
1

A Sketch Framework for Approximate Data
Stream Processing in Sliding Windows

Xiangyang Gou, Yinda Zhang, Zhoujing Hu, Long He, Ke Wang, Xilai Liu, Tong Yang, Yi Wang and Bin Cui

Abstract—Data stream processing has become a hot issue in recent years. There are three fundamental stream processing tasks:
membership query, frequency query, and Top-K query. While most existing solutions address these queries in fixed windows, this paper
focuses on a more challenging task: answering these queries in sliding windows. While most existing solutions address different kinds
of queries by using different algorithms, this paper focuses on a generic framework. In this paper, we propose a generic framework,
namely the Sliding sketch, which can be applied to many existing solutions for the above three queries, and enable them to support
queries in sliding windows. We apply our framework to five state-of-the-art sketches for the above three kinds of queries. Theoretical
analysis and extensive experimental results show that the accuracy of existing sketches that do not support sliding windows becomes
much higher than the corresponding prior art after using our framework. We released all the source code at Github.

Index Terms—data stream, sliding window, sketch, approximate query

✦

1 INTRODUCTION
1.1 Background and Motivations
Data stream processing is a significant issue arising in
many applications, like intrusion detection systems [1], [2],
financial data trackers [3], [4], sensor networks [5], [6], etc.
A data stream is composed of an unbounded sequence of
items arriving at high speed. Contrary to traditional static
datasets, data streams need to be processed in real time,
i.e., in one pass, and in O(1) update time. Due to the large
volume and high speed, it is difficult and often unnecessary
to store the whole data stream. Moreover, large-scale data
stream processing applications are usually distributed. In-
formation exchange is needed among multiple hosts which
observe local streams. Transporting complete data streams
requires lots of bandwidth and is not communication effi-
cient. Instead, one effective choice is to maintain a small
summary of the data stream.

Sketches, a kind of probabilistic data structure, achieving
memory efficiency at the cost of introducing small errors,
have been widely used as the summary of data streams.
Sketches only need small memory usage. It is possible to
store them in fast memory, such as L2 caches in CPU and

• Xiangyang Gou, Yinda Zhang, Zhoujing Hu, Long He, Ke Wang, Xilai
Liu and Bin Cui are with School of Computer Science and National En-
gineering Laboratory for Big Data Analysis Technology and Application,
Peking University, China. Co-primary authors: Xiangyang Gou, Yinda
Zhang, and Zhoujing Hu.
E-mail: gxy1995@pku.edu.cn

• Corresponding author Tong Yang is with School of Computer Science,
and National Engineering Laboratory for Big Data Analysis Technology
and Application, Peking University, China, and Peng Cheng Laboratory,
Shenzhen, China
E-mail: yangtongemail@gmail.com

• Yi Wang is with Institute of Future Networks, Southern University of
Science and Technology and Peng Cheng Laboratory, Shenzhen, China.

• This work is supported by Key-Area Research and Development Program
of Guangdong Province 2020B0101390001, Peng Cheng Laboratory The
Major Key Project of PCL (PCL2021A08), National Natural Science
Foundation of China (NSFC) (No. U20A20179, 61832001), PKU-Baidu
Fund 2019BD006 and Beijing Academy of Artificial Intelligence (BAAI).

GPU chips. Typical sketches include the Bloom filter [7],
the CM sketch [8], the CU sketch [9], etc. However, these
sketches cannot delete outdated items.

In applications of data streams, people usually focus on
the most recent items, which reflect the current situation
and the future trend. For example, in the financial analysis,
people focus on the current finance trend, and in intrusion
detection systems, people are mainly concerned about the
recent intrusions. It is usually necessary to downgrade the
significance of old items and discard them when appro-
priate. Otherwise, they will bring a waste of memory and
also introduce noise to the analysis of recent items. It is
important to develop probabilistic data structures which can
automatically “forget” old items and focus on recent items.

The most popular model for recording recent items is
the sliding window model [10]. It uses a sliding window
to include only the most recent items, while the items out-
side the window are forgotten (deleted). There are various
queries that can be implemented in the sliding window
model. In this paper, we focus on three kinds of fundamental
queries: membership query, frequency query, and Top-K
query. Membership query is to check if item e is in the
sliding window. Frequency query is to report the frequency
of item e in the sliding window. Top-K query is to find all
items with top K largest frequencies in the sliding window.

It is challenging to design a probabilistic data struc-
ture for the sliding window model. Whenever the window
slides, the oldest item needs to be deleted. However, it is
challenging to find the oldest item, especially when the de-
mand on memory and speed is high. We have to implement
deletions fast enough to catch up with the speed of the data
stream. Moreover, we cannot store all items in the sliding
window, because the sliding window may be very large and
it is memory-consuming to store them.

There have been a few algorithms on approximate
queries in sliding windows, like the forgetful Bloom filter
[11] supporting membership query and the ECM sketch [12]
supporting frequency query. However, existing algorithms

2

have two main limitations. First, these algorithms usually
need a lot of memory to achieve fine-grained deletions.
When the space limitation is tight, the accuracy of these
algorithms is poor. Second, most existing algorithms only
handle one specific query in sliding windows. However,
various kinds of queries are usually needed in applications.
Thus a general framework is more preferred.

1.2 Our Proposed Solution
In this paper, we propose a framework, namely the Sliding
sketch. It can be applied to most of the existing sketches
and adapt them to the sliding window model. We apply our
framework to the Bloom filter [7], the CM sketch [8], the CU
sketch [9], the Count sketch [13], and the HeavyKeeper [14]
for experimental evaluation in Section 8.

Before we give a brief introduction to the basic idea
of our algorithm, we first introduce the common model
of sketches. A typical sketch uses an array composed of
elements like counters or bits. We call each element in the
array a bucket in general. This array is divided into k equal-
sized segments. Each segment is associated with one hash
function. When an item e arrives, the sketch maps it into
k buckets using the k hash functions, one in each segment,
and records the information of e, like frequency or presence
in these buckets. We call these k buckets the k mapped
buckets. These k mapped buckets usually store k copies of
the desired information of e. They have different accuracy
because of hash collisions. The hash collision means that
multiple items are mapped to the same bucket, and their
information is mixed up. In queries, we report the most
accurate one in the k mapped buckets. For example, in CM
sketches, each bucket is a counter and stores the summary
of the frequencies of all items mapped into it. Each item is
mapped to k buckets, and these buckets all contain counters
larger than or equal to its frequency. We report the smallest
one of these k counters as result in queries.

Most existing algorithms keep the basic structure of
these sketches and introduce different improvements to
apply them to sliding windows. It is difficult to store exactly
the information in the sliding window, because it is difficult
to delete all outdated information. Therefore, most existing
algorithms choose to store a recent slice of the data stream,
ω, which approximates to the sliding window. Recall that
in the common sketch model, each item has k mapped
buckets. In prior algorithms, these k mapped buckets work
synchronously. These mapped buckets store the information
mapped to them in the same slice ω. The difference between
ω and the sliding window varies with time, and can be
large at some time points. We notice that in queries, the
most accurate one in these k mapped buckets is reported.
Therefore, we come up with a new idea. These k mapped
buckets can work asynchronously, which means they store
information in different slices ω0, ω1...ωk−1. In this way,
we can achieve that whenever we query, there is always a
mapped bucket that records the frequency or presence of
queried items in a slice very close to the sliding window.
We design an algorithm called the scanning operation to
achieve this. As a result, our algorithm has a much lower
error compared with the prior art. In Section 7, we further
propose several techniques to accelerate the Sliding sketch
and improve the accuracy.

Extensive experiments and theoretical analysis show that
the Sliding sketch has high accuracy with small memory
usage. Experimental results show that after using our frame-
work, the accuracy of existing sketches that do not support
sliding windows becomes much higher than the algorithms
for sliding windows. In membership query, the error rate
of the Sliding sketch is up to 9 times lower than that of
the state-of-the-art (Figure 5). In frequency query, ARE of
the Sliding sketch is up to 161 times lower than that of the
state-of-the-art (Figure 7). In Top-K query, the error rate of
the Sliding sketch is below 5% (Figure 9), and ARE of the
frequencies of reported items in the Sliding sketch is up to
15 times lower than that of the state-of-the-art (Figure 10).

1.3 Key Contribution
Our key contributions are as follows:

1) We propose a generic framework named the Sliding
sketch, which can be applied to most existing sketches and
adapt them to the sliding window model.

2) We propose several techniques to further accelerate
the Sliding sketch and improve its accuracy in Section 7,
including FPGA acceleration, accelerating mapped bucket
address computation and result correction based on jet lag.

2) We apply our framework to three typical kinds of
queries in sliding windows: membership query (the Bloom
filter), frequency query (sketches of CM, CU, and Count),
and Top-K query (the HeavyKeeper). Mathematical analysis
and experiments show that the Sliding sketch achieves
much higher accuracy than the state-of-the-art. We have
released all the source code at Github [15].

2 RELATED WORK
In this section, we introduce different kinds of sketches that
can be used in our framework and prior art of probabilistic
data structures for sliding windows.

2.1 Different Kinds of Sketches
Sketches are a kind of probabilistic data structure for data
stream summarization. Classic sketches support queries in
the whole data stream or a fixed slice, but do not support
the sliding window model. According to the queries they
support, we illustrate three kinds of sketches in this pa-
per: sketches for membership query, sketches for frequency
query, and sketches for Top-K query.

2.1.1 Sketches for Membership Query

Membership query is to check if an item is in a set or not.
The most well-known sketch for membership query is the
Bloom filter [7]. It is composed of an array of m bits. When
inserting an item e, the Bloom filter maps it to k bits with k
hash functions, and sets these bits to 1. When querying an
item e, the Bloom filter checks the k mapped bits and reports
false if any of them is 0, true otherwise. The Bloom filter has
the property of one-side error. It only has false positives and
no false negatives. In other words, if item e is in set s, it will
definitely report true, but if e is not in the set, it still has a
probability to report true due to hash collisions. In recent
years, many variants of Bloom filters have been proposed
to meet the requirements of different applications, like the
Bloomier filter [16], the Dynamic count filter [17], COMB
[18], the shifting Bloom filter [19].

3

2.1.2 Sketches for Frequency Query

Frequency query is to report the frequency of an
item. There are several well-known sketches for frequency
queries, like the CM sketch [8], the CU sketch [9], and the
Count sketch [13]. The CM sketch is composed of a counter
array with k equal-sized segments. All the counters are
initialized to 0. When inserting an item e, the CM sketch
maps it to k counters with k hash functions, one in each
segment, and increases these counters by 1. When querying
the frequency of an item e, it finds the k mapped counters
with the k hash functions and reports the minimum value
among them. The CM sketch only has over-estimation error,
which means the reported frequency is no less than the
true value. The CU sketch and the Count sketch have
the same structure as the CM sketch, but different update
and query strategies. They have higher accuracy but suffer
from different problems. The CU sketch does not support
deletions, and the Count sketch has two-side error, which
means the query result may be either bigger or smaller than
the true value. Sophisticated sketches for frequency query
include the Pyramid sketch [20], the Augmented sketch [21],
and [22], [23], [24].

2.1.3 Sketches for Top-K Query
In some applications, we only care about frequent items.

Top-K query and heavy hitter query are query models
proposed for these applications. Top-K query is to find items
with the top K largest frequencies. Heavy hitter query is
to find all the items with frequencies exceeding a thresh-
old. Most sketches proposed for recording frequent items
support both Top-K query and heavy hitter query. In this
paper, we focus on Top-K query model as it is more popular.
The state-of-the-art method for Top-K query in data streams
is the HeavyKeeper [14]. It provides frequency queries for
items in the data stream and gives a guarantee to the accu-
racy of frequent items’ query results. It uses a strategy called
count-with-exponential-decay to remove items with small
frequencies through decaying, and minimize the impact on
frequent items. It reaches very high accuracy in heavy hitter
query and Top-K query. Other algorithms for Top-K query
include Frequent [25], Lossy counting [26], Space-Saving
[27] and unbiased space saving [28].

2.2 Probabilistic Data Structures for Sliding Windows
We divide the prior art of probabilistic data structures for
sliding windows into three kinds according to the queries
they support. The first kind supports membership query,
like the double buffering Bloom filter [29], the A2 buffering
Bloom filter [30] and the Forgetful Bloom filter [11]. The
second kind is designed for frequency query, like the ECM
sketch [12], the splitter windowed count-min sketch [31],
and [32], [33]. The third kind supports Top-K query. This
kind includes the window compact space saving (WCSS)
[34], and [35], [36]. Unfortunately, none of these algorithms
has high accuracy with limited memory. Moreover, most of
them are specific to limited kinds of queries.

