
Precise Error Estimation for Sketch-based Flow Measurement
Peiqing Chen

★∗
, Yuhan Wu

†∗
, Tong Yang

†
, Junchen Jiang

‡
, Zaoxing Liu

★

★Boston University, †Peking University, ‡University of Chicago

Abstract
As a class of approximate measurement approaches, sketching al-

gorithms have significantly improved the estimation of network

flow information using limited resources. While these algorithms

enjoy sound error-bound analysis under worst-case scenarios, their

actual errors can vary significantly with the incoming flow distribu-

tion, making their traditional error bounds too “loose” to be useful

in practice. In this paper, we propose a simple yet rigorous error

estimation method to more precisely analyze the errors for posterior
sketch queries by leveraging the knowledge from the sketch coun-

ters. This approach will enable network operators to understand

how accurate the current measurements are and make appropriate

decisions accordingly (e.g., identify potential heavy users or answer
“what-if” questions to better provision resources). Theoretical anal-

ysis and trace-driven experiments show that our estimated bounds

on sketch errors are much tighter than previous ones and match

the actual error bounds in most cases.

CCS Concepts
• Networks→ Network monitoring; Network measurement.

Keywords
Sketch, Error Estimation, Network Algorithm

ACM Reference Format:
Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, Zaoxing Liu. 2021.

Precise Error Estimation for Sketch-based Flow Measurement. In ACM
Internet Measurement Conference (IMC ’21), November 2–4, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3487552.3487856

1 Introduction
Recent advances in sketching algorithms (sketches) enable approxi-

mate flow measurement using small memory footprints. At a high

level, these algorithms are designed to collect approximate flow

information (e.g., flow sizes and byte counts) as a small “sketch” sum-

mary from resource-constrained network devices (e.g., switches and
NICs). These measurement results are crucial to various decision-

making processes and system performance predictions, such as

traffic engineering [2, 16] and load balancing [1, 14, 17, 22].

While tremendous efforts have been made towards optimizing

the sketch accuracy for supported tasks [12, 20, 28] or designing

∗
Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IMC ’21, November 2–4, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9129-0/21/11. . . $15.00

https://doi.org/10.1145/3487552.3487856

0 1 2 30
2k
4k
6k
8k

Original method
Ground truth

Er
ro
r

skewness
(a) Synthetic trace

10 15 20 25 30 35
2k
4k
6k
8k
10k

Original method
Ground truth

Er
ro
r

trace size (M packets)

(b) Real-world trace

Figure 1: Traditional error bounds are not precise.

novel sketches for new tasks [19, 24, 31], a fundamental issue in

sketching is how to estimate the errors of the sketch results. Once a
sketch is configured with certain memory, the actual errors of its

results can vary significantly depending on the workload distribu-

tions. For instance, when the workload is “skewed” with large flows

accounting for a large portion of the traffic, the actual errors of

these large flows can be significantly lower than the error bounds

derived from the traditional worst-case-based analysis. Figure 1

shows an example of Count-Min sketch, and error bounds are simi-

larly overestimated in other sketches too (more details in §2). The

question we then ask in this paper is can we precisely estimate
the errors of sketch results at the query time?

We tackle this problem by introducing a simple yet rigorous

mechanism to precisely estimate error bounds without prior knowl-

edge about the workload distribution. The key insight is that the

“after-the-fact” counter values in the sketches can be highly indica-

tive of the actual errors of the current workload. Specifically, when

querying a Count-Min Sketch of 𝑟 counter arrays, our technique

traverses all counters in an array and uses the (𝛿
1

𝑟)-fractile largest
value among all counters as the estimated error bound with confi-

dence 1-𝛿 (i.e., actual errors fall in the bound with 1-𝛿 probability).

In contrast, traditional error bounds of sketches [6, 8] are derived

before the measurement starts, which makes them dependent on

the worst-case input and oblivious to the actual flow distribution,

causing the resulting error bound to be higher than the actual errors

in most cases. We formally prove that our method yields tighter

(near-optimal) error bounds than traditional ones (§3) and empiri-

cally show that the our error bounds match the real errors well in

practice (§4).

By further extending this technique to other sketches (e.g., Count-

Sketch [6]), we demonstrate that it is a general insight for a variety

of sketches. Our trace-driven evaluation with three representative

sketches (Count-Min, Count-Sketch, CU-Sketch) in four types of

network workloads (e.g., WAN [5], data center [4], DDoS attack [21],

Zipf-synthetic [25]) show that our approach is 20 to 700 times more

accurate than the traditional worst-case error bounds under various

workload distributions.

While our contribution is on the theoretical front, it bears sig-

nificant practical implications, as we envision a wide spectrum

of potential sketch-based applications (decision making and per-

formance prediction) enabled by tighter error bounds on sketch

results at the query time. Consider two examples. (1) In-network

caching and load balancing in CDN use sketches to identify hot

https://doi.org/10.1145/3487552.3487856
https://doi.org/10.1145/3487552.3487856
https://doi.org/10.1145/3487552.3487856

IMC ’21, November 2–4, 2021, Virtual Event, USA Peiqing Chen et al.

objects [14, 17]. A loose error bound gives network operators less

confidence in the sketch results, forcing them to reserve more mem-

ory for worst-case workloads, rather than the actual workload.

In contrast, by offering more precise error bounds, our method

can help operators save cache space and balance the loads more

efficiently. (2) When deploying telemetry capabilities, operators

often need to meet specific measurement accuracy. With loose error

bounds, operators will have to commit more hardware resources

to run the sketches to ensure worst-case sketch accuracy. In con-

trast, by enabling precise runtime error analysis based on sketch

counters, our method can help operators identify the best resource

configurations for the actual traffic workload. We demonstrate the

real-world benefits of a more precise error estimator in the first

scenario using the simulator of [17]: our precise error estimation

increases the confidence of sketch-based performance prediction

and reduces resource overprovisioning.

In summary, the main contributions of this paper are:

• We introduce a new precise online error estimator for sketches

using the insight from sketch counters.

• We rigorously prove that our approach yields tighter bounds

than the prior worst-case error bounds.

• We evaluate our approach in a number of real-world traces

representing different types of network traffic and conduct a

case study to demonstrate the potential practical benefits of

tighter error bounds.

2 Background
We begin with the background of sketches, followed by the limita-

tions of existing approaches to sketch error estimation.

Sketches for flow measurement: Sketches are known to be use-

ful in providing various flow measurement statistics, such as heavy

hitters [6, 8, 10, 18, 30], change detection [15, 18], and hierarchical

heavy hitters [3, 7]. In this paper, we consider popular sketches

for measuring flow sizes, including Count-Min Sketch (CM) [8],

Conservative-Update Sketch (CU) [10], and Count Sketch (CS) [6].

