
SketchML: Accelerating Distributed Machine Learning
with Data Sketches

Jiawei Jiang†S Fangcheng Fu† Tong Yang† Bin Cui†

†School of EECS & Key Laboratory of High Confidence Software Technologies (MOE), Peking University STencent Inc.
†{blue.jwjiang, ccchengff, yang.tong, bin.cui}@pku.edu.cn Sjeremyjiang@tencent.com

ABSTRACT
To address the challenge of explosive big data, distributed ma-

chine learning (ML) has drawn the interests of many researchers.
Since many distributed ML algorithms trained by stochastic gradi-
ent descent (SGD) involve communicating gradients through the
network, it is important to compress the transferred gradient. A cate-
gory of low-precision algorithms can significantly reduce the size of
gradients, at the expense of some precision loss. However, existing
low-precision methods are not suitable for many cases where the
gradients are sparse and nonuniformly distributed. In this paper, we
study is there a compression method that can efficiently handle a
sparse and nonuniform gradient consisting of key-value pairs?

Our first contribution is a sketch based method that compresses
the gradient values. Sketch is a class of algorithms using a proba-
bilistic data structure to approximate the distribution of input data.
We design a quantile-bucket quantification method that uses a quan-
tile sketch to sort gradient values into buckets and encodes them
with the bucket indexes. To further compress the bucket indexes, our
second contribution is a sketch algorithm, namely MinMaxSketch.
MinMaxSketch builds a set of hash tables and solves hash collisions
with a MinMax strategy. The third contribution of this paper is a
delta-binary encoding method that calculates the increment of the
gradient keys and stores them with fewer bytes. We also theoreti-
cally discuss the correctness and the error bound of three proposed
methods. To the best of our knowledge, this is the first effort com-
bining data sketch with ML. We implement a prototype system in a
real cluster of our industrial partner Tencent Inc., and show that our
method is up to 10× faster than existing methods.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms;

KEYWORDS
Distributed Machine Learning; Stochastic Gradient Descent;

Quantification; Quantile Sketch; Frequency Sketch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196894

ACM Reference Format:
Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui. 2018. SketchML: Ac-
celerating Distributed Machine Learning with Data Sketches. In SIG-
MOD’18: 2018 International Conference on Management of Data, June
10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3183713.3196894

1 INTRODUCTION
1.1 Background and Motivation

Machine learning (ML) techniques have been widely used in
numerous applications, such as recommendation [21], text min-
ing [42], image recognition [29], video detection [25], urban comput-
ing city [47], etc. With the unprecedented increase of data volume, a
centralized system is unable to run machine learning tasks efficiently.
To meet the trending of big data era, it is inevitable to deploy ML in
a decentralized environment [23].

We focus on a subclass of ML models, such as Logistic Regres-
sion [20], Support Vector Machine [40], Linear Regression [38], and
Neural Network [29]. Generally, they are trained with a widely used
family of first-order-gradient optimization methods, namely stochas-
tic gradient descent (SGD) [8, 48]. To distribute these gradient-based
algorithms, we partition a training dataset over workers and make
each worker independently propose gradients [13, 22].

Under such setting, a major problem is how to efficiently exchange
gradients among workers since the communication often dominates
the total cost. Although the network infrastructure is becoming faster
and faster nowadays, reducing gradient movement is still beneficial
in many cases we try to support.

Case 1: Large Model. A recent phenomenon of ML is the rapid
growth of model size. It has been acknowledged that a large model
gives a better representation of users or objects. A more represen-
tative model is more likely to produce a higher prediction [24].
However, a large model also brings considerable communications in
a distributed cluster, which impedes the overall performance. Moti-
vated as such, it is nontrivial to squeeze the transferred data in this
large model case.

Case 2: Cloud Environment. Cloud platforms, such as Amazon
EC2, Alibaba Cloud, and Microsoft Azure, provide resizable virtual
services to make distributed computing easier [6]. And they often
adopt an on-demand pricing that charges a user according to the used
bandwidth. To minimize cost, it is an everlasting goal to minimize
the transmission through network.

Case 3: Geo-Distributed ML. For many international compa-
nies, it is infeasible to move data between data centers before running
ML algorithms. Data movement over wide-area-network (WAN) is
much slower than local-area-network (LAN). Reducing the commu-
nication between data centers can help geo-distributed ML.

https://doi.org/10.1145/3183713.3196894
https://doi.org/10.1145/3183713.3196894

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

Case 4: Internet of Things (IoT). IoT infrastructure tries to in-
tegrate mobile phones, physical devices, vehicles and many other
embedded objects in a unified network [17]. IoT controls these
objects to collect and exchange information. In this huge and het-
erogeneous network, an efficient communication infrastructure is of
great value.

In the above ML cases, it is significant to reduce the communi-
cated gradients through network and guarantee algorithmic correct-
ness meanwhile. Often, compression techniques are used to address
this problem. Existing compression approaches can be summarized
into two categories — lossless methods and lossy methods.

Lossless methods for repetitive integer data, such as Huffman
Coding [28], RLE (Run-Length Encoding) [18], DEFLATE [14],
and Rice [49], cannot be used for non-repetitive gradient keys and
floating-point gradient values. Methods such as Compressed Sparse
Row (CSR) can store matrix-type data via taking advantage of
data sparsity [7, 41], but the performance improvement is not large
enough due to limited compression performance.

Lossy methods are proposed to compress floating-point gradi-
ents by a threshold based truncation [39] or a quantification strat-
egy [30, 45]. The threshold based truncation is too aggressive to
make ML algorithm converged. At a high level, the quantification
approach is more promising since it achieves a tradeoff between
compression and convergence. But the existing quantification ap-
proaches have two assumptions in common, which are not true in
real cases. 1) First, they assume that a gradient vector needed to be
compressed is dense. However, in many real large-scale ML appli-
cations, gradient vectors are sparse due to the sparsity of training
data. On the one hand, a lot of time is wasted if we compress all
the dimensions of a sparse gradient vector. On the other hand, the
gradient keys cannot be compressed if we store a sparse gradient
vector in (key, value) pairs. 2) Second, they assume that the gradient
values follow a uniform distribution. But, according to our obser-
vation, the gradient values in a gradient vector generally conform
to a nonuniform distribution. Worse, most gradient values locate
in a small range near zero. The uniform quantification approach is
unable to fit the statistical distribution of gradient values.

According to the above analysis, the existing compression solu-
tions are not powerful enough for large-scale gradient optimization
algorithms. Motivated by this challenge, we study the question that
what data structure should we use to compress a sparse gradient
vector? Unsurprisingly, methods designed for dense and uniform-
distributed gradients can perform poorly in a sparse and nonuniform-
distributed setting. To address this problem, we propose SketchML,
a general compression framework that supports sparse gradients and
fits the statistical distribution of gradients. Briefly speaking, for a
sparse gradient vector consisting of {(𝑘𝑗 , 𝑣𝑗)}𝑑𝑗=1 pairs, we use a
novel sketch-based algorithm to compress values and a delta-binary
encoding method to compress keys. They bring an improvement over
state-of-the-art algorithms of 2-10×. We also theoretically analyze
the error bound and the correctness of the proposed algorithms.