3 PROBLEM DEFINITION
3.1 Definitions of Data Streams
We give a formal definition of the data stream as follows:

 !(") #(") $(") %(")

Fig. 1. Structure of the k-hash model

Definition 1. Data stream. A data stream is an unbounded
sequence of items S = {et11 , et22 , et33 ...etii ...}. Each item ei has a
timestamp ti which indicates its arriving time. In a data stream,
the same item may appear more than once.

3.2 Definitions of Sliding Windows
There are two kinds of sliding windows: time-based sliding
windows and count-based sliding windows. The definitions
of them are as follows:
Definition 2. Time-based sliding window. In data stream S,
a time-based sliding window with length N means the union of
items that arrive in the last N time units.

Definition 3. Count-based sliding window. In data stream S,
a count-based sliding window with length N means the union of
the last N items.

Our framework can be applied in both kinds of sliding
windows. For simplicity of presentation, we focus on time-
based sliding windows in the majority of the paper. We
also use sliding window as an abbreviation of the time-based
sliding window. In Section 4.2, we will extend our algorithm
to count based sliding windows. We use T to denote current
time and W to denote current sliding window, namely the
union of items arriving from time T −N to current time T .
More generally, we use W t2

t1 to denote the union of items
arriving from time t1 to t2.

3.3 Definitions of Stream Processing Tasks
In a sliding window, there are 3 fundamental queries:

Definition 4. Membership query. Given a sliding window W ,
we want to find out whether an item e is in it.

Definition 5. Frequency query. Given a sliding window W , we
want to find out how many times an item e shows up in W and
return the number. We call this number the frequency of item e.

Definition 6. Top-K query. Given a sliding window W , we
want to find out the items with top K largest frequencies in the
sliding window. The frequency is defined as the number of arrivals
of an item in the sliding window W .

The symbols we use in this paper, and their meanings
are shown in table 1.

4 SLIDING SKETCH: BASIC VERSION

In this section, we propose a generic framework for typical
data stream processing tasks in sliding windows. First, we
introduce a model that many sketches use. Second, based
on this common model, we present a basic version of our
framework.

4

TABLE 1
Notation table

Notation Meaning
S A data stream
T Current time.
W The sliding window.
N The length of the sliding window.
W t2

t1
Union of items from time t1 to t2.

A The array in the Sliding Sketch
m The number of buckets in array A
k The number of segments in array A
A[i] A bucket in array A
d The number of fields in each bucket
{A[i][j]|0 ⩽ j < d} The fields in bucket A[i]
z[j]|j = 0, 1, 2.... the sequence of zero times in bucket A[i]
δ The jet lag in a bucket
{A[hi]|0 ⩽ i < k} The mapped buckets of the up-

dated/queried item
Stu The update strategy of the base sketch
Stq The query strategy of the base sketch

4.1 A Common Sketch Model
This paper focuses on three stream processing tasks: mem-
bership query, frequency query, and Top-K query. The state-
of-the-art sketches for these tasks use a common model,
namely k-hash model in this paper. The details of this model
are as follows:
Data structure: As shown in Figure 1, the data structure of
the k-hash model is an array which is composed of simple
and small data structures, like counters or bits. We call
each element in the array a bucket in general. The array
is divided into k equal-sized segments, each associated with
a hash function.
Update: To insert an item e, it maps e to k buckets with the
k hash functions, one in each segment. We call them the k
mapped buckets. It updates the k mapped buckets with an
update strategy Stu, which varies according to the specific
sketch.
Query: To query an item e, it computes the k functions and
gets the k mapped buckets. The reported result is computed
from the values in the k mapped buckets with a query
strategy Stq . The query strategy also varies according to
the specific sketch.
An example using the CM sketch: Different sketches use
different update and query strategies. Take the CM sketch
[8] as an example. Each bucket in the CM sketch is a counter.
Its update strategy Stu increases all the k mapped counters
by 1, while its query strategy Stq reports the minimum
value among the k mapped counters.

4.2 The Sliding Sketch Model
In this paper, we propose a framework named the Sliding
sketch, which can be applied to all sketches consistent with
the k-hash model and adapt them to the sliding window
model. In the following sections, when we apply Sliding
sketch technique to a specific scheme, we call the basic
sketch before enhancement base sketch, and call the algo-
rithm after enhancement ”Sliding” + base sketch name for
short. For example, when applying Sliding sketch technique
to the CM sketch, we call the result algorithm the Sliding
CM sketch, and the CM sketch is its base sketch.
Data structure: In the Sliding sketch, we build an array
A with m buckets, which are divided into k equal-sized

segments. Every bucket A[i] has two fields A[i][0] and
A[i][1]. Each field is a counter or a bit, depending on the
base sketch.

In the Sliding sketch, we have the following 3 operations:
update operation, scanning operation, and query operation,
Update operation: When an item e arrives, we use the k
hash functions {hi(·)|0 ⩽ i < k} to map the item into k
buckets {A[hi]|0 ⩽ i < k}, one in each segment. We update
A[hi][0] filed in these k mapped buckets with the update
strategy Stu of the base sketch.
Scanning operation: We use a scanning operation to delete
outdated information. We use a scanning pointer to go
through A repeatedly with a constant speed. Every time it
reaches the end of the array, it returns to the beginning and
starts a new scan. The cycle that the pointer scans the entire
array once is equal to the length of the sliding window.
In other words, for a sliding window with length N , the
scanning pointer goes through m

N buckets in each time unit
(if m < N , the pointer goes through 1 bucket in every N

m
time units). Every time the scanning pointer arrives at a
bucket A[i], it is a zero time of this bucket. At the zero times
of a bucket, we delete the value in A[i][1]. Then we copy the
value in A[i][0] to A[i][1], and set A[i][0] to 0.
Query operation: When querying an item e in a Sliding
sketch, we find the k mapped buckets {A[hi]|0 ⩽ i < k}
with the k hash functions. In each mapped bucket, we add
the values in two fields and get k sums {Sum[i] = A[hi][0]+
A[hi][1]|0 ⩽ i < k}. We use the query strategy Stq of the
base sketch to get the result from these k sums.
Example of the Sliding CM sketch: We take the Sliding CM
sketch as an example. In the Sliding CM sketch, each field
is a counter. In the update operation, we find the k mapped
buckets {A[hi]|0 ⩽ i < k}. In each mapped bucket A[hi],
we add A[hi][0] by 1. The scanning operation is the same
as discussed above. In the query operation, we find the k
mapped buckets and add up two counters in each bucket
to get k sums. We return the minimum value among the k
sums. In Appendix A of the supplementary materials, we
will introduce the other 4 Sliding sketches we use in our
experiments.
Extend to count-based sliding windows: In the count-
based sliding window, the only change lies in the scanning
operation. For a count-based sliding window with length
N , we move the scanning pointer upon each item arrival
rather than each time unit. Suppose the array length is m,
we move the pointer N

m buckets forward upon each item
arrival. The other operations are the same as the time-
based sliding window. Similarly, in the following analysis
and optimizations, we just need to replace time units with
item arrivals for the count-based sliding window, and all
the theoretical results and optimization techniques are the
same.

The scanning operation is our major novelty, which
generates an array of zero times for each bucket. These zero
times split the data stream into multiple slices, which we call
Days. The two fields record information of items mapped to
this bucket in the most recent two Days. The arrays of zero
times are different in different buckets, because the scanning
pointer scans them at different times. They are like different
time zones with time differences. This asynchrony is our
major difference with former algorithms with data stream

5

 !"# !"$
1

3
 !"%

1

3
 !"&

Fig. 2. Example of the sliding window and the Days

slicing like [37]. We will discuss this asynchrony and its
benefit in detail in Section 4.3.

4.3 Analysis of the Sliding Sketch Model
The key technique of the Sliding sketch is the scanning
operation. It controls the aging procedure of the array. In
this section, we analyze this operation in detail.

First we analyze the slices we record in the Sliding
sketch. Due to the scanning operation, each bucket A[i] has
an array of zero times {z[j] | j = 0, 1, 2....}. For any integer
j ⩾ 0, we have z[j + 1] − z[j] = N . These zero times split
the data stream into multiple Days {Dayj = W

z[j+1]
z[j] | j =

0, 1, 2....}. Suppose for current time T , we have z[t] < T ⩽
z[t+1], namely current active Day is Dayt. We suppose that
T−z[t]

N = δ(0 < δ ⩽ 1). In other words, only δ of Dayt has
passed at time T . Notice that different buckets have different
δ, as they have different zero time arrays. We call δ the jet
lag in this bucket.

We use A[i][0] to store the information (frequency or
presence) of items mapped to A[i] in Dayt, and the pre-
vious Day, Dayt−1 is stored in A[i][1] field. By adding
A[i][0] and A[i][1] together, we get the information of items
mapped to A[i] in Dayt + Dayt−1 = WT

z[t−1]. Because
z[t − 1] < T − N ⩽ z[t] < T , WT

z[t−1] is a superset of
the sliding window, and is 1+ δ times larger than it. We can
use A[i][0] +A[i][1] as an approximation of the information
of items mapped to A[i] in the sliding window. Moreover,
this approximation only introduces over-estimation error,
and thus keeps the over-estimation-only property of many
sketches including the CM sketch, the CU sketch and the
Bloom filter. For other sketches with under-estimation error,
we can vary the scanning speed to fit with them, as will be
discussed in Section 7.1.

Second, we use an example to explain the relationship
between the Days and the sliding window.

Example 1. An example of the Days in bucket A[i] and the
sliding window of the data stream is shown in Figure 2. In this
example, current time T is in the 3rd Day, namely t = 3. At time
T , 1

3 of Day3 has passed. The length of the sliding window is
equal to one Day, thus Day3 is only 1

3 of the sliding window, and
the other 2

3 is in Day2. We record both the information in Day3
and Day2 to estimate the sliding window.

At last we analyze the influence of jet lag δ and the
value range of δ in the k mapped buckets of an item.
Obviously, δ influences the accuracy of our estimation. In
each bucket A[i], A[i][0] +A[i][1] records a slice with length
N + δN , which is (1 + δ) times of the sliding window.
Therefore, when we use A[i][0] +A[i][1] to approximate the

information in the sliding window, the smaller δ is, the more
accurate this approximation is. Because the scanning pointer
goes through the array at a constant speed, δ depends on
the distance between the bucket and the scanning pointer.
Assuming the scanning pointer is at the qth bucket at time
T , for a bucket A[i] with index i, δ in this bucket can be
computed as follows:

δ =
q − i

m
(i < q)

δ = 1− i− q

m
(i ⩾ q)

(1)

Derivation of the equation is shown in the Section 6.2.
In the Sliding sketch, each item is mapped to k buckets.

These mapped buckets have different δ because of the
scanning operation. We can prove that for each item e, there
must be a mapped bucket A[hj1] where 0 < δ < 2

k , and a
mapped bucket A[hj2] where k−2

k < δ ⩽ 1. For other k − 2
mapped buckets, the value range is 0 < δ ⩽ 1. Detailed
analysis is shown in the Section 6.2.

The value range of δ in the k mapped buckets gives a
guarantee to the accuracy. It guarantees that whenever we
query, there is always at least one mapped bucket which
records a slice very close to the sliding window. For exam-
ple, in the Sliding CM sketch, there is always one mapped
bucket which records the frequency of the queried item in
the most recent slice with length N ∼ k+2

k N 1. This slice
is no larger than k+2

k times of the sliding window. Because
the query strategy of the CM sketch is to find the smallest
mapped counter, the existence of such bucket guarantees the
quality of the query result. Detailed accuracy analysis of the
sliding CM and other sketches is shown in Appendix B of
the supplementary materials.