To make the discussion more concrete, we use CM as an exam-

ple. At a high level, CM maintains 𝑟 arrays (rows) of 𝑤 counters

(columns). When receiving a packet with flow identity 𝑘 (e.g., 5-
tuple), CM computes 𝑟 pairwise independent hash values based on

𝑘 . Each hash value provides an offset within one of the 𝑟 arrays

in CM, and then we increment the corresponding counters. Since

𝑤 is usually much smaller than the number of flows (to reduce

memory footprints), different flows may update the same counters

(i.e., collisions), resulting in over-estimation errors. Thus, when

querying the size of flow 𝑘 , we locate 𝑟 counters using the same

𝑟 hash functions that are used to update the sketch counters and

return the minimum among the 𝑟 counters. This minimum counter

represents an estimated flow size with minimum over-estimation.

Limitation of worst-case error estimation: Let us consider a
CM sketch configured with𝑤 = 𝑂 (1𝜖), 𝑟 = 𝑂 (log(1

𝛿
)). It has been

shown [8] that an estimated size of each flow 𝑘 falls in [𝑓 (𝑘), 𝑓 (𝑘) +
𝜖 |𝐹 |1) with probability 1 − 𝛿 , where 𝑓 (𝑘) and |𝐹 |1 are the actual
size of flow 𝑘 and the total size of all flows, respectively. This error

bound 𝜖 |𝐹 |1 was derived by constructing the “worst case”: 𝛿 portion
of flows have 𝜖 |𝐹 |1 estimation errors and the other flows have zero

errors. This worst case maximizes the number of flows that have

error of 𝜖 |𝐹 |1. Since the total size of all counters in one array is |𝐹 |1,
to reach the aforementioned worst case,

1

𝜖 counters should have

the same flow counts, while the remaining counters are zero.

While the worst-case error bound of 𝜖 |𝐹 |1 offers an a priori error
estimation (i.e., before measurements start), it is more useful to

estimate the actual errors in practice, because they can be much

lower than the worst-case error bound. To confirm it, we evaluate

the worst-case error bound in CM using synthetic traces of 30M

packets with skewnesses ranging from 0.3 to 3.0 and real-world

traces [5] of 10M to 30M packets. CM is configured with 4 rows

each containing 10,000 counters. We use 𝜖 = 0.0027 and 𝛿 = 0.018

in calculating the error bounds. As depicted in Figure 1, there is a

large gap between the worst-case bound provided in the original

paper [8] and the actual (ground-truth) error bound
1
.

Limitation of relatedwork: The closest efforts to us are SCREAM
[23] and D. Ting’s error estimator [29]. SCREAM is a dynamic re-

source management system for sketches. To meet a given accuracy

requirement, SCREAM provides an accuracy estimator for the recall

and precision of heavy hitter detection by taking into account the

skewness in the sketch output. However, SCREAM only separates

the estimates of large flows and those of small flows, and the flow

size estimation for large (or small) flows still has the same worst-

case error bound as in [8]. Thus, they cannot precisely estimate

the flow size errors. Though D. Ting’s work [29] also derives an

improved error bound that is proven to be tighter than the orig-

inal one in [8], they do not achieve a near-optimal bound, since

they only utilize unused counters to estimate the error distribution,

whereas our method leverages all counter information in the sketch.

Moreover, D. Ting’s method is more compute-intensive than ours

due to its use of Likelihood Estimation.

3 Precise Error Estimator
In this section, we start by describing our error estimation algo-

rithms and then provide rigorous proofs that they always yield

tighter bounds. The symbols used are summarized in Table 1.

3.1 Error Estimation Algorithms
We give our error estimation algorithm for Count-Min (CM) in

Algorithm 1 and defer the algorithm and its analysis for CU-Sketch

and Count-Sketch (CS) to Appendix A.1. Given a CM-Sketch with

𝑟 rows of𝑤 counters (i.e., a counter matrix 𝐴[𝑟𝑜𝑤] [𝑐𝑜𝑙𝑢𝑚𝑛]), our
goal is to provide a precise error bound by only accessing matrix 𝐴.

Algorithm 1: Error Estimator for CM.

Input: 𝐴 [1 . . . 𝑟] [1 . . . 𝑤] with confidence 1 − 𝛿 .
1 𝑝 ← 𝛿

1

𝑟 ;

2 SortToDescendingOrder(𝐴 [1] [1] . . . 𝐴 [1] [𝑤]);
Output: 𝐴 [1] [⌈𝑤𝑝 ⌉]

Let 𝑔(𝛿) be the ground-truth error bound that we want to es-

timate (i.e., the actual error is below 𝑔(𝛿) with 1 − 𝛿 probability).

In Algorithm 1, let 𝑝 be the probability that the error of the corre-

sponding counter in each row is no less than 𝑔(𝛿), i.e., not bounded
1
Given an arbitrary set of flows F = {𝑒1, 𝑒2, . . . , 𝑒𝑛 }, we calculate the actual flow-size
estimation error 𝑥𝑖 on flow 𝑒𝑖 and return the 1 − 𝛿 largest fractile of 𝑥1, 𝑥2, . . . , 𝑥𝑛 as

the actual (ground-truth) estimation error.

Precise Error Estimation for Sketch-based Flow Measurement IMC ’21, November 2–4, 2021, Virtual Event, USA

Our error bound for
arbitrary flows (Algorithm

1)
Our error bound for

zero-sized flows
Ground-truth error bound

for zero-sized flows
Ground-truth error bound

for arbitrary flows

(By definition)

Close

(Theorem 3.4)

Close

(Theorem 3.1 & 3.2)

Close approximation

Equal

Figure 2: The key steps in the proof that our error bound (Algorithm 1) is close to the ground-truth error bound.

Symbol Description
F traffic stream F = {(𝑒𝑖 , 𝑓𝑖) }
𝑒𝑖 flow identifier of 𝑒𝑖

𝑓𝑖 size of flow 𝑒𝑖

𝑋𝑒𝑖 the additive error of flow 𝑒𝑖 in one sketch row
2

𝑌 the additive error of a non-existent flow (size 0)

𝐼𝑖,𝑗 a variable indicating flow 𝑒𝑖 and 𝑒 𝑗 collides

𝐹𝑌 (.) the cumulative distribution function of 𝑌

𝑔𝑒𝑖 (𝛿) ground-truth error bound for flow 𝑒𝑖 with confidence 𝛿

𝑟 number of rows in Count-Min Sketch

𝑤 number of counters in each row

𝜉𝑝 largest 𝑝-fractile of 𝐹𝑌 (.)
ˆ𝜉𝑥 𝑥-th largest of counter values

|𝐹 |1 the total size of flows in F
Table 1: List of symbols and notations.

by 𝑔(𝛿). Then the probability 𝛿 that all 𝑟 corresponding counters

are not bounded by 𝑔(𝛿) is 𝑝𝑟 . Therefore, 𝑝 = 𝛿
1

𝑟 . To estimate 𝑔(𝛿),
we pick an arbitrary row (e.g., row 1: 𝐴[1] [1] . . . 𝐴[1] [𝑤]), sort all
its counters by non-ascending order, and report the ⌊𝑤𝑝⌋-th largest

counter as our estimation for 𝑔(𝛿).

3.2 Analysis
Next, we will prove that this error estimation algorithm provides

an error bound that is close to the ground-truth error bound under

all circumstances.