1.2 Overview of Technical Contributions
We first introduce the context for describing our proposed method

and then describe each contribution individually.

Data Model. We focus on a subclass of ML algorithms that are
trained with stochastic gradient descent (SGD), e.g., Logistic Regres-
sion and Support Vector Machine. The input dataset contains training
instances and their labels — {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1. The purpose is to find a
predictive model 𝜃 ∈ R𝐷 that minimizes a loss function 𝑓 . SGD
iteratively scans each 𝑥𝑖, calculates the gradient 𝑔𝑖 = ∇𝑓(𝑥𝑖, 𝑦𝑖, 𝜃),
and updates 𝜃 in the opposite direction [9]:

𝜃 = 𝜃 − 𝜂𝑔𝑖

where 𝜂 is a hyper-parameter called the learning rate. Note that 𝑔𝑖 ∈
R𝐷 is generally a sparse vector due to the data sparsity prevalent
in large-scale ML. To save space, we store the nonzero elements
in a gradient vector, denoted by key-value pairs {𝑘𝑗 , 𝑣𝑗}𝑑𝑗=1. In a
distributed setting, we choose the data-parallel strategy that partitions
the dataset over 𝑊 workers [13]. With this scenario, we need to
aggregate gradients proposed by 𝑊 workers, denoted by {𝑔𝑤}𝑊𝑤=1.

How to Compress Gradient Values? The first goal is to com-
press the gradient values in the key-value pairs, i.e., {𝑣𝑗}𝑑𝑗=1. Since
the uniform quantification is ill-suited for nonuniform distributed
gradients, an alternative probabilistic data structure is the sketch
algorithm which is widely used to analyze a stream of data. Exist-
ing sketch algorithms include the quantile sketch [11, 16] and the
frequency sketch [12]. Quantile sketches are used to estimate the
distribution of items, while frequency sketches are used to estimate
the occurring frequency of items.

We propose to use a quantile sketch to summarize the gradient
values into several buckets, and then encode each value by the corre-
sponding bucket index 𝑏(𝑣𝑗). The number of buckets is a relatively
small integer. We use a binary representation to encode the bucket in-
dexes and thereby reduce the communication cost. We further inves-
tigate the possibility of compressing the bucket indexes. At the first
glance, the frequency sketch seems a good candidate by using multi-
ple hash tables to approximately store integers. However, according
to our intuitive and empirical analysis, we find that it cannot be ex-
tended to solve our problem since our context is completely different
from the frequency scenario. To address this problem, we propose a
novel sketch algorithm, called MinMaxSketch. MinMaxSketch en-
codes the bucket indexes using a multiple-hashing approximation,
and design a MinMax strategy to solve the hash collision problem
during the insertion phase and the query phase. Besides, we choose
a dynamic learning rate schedule to compensate the vanishing of
gradients, and devise a grouping method to decrease quantification
error. Empirically, the sketch-based algorithm is able to significantly
reduce the communication cost. To the best of our knowledge, this
is the first effort that introduces a sketch algorithm to optimize the
performance of machine learning tasks.

How to Compress Gradient Keys? The second goal is to com-
press the gradient keys in the key-value pairs. Different from gradient
values that can bear a low-precision avenue, gradient keys are vul-
nerable to inaccuracy. Assuming we encode a key but fail to decode
it accurately due to the precision loss during compression, we will
unfortunately update a wrong dimension of 𝜃. Therefore, we need
a lossless method to compress gradient keys, otherwise we cannot
guarantee the correct convergence of optimization algorithms. Since
the key-value pairs are sorted by keys, meaning that the keys are in
ascending order, we propose to store the keys with a delta format.
Specifically, we store the difference of adjacent keys. Although a

SketchML: Accelerating Distributed Machine Learning with Data Sketches SIGMOD’18, June 10–15, 2018, Houston, TX, USA

gradient key can be very large for a high dimensional model, the
difference between two neighboring keys is often in a small range.
We can hence store them with a binary representation and transfer
them with fewer bytes. According to our empirical results, each key
only consumes an average of about 1.27 bytes — 3.2× smaller for a
four-byte integer or 6.3× for an eight-byte long-integer.

Evaluation. In order to systematically assess our proposed meth-
ods, we implement a prototype on the top of Spark. On a fifty-node
real cluster of Tencent, we use two large-scale datasets to run a range
of ML workloads. Our proposed framework SketchML is 2-10×
faster than the state-of-the-art approaches.

Roadmap. The rest of this paper is organized as follows. We
introduce the preliminary in Section 2. We describe the compression
framework SketchML in Section 3, and its theoretical proof in Ap-
pendix A. We show the experimental results in Section 4, describe
related work in Section 5, and conclude this work in Section 6.

2 PRELIMINARIES
In this section, we introduce some preliminary materials related

to the processed data and the sketch algorithms.

2.1 Definition of Notations
To help the readers understand this work, we use the following

notations throughout the paper.
∙ 𝑊 : number of workers.
∙ 𝑁 : number of training instances.
∙ 𝐷: number of model dimensions.
∙ 𝑔: a gradient vector.
∙ 𝑑: number of nonzero dimensions in a gradient vector.
∙ (𝑘𝑗 , 𝑣𝑗): 𝑗-th nonzero gradient key and gradient value in a sparse

gradient vector.
∙ 𝑚: size of a quantile sketch.
∙ 𝑞: number of quantile splits.
∙ 𝑠, 𝑡: row and column of MinMaxSketch. 𝑠 denotes the number

of hash tables, and 𝑡 denotes the number of bins in a hash table.
∙ 𝑟: group number of MinMaxSketch.

2.2 Data Model
The ML problem that we tackle can be formalized as follows.

Given a dataset {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 and a loss function 𝑓 , we try to find a
model 𝜃 ∈ R𝐷 that best predicts 𝑦𝑖 for each 𝑥𝑖. For this supervised
ML problem, a common training avenue is to use the first-order
gradient optimization algorithm SGD. The executions involve re-
peated calculations of the gradient 𝑔𝑖 = ∇𝑓(𝑥𝑖, 𝑦𝑖, 𝜃) over the loss
function. Typically, 𝑔𝑖 ∈ R𝐷 is a sparse vector since the training
instance 𝑥𝑖 is generally sparse. In a distributed environment, since
each worker proposes gradient independently, we need to gather
all the gradients and update the trained model. Assuming there are
𝑊 workers, our goal is to compress the gradients {𝑔𝑤}𝑊𝑤=1 before
sending them. Once SGD finishes a pass over the entire dataset, we
say SGD has finished an epoch.