5 SLIDING SKETCH: d-FIELD VERSION
More generally, when the memory is sufficient, we can use
d(d ⩾ 2) fields {A[i][j]|0 ⩽ j < d} in each bucket A[i].
These d fields record the information in the last d Days.
If we suppose that current Day is Dayt, A[i][j] records
information in Dayt−j . In this case, the length of each Day
should be 1

d−1 of the sliding window. The basic operations
in the d-field version are as follows:
Update operation: When an item e arrives, we use the k
hash functions to map e to k buckets {A[hi]|0 ⩽ i < k},
one in each segment. We update the A[hi][0] field in these k
mapped buckets with strategy Stu of the base sketch.
Scanning operation: The scanning pointer scans (d−1)×m

N
buckets in each time unit. When the scanning pointer arrives
at bucket A[i], we set A[i][j] = A[i][j − 1](1 ⩽ j < d)
and A[i][0] = 0. Because a new Day starts, all the stored
information becomes one Day older.
Query operation: When querying an item e, we find the
k mapped buckets {A[hi]|0 ⩽ i < k} for e with the k
hash functions. Then we compute k sums {Sum(A[hi]) =∑d−1

j=0 A[hi][j]|0 ⩽ i < k}. At last, we get the query result
based on these k sums with strategy Stq of the base sketch.

Next we use an example to illustrate the Days in the
d-field version:

1. Error brought by hash collisions also exits. But for simplicity of
presentation, we focus on error brought by summarizing a slice larger
than the sliding window in this section.

6

 !"# !"$
%

#
 !"&

%

#
 !"%

 !"% !"'

Fig. 3. Sliding window and Days in the d-field version

Example 2. An example of the Days of bucket A[i] in the d-field
version is shown in Figure 3. In this example, we set d = 4. Each
bucket contains 4 fields, and the length of each Day is 1

3 of the
sliding window. At time T , bucket A[i] records Day2 ∼ Day5
and δ = 2

3 . From the figure, we can see that 2
3 of the oldest Day,

Day2 is not in the sliding window, and A[i] records a slice which
is 11

9 times of the sliding window. Notice that different buckets
have asynchronous Days.

When we use multiple fields, the accuracy may become
higher. The jet lag δ is still the same as the basic version.
As Days in each bucket are 1

d−1 of the sliding window, the
error brought by the approximation of the sliding window
also becomes 1

d−1 . To be specific, the d fields in each bucket
record the most recent d Days. Current Day, namely Dayt,
only has the length of δN

d−1 , and Dayt−d+1 ∼ Dayt−1 has
the length of N

d−1 . Therefore, Sum(A[i]) summarizes a slice
of N

d−1 × (d − 1) + δN
d−1 = (1 + δ

d−1)N . The excess part
is δ

d−1N , smaller than δN in the basic version if d > 2.
However, increasing d does not necessarily bring improve-
ments in accuracy. When using the same amount of memory,
enlarging d means the length of the array becomes smaller,
and the error brought by hash collisions will increase. The
trade off among the number of fields d, the length of the
array m, and the number of segments k depends on different
base sketches, and experimental attempt is recommended
in applications. We carry out an experiment of parameter
settings in the Sliding CM sketch and the Sliding CU sketch.
The result is shown in Section 8.5.

6 MATHEMATICAL ANALYSIS

In this section, we analyze the memory and time cost of the
Sliding sketch, and the value range of δ. Accuracy of the
Sliding sketch depends on the base sketch, and we analyze
the accuracy of 3 kinds of Sliding sketch applications as
examples, namely the Sliding Bloom filter, the Sliding CM
sketch, and the Sliding HeavyKeeper. The accuracy analysis
is given in Appendix B of the supplementary materials due
to space limitation.

6.1 Analysis of Memory and Time Cost

The space cost of the Sliding sketch is O(md), where m
is the length of the bucket array, and d is the number of
fields in each bucket. In applications, m is usually linear
correlated with the length of the sliding window, while d is
a small constant. Therefore the space cost is also O(N). More
specifically, The memory usage of a Sliding sketch is no

larger than d times of the base sketch. In most Sliding sketch
applications, each bucket is split into d fields, and each
field has the same structure as a bucket in the base sketch.
Therefore the memory consumption of the Sliding sketch is
d times of a base sketch with the same length. However, in
some kinds of Sliding sketches, the memory consumption
is smaller. For example, each bucket in the HeavyKeeper
is a key-value pair, where the key is an item’s ID and the
value is its frequency. In the Sliding HeavyKeeper, each
bucket contains 1 key and d counters. Thus the memory
consumption is smaller than d times of a HeavyKeeper with
the same length.

The time cost of the update operation and the query
operation is O(k). We need to find the k mapped buckets of
the new item (or the queried item), and update these buckets
or retrieve the information in these buckets. The cost of the
scanning operation is O((d−1)×m

N), because (d−1)×m
N buck-

ets need to be scanned in each time unit. In applications,
k and d are small constants set by users, and the length of
the array m is linear correlated with the window length N .
Therefore, the time cost of the update operation, the query
operation and the scanning operation can be seen as O(1).

6.2 Analysis of the Jet Lag δ

6.2.1 Computation of δ

For each bucket A[i] in the array, the jet lag δ, which
represents how much of current Day has passed by current
time T , can be computed with the distance between the
bucket and the scanning pointer. Suppose the index of the
bucket in the array is i, and the position of the scanning
pointer is q. The scanning pointer moves in a constant speed
and scans each bucket in 1

m Day. There are two kinds of
situations:

1) When i < q, the scanning pointer has scanned q − i
buckets after its last arrival at A[i]. Therefore

δ =
q − i

m
(i < q) (2)

2) When i ⩾ q, the scanning pointer has scanned (m −
i) + q buckets after its last arrival at A[i]. Therefore

δ =
m− i+ q

m

= 1− i− q

m
(i ⩾ q)

(3)

If the scanning pointer is just in A[i], we define δ = 1.

6.2.2 Value Range of δ

Theorem 1. Given an item e with k mapped buckets in the
Sliding sketch, the jet lags in all these mapped buckets are in
range (0, 1]. Moreover, There must be at least one mapped bucket
with a jet lag δ smaller than 2

k , and at least one mapped bucket
with a δ larger than 1− 2

k .

Theorem 2. Given an item e with k mapped buckets, there are
at least i− 1 mapped buckets where δ < i

k (2 ⩽ i ⩽ k − 1) and
there are k mapped buckets where δ ⩽ 1.

7

Theorem 3. Given an item e with k mapped buckets, there are
at least i− 1 mapped buckets where δ > 1− i

k (2 ⩽ i ⩽ k − 1),
and there are k mapped buckets where δ > 0.

Proof. For each item e in the data stream, the Sliding sketch
maps it to k mapped buckets, one in each segment. There-
fore there must be a mapped bucket A[hj1] which is in
the same segment with the scanning pointer. There are two
kinds of situations:

1) When hj1 < q, A[hj1] has the smallest δ among the
k mapped buckets. q − hj1 is less than the length of the
segment, which is m

k . In bucket A[hj1], we have

δ =
q − hj1

m
<

m
k

m
=

1

k
(4)

Therefore in this bucket A[hj1] we have 0 < δ < 1
k . In

this situation the largest δ appears in the next segment, we
represent the mapped bucket in this segment with A[hj2].
Then hj2 − q is less than the length of two segments, which
is 2×m

k . In bucket A[hj2], we have

δ = 1− hj2 − q

m
> 1−

2×m
k

m
= 1− 2

k
(5)

Therefore in this bucket A[hj2] we have 1 − 2
k < δ < 1.

For the other k − 2 mapped buckets, as they are mapped to
different segments and each segment has the same length,
value ranges of δ in them form an arithmetic sequence
{(j−1

k , j+1
k)|1 ⩽ j ⩽ k − 2}.

2) When hj1 ⩾ q, A[hj1] has the largest δ among the
k mapped buckets. hj1 − q is less than the length of the
segment, which is m

k . In bucket A[hj1], we have

δ = 1− hj1 − q

m
> 1−

m
k

m
= 1− 1

k
(6)

Therefore, in this bucket A[hj1], we have k−1
k < δ ⩽ 1. In

this situation the smallest δ appears in the last segment, we
represent the mapped bucket in this segment with A[hj2].
Then q − hj2 is less than the length of two segments, which
is 2×m

k . In bucket A[hj2], we have

δ =
q − hj2

m
<

2m
k

m
=

2

k
(7)

Therefore, in this bucket A[hj2], we have 0 < δ < 2
k . For

the other k − 2 mapped buckets, as they are mapped to
different segments and each segment has the same length,
value ranges of δ in them form an arithmetic sequence
{(jk ,

j+2
k)|1 ⩽ j ⩽ k − 2}.

Combining the value ranges in these 2 kinds of situa-
tions, we can easily get Theorem 1, 2 and 3.

7 MORE OPTIMIZATIONS

7.1 Varying the Scanning Speed
In the sections above, for a Sliding sketch with d fields
in each bucket (d ⩾ 2), we let the scanning pointer scan
(d−1)×m

N buckets in each time unit. As a result, each Day
is 1

d−1 of the sliding window. This scanning speed keeps
the over-estimation-only property of many sketches, like the
Bloom filter, the CM sketch and the CU sketch. We use it

as a basic case. However, for other sketches with under-
estimation error, we need to use different scanning speed.

Generally, we suppose that each Day has length θN ,
namely θ times of the sliding window. The d fields in
each bucket record the most recent d Days, which are
(d − 1 + δ)θN . For the Sliding Bloom filter, the Sliding
CM sketch and the Sliding CU sketch, we set θ = 1

d−1 as
discussed above. In the follows, we analyze how to set θ for
the other two Sliding sketches we use in experiments, the
Sliding HeavyKeeper and the Sliding Count sketch.

The HeavyKeeper only has under-estimation error, and
it returns the largest value among the k mapped buckets
as the estimated frequency of the queried item. We want
to keep the under-estimation-only property in the Sliding
HeavyKeeper. Therefore, we hope that the slice we record
in each bucket is no larger than the sliding window. The
d fields in a bucket record the item frequency in a slice of
d− 1 + δ Days. Because 0 < δ ⩽ 1, d− 1 < (d− 1 + δ) ⩽ d.
We set θ = 1

d to keep (d − 1 + δ)θN ⩽ N . In other
words, each Day is 1

d of the sliding window, and the scan-
ning pointer need to scan d×m

N buckets in each time unit.
Because the one-side error property is kept in the Sliding
HeavyKeeper, we can sum up the fields in each bucket and
select the largest value among the k mapped buckets as the
most accurate estimation. As analyzed in Section 6, there
are always buckets with large enough δ, which guarantee
the accuracy. Detailed implementation and analysis of the
Sliding HeavyKeeper is shown in Appendix A.5 and B.3 of
the supplementary materials.

The Count sketch has two-side errors, and it selects
the medium value among the k mapped buckets as the
estimated frequency of the queried item. In the Sliding
Count sketch, we hope that the medium value in the k
mapped buckets records a slice close to the sliding window.
In each mapped bucket, the sum of the d fields record a slice
of (d−1+δ) Days. According to the analysis in Section 6.2.2,
the medium value of δ in the k mapped buckets of each item
is (12 − 3

2k ,
1
2 + 1

2k) or (12 − 1
2k ,

1
2 + 3

2k). We approximately
take the value of 1

2 . Therefore, the medium value of the k
mapped buckets is expected to record a slice of (d − 1

2)θN .
We let (d− 1

2)θN = N , and θ = 2
2d−1 . In other words, each

Day is 2
2d−1 of the sliding window, and the scanning pointer

need to scan (2d−1)×m
2N buckets in each time unit. Detailed

implementation of the sliding Count sketch is shown in
Appendix A.3 of the supplementary materials.

7.2 Accelerating Mapped Bucket Address Computation
Sliding sketches need a large number of hash computations
to get high accuracy. In applications, we usually need the
number of mapped buckets of each item, k, to be set to
5 ∼ 10. If we compute the address of these mapped buckets
as {hi = Hi(e)%

m
k |0 ⩽ i < k} where {Hi(·)} are indepen-

dent hash functions, computation of these hash functions
will be time consuming. In order to solve this problem, we
propose to use pseudo random algorithm to accelerate the
computation. The details are as follows:

For each item e, we only compute two hash functions,
H1(·) and H2(·), and set two variables g1(e) = H1(e)%

m
k

and g2(e) = H2(e)%
m
k . We use g1(e) as a seed to generate

pseudo random sequences with linear congruence generator

8

[38], and use g2(e) as an offset. We generate the pseudo
random sequence {ri(e)|0 ⩽ i < k} as follows:

ri(e) = g1(e) (i = 0)

ri(e) = (a× ri−1(e) + b)%
m

k
(1 ⩽ i < k)

(8)

a and b are two constants which satisfies:

1) b and m
k are coprime;

2) All the prime factors of m
k can divide a− 1.