Proof outline: For ease of understanding, we begin by sketching

the key steps (illustrated in Figure 2) in our formal proof:

• Step 1: We first show in Theorem 3.1 that the ground-truth

error bound for non-zero flows (those that exist in the traffic) is

smaller than that of zero-sized flows (those that do not appear in
the traffic). An intuitive explanation is that the error of flow 𝑒𝑎
grows with the total size of other flows except 𝑒𝑎 , so the error is

at the highest when 𝑒𝑎 itself is zero-sized. Further, we will show

in Theorem 3.2 that the ground-truth error bounds for any flows

are similar. Together, they imply that the ground-truth error

bound of an arbitrary flow (the first block in Figure 2) is tightly

upper bounded by the ground-truth error bound of a zero-sized

flow (the second block in Figure 2).

• Step 2: We then show in Theorem 3.4 that for zero-sized flows,

the difference between ground-truth error bound (the second

block in Figure 2) and our error bound produced by Algorithm 1

(the third block in Figure 2) can be tightly bounded. Finally,

since Algorithm 1 by definition returns the same error bound

for all flows, our error bound for arbitrary flows (the last block

in Figure 2) closely approximates the real ground-truth error

bound (the first block in Figure 2). In particular, Equation (5)

gives a formal bound of this approximation.

2
For a flow 𝑒𝑖 and one row in the CM-Sketch, the additive error is the difference

between the hashed counter value and 𝑓𝑖 .

Step 1: Ground-truth error bounds for any flows are similar.
In this step, we first show that the ground-truth error bound for

any non-zero flow is smaller than the ground-truth error bound for

a zero-sized flow (Theorem 3.1). We then prove that the difference

between both ground-truth bounds is small (Theorem 3.2).

For arbitrary flow 𝑒𝑎 , its additive error is X𝑒𝑎 . For the 𝑗𝑡ℎ row

of a sketch, let 𝑋
(𝑗)
𝑒𝑎 be the additive error of flow 𝑒𝑎 in the 𝑗𝑡ℎ row.

For CM-Sketch, 𝑋
(𝑗)
𝑒𝑎 =

∑
𝑒𝑖 ∈𝑆\{𝑒𝑎 } 𝑓𝑖 · 𝐼𝑎,𝑖 , where 𝑆 is the set of all

flows and 𝐼𝑎,𝑖 indicates whether flow 𝑒𝑎 and flow 𝑒𝑖 are hashed to

the same counter by ℎ 𝑗 (.). The value of 𝐼𝑎,𝑖 is either 0 or 1. The

additive estimation error of 𝑒𝑎 is the minimum error among all

rows of the sketch, i.e., X𝑒𝑎 =𝑚𝑖𝑛𝑟
𝑗=1
{𝑋 (𝑗)𝑒𝑎 }.

The ground-truth error bound of arbitrary flow 𝑒𝑎 is denoted as

𝑔𝑒𝑎 (𝛿), which satisfies:

Pr

[
X𝑒𝑎 > 𝑔𝑒𝑖 (𝛿)

]
= 𝛿,∀𝛿 (1)

For zero-sized flow 𝑒0 (i.e., 𝑓0 = 0), the additive error is X𝑒0 and
its ground-truth error bound is 𝑔𝑒0 (𝛿). Next, we prove that the

ground-truth error bound for zero-sized flows is no less than the

ground-truth error bound for arbitrary flows.

Theorem 3.1. Given the traffic stream F and the sketch configu-
rations (i.e.,𝑤 counters in each row and 𝑟 rows). We have

𝑔𝑒𝑎 (𝛿) ⩽ 𝑔𝑒0 (𝛿),∀𝑒𝑎 (2)

Proof. Since 𝑋
(𝑗)
𝑒𝑎 =

∑
𝑒𝑖 ∈𝑆\{𝑒𝑎 } 𝑓𝑒𝑖 𝐼𝑎,𝑖 and 𝑋

(𝑗)
𝑒0 =

∑
𝑒𝑖 ∈𝑆 𝑓𝑒𝑖 𝐼0,𝑖 ,

we have ∀𝑡, Pr
[
𝑋
(𝑗)
𝑒𝑎 > 𝑡

]
⩽ Pr

[
𝑋
(𝑗)
𝑒0 > 𝑡

]
. Therefore,

Pr

[
X𝑒𝑎 > 𝑡

]
⩽ Pr

[
X𝑒0 > 𝑡

]
,∀𝑡

From the definition of 𝑔𝑒𝑎 , we have

𝑔𝑒𝑎 (𝛿) ⩽ 𝑔𝑒0 (𝛿),∀𝑒𝑎

□

As Theorem 3.1 only shows non-zero flows having a larger

ground-truth error bound than that of zero-sized flows, we now

argue that any non-zero flow’s ground-truth error bound can be

closely approximated by zero-sized flow’s ground-truth error bound.

Theorem 3.2. ∀𝑡 as a bound, an arbitrary flow 𝑒𝑎 (can be a zero-
sized flow) and 𝑒0 , 0 ⩽ 𝐹X𝑒𝑎 (𝑡) − 𝐹X𝑒

0

(𝑡) ⩽ 𝑟
𝑤 , where X𝑒𝑎 is the

error of flow 𝑒𝑎 and 𝐹 (.) is the Cumulative Distribution Function
(CDF) of errors.

Proof. Recall that 𝑋
(𝑗)
𝑒𝑎 =

∑
𝑒𝑖 ∈𝑆\{𝑒𝑎 } 𝑓𝑒𝑖 𝐼𝑎,𝑖 .

IMC ’21, November 2–4, 2021, Virtual Event, USA Peiqing Chen et al.

We have

𝐹
𝑋
(𝑗)
𝑒𝑎

(𝑡) = Pr

[
𝑋
(𝑗)
𝑒𝑎 ⩽ 𝑡

]
𝐹
𝑋
(𝑗)
𝑒
0

(𝑡) = Pr

[
𝑋
(𝑗)
𝑒𝑎 ⩽ 𝑡

] (
1 − 1

𝑤

)
+ Pr

[
𝑋
(𝑗)
𝑒𝑎 ⩽ 𝑡 − 𝑓𝑒𝑎

]
1

𝑤

And then,

0 ⩽ 𝐹
𝑋
(𝑗)
𝑒𝑎

(𝑡) − 𝐹
𝑋
(𝑗)
𝑒
0

(𝑡) ⩽ 1

𝑤

Since X𝑒𝑎 =𝑚𝑖𝑛𝑟
𝑗=1
{𝑋 (𝑗)𝑒𝑎 }, we have 0 ⩽ 𝐹X𝑒𝑎 (𝑡) − 𝐹X𝑒0 (𝑡) ⩽

𝑟
𝑤 .