2.3 Quantile Sketch
Consider a case of one billion comparable items, whose values

are unknown beforehand. An important scenario is analyzing the
distribution of item values in a single pass. A brute-force sorting

Data Structure

h1(x)
h2(x) h3(x)

x
Algorithm
Insert(x):
for i = 1 to s do

D[i, hi(x)] = D[i, hi(x)] +1
end for

Query(x):
q = min(D[i, hi(x)] for i = 1 to s)
return q

Increase in insertion

Choose minimum in query

Figure 1: A Frequency Sketch
can provide the exact solution, but the computation complexity is
𝑂(𝑁 log𝑁) and the space complexity is 𝑂(𝑁). The expensive
computation and space cost make it infeasible for a large volume of
items.

Quantile sketch addresses this problem by using a small data struc-
ture to approximate the exact distribution of item value in a single
pass over the items. The main component of quantile sketch is the
quantile summary which consists of a small number of points from
the original items [16]. Two major operations, merge and prune,
are defined for quantile summary. The merge operation combines
two summaries into a merged summary, while the prune operation
reduces the number of summaries to avoid exceeding the maximal
size. Since there are 𝑚 quantile summaries in a quantile sketch,
the computation complexity is 𝑂(𝑁) and the space complexity is
𝑂(𝑚). In contrast to the brute-force sorting, the total cost is reduced
significantly. Meanwhile, the existing quantile sketches also provide
solid error bounds. For example, Yahoo DataSketches [1] guarantees
99% correctness when 𝑚 = 256. Once a quantile sketch is built for
these one billion items, the quantile summaries are used to give ap-
proximate answers to any quantile query 𝑞 ∈ [0, 1]. For example, a
query of 0.5 refers to the median value of the items, and the quantile
sketch returns an estimated value for the item ranking 0.5 billion.
With the same manner, a query of 0.01 returns an estimated value
for the item ranking 10 million.

One classical quantile sketch is GK algorithm [16]. Some works
also design extensions of the GK algorithm [11, 16, 46]. GK algo-
rithm maintains a summary data structure 𝑆(𝑛, 𝑘) in which there is
an ordered sequence of 𝑘 tuples in 𝑛 previous items. These tuples
correspond to a subset of items seen so far. For each stored item 𝑣 in
𝑆, we maintain implicit bounds on the minimum and the maximum
possible rank of the item 𝑣 in total 𝑛 items.

2.4 Frequency Sketch
Another popular real case in a stream of data is the repeated

occurrences of items. Since it is impractical to store every possible
item due to the large value range of items, the frequency sketch
is proposed to estimate the frequency of different values of items.
Count-min sketch is a widely used frequency sketch [12], as shown
in Figure 1. Essentially, count-min sketch is similar to the principle
of Bloom Filter. The data structure is a two-dimensional array of 𝑠
rows and 𝑡 columns, denoted by 𝐻 . Each row is a 𝑡-bin hash table,
and associated with each row is a separate hash function ℎ𝑖(−).
In the insertion phase, an item 𝑥 is processed as follows: for each
row 𝑖, we use the hash function to calculate a column index ℎ𝑖(𝑥),
and increment the corresponding value in 𝐻 by one. In the query

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

KeysValues

Bucket Index

Delta BinaryQuantile Bucket

MinMax Sketch

Decode

Binary Delta Keys

Binary Delta Keys

Keys

MinMax
Sketch

Bucket Index

Bucket

Values

Bucket

4

1

5

1

2

3

3

2
3

4

4

Encode

Figure 2: Framework Overview of SketchML
phase, the same hash procedure obtains 𝑠 candidates from 𝐻 , and
the minimum is chosen as the final result.

Despite of the query efficiency, the hash methods all face a colli-
sion problem that two different items might be mapped to the same
hash bin by the hash function. How to address the hash collision
is therefore a vital issue. Count-min sketch ignores hash collisions
and increases the hash bin once it is chosen. Obviously, the queried
candidates are equal or larger than the true frequency ̃︀𝑞 due to the
possibility of hash collision. Therefore, the minimum operation
chooses the one closest to ̃︀𝑞.

3 THE FRAMEWORK OF SKETCHML
Our proposed compression framework, SketchML, is described

in this section. We first walk through an overview of the framework,
and then describe each component individually.

3.1 Overview of The Framework
Figure 2 illustrates the overview of our proposed framework.

There are three major components in the framework, i.e., quantile-
bucket quantification, MinMaxSketch, and dynamic delta-binary
encoding. The first two components together compress gradient
values, while the third component compresses gradient keys.

Encode Phase. In the encode phase, the framework operates as
follows:

(1) Quantile sketch is used to scan the values and generate candidate
splits, with which we use bucket sort to summarize the values.

(2) The values are represented by the corresponding bucket indexes.
(3) The bucket indexes are inserted into the MinMaxSketch by ap-

plying the hash functions on the keys.
(4) The keys are transformed to their increments, denoted by delta

keys in this paper.
(5) We use binary encoding to encode the delta keys with fewer

bytes, instead of using four-byte integers.

Decode Phase. In the decode phase, the framework recovers the
compressed gradients by the following procedures:

(1) The delta keys are recovered to the original keys.

-0.01 0.21 0.08 -0.05 -0.12 0.29 0.02 -0.27

Values

0 0.1 0.3-0.1-0.3

-0.01

-0.05

0.08

0.02

0.29

0.21

-0.12

-0.27

Bucket Sort

-0.2 -0.05 0.05 0.2 Bucket Mean

-0.05 0.2 0.05 -0.05 -0.2 0.2 0.05 -0.2

-0.3 -0.1 0.1 0.3

Quantile Split

1 3 2 1 0 3 2 0

Index Encode

Binary Encode
01 11 10 01 00 11 10 00

Figure 3: Quantile-Bucket Quantification
(2) The recovered keys are used to query the MinMaxSketch.
(3) The bucket index of each value is obtained from the sketch.
(4) The value is recovered by querying the bucket value with the

bucket index.

3.2 Quantile-Bucket Quantification
The component of quantile-bucket quantification compresses

the gradient values in a gradient consisting of key-value pairs
{𝑘𝑗 , 𝑣𝑗}𝑑𝑗=1.

Motivation. Different from the integer gradient keys, the gradi-
ent values are floating-point numbers. Many existing works have
shown that gradient optimization algorithms are capable of working
properly in the presence of noises [30, 34]. Taking SGD as an exam-
ple, it calculates a gradient with only one training instance, resulting
in inevitable gradient noises due to noisy data. Although SGD might
oscillate for a while due to noisy gradients, it can go back to the
correct convergence trajectory afterwards [9].

Driven by the robustness requirement against noises, we ask can
optimization algorithms converge with quantified low-precision gra-
dients? Intuitively, since SGD can converge in the presence of ran-
dom noises, low-precision gradients are able to work as well. Com-
pared with unpredictable noises, the error incurred by quantification
is usually controllable and bounded [5]. Therefore, SGD is likely to
converge normally.

