% is still not and than 5%. Such errors

are negligible in the cloud network [6], [37]. It demonstrates

the effectiveness of Algorithm 4 under different target speeds.

Packet Size vs. Realtime Speed (Figure 16): It shows the

actual throughput for different packet sizes when we configure

the Tofino to drop the overspeed packets if the incoming iperf

UDP traffic is over 100Mbps. The packet size ranges from 128

to 512 bytes to test the effectiveness of the weight technique.

The throughput jitter is always within the 1% of the target in

most cases, and the maximum deviation does not exceed 4%.

Because 30s traffic data are collected in the experiments, G
must have underwent overflow. As a result, the results also

demonstrate the effectiveness of the Counter-Flip Technique

on the testbed.

VII. RELATED WORK

In this section, we introduce each specific related work.

Exact solutions. As we summarized in § II-C, exact solutions

allocate separate counting resources for each user, requiring

linearly proportional space with the number of users. The

Token Bucket (TB) [38] and the Hierarchical Token Bucket

(HTB) [39] are two classic algorithms for finding OS items

in packet-switched and telecommunications networks. Each

TB or HTB bucket can only limit the speed of one or a

group of users, hence they are generally organized into bucket

lists composed of multiple buckets. The operation of the

bucket in our basic SpeedSketch is isomorphic to TB, but

the similarity ends there. SwRL [6], the SOTA technique,

minimizes memory overhead for token bucket (TB) algorithms

within the constraints of programmable switches, thereby

supporting up to 1 million users. However, due to hardware

limitations, it cannot achieve 100% accuracy. Specifically,

current hardware programmable switches do not support high-

precision floating-point multiplication and division operations.

To navigate this limitation, SwRL employs an Approximate

Division Table (ADT), which allows for an approximation of

TB functionality but introduces a 1.98% error rate. On the

other hand, alternatives using CPU servers for precise com-

putations face challenges due to their lower processing power

compared to hardware switches. Although software solutions

on a single CPU server can perform precise calculations,

their limited throughput necessitates a distributed setup. In

such environments, synchronization issues prevent achieving

100% accurate rate control, illustrating the inherent trade-offs

between accuracy, processing capacity, and the scalability of

network rate control solutions [7].

Sketches and approximate solutions have proven effective in

tackling numerous critical tasks. For frequency estimation and

finding frequent items in the fixed window, works range from

schemes like SpaceSaving [40], Misra-Gries [41], Count-Min

[14], and Count [42] schemes to the latest USS [43], SS± [44],

and Stingy [20], offering a variety of options. For the same task

in the sliding window, typical solutions include Histograms

[45], Exponential Count-Min [46], Proportional [47], Sliding

[48], and more [49], [50]. However, as we explained in detail

in § II-C2, finding frequent items cannot solve our problem.

Sampling solutions. The sampling solutions include two

types, user sampling (randomly sampling a portion of users)

[51] and item sampling (randomly sampling a certain percent-

age of packets, such as one percent) [52], [53]. The former

doesn’t work in this case, as we cannot mark OS for only

a small subset of users. The latter is often used to sacrifice

accuracy for improved processing speed (throughput) or to

comply with hardware computation limits. We employed this

method in § III-C, using one unit in the counter to represent

a data volume of W (e.g., 1500KB), to efficiently accomplish

weighted statistics.

VIII. CONCLUSION

In this paper, we formally define the overspeed item and

propose SpeedSketch as a solution to address this challenge.

Our experiments across four datasets demonstrate that SpeedS-

ketch is highly scalable and memory-efficient, achieving up

to a 6430-fold reduction in memory cost while maintaining

a low average relative error of just 0.1%. The high memory

efficiency of SpeedSketch enables it to support a large number

of users within limited space and also facilitates its imple-

mentation on the Tofino switch, which offers a throughput

capacity of 4.8 billion items per second. The comprehensive

mathematical analysis we conducted further confirmed the

efficiency of the algorithm. All our codes are available on

GitHub for easy replication and improvement.
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