□

Theorem 3.2 enables us to use the ground-truth error bound

for zero-sized flows as the ground-truth error bound for any spe-

cific flows. For simplicity, we denote 𝑔𝑒0 (𝛿) as 𝑔(𝛿). Our goal is to
estimate 𝑔(𝛿).
Step 2: Our error bound for arbitrary flows is close to zero-
sized flow’s ground truth error bound. For one row of a sketch,

the value of each counter can be viewed as a sample of the same

random variable, denoted as 𝑌 . 𝑌 =
∑
𝑒𝑖 ∈𝑆 𝑓𝑒𝑖𝑋𝑖 , where Pr[𝑋𝑖 =

1] = 1

𝑤 and 𝑋𝑖 = 0 otherwise. From the definition of 𝑌 and 𝑋
(𝑗)
𝑒0

(the error of zero-sized flow in one row), we find that they are

exactly the same. Therefore, we can estimate the 𝑔(𝛿) from the

distribution of the counter values. In one row of CM-Sketch, the

𝑤 counter values can be viewed as𝑤 sample results. We then sort

the𝑤 counter values, and pick the k-th largest counter
ˆ𝜉𝑘 , where

𝑘 = ⌈𝑤𝑝⌉ and 𝑝 = 𝛿
1

𝑟 . Next, we try to prove that our estimation of

𝑔(𝛿) (𝑔(𝛿) = ˆ𝜉𝑤𝑝) is accurate.

In Lemma 3.3, we prove that, for any 𝑝-fractile counter value

picked (i.e., ˆ𝜉𝑤𝑝), it is a close approximation to the ground-truth

error bound of a zero-sized flow with confidence 𝑝 .

Lemma 3.3. For any probability 𝑝 , the sampled sketch counter
value 𝑔(𝛿) = ˆ𝜉𝑤𝑝 falls in a close range of the CDF 𝐹𝑌 at value 𝑝 .

Pr [𝑝 − 𝛾 < 𝐹𝑌 (𝑔(𝛿)) < 𝑝 + 𝛾] ⩾ 1 − 2𝑒−2𝑤 ·𝛾
2

(3)

Proof. Let 𝜉𝑝 be the (𝑝)-th largest fractile or quantile of 𝐹𝑌 ,

𝜉𝑝 = 𝐹−1
𝑌
(𝑝) = inf{𝑥 |𝐹 (𝑥) ≥ 𝑝}.

Pr

[
𝐹𝑌

(
ˆ𝜉𝑤𝑝

)
⩾ 𝑝 + 𝛾

]
= Pr

©«
∑
𝑗

𝐼
(
𝑋 𝑗 > 𝜉𝑝+𝛾

)ª®¬ > 𝑤 (1 − 𝑝)

= Pr

©«
∑
𝑗

𝐼
(
𝑋 𝑗 > 𝜉𝑝+𝛾

)ª®¬ −𝑤 (1 − (𝑝 + 𝛾)) > 𝑤𝛾

Due to Hoeffding’s inequality, variables 𝑋 𝑗 is strictly bounded by

[0, 1]. Also 𝐸
[
𝐼
(
𝑋 𝑗 > 𝜉𝑝+𝛾

)]
= 1 − (𝑝 + 𝛾). Therefore we have

𝑃𝑟
[
𝐼
(
𝑋 𝑗 > 𝜉𝑝+𝛾

)
− (1 − (𝑝 + 𝛾)) < 𝛾

]
< 𝑒−

2𝑤2𝛾2

𝑤 = 𝑒−2𝑤 ·𝛾
2

Similarly, we have

𝑃𝑟
[
𝐼
(
𝑋 𝑗 > 𝜉𝑝−𝛾

)
− (1 − (𝑝 − 𝛾)) > 𝛾

]
< 𝑒−

2𝑤2𝛾2

𝑤 = 𝑒−2𝑤𝛾
2

By Hoeffding bound, we prove the above theorem.

□

From Lemma 3.3, we can estimate the bias of our bound:

Theorem 3.4. Given the traffic stream F and the sketch config-
urations (i.e.,𝑤 , and 𝑟). The bias of our estimated bound 𝑔(𝛿) from
𝑔(𝛿) is small.

Pr [|𝑔(𝛿) − 𝑔(𝛿) | > 𝑔(𝛿𝑙) − 𝑔(𝛿𝑟)] ⩽ 2𝑒−2𝑤𝛾
2

,∀𝛾 > 0 (4)

where 𝛿𝑙 =
(
𝛿

1

𝑟 − 𝛾
)𝑟
, 𝛿𝑟 =

(
𝛿

1

𝑟 + 𝛾
)𝑟
.

Let 𝛾 = 𝑡 (2𝑤)−0.5. We have 1 − 2𝑒−𝑡2 confidence that the bias
of our estimation is no greater than 𝑔(𝛿𝑙) − 𝑔(𝛿𝑟). 𝛿𝑙 and 𝛿𝑟 are

both close to 𝛿 , and therefore 𝑔(𝛿𝑙) − 𝑔(𝛿𝑟) is often a small value

compared with the truth 𝑔(𝛿). Thus we derive our bound:

𝑔(𝛿) = ˆ𝜉𝑤𝑝 ∈
[
𝑔

(
𝛿 ·

(
1 −𝑂

(
𝑟
√
𝑤

)))
, 𝑔

(
𝛿 ·

(
1 +𝑂

(
𝑟
√
𝑤

)))]
(5)

with high probability.

Summary: In Step 1, we prove in Theorem 3.1 that the ground-

truth error bound of zero-sized flows is the larger than that of any

arbitrary flow,making the error bound for zero-sized flows a feasible

error bound for all flows. Then, Theorem 3.2 shows that the ground-

truth error bound of zero-sized flows is a close approximation to any

non-zero flow’s error bound. Both theorems imply that, if we can

derive an error bound that is close to the ground-truth error bound

for zero-sized flows, that bound will be a close approximation error

bound for arbitrary flows. Thus, in Step 2, we prove in Theorem

3.4 that the error bound we drive is a close approximation to the

ground-truth error bound for zero-sized flows. With both steps, our

error bound from Algorithm 1 shows its near-optimality.

3.3 Additional Analysis for the Original Bound
Our error bound is tighter than the original bound: Given a

confidence of success 1 − 𝛿 , the original CM bound (which requires

𝑟 =
⌈
𝑙𝑛(1

𝛿
)
⌉
and 𝑤 =

⌈
𝑒
𝜖

⌉
as in [8]) guarantees Pr

[
X𝑒𝑖 > 𝜖 |𝐹 |1

]
< 𝛿,𝑤ℎ𝑒𝑟𝑒 𝜖 = 𝑒

𝑤 , 𝛿 = 𝑒−𝑟 . Our approach gives an error bound

𝑔(𝛿) = ˆ𝜉𝑤𝑝 (recall that 𝑝 = 𝛿
1

𝑟) which satisfies 𝑃𝑟

[
𝑋𝑒𝑖 >

ˆ𝜉𝑤𝑝

]
< 𝛿 .

Now we prove that
ˆ𝜉𝑤𝑝 ⩽ 𝜖 |𝐹 |1. Due to the properties of quantile,

we have Σ𝑤
𝑗=1

ˆ𝜉 𝑗 = |𝐹 |1. Also, ˆ𝜉1 ⩽ ˆ𝜉2 ⩽ ... ⩽ ˆ𝜉𝑤 . Thus, we have

ˆ𝜉𝑤𝑝 = ˆ𝜉
𝑤

(
1−𝛿 1

𝑟

) = ˆ𝜉
𝑤

(
1−(𝑒−𝑟)

1

𝑟

) = ˆ𝜉
1− 1

𝑒
⩽
|𝐹 |1

𝑤 × 1

𝑒

= 𝜖 |𝐹 |1 (6)

Therefore, the bound given by our method is always tighter than

the original bound.