Quantification Choices. The current quantification methods
mostly adopt the uniform strategy in which the floating-point num-
bers are linearly mapped to integers [45]. However, uniform quan-
tification is ill-suited for gradients. Figure 4 is an example of the
distribution of gradient values. We train a public dataset [2] with
SGD and select the first generated gradient. The x-axis refers to
the gradient values, while the y-axis refers to the count of gradient
values falling into an interval. In this example, the value range of the
gradient values is [−0.353, 0.004], but most of them are near zero. It
verifies that gradient values generally conform to a nonuniform dis-
tribution rather than a uniform distribution. A uniform quantification
equally divides the range of gradient values, and cannot capture the
nonuniform distribution of data. Since most gradient values are close
to zero, methods such as ZipML quantify them to zero. Therefore,
many gradient values are ignored, causing slower convergence.

To address the defect of uniform quantification, we investigate
the employment of quantile sketch to capture the data distribution of

SketchML: Accelerating Distributed Machine Learning with Data Sketches SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Figure 4: Nonuniform Gradient Values
gradient values. Briefly speaking, we equally divide all the values
into several parts, instead of equally dividing the range of values.
The proposed quantile-bucket quantification has three steps.

Step 1: Quantile Split. In this step, we build a quantile sketch
with the gradient values and generate quantile splits, as shown in
Figure 3.

(1) We scan all the gradient values and insert them into a quantile
sketch. Here we choose Yahoo DataSketches [1], a state-of-the-
art quanitle sketch.

(2) 𝑞 quantiles are used to get candidate splits from the quan-
tile sketch. Detailedly, we generate 𝑞 averaged quantiles
{0, 1

𝑞
, 2
𝑞
, ..., 𝑞−1

𝑞
}.

(3) We use the quantiles and the maximal value as split values,
denoted by {𝑟𝑎𝑛𝑘(0), 𝑟𝑎𝑛𝑘(1

𝑞
), 𝑟𝑎𝑛𝑘(2

𝑞
), ..., 𝑟𝑎𝑛𝑘(1)}. Note

that the number of items whose values are between two sequen-
tial splits is 𝑁

𝑞
, meaning that we divide items by the number

rather than the value. Each interval between two splits has the
same number of gradient values.

Step 2: Bucket Sort. Given quantile splits, we proceed to quan-
tify the gradient values with bucket sort.

(1) We call each interval between two splits a bucket. The smaller
split is the lower threshold of the bucket, and the larger split is
the higher threshold.

(2) Based on the bucket thresholds, each gradient value belongs to
one specific bucket. For instance, the value of 0.21 in Figure 3
is classified to the fourth bucket.

(3) Each bucket is represented by the mean value, i.e., the average
of two splits.

(4) Each gradient value is transformed into the corresponding bucket
mean. This operation introduces quantification errors since the
bucket mean does not always equal to the original value.

Step 3: Index Encode. Although we quantify gradient values
with bucket mean values, the consumed space remains the same
because we still store them as floating-point numbers. For the pur-
pose of reducing space cost, we choose an alternative that stores the
bucket index. We encode the mean value of a bucket as the bucket
index. For example, after quantifying 0.21 to the mean value of the
fourth bucket, we further encode it by the bucket index starting from
zero, i.e., three for 0.21.

Step 4: Binary Encode. Generally, the number of buckets is a
small integer. We compress the bucket indexes through encoding
them to binary numbers. If 𝑞 = 256, one byte is enough to encode

h1(x) h2(x) h3(x)

0

3

2

702 735 1244 2516 3536 3786 4187 4195 Keys

Bucket Index1 3 2 1 0 3 2 0

kj,b(vj)

0

2

2

h1(x)
h2(x) h3(x)

0

2

2

kj

2

Min

Max

Insert Phase

Query Phase

Figure 5: MinMaxSketch
the bucket indexes. In this way, we reduce the space taken from 8𝑑
bytes to 𝑑 bytes. Besides, we need to transfer the mean values of
buckets in order to decode the gradient values. Therefore, the total
space cost is 𝑑 + 8𝑞 bytes. Since 𝑞 << 𝑑 in most cases, we can
decrease the transferred data to a large extent.

Proof of Variance Bound. The proposed quantification based
method ineluctably incurs quantification variances. We statistically
analyze the bound of variance in Appendix A.1.

Summary. Through an in-depth anatomy of existing quantifica-
tion methods, we find that they cannot capture the distribution prop-
erty of gradients. We therefore investigate nonuniform quantification
methods. By designing a technique that combines quantile sketch
and bucket sort, we successfully encode gradient values to small
binary numbers and achieve self-adaption to data nonuniformity. The
key-value pair (𝑘𝑗 , 𝑣𝑗) is transformed into (𝑘𝑗 , 𝑏(𝑣𝑗)) where 𝑏(𝑣𝑗)
denotes the binary bucket index. In practice, we find that 𝑞 = 256 is
often enough to obtain comparable prediction accuracy.

3.3 MinMaxSketch
The component of quantile-bucket quantification has compressed

gradient values with a compression rate close to eight. We next study
the possibility of going a step further. Fundamentally, the gradient
keys need to be recovered precisely so that low-precision techniques
cannot be used. As a result, we focus on the bucket index.

Motivation. Since we have converted the gradient values to
bucket indexes, which are integers, we consider low-precision meth-
ods designed for integers. Among the existing works, frequency
sketch is a classical probabilistic data structure that reveals pow-
erful capability in processing a stream of data [12]. However, the
underlying scenario of frequency sketch is totally different from our
setting. Frequency sketch aims at a set of items, each of which might
appear repeatedly. Frequency sketch tries to approximately guess
the frequency of an item with a relatively small space. In contrast,
there is no repeated gradient key in our targeted task and our goal is
to approximate each single bucket index.

If we use the additive strategy of frequency sketch, it is nearly
impossible to get a good result. Assuming that we add an inserted
bucket index to the current hash bin, the hash bin might be updated
arbitrarily. Intuitively, hash bins ever collided are magnified in an
unpredictable manner. Therefore, most decoded gradient values are

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

much larger than the original value. Amplified gradients then cause
unstable convergence. In fact, according to our empirical results,
optimization methods often easily get diverged with larger gradients.

Due to the problem described above, we need to design a com-
pletely different data structure for our targeted scenario. Although
frequency sketch does not work, its multiple hash strategy is useful
in solving hash collisions. The same strategy is also adopted in other
methods such as Bloom Filter. Based on this principle, we propose a
new sketch, namely MinMaxSketch, in this section.

Insert Phase. To begin with, we scan all the items and insert
them into the sketch. Figure 5 illustrates how the insertion works.

(1) Each input item is composed of original key and the encoded
bucket index — (𝑘𝑗 , 𝑏(𝑣𝑗)).

(2) We use 𝑠 hash functions to calculate the hash codes. In Figure 5,
there are three hash functions, ℎ1(−), ℎ2(−), and ℎ3(−).

(3) Once a hash bin is chosen in the 𝑖-th hash table, we compare the
current value 𝐻(𝑖, ℎ𝑖(𝑘𝑗)) and 𝑏(𝑣𝑗). If 𝐻(𝑖, ℎ𝑖(𝑘𝑗)) > 𝑏(𝑣𝑗),
we replace the current value by 𝑏(𝑣𝑗). Otherwise, we do not
change the current value.