3) If m
k is the multiple of 4, so is a− 1;

4) Both a and b are smaller than m
k .

The property of linear congruence generator guarantees
that it can generate independent random sequences with
different seeds. However, if two items e and e′ has the same
seed g1(e) and g1(e

′), they will get the same pseudo random
sequence. In order to avoid heavy hash collisions, we add
an offset g2(e) to the pseudo random sequence to get the
mapped bucket addresses: {hi(e) = (ri(e)+g2(e))%

m
k | 0 ⩽

i < k}. In this method, two items will get the same set of
mapped bucket addresses only when they have the same
seed and the same offset. The probability of this case is
only k2

m2 , which is extremely small. Experimental result in
Section 8.6 shows that with pseudo random algorithm, we
can accelerate the update and query of the Sliding sketch by
up to 1.68 times without influence on the accuracy.

7.3 Accelerating with FPGA
FPGA (Field Programmable Gate Array) is a kind of widely
used acceleration hardware. It has high parallelism and
low energy consumption. An FPGA acceleration board is
composed of a chip and multiple memory banks. Each
memory bank has multiple ports connected with the chip,
allowing memory access in parallel. Nowadays, the SRAM
memory on FPGA chip can be as large as tens of million
bytes, allowing us to store data structures like sketches in it.
We can use FPGA to accelerate the Sliding sketch.

When implementing Sliding sketch with FPGA, we store
the sketch in on-chip SRAM of FPGA. Items in the data
stream are transported from the CPU host to FPGA through
PCI bus and processed by FPGA kernels. Compared with
the CPU implementation, the acceleration lies in three as-
pects. First, the locality of the scanning operation is im-
proved. Second, update and query operations in different
segments are paralleled. Third, updates and queries of dif-
ferent items are pipelined. We made the following changes
to the sliding sketch model:
Array reshaping: We reshape the array A of the Sliding
sketch into a matrix of size m× d. Each bucket is organized
as a column, and the ith(0 ⩽ i < d) row is composed
of the ith field in all m buckets. We store the matrix with
row-major order. In other words, fields in the same row are
stored together. Besides, like the CPU version, the matrix is
partitioned into k equal-sized segments. Different segments
are stored separately so that we can access them in parallel.
The organization of the FPGA-implementation of the Sliding
sketch is shown in Figure 4.

This change intends to improve locality in the scanning
operation. FPGA can read or write 64 bytes in one memory
request, and each field of the Sliding sketch is usually as

field 0

field 1

field 2

bucket segment

row 0

row 1

row 2

Fig. 4. Sliding sketch in FPGA-implementation

small as 4 bytes or less. Therefore, after reshaping, we can
copy several adjacent values in the ith row to the (i + 1)th
row in one memory access.

To be specific, in each time unit, we move the scanning
pointer C = (d−1)m

N buckets forward2. Suppose each field
of the Sliding sketch is l bytes. We can divide the C buckets
into multiple groups with size 64

l . In each group, we carry
out k − 1 data transports, and in the ith(1 ⩽ i ⩽ k − 1)
transport, we copy the (k − i − 1)th field of the buckets
in this group to the (k − i)th field. As stated above, this
transport can be conducted with one read request and one
write request. At last, we set the 0th field of these buckets
to 0. We scan groups of buckets recursively until all the
C buckets are scanned. In order to make full use of such
locality, we recommend to carry out scanning operations in
small batches. In other words, we scan C = B × (d−1)m

N
buckets together in each B time units.
Inter-segment parallelism: In the update or query operation
of an item e, computation of the mapped bucket addresses
and access of the mapped buckets in different segments can
be paralleled.

In computations of mapped bucket addresses, we use
the pseudo random function as discussed in Section 7.2. We
compute the k mapped bucket addresses {hi(e)} as

ri(e) = g1(e) (i = 0)

ri(e) = (ai × g1(e) +
i−1∑
j=0

aj × b)%
m

k
(1 ⩽ i < k)

(9)

and {hi(e) = (g2(e) + ri(e))%
m
k }. Equation 9 is an ex-

pansion of Equation 8, which removes the recursive part. We
can first compute hash functions g1(e) and g2(e), and then
compute the k addresses in k channel parallel. Parameters
including {ai} and {

∑i−1
j=0 a

j × b} can be pre-computed
and stored, so that they can be directly used in address
computations.

The update or query of the k mapped buckets can also
be carried out in parallel. As discussed above, different
segments of the Sliding sketch are stored separately, and k
mapped buckets of an item are located in different segments.
Therefore, in the update operation, we can use k parallel
units to read the mapped buckets of an item, update the
value, and write them back in k channels. In query opera-
tion, we can also use k parallel units to read the mapped
buckets and add up the fields. Then we merge the result of
the k channels and get the final query result.

2. In different Sliding sketches this speed may be different, as dis-
cussed in Section 7.1

9

Pipeline in batches: We can combine multiple update
operations, like 400, into a batch and pipeline them. The
initiation interval of the pipeline 3 depends on the base
sketch we choose. In the update operation, we need to first
read the mapped buckets of an item, and then write them
back after updating them. An update operation cannot read
the Sliding sketch until the last operation finishes writing.
Therefore the complexity of the update strategy decides the
initiation interval. For the CM sketch and the Bloom filter
which have a simple update strategy, the initiation interval
is 2 cycles.

In the query operation, we can also pipeline the queries
in batches. Different from update, a query operation only
needs 1 cycle to read the Sliding sketch, and then it releases
the sketch for later operations to read. No writing back
is needed. Therefore, the initiation interval of the query
pipeline is 1 cycle.

With the above techniques, we can accelerate the update
and query speed of Sliding sketch to at most 45.8 times
without influence the accuracy. In Section 8.6, we will show
the performance of FPGA implementation of the Sliding CM
sketch as an example.

7.4 δ-based Correction
In the Sliding CM sketch and the Sliding CU sketch which
evaluate item frequencies and have one-side error, we can
use jet lag δ to help us improve the accuracy. We call this
strategy δ-based correction. For each mapped bucket A[hi]
of the queried item e, we find another mapped bucket
A[hj], which has larger jet lag than A[hi] and the minimum
0th field. The slice record by A[hj][0] is a superset of the
slice record by A[hi][0], and the frequency of e in the slice
record by A[hi][0] should be no larger than A[hj][0]. If
A[hi][0] > A[hj][0], A[hi][0] must suffers from heavier hash
collisions. We can correct the value of A[hi][0] to A[hj][0]
during the query procedure to improve accuracy. Note that
this correction is temporary and only has effect in the query
of e. After the query A[hi][0] need to recover to its original
value, because it also records the frequency of other items.

8 PERFORMANCE EVALUATION

In this section, we apply the Sliding sketch to five kinds
of sketches: the Bloom filter [7], the CM sketch [8], the
CU sketch [9], the Count sketch [13], and the HeavyKeeper
[14]. We call these specific schemes the Sliding Bloom filter,
the Sliding CM sketch, the Sliding CU sketch, the Sliding
Count sketch, and the Sliding HeavyKeeper, respectively.
We compare them with the state-of-the-art sliding window
algorithms in different queries under the same memory
usage in Section 8.2, 8.3, and 8.4. We also analyze the impact
of the number of fields d and the number of hash functions k
in the Sliding sketch in Section 8.5. The scanning speed com-
puted for Sliding HeavyKeeper and Sliding Count sketch in
Section 7.1 are already used in the experiments in the above
Sections. In Section 8.6, we evaluate the effect of improving
techniques proposed in Section 7.2, 7.3, and 7.4.

3. The initiation interval indicates the latency of the pipeline. If we
denote it with II , an update operation has to wait II cycles after the
last operation starts.

TABLE 2
Abbreviations of algorithms in experiments

Abbreviation Full name
Sl-BF Sliding Bloom Filter
FBF Forgetful Bloom Filter[11]

SWBF Technique in [37] applied to the Bloom filter
Sl-CM Sliding CM Sketch
Sl-CU Sliding CU Sketch

Sl-Count Sliding Count Sketch
ECM Exponential Count-Min Sketch[12]

SWCM Splitter Windowed Count-Min Sketch[31]
Sl-HK Sliding HeavyKeeper

λ-sampling λ-sampling Algorithm[36]
WCSS Window Compact Space-Saving[34]

8.1 Experimental Setup
Datasets:
1) IP Trace dataset: IP trace dataset contains anonymized IP
trace streams collected in 2016 from CAIDA 4. Each item is
identified by its source IP address (8 bytes).
2) Web Page dataset: We download Web page dataset from
the website 5. Each item (4 bytes) represents the number of
distinct terms in a web page.
3) Synthetic dataset: By using Web Polygraph [39], an
open source performance testing tool, we generate the syn-
thetic dataset, which follows the Zipf [40] distribution. This
dataset has 32M items, and the skewness is 1.5. The length
of each item is 4 bytes.
4) StackOverflow dataset: This is a dataset of interactions on
the stack exchange website StackOverflow 6. Each item has
three values u, v, t, which means user u answered user v′s
question at time t. We use u as the ID and t as the timestamp
of an item.

For the first 3 datasets with no timestamps, we carry
out experiments in count-based sliding windows. For Stack-
Overflow dataset, we use time-based sliding windows. The
unit of window size in count-based sliding windows is
item arrival. In time-based sliding windows, the unit is the
average time span between item arrivals, namely the total
time span divided by the number of item arrivals.

Implementation: We implemented the algorithms in
C++ and made them open sourced [15]. The hash functions
are 32-bit Bob Hash (obtained from the open source website
7) with different initial seeds. Abbreviations of algorithms
we use in experiments and their full name are shown in
Table 2. We conducted the experiments on a machine with
two 6-core processors (12 threads, Intel Xeon CPU E5-2620
@2 GHz) and 62 GB DRAM memory. Each processor has
three levels of cache: one 32KB L1 data cache and one 32KB
L1 instruction cache for each core, one 256KB L2 cache for
each core, and one 15MB L3 cache shared by all cores.

Metrics: In experiments, we measure the metrics when-
ever the window slides 1

10N and compute the average value
(N is the length of the sliding window). We use the average
value as the experiment result. We use the following metrics
to evaluate the performance of our algorithms:

4. http://www.caida.org/data/overview/
5. http://fimi.ua.ac.be/data/
6. http://snap.stanford.edu/data/
7. burtleburtle.net/bob/hash/evahash.html

http://www.caida.org/data/overview/
http://fimi.ua.ac.be/data/
http://snap.stanford.edu/data/

10

1) Error rate in membership estimation: Ratio of the num-
ber of incorrectly reported queries to all queries. We use
error rate because FBF and SWBF have two-side error. The
query set includes all the n distinct items in the sliding
window and n items not in the sliding window.
2) Average relative error (ARE) in frequency estimation:

1
|Ψ|

∑
ei∈Ψ

|fi − f̂i|
fi

, where fi is the real frequency of the

queried item ei, and f̂i is its estimated frequency. Ψ is the
query set. We query each distinct item once in the sliding
window.
3) Error rate in finding Top-K items: Ratio of the number of
wrongly reported Top-K items to the total number of Top-K
items, namely K.
4) Average relative error (ARE) in finding Top-K items:

1
|Ψ|

∑
ei∈Ψ

|fi − f̂i|
fi

, where fi is the real frequency of the

queried item ei, and f̂i is its estimated frequency. Ψ is the
set of reported Top-K items.
5) Speed: Million operations (insertions / queries) per
second (Mops). We repeat speed experiments 100 times
and compute the average value to avoid the influence of
instability of system performance.

8.2 Evaluation on Membership Query

2 3 4 5
0

2

4

6

8

10

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-BF FBF
SWBF

(a) IP trace.

10 15 20 25
0

2

4

6

8

10

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-BF FBF
SWBF

(b) StackOverflow dataset.

Fig. 5. Error rate of membership query.

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-BF FBF
SWBF

(a) IP trace.

10 15 20 25
0

0.2

0.4

0.6

0.8

1

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-BF FBF
SWBF

(b) StackOverflow dataset.

Fig. 6. Insertion speed of membership query.