Analyzing the worst-case scenarios in the original bound:
The original error bound of CM-Sketch is met if and only if the

Markov inequality is reached. If we see the Markov inequality:

𝐸 (𝑋) = Σ𝑤
0
𝑥𝑃 (𝑋 = 𝑥)

= Σ𝑎
0
𝑥𝑃 (𝑋 = 𝑥) + Σ𝑤𝑎 𝑥𝑃 (𝑋 = 𝑥)

⩾ Σ𝑤𝑎 𝑥𝑃 (𝑋 = 𝑥) ⩾ Σ𝑤𝑎 𝑎𝑃 (𝑋 = 𝑥)
= 𝑎Σ𝑤𝑎 𝑃 (𝑋 = 𝑥) = 𝑎𝑃 (𝑋 ⩾ 𝑎)

where 𝑎 stands for 𝑒𝐸 (𝑋𝑖, 𝑗) and 𝑋 stands for 𝑋𝑖, 𝑗 , which is the

error of flow 𝑒 𝑗 in the 𝑖𝑡ℎ row. Reaching the equality requires the

following two equations:

Σ𝑎
0
𝑥𝑃 (𝑋 = 𝑥) = 0

Precise Error Estimation for Sketch-based Flow Measurement IMC ’21, November 2–4, 2021, Virtual Event, USA

10 15 20 2530351E+2

1E+3

1E+4

Er
ro
r

trace size (M packets)
(a) CAIDA Trace

10 15 20 2530351E+2

1E+3

1E+4

trace size (M packets)
(b) DC Trace

10 15 20 2530351E+5

1E+6

1E+7

1E+8

trace size (M packets)
(c) MACCDC Trace

Figure 3: CM-Sketch evaluation on different real-world trace sizes.

1k 10k 100k1E+2

1E+3

1E+4

1E+5

Memory (# counters)
(a) CAIDA Trace

1k 10k 100k
1E+2

1E+3

1E+4

1E+5

Memory (# counters)
(b) DC Trace

10 100 1k 10k100k
1E+3
1E+4
1E+5
1E+6
1E+7

Memory (# counters)
(c) MACCDC Trace

Figure 4: CM-Sketch evaluation with different memory constraints.

Σ𝑤𝑎 𝑥𝑃 (𝑋 = 𝑥) = Σ𝑤𝑎 𝑎𝑃 (𝑋 = 𝑥)

This requires on the distribution of variable 𝑋 : 𝑋 shall be either

0 or 𝑎. For zero-sized flows, their error distribution 𝑋 is the same as

the counter value distribution, where each counter value is either 0

or 𝑎. Given that the sum of all counters is |𝐹 |1 in any array of CM,

there shall be

(
1 − 𝛿

1

𝑟

)
𝑤 counters with value 0 and 𝛿

1

𝑟 𝑤 counters

with value 𝑎 in each array. The CM reaches the worst case when

every its array reaches the worst case. This is the worst-case counter

distribution constructed in the original error bound and is nearly

impossible to achieve in practice due to hashing.

4 Evaluation
We evaluate our error estimator for Count-Min Sketch (with ad-

ditional results for Count-Sketch and CU-Sketch deferred to Ap-

pendix B) on real-world traces (CAIDA [5], a data-center trace

set [4], and MACCDC [21]) and synthetic traces [25]. Our exper-

iments demonstrate that our estimator (1) provides significantly

more accurate error bounds than the prior approach [8] on all three

sketches, (2) matches the ground-truth error bound under all traffic

patterns, and (3) shows potential benefits to real-world use cases.

4.1 Methodology
Traces: We use the five-tuple as the flow identity in all experi-

ments. Evaluated traces include: (a) an anonymized packet trace

from CAIDA [5] containing 33.6M packets and 7.7M flows; (b) a

campus data center trace (DC) [4] containing 30.3M packets and

4.2M flows; (c) a DDoS attack trace from MACCDC [21] containing

32.28M packets and 195 flows; (d) 10 synthetic traces generated

from Web-Polygraph [26], following the Zipf [25] distribution with

skewnesses ranging from 0.3 to 3.0 and with a gap of 0.3. Each trace

has 30M packets. The default sketch size is 4 × 1000 counters for
CAIDA, DC, and the synthetic traces. The default sketch size for

the DDoS attack trace is 4 × 10 counters, due to a smaller number

0 1 2 30
2E+3
4E+3
6E+3
8E+3

Er
ro
r

skewness
Figure 5: Error bounds un-
der different skewnesses.

0.4 0.6 0.8 11.2E+3

1.6E+3

2E+3

2.4E+3

2.8E+3

Er
ro
r

Large counter percentile
Figure 6: Finding “worst-
case” workloads.

of flows. We use 𝛿 = 𝑒−𝑟 as defined in [8], which is 0.018. We use

𝜖 = 𝑒
𝑤 as defined in [8], which is 0.0027.

Estimators under evaluation: Original bound refers to the er-

ror bound given by the original papers of CM-Sketch [8], Count-

Sketch [6], and CU-Sketch [10]. Ground truth refers to the ground-

true error bound. Our method refers to our error bound.

4.2 Evaluation of Error Estimator
We evaluate the aforementioned error bounds under 1) different

trace sizes, 2) different memory constraints, and 3) datasets with

different skewnesses.

Impact of trace sizes: Our method outperforms the original error

bounds under varying trace sizes. Figure 3a, 3b, 3c show that the

original error bounds have a 2000% to 4400% deviation from the

ground truth for CM-Sketch, whereas our method has only a 0.8%

to 14% deviation.

Impact of memory constraints: Figure 4a, 4b, 4c show that,

under different memory constraints, the original method has a

9500% to 13000% deviation from the ground truth. In contrast, our

method reduces the deviation to less than 40.4%.

Impact of trace skewness: Figure 5 demonstrates that ourmethod

outperforms the original error bound under different values of flow-

size skewness. Our method has an error bound very close to the

ground truth, with only 0.16% to 2.6% deviation for Count-Min

IMC ’21, November 2–4, 2021, Virtual Event, USA Peiqing Chen et al.

2 4 6 8 10 12-0.04

-0.02

0

0.02

Sampling Sketch

Er
ro
r

Trace Size (M packets)

(a) Spine Cache Hit

2 4 6 8 10 12
-0.04

0

0.04

0.08
Original bound Ours

Trace Size (M packets)

(b) Leaf Cache Hit

0 1 2 3
0
50
100
150
200

original
our method

Ex
tra
R
es
ou
rc
e
U
sa
ge

Skewness

(c) Resource Usage
Figure 7: Benefits of more precise error estimation.