As the name of MinMaxSketch implies, the symbol of Min refers
to the choice of minimum bucket index in the insert phase. The
reason behind this design decision is to avoid the increase of hash
bin and therefore avoid the increase of decoded gradients.

Query Phase. Once a MinMaxSketch is built, the next question
is how to query results from the sketch. In accordance with the insert
phase, the query phase operates as follows.

(1) The input is a gradient key, denoted by 𝑘𝑗 . 𝑠 hash functions are
applied to 𝑘𝑗 and each hash function chooses one hash bin from
the hash table.

(2) Given 𝑠 candidates from different rows, we select the maximal
one as the final result. In Figure 5, three candidates are {0, 2, 2},
we choose 2 as the result.

The choice of maximal candidates corresponds to the Max symbol
of MinMaxSketch. Since we select the minimum candidate in the
insert phase, the choice of maximal candidate in the query phase
produces the one closest to the original value.

Analysis. As a probabilistic data structure, MinMaxSketch and
many other sketch algorithms suffer from a problem, that is, the
queried result is not guaranteed to be exactly the same as the original
value. Therefore, it is necessary to analyze the queried performance
of MinMaxSketch.

Basically, there are two kinds of errors when querying a sketch:
overestimated error and underestimated error. Overestimated er-
ror brings larger queried results, while underestimated error brings
smaller queried results. All existing frequency sketches either have
both errors or only have overestimated error [12]. That is to say,
they all have overestimated error. Unfortunately, overestimated error
brings non-trivial degradation for our setting. As analyzed before,
if we query an overestimated bucket index from the sketch, the de-
coded gradient value is generally amplified. The overestimation of
gradient values often gives rise to an unpredictable and unstable
convergence.

In contrast, MinMaxSketch introduces underestimated error. In
the insert phase, we choose the smaller value in the presence of hash
collisions. Therefore, the hash bin is not larger than all related bucket

0.03 0.11 0.43-0.05-0.13

0.01

-0.02

0.09

0.05

0.41

0.14

-0.12

-0.07

Mean -0.32 -0.09 -0.01 0.07 0.27

-0.38

-0.14

-0.51

Index 0 1 2 3 4

Case 1: 0.01 2 -0.01

Case 2: 0.14 1 -0.09

Figure 6: Reversed Gradient
indexes. Consequently, the queried result is underestimated. The un-
derestimation of bucket index then generally incurs underestimated
gradient value.

As the readers might suspect, can optimization algorithms con-
verge with underestimated gradients? Theoretically, optimization
algorithms such as SGD move towards the optimality following the
opposite direction of gradients. Obviously, reducing the scale of gra-
dients might slow down the convergence rate somewhat, yet still on
the correct convergence track. On the contrary, uncontrolled increase
of the scale of gradients might risk jumping over the optimality.

To sum up, MinMaxSketch might decrease the scale of gradi-
ents, yet still guarantees the correct convergence. However, although
MinMaxSketch makes sense intuitively and theoretically, it cannot
work empirically with this original version. Next, we will discuss
two major problems and describe our solutions.

Problem 1: Reversed Gradient. Above, we state that
MinMaxSketch often provides decayed gradients. However, this
statement is not always true. Indeed, the bucket index is decayed
with MinMaxSketch. But the parsed gradient value is uncertain as
we need to query the bucket mean value with the bucket index. We
find that the sign of the decoded gradient value could be reversed.
Figure 6 shows an example of reversed gradients. Ten gradient val-
ues are put into five buckets. Nevertheless, there are two cases where
MinMaxSketch produces reversed gradients.
∙ Case 1. The third bucket includes gradient values from -0.05 to

0.03. The mean of the bucket is -0.01. On this occasion, 0.01
is encoded to -0.01. Therefore, even if MinMaxSketch decodes
the correct bucket index, it reverses the sign of 0.01 anyway.

∙ Case 2. The other four buckets fortunately avoid the first case as
they exclude the value of zero. But, MinMaxSketch might pro-
duce reversed gradients for them too. For example, the value of
0.14 belongs to the fifth bucket. However, if MinMaxSketch pro-
duces a smaller bucket index, e.g., one in Figure 6, the queried
value becomes -0.09.

Gradient optimization algorithms such as SGD are robust to de-
cayed gradients, yet vulnerable to reversed gradients. With reversed
gradients, they are likely to diverge.

Solution 1: Separation of Positive/Negative Gradients. The
reason of problem 1 is that we quantify positive and negative gradi-
ent values together. To address this problem, we design a mechanism
that handles positive and negative gradients independently.

(1) For positive and negative gradients, we build two separate quan-
tile sketches and quantify them with separate buckets. With this
strategy, the first bucket for positive gradients is closest to zero,
while the last bucket for negative gradients is closest to zero.

SketchML: Accelerating Distributed Machine Learning with Data Sketches SIGMOD’18, June 10–15, 2018, Houston, TX, USA

(2) Based on the quantified gradient values, we build one positive
MinMaxSketch and one negative MinMaxSketch.

(3) In the insert phase, in order to achieve the goal of decaying
gradients, we choose the bucket index closest to the “minimum
bucket". Here, the “minimum bucket" refers to the bucket having
the minimum mean, i.e., the first bucket for positive gradients
and the last bucket for negative gradients.

Problem 2: Vanishing Gradient. As aforementioned, Min-
MaxSketch yields decayed gradients, which we call the problem of
vanishing gradient. Although the correct convergence is not harmed,
the convergence rate is inevitably reduced due to reduced step in
each SGD iteration.

Solution 2: Adaptive Learning Rate and Grouped
MinMaxSketch. We design two methods to compensate the
problem of vanishing gradient.
∙ Adaptive Learning Rate. Adam algorithm is used to adaptively

adjust the learning rate [27]. Due to the data skewness, differ-
ent dimensions of the trained model converge in different speed.
Adam is proposed to solve this convergence imbalance by choos-
ing a learning rate schedule that is inversely proportional to the
change of gradients so far. It gives larger learning rate for slower
dimensions and smaller learning rate for faster dimensions.

∙ Grouped MinMaxSketch. According to our empirical results,
the introduction of adaptive learning rate can significantly en-
hance the convergence rate. However, we find that it cannot
achieve the optimality. With the mechanism of MinMaxSketch,
the difference between the original bucket index and the decoded
bucket index can be as large as 𝑞, the number of quantile splits.
When the trained model is near the optimality, the gradients are
very small themselves. Adaptive learning rate is unable to fully
compensate the decline of decoded bucket index. To address this
problem, we divide all the buckets into 𝑟 groups and create one
MinMaxSketch for each of them. For example, if 𝑞 = 256 and
𝑟 = 8, we divide the buckets into 8 groups — [0,32), [32,64),
etc. The maximal decoded error of bucket index is reduced from
𝑞 to 𝑞

𝑟
. And the error of decoded gradient is therefore reduced.