Parameter setting: We compare 3 approaches: Sl-BF, FBF,
and the SWBF. For our Sl-BF, we set the number of segments
k = 15, and the number of fields in each bucket d = 2. For
FBF, we set the total number of Bloom filters to 10, and each
Bloom filter uses 8 hash functions. For SWBF, we use a 2-
level structure. In the first level, we split the sliding window
into 16 blocks, and in the second level, we split the sliding
window into 8 blocks. For each block, we use a small Bloom
filter with 3 hash functions. Details of the algorithms can be
seen in the original papers [37], [11]. We control the memory

usage by changing the size of Bloom filters in these data
structures. We use IP trace and StackOverflow dataset in this
experiment. For IP trace, we set window length N = 1M ,
and read 8M items. For StackOverflow, we set N = 5M ,
and read 40M items.

Error rate (Figure 5(a)-5(b)): Our results show that the
error rate of Sl-BF is up to 9 and 3.8 times lower than FBF
and SWBF, respectively. Both FBF and SWBF follow the idea
of splitting the sliding window into small slices, and use
union of slices to approximate the sliding window. How-
ever, the quality of such approximation in these algorithms
varies with time. On the other hand, Sl-BF can always get a
guaranteed approximation with the asynchronous mapped
buckets. As a result, their average accuracy is not as good
as our Sl-BF. The error of these algorithms is composed of 2
parts, error brought by hash collisions in the Bloom filters,
and error brought by approximation of the sliding windows.
Enlarging the Bloom filters in these data structures decreases
the first part. But the second part is not changed, because
parameters like k are fixed. Therefore, the error rate of these
algorithms slightly decreases as the memory increases, but
the trend is not significant.

Insertion speed (Figure 6(a)-6(b)): Our results show
that the insertion speed of Sl-BF is competitive with FBF
and SWBF. When the memory increases, the speed of Sl-BF
decreases, because we need to scan more buckets in each
time unit in the scanning operation. The speed of Sliding
sketches in the following sections has the same trend. The
speed of SWBF and FBF also decreases with increasing
memory, because these algorithms need to frequently empty
old Bloom filters so that they can be used for new slices.
Larger Bloom filters make this procedure slower.

8.3 Evaluation on Frequency Query
Parameter setting: We compare 5 approaches: Sl-CM, Sl-CU,
Sl-Count, ECM, and SWCM. All the 5 approaches have sim-
ilar data structures as the CM sketch, namely bucket arrays
separated into segments. We set the number of segments
k = 5 for all the 3 data structures, and vary the array length
to control their memory usage. For the Sliding sketches, we
set the number of fields in each bucket d = 3. For ECM, we
set the threshold of triggering exponential histogram merge
to 3. For SWCM, we set τ = 0.2 and µ = 1.5. The datasets
used in experiments are IP trace dataset and StackOverflow
dataset. For each dataset, we set the length of the sliding
window N = 1M , and read 8M items.

ARE (Figure 7(a)-7(b)): The figures use log-tick due
to the large gap between different algorithms. Our results
show that the ARE of Sl-CU, which is the Sliding sketch
with the best performance, is up to 72 and 161 times lower
than SWCM and ECM, respectively. In order to deal with the
sliding window model, ECM and SWCM replace counters
in the CM sketch with complicated data structures like his-
tograms or deques of slice summarizations. As a result, they
need a large quantity of memory to get good performance.
Therefore, the gap between prior work and our algorithm is
particularly large when the memory usage is small. Among
the 3 kinds of Sliding sketches, Sl-CU has the highest
accuracy due to its well-designed update strategy. In Sl-
CU, each item insertion changes as few counters as possible
while keeping the one-side error property, introducing less

11

error compared with the other 2 Sliding sketches. Details
about the implementation of these algorithms are provided
in Appendix A of the supplementary materials.

5 10 15 20 25

0.1

1

10

Memory (MB)

A
R
E

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(a) IP trace

5 10 15 20 25

0.1

1

10

Memory (MB)
A
R
E

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(b) StackOverflow dataset

Fig. 7. ARE of frequency query.

5 10 15 20 25
0

0.5

1

1.5

2

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(a) IP trace

5 10 15 20 25
0

0.5

1

1.5

2

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(b) StackOverflow dataset

Fig. 8. Insertion speed of frequency query.

Insertion speed (Figure 8(a)-8(b)): Our results show that
the insertion speed of Sliding sketches is much higher than
prior work. Particularly, the fastest one among the three
kinds of Sliding Sketches, Sl-CM, is up to 2.54 and 6.07
times faster than SWCM and ECM, respectively. When a
new item arrives and is inserted into the data structure,
ECM and SWCM may need to merge histograms or summa-
rizations to keep memory in budget, introducing additional
cost. Maintaining structures like deques in these algorithms
also brings cost. On the contrary, our update operation and
scanning operation only operate a small number of counters,
which is much simpler and faster. Among the 3 kinds of
Sliding sketches, Sl-CM has the highest speed, because its
update strategy is the simplest. Sl-CU needs a comparison
among the mapped buckets before update them, and Sl-
Count needs to carry out additional hash function compu-
tations. Thus they are slower than Sl-CM.

8.4 Evaluation on Top-K Query
Parameter setting: We compare 3 approaches: Sl-HK, λ-
sampling, and WCSS. For Sl-HK, we set the number of
segments k = 5, and the number of fields in each bucket
d = 4. We vary the length of the bucket array to change
memory usage. For λ-sampling, we set the sample threshold
λ = 20, and vary the number of window counters to
change memory usage. For WCSS, we vary the number of
blocks to control memory usage. We use IP trace dataset and
StackOverflow dataset in this experiment. For each dataset,
we set the length of the sliding window N = 1M , and read
8M items. We find the items with top 3000 frequencies in
the sliding window. In experiments of time-based sliding
windows in StackOverflow dataset, we only evaluate λ-
sampling and Sl-HK, as WCSS does not support time-based

sliding windows. We compare error rate, ARE, and insertion
speed of the 3 approaches.

1 1.25 1.5 1.75 2
0

4

8

12

16

20

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-HK WCSS
λ-sampling

(a) IP trace

1 1.25 1.5 1.75 2
0

10

20

30

40

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-HK λ-sampling

(b) StackOverflow dataset

Fig. 9. Error rate of Top-K query.

Error rate (Figure 9(a)-9(b)) and ARE (Figure 10(a)-
10(b)): Our results show that our Sl-HK has an error rate
below 5% in most experimental settings, better than WCSS
and λ-sampling. ARE of Sl-HK also has superiority, which
is up to 15 and 9 times lower than WCSS and λ-sampling.
Sl-HK has much higher accuracy due to 2 reasons. First, the
HeavyKeeper algorithm can get much higher accuracy in
Top-K query compared with the prior art. By adapting it to
sliding windows, we obtain its superiority. Second, in the
Sliding sketch, we can achieve high-quality sliding window
approximation with additional counters, which is simple
and efficient. On the contrary, these 2 prior algorithms an-
swer sliding window queries based on maintaining sampled
arrivals of frequent items. Such sample-based method is
memory consuming, because items with high frequencies
produce large quantities of samples, and maintaining these
sampled arrivals with linked lists or queues introduces
additional memory usage. As a result, when the memory
is tight, these algorithms are heavily coarsened.

1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

Memory (MB)

A
R
E

Sl-HK WCSS
λ-sampling

(a) IP trace

1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

Memory (MB)

A
R
E

Sl-HK λ-sampling

(b) StackOverflow dataset

Fig. 10. ARE of Top-K query.

1 1.25 1.5 1.75 2
0

0.4

0.8

1.2

Memory (MB)

S
p
ee
d
(M

op
s)

Sl-HK WCSS
λ-sampling

(a) IP trace

1 1.25 1.5 1.75 2
0

0.4

0.8

1.2

Memory (MB)

S
p
ee
d
(M

op
s)

Sl-HK λ-sampling

(b) StackOverflow dataset

Fig. 11. Insertion speed of Top-K query.

Insertion speed (Figure 11(a)-11(b)): Our results show
that the insertion speed of Sl-HK is up to 4 times faster than
λ-sampling and 8 times faster than WCSS. WCSS has the

12

lowest speed as it uses cuckoo hash tables. Cuckoo hash
tables need many iterations of kick to insert an item when
the memory is tight, resulting into low speed. λ-sampling
has higher speed, but it is still not as fast as Sl-HK. Because
it still needs complicated operations like querying maps and
modifying double lists in the update operation. Moreover, λ-
sampling does not have a fixed memory usage, and it needs
to frequently clean up records of infrequent items to keep
the memory upper-bounded, which also costs time. On the
contrary, our Sl-HK only need to operate several counters
upon each item arrival. Thus it has the highest speed.

2 3 4 5

0.05

0.1

0.15

0.2

Field Number (d)

A
R
E

Sl-CM Sl-CU

(a) ARE

2 3 4 5
1

1.2

1.4

1.6

1.8

2

Field Number (d)

S
p
ee
d
(M

op
s)

Sl-CM Sl-CU

(b) Insertion Speed

Fig. 12. Varying the number of fields in each bucket.

3 4 5 6 7

0.03

0.06

0.09

0.12

Hash Number (k)

A
R
E

Sl-CM Sl-CU

(a) ARE

3 4 5 6 7
0

0.5

1

1.5

2

2.5

Hash Number (k)

S
p
ee
d
(M

op
s)

Sl-CM Sl-CU

(b) Insertion Speed

Fig. 13. Varying the number of Segments.

8.5 Sensitivity Analysis of the Sliding Sketch
In this section, we evaluate the impact of the number of
fields, d, and the number of segments, k on the performance
of the Sliding sketch. We use Sl-CM and Sl-CU as case
studies. We observe the impact of d and k on ARE and
the insertion speed of Sl-CM and Sl-CU. We use Synthetic
dataset in this experiment. When varying one parameter, we
fix the other. We set k = 5 when varying d, and set d = 3
when varying k. The length of the sliding window is set
N = 1M , and the memory usage is 15MB.

Impact of the number of fields in each bucket (Fig-
ure 12(a) and 12(b)): We observe that when increasing the
number of fields in each bucket, d, of Sl-CM and Sl-CU, ARE
first decreases and then increases, and d = 3 brings the best
performance. Enlarging d gives a better approximation of
the sliding window, but too large d will decrease the number
of buckets in the Sliding sketch array and increase hash
collision errors. On the other hand, with the increasing of
d, the insertion speed keeps decreasing, as we need to scan
more buckets in the same time interval.

Impact of the number of segments (Figure 13(a) and
13(b)): We observe that when increasing the number of
segments, k, of Sl-CM and Sl-CU, ARE first decreases and
then increases, and k = 5 brings the best performance. Like

d, enlarging k gives a better approximation of the sliding
window, but too large k will increase the hash collision
error, as each item is mapped to more buckets and has a
higher probability to collide with each other. On the other
hand, with the increasing of k, the insertion speed keeps
decreasing, as we need to operate more mapped buckets for
each inserted item.

8.6 Evaluation on Improving Techniques
Accelerations: We use Sl-BF as a case study. We implement
3 versions: the basic CPU version, CPU version accelerated
with technique in Section 7.2, and FPGA accelerated ver-
sion, denoted as CPU-Base, CPU-Acc, and FPGA-Acc. The
dataset we use is the IP trace dataset. The window length is
1M . We use 2MB memory and set d = 2 and k = 15. The
FPGA acceleration board we use is Xilinx Alveo U280. We
evaluate the insertion speed, query speed and error rate of
different versions. The results are shown in Table 3.

From the tables, we can see that the 3 versions have
nearly the same error rate, revealing that our accelerating
technique does not harm the accuracy. CPU-Acc is about
1.7 times faster than CPU-base due to the decrement of
hash computation cost. FPGA-Acc is further 30 times faster
because of the parallelism and pipeline of FPGA implemen-
tation. In all 3 versions, the query speed is higher than the
insertion speed, because both the query operation and the
update operation have a time cost of O(k), but the insertion
speed also includes the cost of the scanning operation. The
gap between the query speed and the update speed is
larger in FPGA-Acc. As discussed in Section 7.3, the query
operation can be fully pipelined with interval of 1 clock
cycle in FPGA implementation, but the update operation
can only achieve pipeline interval of 2 cycles due to the
conflict of read and write in the bucket array.