Sketch. As the flow-size skewness raises from 0.3 to 3.0, the error

reduction of our method, compared to the original bound, increases

from 80× to 700×.
Figure 6 explores the worst-case scenarios in which the original

error bound might work. We create these worst-case scenarios as

follows: we use 1000 sketch counters, and we set the same value

to 𝛿
1

𝑟 𝑤 = 368 counters (i.e., “large” counters) and another value

to all remaining 632 counters (i.e., “small” counters). We set the

counters such that the sum of the large counters over the total sum

of counters varies from 100% to 50%. Figure 6 shows that the original

bound equals the ground truth only when the sum of large counters

equals the total counters (i.e., small counters are zero-sized), which

is arguably rare in real-world traffic.

4.3 Case Study: Distributed Caching
Count-Sketch can be used in caching to detect hot objects. Here we

show the benefits of our estimator to improve cache performance

in a particular distributed cache setting [17], where two layers

of programmable switches (e.g., spine and leaf switches in a Clos

topology) serve as the cache nodes to store hot objects and balance

the server loads.

Accurate cache hit-rate prediction: We feed the CAIDA traces

(with different sizes) to Count-Sketch and NetFlow (with 1% sam-

pling), and then reconstruct each trace using three methods (Count-

Sketch with the original error bound or with our error bound, and

100× replication of the NetFlow-sampled packets). We then use the

reconstructed traces to predict the range of hit rate if the CAIDA
traces are fed to the aforementioned two-layer caches. The recon-

struction and prediction methods are detailed in §B.1. Figure 7a and

7b show that our method (Count-Sketch-reconstructed traces with

our proposed error bound) produces a much narrower estimation of

the hit rate than Count-Sketch with the original (worst-case) error

bound (i.e., tighter gap between the green lines than between the

blue lines). It is also more accurate than NetFlow-based sampling.

Our gains over the baselines persist under varying trace sizes.

Better cache space provisioning: Given that the predicted cache
hit rate will not be 100% accurate, operators must overprovision the

cache space in order to ensure that a given number (by default, 100)

of hottest objects are cached [11]. Here, we show that our method

(Count-Sketch with the proposed error bound) can help operators

overprovision less cache space. To this end, we assume that our

goal is to cache the top-100 hottest objects, and that the flow size

of the 100
th

hottest object is 𝑓100. We use Count-Sketch to estimate

the flow sizes with an error bound 𝐸𝑟 , and put all objects with

estimated size greater than 𝑓100 − 𝐸𝑟 in the cache memory. Figure

7c shows that since our estimator of 𝐸𝑟 is much smaller than the

original error bound, it can use less overprovisioned cache space,

while still caching the top-100 hottest objects.

5 A Future Roadmap
We have shown that sketch errors can be estimated much more

accurately a posteriori (after the sketch output is known) than a
priori (before the flows arrive). This result, together with the rigor-

ousness of sketches, suggests an exciting direction to systematize a

new approach to sketch-based analytics, which can benefit many

network management tasks. Here, we outline a possible research

agenda towards a vision of highly accurate sketch-based analytics.

Distributed sketch analytics with precise error estimation:
Sketches show a viable path towards a resource-efficient, scalable

analytics platform. The increasing demands on performance and

reliability raise the bars for identifying and preventing failures in

the network. The ability to precisely measure the errors of sketch

results would facilitate adoption of sketches as a reliable data source;

e.g., L4 load balancers [13, 22] require precise estimation of large

flows to rebalance the load, and traffic engineering [16, 27] requires

precise estimation of dynamic link utilization. The opportunities

and challenges lie in how to bound the errors of network-wide

analytics results.

Enabling accurate “what-if” analysis: Sketch-based analytics

could enable scalable, accurate “what-if” analysis: if we leverage

sketches to process real-world workloads and reconstruct the origi-

nal workloads with precise error estimates. This is because fully

capturing the traffic (e.g., at backbone WAN and an ISP ingress) is

not infeasible but may be very expensive, and traditional packet

sampling approaches (e.g., NetFlow) are known to be inaccurate [9].

When designing sketch-based “what-if” analyzers, care must be

taken to augment the sketch features as needed (e.g., additional
information about flow time-span and loss rate of the flows) and

analyze the impact of errors.

Enabling reliable self-driving network control: Sketch-based
analytics can facilitate autonomous control in diverse networked

applications. When a decision-making process needs to query the

analytics platform, it is critical to assess the confidence of the result

and whether an refinement of the result is needed. Our precise error

estimator is a promising first step towards this goal, with several

open questions to be addressed in future work, such as dynamic

sketch adjustment and on-demand error correction.

6 Acknowledgements
We would like to thank our shepherd Walter Willinger and the

anonymous reviewers for their constructive feedback. This work

was supported in part byNSF grants CNS-2107086 andCNS-2106946.

Precise Error Estimation for Sketch-based Flow Measurement IMC ’21, November 2–4, 2021, Virtual Event, USA

References

[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong

Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware load

balancing for datacenters. In Proc. of ACM SIGCOMM.

[2] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. 2013. PFabric: Minimal near-Optimal Data-

center Transport. In Proc. of ACM SIGCOMM.

[3] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez

Waisbard. 2017. Constant Time Updates in Hierarchical Heavy Hitters. In Proc.
of ACM SIGCOMM and CoRR/1707.06778.

[4] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic

characteristics of data centers in the wild. In Proc. of SIGCOMM IMC.
[5] CAIDA. 2018. The CAIDA UCSD Anonymized Internet Traces equinix-chicago.

http://www.caida.org/data/passive/passive_dataset.xml

[6] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent

Items in Data Streams. In Proc. of ICALP.
[7] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2008.

Finding Hierarchical Heavy Hitters in Streaming Data. ACM Trans. Knowl. Discov.
Data (2008).

[8] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream

Summary: The Count-Min Sketch and Its Applications. J. Algorithms (2005).
[9] Cristian Estan and George Varghese. 2002. New directions in traffic measurement

and accounting. In Proc. of ACM SIGCOMM.

[10] Cristian Estan and George Varghese. 2003. New directions in traffic measurement

and accounting: Focusing on the elephants, ignoring the mice. ACM Transactions
on Computer Systems (2003).

[11] Bin Fan, Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 2011. Small

cache, big effect: Provable load balancing for randomly partitioned cluster ser-

vices. In Proc. of SoCC.
[12] Qun Huang, Patrick PC Lee, and Yungang Bao. 2018. SketchLearn: Relieving

User Burdens in ApproximateMeasurement with Automated Statistical Inference.

In Proc. of ACM SIGCOMM.

[13] Intel. [n. d.]. High Performance Layer-4 Load Balancer based on DPDK. https:

//github.com/iqiyi/dpvs.

[14] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores

with Fast In-Network Caching. In Proc. of ACM SOSP.
[15] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.

Sketch-based Change Detection: Methods, Evaluation, and Applications. In Proc.
of ACM IMC.

[16] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David

Gelernter. 2014. Traffic engineering with forward fault correction. In Proc. of
ACM SIGCOMM.

[17] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir

Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing

for Large-Scale Storage Systems with Distributed Caching. In Proc. of USENIX
FAST.

[18] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow

Monitoring with UnivMon. In Proc. of ACM SIGCOMM.