Proof of Error Bound. We also theoretically discuss the error
bound and correctness of MinMaxSketch. Due to the space limita-
tion, we present the detailed proof in Appendix A.2.

Summary. MinMaxSketch is designed to compress the bucket
index generated by the component of quantile-bucket quantification.
MinMaxSketch handles the disturbance of hash collision through
a min protocol in the insert phase and a max protocol in the query
phase. We further propose techniques to address the reversal and
decay of decoded gradients.

3.4 Delta-Binary Encoding
The above two components emphasize on the compression of

gradient values. Next, we introduce the component of dynamic delta-
binary encoding, which compresses the gradient keys in a gradient
consisting of key-value pairs {𝑘𝑗 , 𝑣𝑗}𝑑𝑗=1.

Motivation. In many cases related to floating-point numbers and
integer numbers, we can use low-precision compression methods
if they can bear certain precision loss. However, the integer gra-
dient keys are unable to tolerate errors. Assuming a case that we
compress a key but cannot recover it accurately, a wrong dimension

702 735 1244 2516 3536 3786 4187 4195

702 33 509 1272 1020 250 401 8

……

Delta Keys

Keys

01 00 01 01 01 00 01 00

0
255

256
65535

……
1 byte 2 bytes

702 33 509 1272 1020 250 401 8

Byte Flag

Binary Encode

Threshold
Encode

Figure 7: Delta-Binary Encoding
of the trained model will be updated. This phenomenon will cause
unpredictable convergence and divergence even worse. Therefore,
we must design a lossless compression method for the gradient keys.

Through an analysis of the data distribution of gradient keys,
we find that they have three characteristics. First, the keys are non-
repetitive. Second, the keys are ordered in an ascending order. Third,
although the keys can be very large in many high dimensional ap-
plications, the difference between two neighboring keys is much
smaller. Motivated by this intuition, we propose to only store the
increment of keys. Our method is composed of two major steps, as
introduced below.

Step 1: Delta Encoding. As shown in Figure 7, the gradient keys
are ordered in an array. We scan the array from the end to the start,
and calculate the difference between two adjacent keys. Afterwards,
we get the increments of keys, which we call the delta keys.

Step 2: Binary Encoding. Through delta encoding, it is obvious
that the delta keys are much smaller than the original keys. If we
store the delta keys in the format of integers or long-integers, then the
compression is meaningless because the consumed memory space
and communication cost remain the same.

To solve this problem, we assign different spaces to different delta
keys and encode them in the binary format. A threshold module
receives each delta key and outputs the least number of bytes needed
to hold it. Specifically, one byte can handle a range of [0, 255],
two bytes [256, 65535], three bytes [65536, 16777215], four bytes
[16777216, 4294967295]. The number of required bytes is encoded
to a binary number, called the byte flag. For example, the flag
of one byte is 00, that of two bytes is 01, and so forth. Finally, the
delta keys are encoded into binary numbers based on the byte flags.

Note that, there are several existing methods that can be used to
compress integers, such as RLE (Run-length Encode) and Huffman
Coding. However, RLE and Huffman Coding are typically used
to compress a data sequence in which a same data value might
occur consecutively. They need to store every gradient key without
compressing and introduce extra data structure. Therefore, they are
useless for non-repetitive gradient keys.

Summary. In order to compress gradient keys without precision
loss, we store the increment of keys and use a threshold mechanism
to encode them into the binary format. The key-value gradient pair
(𝑘𝑗 , 𝑣𝑗) is transformed into (∆𝑘𝑗 , 𝑣𝑗) where ∆𝑘𝑗 denotes the binary
incremental key. As we will theoretically analyze in Appendix A.3

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

and evaluate in the experiment, the average byte needed by each key
is below 1.5 bytes.

3.5 Analysis of Space Cost
Combining the above three components, we get a unified frame-

work. In this section, we explicitly analyze the space cost of our
methods.
∙ Quantile-Bucket Quantification. The mean values of buckets

need to be transferred by the network. The size is 8𝑞 bytes.
Generally, 𝑞 is a small integer.

∙ MinMaxSketch. We build 𝑟 grouped sketches. The size of
each individual MinMaxSketch is 𝑠×𝑡

𝑟
× ⌈log256 𝑞⌉ = 𝑠×𝑡

𝑟
×⌈︀

1
8
log2 𝑞

⌉︀
. The total size of MinMaxSketch is 𝑠 × 𝑡 ×⌈︀

1
8
log2 𝑞

⌉︀
.

∙ Delta-Binary Encoding. As we will discuss in Appendix A.3,
the expected bytes taken for each delta key is

⌈︀
1
8
log2

𝑟𝐷
𝑑

⌉︀
. The

byte flag needs 1
4

byte per key. In practice, we find that the
average size for each key (including byte flag) is 1.27 bytes
approximately.

Summary. To sum up, the total space cost of our method is 𝑑×
(
⌈︀
1
8
log2

𝑟𝐷
𝑑

⌉︀
+ 1

4
) + 8𝑞 + 𝑠 × 𝑡 ×

⌈︀
1
8
log2 𝑞

⌉︀
. Compared with

the original size 12𝑑, we can save a lot of communication cost by
choosing appropriate hyper-parameters.

4 EXPERIMENTS
We validate the effectiveness and efficiency of our proposed meth-

ods by conducting extensive experiments.

4.1 Experiment Setting
Implementation. We implement a prototype system on Spark.

The prototype is compiled with Java 8 and Scala 2.11.7. There are
two types of nodes in Spark, the driver and the executor. The training
dataset is partitioned over executors. Each executor reads the subset,
and calculates gradients. The driver aggregates gradients from the
executors, updates the trained model, and broadcasts the updated
model to the executors. This process iterates until convergence.

Clusters. We use two clusters in our experiments. Cluster-1 is a
ten-node cluster in our lab. Each machine is equipped with 32GB
RAM, 4 cores, and 1-Gbps Ethernet. We use this cluster to assess
the effectiveness of our proposed methods. Cluster-2 is a 300-node
productive cluster in Tencent Inc. In this large-scale cluster, each
machine is equipped with 64GB RAM, 24 cores, and 10-Gbps Eth-
ernet. We compare the end-to-end performance of three competitors
in Cluster-2. As shared by many users in an industrial environment,
Cluster-2 is governed by Yarn and has a 8GB memory constraint per
node for each task.

Datasets. As shown in Table 1, we use three datasets in our
experiments. The first dataset KDD10 is a public dataset published
by KDD CUP 2010 [2], consisting of 19 million instances and 29
million features. The second dataset KDD12 is the next generation
of KDD10 [3], consisting of 149 million instances and 54 million
features. The task is predicting whether a user will follow an item
recommended to the user in a social networking site. Items can
be persons, organizations or groups. The third dataset CTR is a
proprietary datasest of Tencent Inc. CTR is used to predict the click-
through-rate of advertisements.