TABLE 3
Performance of different versions of Sl-BF

Version Error Rate(%) Insertion
Speed (Mops)

Query Speed
(Mops)

CPU-Base 0.95 0.57 0.87
CPU-Acc 0.95 0.96 1.53
FPGA-Acc 0.92 29.5 70

Accuracy improvements: We use Web page dataset to
evaluate the effect of δ-based correction strategy. The win-
dow length is set to 1M . We denote the basic version of
Sl-CM as CM-Base, and the version with δ-based correction
as CM-Impr, similar for Sl-CU. For both Sl-CM and Sl-CU,
we set k = 5 and d = 3 and use 5MB memory. The result
is shown in Table 4. We can see that the ARE of Sl-CM can
decrease 21% with δ-based correction. The effect on Sl-CU is
smaller, as it already has a small hash collision error. But the
ARE of Sl-CU still decreases by 12% with δ-based correction.

9 CONCLUSION
Data stream processing in sliding windows is an important
and challenging work. We propose a generic framework

13

TABLE 4
Effect of δ-based correction

Version ARE
CM-Base 0.203
CM-Impr 0.16
CU-Base 0.116
CU-Impr 0.102

in this paper, namely the Sliding sketch, which can be
applied to most existing sketches and answer various kinds
of queries in sliding windows. We use our framework
to address three fundamental queries in sliding windows:
membership query, frequency query, and Top-K query. The-
oretical analysis and experimental results show that our
algorithm has much higher accuracy than the prior art.

We believe our framework is suitable for all sketches that
use the common sketch model.

REFERENCES

[1] S. H. Oh, J. S. Kang, Y. C. Byun, T. T. Jeong, and W. S. Lee,
“Anomaly intrusion detection based on clustering a data stream,”
in Acis International Conference on Software Engineering Research,
Management and Applications, pp. 220–227, 2006.

[2] M. A. Faisal, Z. Aung, J. R. Williams, and A. Sanchez, “Secur-
ing advanced metering infrastructure using intrusion detection
system with data stream mining,” in Pacific Asia Conference on
Intelligence and Security Informatics, pp. 96–111, 2012.

[3] B. Ball, M. Flood, H. V. Jagadish, J. Langsam, L. Raschid, and
P. Wiriyathammabhum, “A flexible and extensible contract aggre-
gation framework (caf) for financial data stream analytics,” pp. 1–
6, 2014.

[4] L. G. Gyurkó, T. Lyons, M. Kontkowski, and J. Field, “Extracting
information from the signature of a financial data stream,” Quan-
titative Finance, 2013.

[5] R. Hu, “Stability analysis of wireless sensor network service via
data stream methods,” Applied Mathematics & Information Sciences,
vol. 6, no. 3, pp. 793–798, 2012.

[6] C. M. S. Figueiredo, C. M. S. Figueiredo, E. F. Nakamura, L. S.
Buriol, A. A. F. Loureiro, A. O. Fernandes, and C. J. N. J. Coelho,
“Data stream based algorithms for wireless sensor network appli-
cations,” in International Conference on Advanced Information NET-
WORKING and Applications, pp. 869–876, 2007.

[7] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[8] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[9] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” ACM SIGMCOMM CCR, vol. 32, no. 4, 2002.

[10] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” Siam Journal on Comput-
ing, vol. 31, no. 6, pp. 1794–1813, 2002.

[11] R. Subramanyam, I. Gupta, L. M. Leslie, and W. Wang, “Idempo-
tent distributed counters using a forgetful bloom filter,” Cluster
Computing, vol. 19, no. 2, pp. 879–892, 2016.

[12] O. Papapetrou, M. Garofalakis, and A. Deligiannakis, “Sketch-
based querying of distributed sliding-window data streams,” Pro-
ceedings of the VLDB Endowment, vol. 5, no. 10, pp. 992–1003, 2012.

[13] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” in Automata, Languages and Programming,
Springer, 2002.

[14] J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L. Uden,
and X. Li, “Heavykeeper: An accurate algorithm for finding top-
k elephant flows,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), (Boston, MA), pp. 909–921, USENIX Associa-
tion, 2018.

[15] ““source code of sliding sketches and other sketches”.” https://
github.com/sliding-sketch/Sliding-Sketch.

[16] D. Nelson, “The bloomier filter: An efficient data structure for
static support lookup tables,” Proc Symposium on Discrete Algo-
rithms, 2004.

[17] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L.
Larriba-Pey, “Dynamic count filters,” Acm Sigmod Record, vol. 35,
no. 1, pp. 26–32, 2006.

[18] F. Hao, M. Kodialam, T. V. Lakshman, and H. Song, “Fast multiset
membership testing using combinatorial bloom filters,” in INFO-
COM, pp. 513–521, 2009.

[19] T. Yang, A. X. Liu, M. Shahzad, Y. Zhong, Q. Fu, Z. Li, G. Xie,
and X. Li, “A shifting bloom filter framework for set queries,”
Proceedings of the Vldb Endowment, vol. 9, no. 5, pp. 408–419, 2016.

[20] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch:
a sketch framework for frequency estimation of data streams,”
Proceedings of the Vldb Endowment, vol. 10, no. 11, 2017.

[21] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and
more accurate stream processing,” in International Conference on
Management of Data, pp. 1449–1463, 2016.

[22] J. Chen and Q. Zhang, “Bias-aware sketches,” Proceedings of the
VLDB Endowment, vol. 10, no. 9, pp. 961–972, 2017.

[23] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-
wide measurements,” in ACM SIGCOMM 2018.

[24] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig, “Cold
filter: A meta-framework for faster and more accurate stream
processing,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, (New York, NY, USA), pp. 741–
756, ACM, 2018.

[25] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency esti-
mation of internet packet streams with limited space,” in European
Symposium on Algorithms, pp. 348–360, Springer, 2002.

[26] G. S. Manku and R. Motwani, “Approximate frequency counts
over data streams,” in VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases, pp. 346–357, Elsevier, 2002.

[27] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computa-
tion of frequent and top-k elements in data streams,” in Interna-
tional Conference on Database Theory, pp. 398–412, Springer, 2005.

[28] D. Ting, “Data sketches for disaggregated subset sum and frequent
item estimation,” 2017.

[29] F. Chang, W. C. Feng, and K. Li, “Approximate caches for packet
classification,” in Joint Conference of the IEEE Computer and Commu-
nications Societies, pp. 2196–2207 vol.4, 2004.

[30] Yoon, “Aging bloom filter with two active buffers for dynamic
sets,” IEEE Transactions on Knowledge & Data Engineering, vol. 22,
no. 1, pp. 134–138, 2009.

[31] N. Rivetti, Y. Busnel, and A. Mostefaoui, Efficiently Summarizing
Distributed Data Streams over Sliding Windows. PhD thesis, LINA-
University of Nantes; Centre de Recherche en Économie et Statis-
tique; Inria Rennes Bretagne Atlantique, 2015.

[32] H. L. Chan, T. W. Lam, L. K. Lee, and H. F. Ting, Continuous
Monitoring of Distributed Data Streams over a Time-Based Sliding
Window. 2009.

[33] G. Cormode and K. Yi, “Tracking distributed aggregates over
time-based sliding windows,” in ACM Sigact-Sigops Symposium on
Principles of Distributed Computing, pp. 213–214, 2011.

[34] B. B. Ran, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” in IEEE INFOCOM 2016 - the
IEEE International Conference on Computer Communications, pp. 1–9,
2016.

[35] L. K. Lee and H. F. Ting, “A simpler and more efficient determin-
istic scheme for finding frequent items over sliding windows,”
in ACM Sigmod-Sigact-Sigart Symposium on Principles of Database
Systems, pp. 290–297, 2006.

[36] Hung, Y. S. Regant, Lee, Lap-Kei, Ting, and H.F, “Finding frequent
items over sliding windows with constant update time,” Informa-
tion Processing Letters, vol. 110, no. 7, pp. 257–260, 2010.

[37] A. Arasu and G. S. Manku, “Approximate counts and quantiles
over sliding windows,” in ACM Sigmod-Sigact-Sigart Symposium
on Principles of Database Systems, pp. 286–296, 2004.

[38] P. L’Ecuyer, “Tables of linear congruential generators of differ-
ent sizes and good lattice structure,” Mathematics of Computation,
vol. 68, no. 225, pp. 249–260, 1999.

[39] A. Rousskov and D. Wessels, “High-performance benchmarking
with web polygraph,” Software: Practice and Experience, vol. 34,
no. 2, pp. 187–211, 2004.

[40] D. M. Powers, “Applications and explanations of Zipf’s law,” in
Proc. EMNLP-CoNLL, Association for Computational Linguistics,
1998.

[41] M. Mitzenmacher, “Network applications of bloom filters: A sur-
vey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

https://github.com/sliding-sketch/Sliding-Sketch
https://github.com/sliding-sketch/Sliding-Sketch

14

[42] W. C. Feng, “Blue : A new class of active queue management
algorithms,” Tech Rep, vol. 18, no. 3, pp. 298–312, 1999.

Xiangyang Gou is a Ph.D. student in the School
of Computer Science of Peking University. His
research interests include data structures and
algorithms in data streams and graph streams.

Yinda Zhang has graduated with a bachelor’s
degree from Peking University, and graduated
with a master’s degree from the University of
Chicago. His research interests include network
measurements and streaming algorithms.

Zhoujing Hu is currently an undergraduate stu-
dent of Peking University majoring in Computer
Science. His research interests include data
sketches, and data stream processing systems.

Long He has graduated with a bachelor’s de-
gree from Peking University. His research in-
terests include Network Big Data and Network
Measurement.

Ke Wang has graduated with a bachelor’s de-
gree from Peking University. He is currently a
Ph.D. student in Yale University. His research
interests lie in the fields of computer system, net-
work and database, including efficient memory
architectures, network telemetry, programmable
network and database engine.

Xilai Liu has graduated with a bachelor’s de-
gree from Peking University. He is currently a
Ph.D. student in the Institute of Computing Tech-
nology, Chinese Academy of Sciences (CAS),
and the University of Chinese Academy of Sci-
ences (UCAS). His research interests include
data sketches, in-network computing, and data
stream processing systems.

Tong Yang received the Ph.D. degree in com-
puter science from Tsinghua University in 2013.
He visited the Institute of Computing Technol-
ogy, Chinese Academy of Sciences (CAS). He
is currently an Associate Professor with the De-
partment of Computer Science, Peking Univer-
sity. His research interests include network mea-
surements, sketches, IP lookups, Bloom filters,
sketches, and KV stores.

Yi Wang is a Research Professor in the Sustech
Institute of Future Networks, Southern Univer-
sity of Science and Technology. He received
the Ph.D. degree in Computer Science and
Technology from Tsinghua University in July
2013. His research interests include Future
Network Architectures, Information Centric Net-
working, Software-defined Networks, and the
design and implementation of high-performance
network devices. He has published more than
80 peer-reviewed papers in SIGCOMM, NSDI,

MOBICOM, INFOCOM, ToN, etc..

Bin Cui is a professor in the School of Com-
puter Science and Director of Institute of Net-
work Computing and Information Systems, at
Peking University. His research interests include
database system architectures, query and index
techniques, big data management and mining.
He is a senior member of IEEE, member of ACM
and distinguished member of CCF.

1

SUPPLEMENTARY MATERIALS

APPENDIX A
SLIDING SKETCH APPLICATIONS
In this section, we apply the Sliding sketch technique to
the Bloom filter, the CM sketch, the Count sketch, the CU
sketch, and the HeavyKeeper as examples to show how it
works explicitly. In these examples, we use d fields in each
bucket, where d is a parameter that can be adjusted.

A.1 Apply to the Bloom filter
A.1.1 Standard Bloom filter

Fig. 14. Structure of the partition Bloom filter

There are 2 versions of Bloom filters [7], the partition
version and the standard version. They have similar error
rate [41], and the partition Bloom filter is more popular
because it is suitable for parallel implementations [42]. In
this paper, we apply the Sliding sketch technique to the
partition Bloom filter. A partition Bloom filter is composed
of an array of m bits, separated into k equal-sized segments,
and each segment is associated with a hash function, as
shown in Figure 14.
Update operation: When inserting an item e, we map e into
k bits with the k hash functions, one in each segment, and
set these mapped bits to 1.
Query operation: When querying an item e, we find the k
mapped bits of e with the hash functions. If any of them is
0, we report false. Otherwise we report true.

A.1.2 Sliding Bloom filter

In the Sliding Bloom filter, A is a bit array with m
buckets, separated into k equal-sized segments. Each bucket
A[i] contains d bits {A[i][j]|0 ⩽ j < d}. Initially, all the bits
are set to 0.