[19] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer

Rexford. 2019. Memory-Efficient Performance Monitoring on Programmable

Switches with Lean Algorithms. Proc. of SIAM/ACM APoCS (2019).
[20] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-

dul Kabbani. 2008. Counter Braids: A Novel Counter Architecture for Per-

FlowMeasurement. In Proc. of ACM SIGMETRICS.
[21] MACCDC. 2012. Capture Traces from Mid-Atlantic CCDC. http://www.netresec.

com/?page=MACCDC

[22] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-

ing ASICs. In Proc. of ACM SIGCOMM.

[23] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2015. Scream:

Sketch resource allocation for software-defined measurement. In Proc. of ACM
CoNEXT.

[24] Chen Peiqing, Chen Dong, Zheng Lingxiao, Li Jizhou, and Yang Tong. 2021. Out

of Many We are One: Measuring Item Batch with Clock-Sketch. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA. https:

//doi.org/10.1145/3448016.3452784

[25] David MW Powers. 1998. Applications and explanations of Zipf’s law. In New
methods in language processing and computational natural language learning.

[26] Alex Rousskov and Duane Wessels. 2004. High-performance benchmarking with

Web Polygraph. Software: Practice and Experience (2004).
[27] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill.

2018. RADWAN: rate adaptive wide area network. In Proc. of ACM SIGCOMM.

[28] Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and

Mun Choon Chan. 2020. FCM-sketch: generic network measurements with

data plane support. In Proc. of CoNEXT.
[29] Daniel Ting. 2018. Count-min: Optimal estimation and tight error bounds using

empirical error distributions. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2319–2328.

[30] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-

wide Measurements. In Proc. of ACM SIGCOMM.

[31] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng

Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: High-Performance

Sketch-based Measurement over Arbitrary Partial Key Query. In Proc. of ACM
SIGCOMM.

A Detailed Proofs for Section 3.2
Background on CU-Sketch and Count-Sketch: In addition to

CM-Sketch, CU and CS are two other widely-used sketches. Our

error estimator can also perform well on them after minor updates.

Specifically, CU and CS share the same 𝑟 ×𝑤 counter structures

with CM but have different insertion and query strategies. To insert

flow 𝑒 , CU only increments the smallest counter(s) among the 𝑟

rows while CM increments all 𝑟 corresponding counters. CS needs

to update all 𝑟 counters, the same as CM. But instead of always

increment the counters, CS updates the counters by 𝑆 (𝑒), where
𝑆 (·) is a hash function that outputs {+1,−1} with equal probability.

When queried with the 𝑟 hash keys of a flow identity, CS reports

themedian value of the 𝑟 corresponding counters (whereas CM and

CU reports the minimum value).

A.1 Algorithm details for CU-Sketch and
Count-Sketch

We first show the pseudo code of error estimator for CU-Sketch in

Algorithm 2 and for Count-Sketch in Algorithm 3. Notice that the

algorithm for CU-Sketch is exactly the same as that for CM-Sketch

due to their similar properties in generating sketch: they share a

common query paradigm that returns the minimum counter value

among the 𝑟 rows as the estimated flow size.

For Count Sketch: In CS, the flow size is estimated by the median

value of among the corresponding counters. Let 𝑔(𝛿) be the ground
truth error bound. In Algorithm 2, let 𝑝0 be the probability that,

for one row, the absolute error of the corresponding counter is no

less than 𝑔(𝛿). For CS, the relationship between 𝑝0 and 𝛿 is more

complex than that of CM/CU. The probability that the median value

is not bounded by 𝑔(𝛿) is 2 ×∑𝑟

𝑗= 𝑟+1
2

(𝑟
𝑗

) 𝑝0
2

𝑗 (1 − 𝑝0
2
)𝑟−𝑗 = 𝛿 when

𝑟 is an odd number
3
(Proof in Section 3.2). We find the value of 𝑝0

by enumeration for easy understanding, which can also be solved

by faster bisection approach. Then, we sort 𝐴[1] [1] . . . 𝐴[1] [𝑤] by
non-ascending order based on their absolute values and report the

⌊𝑤𝑝0⌋-th largest counter as our estimation result.

Algorithm 2: Error Estimator for CU-Sketch.

Input: 𝐴 [1 . . . 𝑟] [1 . . . 𝑤] with confidence 1 − 𝛿 .
1 𝑝0 ← 𝛿

1

𝑟 ;

2 SortToDescendingOrder(𝐴 [1] [1] . . . 𝐴 [1] [𝑤]);
Output: 𝐴 [1] [⌈𝑤𝑝0 ⌉]

3
Similar equation for an even 𝑟 .

http://www.caida.org/data/passive/passive_dataset.xml
https://github.com/iqiyi/dpvs
https://github.com/iqiyi/dpvs
http://www.netresec.com/?page=MACCDC
http://www.netresec.com/?page=MACCDC
https://doi.org/10.1145/3448016.3452784
https://doi.org/10.1145/3448016.3452784

IMC ’21, November 2–4, 2021, Virtual Event, USA Peiqing Chen et al.

1k 10k 100k1E+2

1E+3

1E+4

1E+5

Er
ro
r

Memory (# counters)

(a) CAIDA Trace

1k 10k 100k
1E+2
1E+3
1E+4
1E+5
1E+6

Memory (# counters)

(b) DC Trace

10 100 1k 10k100k

1E+4
1E+5
1E+6
1E+7

Memory (# counters)

(c) MACCDC Trace
Figure 8: Count-Sketch evaluation on different real-world trace sizes.

10 15 20 2530351E+2

1E+3

1E+4

1E+5

1E+6

trace size (M packets)

(a) CAIDA Trace

10 15 20 2530351E+2

1E+3

1E+4

1E+5

1E+6

Trace Size (M packets)
(b) DC Trace

10 15 20 253035

4E+6

8E+6
1.2E+7

Trace Size (M packets)

(c) MACCDC Trace

Figure 9: Count-Sketch evaluation with different memory constraints.

1k 10k 100k

1E+2
1E+3
1E+4
1E+5

Er
ro
r

Memory (# counters)

(a) CAIDA Trace

1k 10k 100k1E+1
1E+2
1E+3
1E+4
1E+5

Memory (# counters)
(b) DC Trace

10 100 1k 10k100k
1E+3
1E+4
1E+5
1E+6
1E+7

Memory (# counters)
(c) MACCDC Trace

Figure 10: CU-Sketch evaluation on different real-world trace sizes.

10 15 20 2530351E+2

1E+3

1E+4

trace size (M packets)

(a) CAIDA Trace

10 15 20 2530351E+2

1E+3

1E+4

trace size (M packets)
(b) DC Trace

10 15 20 2530351E+5

1E+6

1E+7

trace size (M packets)
(c) MACCDC Trace

Figure 11: CU-Sketch evaluation with different memory constraints.

A.2 Our bound for Count-Sketch is tighter
CS has the similar property when giving a better error bound as

CM.

Theorem A.1. For Count-Sketch with 𝑟 = 2𝑘 + 1, 𝑘 ∈ Z, the opti-
mal error bound𝑔(𝛿) is 𝜉𝑝 , where𝑝 satisfies equation

∑𝑟
𝑗=𝑘+1

(𝑟
𝑗

)
𝑝 𝑗 (1−

𝑝)𝑟−𝑗 = 𝛿
2
.