Dataset Size # Instance # Features

KDD10 5GB 19M 29M

KDD12 22GB 149M 54M

CTR 100GB 300M 58M

Table 1: Datasets

Statistical Models. For statistical models, we choose three popu-
lar machine learning models – ℓ2-regularized Logistic Regression
(LR), Support Vector Machine (SVM), and Linear Regression (Lin-
ear). Their loss functions can be formalized as follows:

𝐿𝑅 : 𝑓(𝑥, 𝑦, 𝜃) =

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(1 + 𝑒−𝑦𝑖𝜃
T𝑥𝑖) +

𝜆

2
||𝜃||2

𝑆𝑉𝑀 : 𝑓(𝑥, 𝑦, 𝜃) =

𝑁∑︁
𝑖=1

𝑚𝑎𝑥(0, 1− 𝑦𝑖𝜃
T𝑥𝑖) +

𝜆

2
||𝜃||2

𝐿𝑖𝑛𝑒𝑎𝑟 : 𝑓(𝑥, 𝑦, 𝜃) =

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝜃T𝑥𝑖)
2 +

𝜆

2
||𝜃||2

We train three algorithms with Adam SGD, which is the most
popular choice of relevant works [27]. Adam SGD stores a decaying
average of past gradients and decaying average of squared gradients.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1− 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1− 𝛽2)𝑔
2
𝑡

where 𝛽1 and 𝛽2 denote two hyper-parameters close to 1. Then, 𝑚
and 𝑣 are used to update the trained model:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂√

𝑣𝑡 + 𝜖
𝑚𝑡

Baselines. We compare SketchML with two competitors: Adam
SGD [27] and ZipML [45]. Adam SGD is the most widely used first-
order gradient optimization recently. It combines the advantages of
momentum [36, 37] and adaptive learning rate [15, 32, 43]. It hence
automatically adapts to both the slope of the objective function and
the importance of gradient dimensions. ZipML designs a fixed-point
quantification method to compress gradient values to integers. It
has shown powerful performance on a range of machine learning
algorithms. Note that the Adam strategy is applied to all the baselines
for the purpose of fairness.

Metrics. To measure the performance of SketchML and other
competitors, we follow prior art and measure the average run time
per epoch and the loss function with respect to the run time. We do
not count the time used for data loading and result outputting for all
systems [44].

Protocol. The input dataset is partitioned into two subsets — 75%
as the train dataset and 25% as the test dataset. We train the ML
models on the train dataset and assess the quality of the trained
model on the test dataset. To achieve a tradeoff between convergence
robustness and convergence speed, we adopt a popular trick of SGD
that uses a batch of instances instead of only one instance [8]. Better,
in a distributed environment, mini-batch SGD can decrease the
synchronization frequency and save a lot of communication cost.
Following the choice of [19], we set the batch size as 10% of the size
of the train dataset. As the authors of Adam SGD [27] suggested,
we choose 0.9 for 𝛽1, 0.999 for 𝛽2, and 10−8 for 𝜖. We use grid

SketchML: Accelerating Distributed Machine Learning with Data Sketches SIGMOD’18, June 10–15, 2018, Houston, TX, USA

LR SVM Linear
0

50

100

150

200

250

300

350

400

450

se
co

n
d
s

243 227
261

103

159

216

75 91
4943 35 39

Adam

Adam+Key

Adam+Key+Quan

Adam+Key+Quan+MinMax

(a) Run Time Per Epoch

Message Size Compression Rate
0

10

20

30

40

50

60

70

M
es

sa
ge

 S
iz

e
(M

B)

35.58
27.39

6.63 4.92
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Co
m

pr
es

si
on

 R
at

e

1.00 1.30

5.36
7.24

Adam
Adam+Key

Adam+Key+Quan
Adam+Key+Quan+MinMax

(b) Message Size and Compression Rate

Peak Average
0

50

100

150

200

CP
U

 u
sa

ge
 (%

)

91 83 93 88

22
35 43 47

Adam
Adam+Key

Adam+Key+Quan
Adam+Key+Quan+MinMax

(c) CPU Overhead

0.1 0.03 0.01

batch ratio

0.00

0.05

0.10

0.15
Gradient Sparsity

0.1 0.03 0.01

batch ratio

0

25

50

75

100

Run Time

0 0.05 0.1

sparsity

1.25

1.26

1.27

1.28
Bytes Per Key

(d) Impact of Batch Size and Sparsity

Figure 8: Effeciency of Proposed Methods. The evaluated met-
ric is the run time per epoch. Adam refers to the basic method
without our methods. Key refers to the component of delta-
binary encoding. Quan refers to the component of quantile-
bucket quantification. MinMax refers to the component of Min-
MaxSketch.
search to tune the optimal learning rate 𝜂. Specifically, we tune the
optimal learning rate with Adam SGD and use this value for all the
candidates. The regularization coefficient 𝜆 is set to be 0.01. We find
that ZipML converges badly if we set its quantified size to be one
byte, thus we set it to be two bytes via fine tuning. There are a few
hyper-parameters in SketchML. The size of quantile sketch is 128
by default. The size of MinMaxSketch is 2× 𝑑

5
.

4.2 Efficiency of Proposed Methods
SketchML consists of three components. In this section, we train

the KDD10 dataset on ten executors of Cluster-1 to validate the
efficiency of our proposed components. We assign 5GB memory for
the driver and each executor. We begin with the basic method Adam,

and consolidate our proposed components gradually. The results are
presented in Figure 8.

Run time. According to the results in Figure 8(a), our proposed
methods can significantly accelerate the execution of three different
ML algorithms. Compared with Adam, the component of delta-
binary encoding alone improves the system performance by up to
2.3×. The addition of quantile-bucket quantification further accel-
erates the speed by up to 4.4×. Finally, the MinMaxSketch alone
achieves at most 4.3× improvements. The results demonstrate that
our proposed methods are efficient in reducing the data movement
through network.

Message Size and Compression Rate. The main advantage of
compression is reducing the size of messages. Figure 8(b) presents
the average message size and compression rate during the execution.
Due to the space constraint, we present the result of LR, and the
results of other algorithms are similar. Compared with the uncom-
pressed gradient message, our method decreases the message size
from 35.58 MB to 4.92 MB — a 7.24× compression rate.

CPU Overhead. To evaluate the computation overhead brought
by compression, we conduct an experiment and present the result in
Figure 8(c). Unsurprisingly, our method introduces 25% CPU usage
in average. The peak CPU usage is not obviously influenced.

Impact of Batch Size and Sparsity. Since our method com-
presses sparse gradients, it raises a question how the data sparsity
affects the performance. In our setting, the sparsity of a gradient is
influenced by the batch size. Therefore, we change the sparsity by
changing the ratio of the batch size. The default ratio is 10% of the
dataset. As Figure 8(d) illustrates, the sparsity of gradient decreases
from 10% to 1.77% when we decrease the ratio from 10% to 1%.
Meanwhile, a smaller batch size incurs more frequent communica-
tion, and therefore increases the run time per epoch from 58 seconds
to 105 seconds.