Update operation: When an item e arrives, we find the
k mapped buckets {A[hi]|0 ⩽ i < k}with the k hash
functions, and in each mapped bucket, we set the first bit
A[hi][0] to 1.

Scanning operation: In the scanning operation, a scan-
ning pointer goes through the buckets one by one in A

repeatedly. The scanning pointer goes through (d−1)×m
N

buckets in each time unit, where N is the length of the
sliding window. When the scanning pointer arrives at a
bucket A[i], we set A[i][j] = A[i][j − 1](1 ⩽ j ⩽ d − 1)
and A[i][0] = 0.

Query operation: When querying an item e, we find
the k mapped buckets {A[hi]|0 ⩽ i < k} with the k

hash functions, and compute k values {Sum(A[hi]) =∑d−1
j=0 A[hi][j]|0 ⩽ i < k}. If any of them is 0, we return

false. Otherwise, we return true.

A.2 Apply to the CM sketch
A.2.1 Standard CM sketch

Fig. 15. Structure of the CM sketch

The CM sketch [8] is composed of a counter array with m
counters which are separated into k equal-sized segments.
These k segments are associated with k hash functions
{hi(·)|0 ⩽ i < k}, as shown in Figure 15. All the counters
are set to 0 initially.
Update operation: When inserting an item e, we map it to
k counters with the k hash functions, one in each segment.
We increase all the k mapped counters by 1.
Query operation: When querying an item e, we find the
k mapped counters, and report the minimum one as the
frequency.

A.2.2 Sliding CM sketch

In the Sliding CM sketch, A is a counter array with m
buckets, separated into k equal-sized segments. Each bucket
A[i] contains d counters {A[i][j]|0 ⩽ j < d}. Initially, all the
counters are set to 0.
Update operation: When an item e arrives in the data
stream, we map it to k mapped buckets {A[hi]|0 ⩽ i < k}
with k hash functions, one in each segment. In each mapped
bucket, we increase the first counter A[i][0] by 1.
Scanning operation: The scanning operation is the same as
the Sliding Bloom filter.
Query operation: When querying an item e, we find the k
mapped buckets {A[hi]|0 ⩽ i < k}, and compute k values
{Sum(A[hi]) =

∑d−1
j=0 A[hi][j]|0 ⩽ i < k}. We report the

minimum one as the frequency.

A.3 Apply to the Count sketch

A.3.1 Standard Count Sketch

The Count sketch [13] has the same data structure as
the CM sketch, but it has another set of k hash functions
{gi(·)|0 ⩽ i < k} besides {hi(·)|0 ⩽ i < k}. Each gi(·) maps
the input to value range {−1, 1}.
Update operation: When inserting an item e, we use
{hi(·)|1 ⩽ i ⩽ k} to map the item into k mapped coun-
ters just like the CM sketch, but instead of increasing the

2

counters by 1, we increase the ith mapped counter by gi(e)
(gi(e) = −1 or 1).
Query operation: When querying an item e, we find the
k mapped counters, and report the median value of the k
value {gi(e) × Ci|1 ⩽ i ⩽ k} where Ci is the ith mapped
counter.

A.3.2 Sliding Count Sketch

The Sliding Count sketch has the same data structure as
the Sliding CM sketch. The update operation, the scanning
operation, and the query operation are detailed as follows.
Update operation: When an item e arrives, we find the k
mapped buckets {A[hi]|0 ⩽ i < k}. Then we compute
another set of k hash functions {gi(e)|0 ⩽ i < k} which map
item e to the range {−1, 1}. In each mapped bucket, we up-
date the first counter A[hi][0] as A[hi][0] = A[hi][0] + gi(e).
Scanning operation: In the scanning operation, a scanning
pointer goes through the buckets in A repeatedly. The scan-
ning pointer goes through m×(2d−1)

2N buckets in each time
unit, where N is the length of the sliding window. When it
arrives at a bucket A[[i], we set A[i][j] = A[i][j− 1](1 ⩽ j ⩽
d− 1) and set A[i][0] = 0.
Query operation: When querying an item e, we find the k
mapped buckets {A[hi]|0 ⩽ i < k}, and compute k values
{Sum(A[hi]) = gi(e)×

∑d−1
j=0 A[hi][j]|0 ⩽ i < k}. Then we

return the median value of them.

A.4 Apply to the CU sketch
A.4.1 Standard CU sketch

The CU sketch [9] has the same data structure as the CM
sketch.
Update operation: When inserting an item e, it only in-
creases the minimum mapped counter by 1. As the mapped
counters are no smaller than the accurate frequency, we only
need to increase the minimum one to keep such one-side
error property.
Query operation: When querying an item e, the CU sketch
reports the minimum value of the k mapped counters as the
frequency.

The CU sketch is more accurate than the CM sketch
when using the same parameters. The CU sketch also only
has over-estimation error.

A.4.2 Sliding CU sketch

The Sliding CU sketch has the same data structure as
the Sliding CM sketch. The update operation, the scanning
operation, and the query operation are detailed as follows.
Update operation: When an item e arrives, we find the k
mapped buckets{A[hi]|0 ⩽ i < k} with k hash functions.
Then we go through these k mapped buckets by the de-
scending order of jet lag, where jet lag can be computed
according to equation 1. For each mapped bucket A[hi], if
there is another mapped bucket A[hj] with larger jet lag
but A[hj][0] < A[hi][0], we do not increase A[hi][0]. Field
A[hi][0] records a smaller slice than A[hj][0]. If it still has a
larger value, it must suffer from hash collisions, and we do
not need to increase it. Otherwise we increase A[hi][0] by 1.

Fig. 16. Structure of the HeavyKeeper

Scanning operation: The scanning operation is the same as
the Sliding Bloom filter.
Query operation: When querying an item e, we find the k
mapped buckets {A[hi]|0 ⩽ i < k}, and compute k values
{Sum(A[hi]) =

∑d−1
j=0 A[hi][j]|0 ⩽ i < k}. We report the

minimum one as the frequency.

A.5 Apply to the HeavyKeeper
A.5.1 Standard HeavyKeeper

The HeavyKeeper [14] is composed of an array of buck-
ets with k segments and k hash functions, as shown in
Figure 16. Each bucket is composed of an ID and a counter.
All IDs and the counters are set to 0 initially.
Update operation: When inserting an item e, we map the
item to k buckets with the k hash functions, one in each
segment. We check these k mapped buckets. There are 3
kinds of situations.

1) If the ID is 0 in a mapped bucket, which means this
bucket is empty, we set the ID to e, and set the counter to 1.

2) If the ID is equal to e in a mapped bucket, we increase
the counter by 1.

3) If the ID is not e or 0 in a mapped bucket, it means that
this bucket is occupied by another item. Then we decrease
the counter in it by 1 with a probability b−C where C is the
value of the counter and b is a constant suggested to be 1.08.
If the counter is 0 after decrement, we replace the ID with e,
and set the counter to 1.
Query the frequency of an item: When querying the fre-
quency of an item e, we check the counters in the mapped
buckets which contain ID equal to e, and report the maxi-
mum one as the frequency.
Find the Top-K items: When the we need to find the Top-K
items, we scan the array and get the frequency of all stored
items, and find the ones with top K largest frequencies.

In the HeavyKeeper, items with high frequencies are
hardly decreased, as b−C is very small when C is large.
While items with small frequencies can hardly stay in the
array. In this way, it achieves high accuracy in Top-K query.
It only has under-estimation error for the frequencies of
items.

A.5.2 Sliding HeavyKeeper

In the Sliding HeavyKeeper, A is an array with m buck-
ets which are divided into k equal-sized segments. Each
bucket A[i] contains an ID and d counters {A[i][j]|0 ⩽ j <
d}. Initially, all IDs and counters are set to 0. The update

3

operation, the scanning operation, and the query operation
are detailed as follows.
Update operation: When an item e arrives in the data
stream, we find k mapped buckets {A[hi]|0 ⩽ i < k} with
k hash functions. Then we check these k mapped buckets.
There are 3 kinds of situations:

1) If the ID is 0 in a mapped bucket A[hi], we set the ID
to e and set the first counter A[hi][0] = 1.

2) If the ID is equal to e in a mapped bucket A[hi], we
increase the first counter A[hi][0] by 1.

3) If the ID is not 0 or e in a mapped bucket A[hi], the
update procedure is as follows. First, we compute a sum
Sum(A[hi]) =

∑d−1
j=0 A[hi][j]. Second, we find the smallest

j where A[hi][j] > 0 and decrease it by 1 with probability
bSum(A[hi]), where b is suggested to be 1.08. Third, if after
the decrement Sum(A[hi]) = 0, we set the ID to e and
A[hi][0] = 1, A[hi][j] = 0 (1 ⩽ j ⩽ d− 1).
Scanning Operation: In the scanning operation, a scanning
pointer goes through the buckets in A repeatedly. The scan-
ning pointer goes through m×d

N buckets in each time unit,
where N is the length of the sliding window. When it arrives
at a bucket A[[i], we set A[i][j] = A[i][j − 1](1 ⩽ j ⩽ d− 1)
and set A[i][0] = 0.
Query Operation: We check all the items in the Sliding
HeavyKeeper. For each item e, we find the k mapped
buckets {A[hi]|0 ⩽ i < k}. Then we check the ID in these
k mapped buckets. If in a mapped bucket A[hi] the ID is
equal to e, we compute value Sum(A[hi]) =

∑d−1
j=0 A[hi][j].

We report the maximum one among these computed values
as the frequency of e. At last we find the items with top K
largest frequencies and report them.

APPENDIX B
ANALYSIS OF ACCURACY

The accuracy of the Sliding sketch is influenced by the base
sketch. We analyze the accuracy of the Sliding Bloom filter,
the Sliding CM sketch and the Sliding HeavyKeeper as
examples.

B.1 Accuracy of the Sliding Bloom Filter

For simplicity, in the following analysis, we use Ni to
denote (1+ i

(d−1)×k)N , where N is the length of the sliding
window. We denote current time with T . We use ni to
represent the number of distinct items in WT

T−Ni
.

Theorem 4. The Sliding Bloom filter only has false positives and
no false negatives.

Proof. In each mapped bucket A[hi] of item e in the Slid-
ing Bloom filter, Sum(A[hi]) =

∑d−1
j=0 A[hi][j] records the

presence of items mapped to A[hi] in WT
T−(1+ δ

d−1)N
. This

slice is a superset of the sliding window. Combining this
property with the one-side error property of the Bloom filter,
we know that if an item e shows up in sliding window,
it must show up in WT

T−(1+ δ
d−1)N

, and Sum(A[hi]) > 0.

When in all the k mapped buckets Sum(A[hi]) > 0, we will
report true. However, when e is not in the sliding window,
we may still report true because we record a larger slice, and
hash collisions may happen.

Theorem 5. In the Sliding Bloom filter, suppose we query an item
e which is not in the sliding window. We use Pri to represent
probability that we correctly get a negative report when e does not
present in WT

T−Ni
, (2 ⩽ i ⩽ k). Then we have

Pri ⩾ 1− (1− (1− k

m
)ni)

i−1

≈ 1− (1− e−
nik

m)
i−1

, (2 ⩽ i ⩽ k − 1)

(10)

and

Prk ⩾ 1− (1− (1− k

m
)nk)

k

≈ 1− (1− e−
nkk

m)
k

(11)

Proof. In [7] the authors have proved that given a set with n
distinct items, when querying for an item e which is not in
the set with the Bloom filter, the probability that there is at
least one bit correct among j mapped bits is

Pr = 1− (1− (1− k

m
)n)

j

≈ 1− (1− e−
nk
m)

j
(12)

m is the length of the array and k is the number of segments.
This is the probability that we get a correct answer with
the j mapped bits, because as long as one bit is 0, we will
give a negative report. In the following part we analyze the
accuracy of the Sliding Bloom filter with this result.