Proof. Because our algorithm sorts all the absolute counter

values, it is slightly different from the formula used here. Suppose

the error of the 𝑟 -th row is 𝑋𝑟 B 𝐴[𝑟] [ℎ𝑟 (𝑒𝑖)] − 𝑓𝑖 . When 𝑓𝑖 = 0,

we calculate error bound 𝑔(𝛿):

𝑔(𝛿) B Pr[|𝑚𝑒𝑑𝑖𝑎𝑛𝑟 (𝑋𝑟) | > 𝑔(𝛿)] = 𝛿,∀𝛿

As 𝑋𝑟 are distributed symmetrically about 0, we have

Pr[𝑚𝑒𝑑𝑖𝑎𝑛𝑟 (𝑋𝑟) < 𝑔(𝛿)] = 𝛿

2

Precise Error Estimation for Sketch-based Flow Measurement IMC ’21, November 2–4, 2021, Virtual Event, USA

Algorithm 3: Error Estimation for Count Sketch.

Input: 𝐴 [1 . . . 𝑟] [1 . . . 𝑤] with confidence 1 − 𝛿 .
1 for 𝑖 = 1→ 𝑤 do
2 𝑝0 ← 𝑖+1

𝑤
;

3 if 2 ·∑𝑟

𝑗= 𝑟+1
2

(𝑟
𝑗

) 𝑝0
2

𝑗 (1 − 𝑝0
2
)𝑟−𝑗 ≥ 𝛿 then

4 Break;

5 SortToDescendingOrder(

��𝐴 [1] [1]]�� . . . ��𝐴 [1] [𝑤]��);
Output:

��𝐴 [1] [⌈𝑤𝑝0 ⌉]
��

0 1 2 3
0

2E+5

4E+5

6E+5

skewness
(a) Count-Sketch

0 1 2 3
0

2E+3
4E+3
6E+3
8E+3

skewness
(b) CU-Sketch

Figure 12: Error bounds under different skewnesses for
Count-Sketch and CU-Sketch.

8 101214161820220
5E+4
1E+5

1.5E+5
2E+5

2.5E+5

Size per flow

(a) Count-Sketch

0.4 0.6 0.8 11.2E+3

1.6E+3

2E+3

2.4E+3

2.8E+3

Er
ro
r

Large counter percentile

(b) CU-Sketch

Figure 13: Finding “worst-case” workloads on Count-Sketch
and CU-Sketch.

Then

Pr[
𝑟∑

𝑟=1

𝐼 (𝑋𝑟 < 𝑔(𝛿)) ⩾ 𝑘 + 1] = 𝛿

2

let 𝑝 = 𝐼 (𝑋𝑟 < 𝑔(𝛿))
𝑟∑

𝑗=𝑘+1

(
𝑟

𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑟−𝑗 = 𝛿

2

□

B Evaluation on Count-Sketch and CU-Sketch

Impact of trace sizes: Our method outperforms the original error

bounds under varying trace sizes on all three sketches. Figure 8a,

8b, 8c (Count-Sketch), and Figure 10a, 10b, and 10c (CU-Sketch)

show that our method achieves an error bound with less than 0.7%

deviation for Count-Sketch, and less than 41% deviation for CU-

Sketch.

Impact of memory constraints: Count-Sketch and CU-Sketch

using our approach have tighter bounds than the original error

bounds under different memory constraints too. Figure 9a, 9b, 9c

(Count-Sketch), and Figure 11a, 11b, 11c (CU-Sketch) show that our

method improves the error bounds with a less than 40.4% deviation

for Count-Sketch, and a less than 20.7% deviation for CU-Sketch.

Impact of trace skewness: Figure 12 demonstrates that our

method outperforms the original error bound for Count-Sketch

and CU-Sketch when skewness varies. Our method gets an error

bound extremely close to the ground truth (0.7% to 5.6% deviation

for Count-Sketch and < 9.3% deviation for CU-Sketch). Besides, as

skewness grows, ourmethod outperforms the original methodmore.

Count-Min Sketch and CU-Sketch has a constant error bound be-

cause it only depends on the sum of all flow sizes. Count-Sketch has

an error bound that grows with trace skewness. When using trace

skewness from 0.3 to 3.0, our method’s error bounds are 80 to 700

times tighter on tested sketches.

Finding worst-case scenarios: In Figure 13, we explore the sce-

narios in which the original error bounds may work. In CU-Sketch

(Figure 13b), the setting is exactly the same as CM-Sketch because

these two sketches have the same error bound. The major differ-

ence is that, it is even more difficult for CU-Sketch to reach such

a counter value distribution. Because it only adds to the smallest

counter when inserting a packet, the sum of counter values in one

row may be smaller than |𝐹 |1. Therefore, the largest possible value
of the 𝛿

1

𝑟 -fractile shall be even smaller. For Count-Sketch, we ap-

proach the worst case by setting the total size of flows as 1M and

the size of each flow equally (from 10 to 20). Results in Figure 13a

show that a “better” scenario for the original bound is when all

flow sizes are 10, which is difficult to achieve in real-world traffic.

B.1 Trace Recovery Methods in Case Study
Here we demonstrate how we use uniform sampling and sketching

to perform statistics on the original trace and later restore the trace.

Uniform Sampling of sample rate
1

100
records each packet in

the data stream with probability
1

100
. When restoring the trace, it

enlarges the sampled trace 100 times (i.e., duplicating each packet

by 100 times). There are two major limitations of uniform sampling

method: (1) it has large estimation error on the size of large flows;

(2) it cannot provide an error bound for flow sizes.

Sketching is a better method which can provide error bounds. We

use Count-Sketch(5 rows of 12000 counters each) to measure the

flow sizes and store the top-1600 flow ID. For flow size restora-

tion, we first restore the size of Top-K flows and give two error

bounds based on the original error bound and our method. After

the restoration of Top-Kflow sizes, we calculate the remaining trace

size and uniformly allocate them to all small flows.

Prediction method: In the “Accurate cache hit-rate prediction”

evaluation, we feed DistCache with the reconstructed traces. In

this setting, we suppose that all switches can have the accurate hot

objects stored on the switch cache, which is the ideal case. After

that, we estimate the number of cache hits generated on two layers

of cache nodes and compare them with the ground truth (i.e., cache
hits generated by the original trace).

	Abstract
	1 Introduction
	2 Background
	3 Precise Error Estimator
	3.1 Error Estimation Algorithms
	3.2 Analysis
	3.3 Additional Analysis for the Original Bound

	4 Evaluation
	4.1 Methodology
	4.2 Evaluation of Error Estimator
	4.3 Case Study: Distributed Caching

	5 A Future Roadmap
	6 Acknowledgements
	References
	A Detailed Proofs for Section 3.2
	A.1 Algorithm details for CU-Sketch and Count-Sketch
	A.2 Our bound for Count-Sketch is tighter

	B Evaluation on Count-Sketch and CU-Sketch
	B.1 Trace Recovery Methods in Case Study