In the Sliding Bloom filter, when querying an item e
which is not in the sliding window, the value ranges of δ
in the k mapped buckets are shown in Theorem 1, 2 and 3.
We use Pri to represent probability that we get a negative
report when e does not present in WT

T−Ni
, (2 ⩽ i ⩽ k), and

use ni to represent the number of items in this slice. For
2 ⩽ i ⩽ (k− 1), there are at least i− 1 buckets where δ ⩽ i

k ,
as shown in Theorem 2. These buckets record slices shorter
than (1 + i

(d−1)×k)N . Therefore we have

Pri ⩾ 1− (1− (1− k

m
)ni)

i−1

≈ 1− (1− e−
nik

m)
i−1

, (2 ⩽ i ⩽ k − 1)

(13)

There are k buckets which record slices shorter than (1 +
1

(d−1))N , therefore we have

Prk ⩾ 1− (1− (1− k

m
)nk)

k

≈ 1− (1− e−
nkk

m)
k

(14)

B.2 Accuracy of the Sliding CM sketch

In the following analysis, we use Ni to denote (1 +
i

(d−1)×k)N , where N is the length of the sliding window.
We denote current time with T . We use |WT

T−Ni
| to represent

the number of items with duplication in WT
T−Ni

, and use fi
to denote the frequency of e in WT

T−Ni
.

Theorem 6. The Sliding CM sketch only has over-estimation
error and no under-estimation error.

4

Proof. In each mapped bucket A[hi] of item e in the Sliding
CM sketch, Sum(A[hi]) =

∑d−1
j=0 A[hi][j] records the sum

of frequencies of items mapped to A[hi] in WT
T−(1+ δ

d−1)N
.

This slice is a superset of the sliding window. Combining
this property with the one-side error property of the CM
sketch, we know that if an item e has frequency f in sliding
window, it must shows up no less than f times in the data
stream in WT

T−(1+ δ
d−1)N

, and Sum(A[hi]) ⩾ f . When in all

the k mapped buckets Sum(A[hi]) ⩾ f , the reported value
f̂ will be no smaller than f .

Theorem 7. In the Sliding CM sketch, suppose the reported
frequency is f̂ . We use Pri to represent probability that f̂ ⩽
fi + ϵ|WT

T−Ni
|, (1 ⩽ i ⩽ k). ϵ = ke

m . Then we have

Pri ⩾ 1− e−i+1, (2 ⩽ i ⩽ k − 1) (15)

and
Prk ⩾ 1− e−k (16)

Proof. In [8], the authors have proved that when querying
the frequency of an item e in set s with the CM sketch, we
have

Pr(f̂ ⩽ f + ϵ|s|) ⩾ 1− e−k (17)

f is the accurate frequency. f̂ is the query result, i.e., the
minimum value among the k mapped counters. ϵ = ke

m ,
where m is the length of the array, and k is the number of
segments. |s| is the number of items with duplication in s.

When we only use j mapped counters and return the
minimum value among them as f̂ , we have

Pr(f̂ ⩽ f + ϵ|s|) ⩾ 1− e−j (18)

In the following part we analyze the accuracy of the
Sliding CM sketch with these results.

For 2 ⩽ i ⩽ (k−1), there are at least i−1 buckets where
δ ⩽ i

k , as shown in Theorem 2. These buckets record recent
slices no longer than Ni = (1 + i

(d−1)×k)N . Therefore we
have

Pri = Pr(f̂ ⩽ fi + ϵ|WT
T−Ni

|)
⩾ 1− e−i+1, (2 ⩽ i ⩽ k − 1)

(19)

There are k buckets which record slices no longer than Nk =
(1 + 1

(d−1))N . Therefore we have

Prk ⩾ 1− e−k (20)

B.3 Accuracy of the Sliding HeavyKeeper

In the following analysis, we use Ni to denote (1 −
i

d×k)N , where N is the length of the sliding window. We
denote current time is T . We use |WT

T−Ni
| to represent the

number of items with duplication in WT
T−Ni

. fi denotes the
frequency of e in WT

T−Ni

Theorem 8. For the frequency of any item, The Sliding Heavy-
Keeper only has under-estimation error and no over-estimation
error.

In each mapped bucket A[hi] of item e in the Slid-
ing HeavyKeeper, with the scanning speed recommended

in Section 7.1, Sum(A[hi]) =
∑d−1

j=0 A[hi][j] records the
frequencies of the item stored in A[hi] in WT

T−(1− 1−δ
d)N

.
This slice is a subset of the sliding window. On the other
hand, the HeavyKeeper only has under-estimation for the
frequencies, because when an item collides with other items,
its frequency may be decreased. Therefore, we know that if
an item e has frequency f in sliding window, it must shows
up no more than f times in WT

T−(1− 1−δ
d)N

, and because of
hash collisions, the recorded frequency may be smaller.

Theorem 9. In the Sliding HeavyKeeper, suppose the reported
frequency of a Top-K item if f̂ . If we use Pri to represent
probability that f̂ ⩾ fi− ϵ|WT

T−Ni
| where ϵ is any small positive

number, we have

Pri ⩾ 1− (
k

ϵmf(b− 1)
)
i−1

, (2 ⩽ i ⩽ k − 1) (21)

Prk ⩾ 1− (
k

ϵmf(b− 1)
)
k

(22)

b is the constant for probabilistic decay. m is the length of the
array, and k is the number of segments.

In the Sliding HeavyKeeper, we concentrate on the items
with high frequencies. Specifically, in Top-K query, we only
care about the items with top K frequencies. The mapped
buckets of a top K item are all occupied by it in most
cases. Therefore, in the following analysis, we assume that
when querying an item e, the k mapped buckets of e are all
occupied by it. In [14], the authors have proved that when
querying an item e in set s with the HeavyKeeper, in each
mapped bucket occupied by e we have:

Pr(f̂ ⩽ f − ϵ|s|) ⩽ k

ϵmf(b− 1)
(23)

where f is the accurate frequency of e. f̂ is the frequency
stored in this mapped bucket. ϵ is any small positive num-
ber. m is the length of the array, and k is the number of
segments. |s| is the number of items with duplication in s.

When we use j mapped buckets and return the maxi-
mum value among them as f̂ , we have f̂ ⩾ f − ϵ|s| unless
all the j mapped buckets have counter smaller than f − ϵ|s|.
Therefore:

Pr(f̂ ⩾ f − ϵ|s|) ⩾ 1− (
k

ϵmf(b− 1)
)
j

(24)

In this following part we analyze the accuracy of the
Sliding HeavyKeeper with these results.

For 2 ⩽ i ⩽ (k − 1), there are at least i − 1 buckets
where δ ⩾ 1 − i

k , as shown in Theorem 3. These buckets
record slices which are superset of WT

T−Ni
, and subset of

the sliding window. Therefore we have

Pri = Pr(f̂ ⩾ fi − ϵ|WT
T−Ni

|)

⩾ 1− (
k

ϵmf(b− 1)
)
i−1

, (2 ⩽ i ⩽ k − 1)
(25)

There are k buckets recording slices which are superset of
WT

T−Nk
. Therefore we have

Prk ⩾ 1− (
k

ϵmf(b− 1)
)
k

(26)

5

APPENDIX C
SUPPLEMENTARY EXPERIMENTS
In this section, we show the experimental results of more
datasets as supplement to Section 8.

C.1 Evaluation on Membership Query
We show the error rate and speed of Sl-BF, FBF and SWBF in
Web Page dataset and Synthetic dataset here. The window
length is set to 1M and we read 8M items. The parameter
settings are the same as Section 8.2.

2 3 4 5
0

2

4

6

8

10

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-BF FBF
SWBF

(a) Web Page.

2 3 4 5
0

2

4

6

8

10

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-BF FBF
SWBF

(b) Synthetic dataset.

Fig. 17. Error rate of membership query.

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-BF FBF
SWBF

(a) Web page.

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-BF FBF
SWBF

(b) Synthetic dataset.

Fig. 18. Insertion speed of membership query.

C.2 Evaluation on Frequency Query
We show the ARE and speed of Sl-CM, Sl-CU, Sl-Count,
ECM and SWCM in Web Page dataset and Synthetic dataset
here. The window length is set to 1M and we read 8M
items. The parameter settings are the same as Section 8.3.

5 10 15 20 25

0.1

1

10

Memory (MB)

A
R
E

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(a) Web Page

5 10 15 20 25

0.1

1

10

Memory (MB)

A
R
E

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(b) Synthetic dataset

Fig. 19. ARE of frequency query.

C.3 Evaluation on Top-K Query
We show the error rate, ARE and speed of Sl-HK, λ-
sampling and WCSS in Web Page dataset and Synthetic
dataset here. The window length is set to 1M and we read
8M items. The parameter settings are the same as Section
8.4.

5 10 15 20 25
0

0.5

1

1.5

2.5

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(a) Web page

5 10 15 20 25
0

0.5

1

1.5

2.5

Memory(MB)

S
p
ee
d
(M

op
s)

Sl-CM Sl-CU
Sl-Count SWCM
ECM

(b) Synthetic dataset

Fig. 20. Insertion speed of frequency query.

1 1.25 1.5 1.75 2
0

2

4

6

8

10

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-HK WCSS
λ-sampling

(a) Web page

1 1.25 1.5 1.75 2
0

10

20

30

40

Memory (MB)

E
rr
or

R
at
e(
%
)

Sl-HK WCSS
λ-sampling

(b) Synthetic dataset

Fig. 21. Error rate of Top-K query.

1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

Memory (MB)

A
R
E

Sl-HK WCSS
λ-sampling

(a) Web page

1 1.25 1.5 1.75 2
0

1

2

3

4

5

6

Memory (MB)

A
R
E

Sl-HK WCSS
λ-sampling

(b) Synthetic dataset

Fig. 22. ARE of Top-K query.

1 1.25 1.5 1.75 2
0

0.4

0.8

1.2

1.6

Memory (MB)

S
p
ee
d
(M

op
s)

Sl-HK WCSS
λ-sampling

(a) Web page

1 1.25 1.5 1.75 2
0

0.4

0.8

1.2

1.6

Memory (MB)

S
p
ee
d
(M

op
s)

Sl-HK WCSS
λ-sampling

(b) Synthetic dataset

Fig. 23. Insertion speed of Top-K query.

C.4 Evaluation on Acceleration Techniques
In this section we use the Sliding CM sketch as another
example to show the effect of acceleration techniques. We
use 5MB memory and set d = 3 and k = 5. The dataset
and other settings are the same as Section 8.6.

TABLE 5
Performance of Different Versions of Sl-CM

Version ARE Insertion
Speed (Mops)

Query Speed
(Mops)

CPU-Base 0.24 1.7 1.36
CPU-Acc 0.24 2.4 2.37
FPGA-Acc 0.27 32 64

	Introduction
	Background and Motivations
	Our Proposed Solution
	Key Contribution

	Related Work
	Different Kinds of Sketches
	Sketches for Membership Query
	Sketches for Frequency Query
	Sketches for Top-K Query

	Probabilistic Data Structures for Sliding Windows

	Problem Definition
	Definitions of Data Streams
	Definitions of Sliding Windows
	Definitions of Stream Processing Tasks

	Sliding Sketch: Basic Version
	A Common Sketch Model
	The Sliding Sketch Model
	Analysis of the Sliding Sketch Model

	Sliding Sketch: d-field version
	Mathematical Analysis
	Analysis of Memory and Time Cost
	Analysis of the Jet Lag
	Computation of
	Value Range of

	More Optimizations
	Varying the Scanning Speed
	Accelerating Mapped Bucket Address Computation
	Accelerating with FPGA
	-based Correction

	Performance Evaluation
	Experimental Setup
	Evaluation on Membership Query
	Evaluation on Frequency Query
	Evaluation on Top-K Query
	Sensitivity Analysis of the Sliding Sketch
	Evaluation on Improving Techniques

	Conclusion
	References
	Biographies
	Xiangyang Gou
	Yinda Zhang
	Zhoujing Hu
	Long He
	Ke Wang
	Xilai Liu
	Tong Yang
	Yi Wang
	Bin Cui

	Appendix A: Sliding Sketch Applications
	Apply to the Bloom filter
	Standard Bloom filter
	Sliding Bloom filter

	Apply to the CM sketch
	Standard CM sketch
	Sliding CM sketch

	Apply to the Count sketch
	Standard Count Sketch
	Sliding Count Sketch

	Apply to the CU sketch
	Standard CU sketch
	Sliding CU sketch

	Apply to the HeavyKeeper
	Standard HeavyKeeper
	Sliding HeavyKeeper

	Appendix B: Analysis of Accuracy
	Accuracy of the Sliding Bloom Filter
	Accuracy of the Sliding CM sketch
	Accuracy of the Sliding HeavyKeeper

	Appendix C: Supplementary Experiments
	Evaluation on Membership Query
	Evaluation on Frequency Query
	Evaluation on Top-K Query
	Evaluation on Acceleration Techniques