According to the analysis in Section 3.5, the communication
cost of delta-binary encoding is directly affected by the data spar-
sity. Therefore, we record the performance of delta-binary encoding
against the variation of data sparsity in Figure 8(d). The average size
taken by each gradient key is about 1.25 bytes when the sparsity is
10%, and the size is increased to about 1.27 bytes as the sparsity
approaches zero. Compared with original 4 bytes, the delta-binary
encoding achieves significant compression performance. This result
is consistent with the theoretical analysis in Section 3.5.

4.3 End-to-end Performance
In this section, we compare the end-to-end performance of

SketchML, Adam, and ZipML on Cluster-2. Due to the space con-
straint, we present the results of KDD12 and CTR below. We de-
couple the end-to-end performance as the run time per epoch and
the loss in terms of run time. The average run time per epoch is
presented in Figure 9. The loss regarding run time is presented in
Figure 10.

4.3.1 Results on KDD12 Dataset. For the KDD12 dataset,
we use ten executors to run the combinations of three methods and
three ML algorithms. We assign 5GB memory for the driver and
each executor. Figure 9(a) shows the average run time per epoch.
Figure 10 reports the convergence rate which is measured by the
loss function in terms of run time.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

LR SVM Linear
0

500

1000

1500

2000

se
co

n
d
s

100 132 96

1041
1245

903

278

594

330

SketchML Adam ZipML

(a) KDD12 Dataset

LR SVM Linear
0

50

100

150

200

se
co

n
d
s

34
17

32

130

79
9791

66
78

SketchML Adam ZipML

(b) CTR Dataset

Figure 9: End-to-end System Comparison (Run Time). The evaluated metric is the run time per epoch. Run time is in seconds. LR
refers to Logistic Regression. SVM refers to Support Vector Machine. Linear refers to Linear Regression. We take three runs and
report the average (standard deviation for all numbers < 10% of the mean).

2000 4000 6000

seconds

0.69

0.695

lo
ss

SketchML Adam ZipML

(a) Logistic Regression, KDD12

2000 4000 6000

seconds

0.995

1.0
lo

ss
SketchML Adam ZipML

(b) Support Vector Machine, KDD12

2000 4000

seconds

0.20

0.22

lo
ss

SketchML Adam ZipML

(c) Linear Regression, KDD12

0 1000 2000 3000 4000 5000 6000 7000 8000

seconds

0.6918

0.6919

lo
ss

SketchML Adam ZipML

(d) Logistic Regression, CTR

0 100 200 300 400 500

seconds

0.998

0.999

lo
ss

SketchML Adam ZipML

(e) Support Vector Machine, CTR

0 250 500 750 1000 1250 1500 1750 2000

seconds

0.01

0.022 × 10 2

lo
ss

SketchML Adam ZipML

(f) Linear Regression, CTR

Figure 10: End-to-end System Comparison (Convergence Rate). The evaluated metric is the testing loss in terms of run time. Run
time is in seconds. We take three runs and report the average (standard deviation for all numbers < 10% of the mean).

Logistic Regression. As shown in Figure 9(a), SketchML runs
much faster than Adam and ZipML. Adam and ZipML take 1041
seconds and 278 seconds to complete an epoch. Adam needs to com-
municate the original gradients without any compression. Therefore,
Adam is the slowest. ZipML is 3.7× faster than Adam by compress-
ing the gradient values. However, ZipML is unable to compress
the gradient keys. In contrast, SketchML only needs 100 seconds
to process an epoch, bringing 10.4× and 2.8× improvements over
two competitors. The performance improvements come from the
reduction of gradient data transferred through the network. And
the improvement will become more significant with the increase of
executors because more executors inevitably yield more communi-
cations. Although Cluster-2 is equipped with faster network switch,
the network is more congested than Cluster-1 since Cluster-2 serves
many applications simultaneously. Therefore, SketchML runs slower
on Cluster-2 than on Cluster-1. It demonstrates that compressing
the communicated messages is of great value even in a high-speed
environment. For the convergence rate, we can see in Figure 10(a)
that SketchML achieves the fastest convergence rate. Unsurprisingly,

Adam is the slowest since it consumes the longest time to finish
an epoch. ZipML converges much faster than Adam. Our method,
SketchML, beats the two competitors significantly.

Support Vector Machine. The result of Support Vector Machine
is similar to that of Logistic Regression. Adam is the slowest, fol-
lowed by ZipML. We can observe in Figure 9(a) that Adam needs
1245 seconds per epoch and ZipML needs 594 seconds. SketchML
only takes 132 seconds — 9.4× and 4.5× faster than Adam and
ZipML. Meanwhile, as can be seen in Figure 10(b), the convergence
rate of SketchML is significantly faster than Adam and ZipML. With
a same time budget, SketchML is capable of converging to a much
lower statistical loss than other two methods. We can find an in-
teresting phenomenon in Figure 10(b), that is, SketchML reveals
its advantages more clearly than ZipML as time goes by. As ex-
plained above, ZipML quantifies many small gradients to zero. As
the training algorithm proceeds, the gradients become even smaller
since the model is approaching the optimal solution. As a result, the
convergence of ZipML becomes slower.

SketchML: Accelerating Distributed Machine Learning with Data Sketches SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Linear Regression. For linear regression, Adam and ZipML take
903 and 330 seconds per epoch, respectively, while SketchML only
needs 96 seconds. As Figure 10(c) shows, ZipML and SketchML
are significantly faster than Adam. At the beginning of the training
process, SketchML outperforms ZipML. Then, ZipML is slightly
faster within a small interval. Nevertheless, as the trained model
approaches the optimal, the convergence rate of ZipML slows down
due to a large quantification error. Therefore, SketchML outperforms
ZipML in terms of the overall performance.

4.3.2 Results on CTR Dataset.
For the larger dataset CTR, we use 50 executors on Cluster-2.

We assign 8GB memory for the driver and each executor due to the
memory limitation. The run time statistics and convergence curves
are presented in Figure 9(b) and Figure 10 (d–f).

Logistic Regression. On this larger dataset, Adam still runs the
slowest, followed by ZipML. SketchML is 3.8× and 2.7× faster than
the other two methods. Note that the speedup of SketchML on CTR
is smaller than that on KDD12 since KDD12 is sparser than CTR.
As each instance of CTR generates more nonzero gradient pairs, the
computation cost is much higher. As a consequence, the performance
improvement brought by the reduction of communication cost is not
as large as that on KDD12 dataset. Although ZipML runs faster than
Adam, its convergence rate is worse. This phenomenon verifies that
the uniform quantification of ZipML is unable to work on all datasets
due to distinct distribution of gradients. In contrast, the convergence
rate of SketchML is much better. SketchML reveals an ability of
generalization across different datasets.

Support Vector Machine. According to the results in Fig-
ure 9(b), SketchML brings 4.59× and 3.88× improvements than
Adam and ZipML. Compared with Logistic Regression and Lin-
ear Regression, Support Vector Machine is easier to get converged
on this dataset. Therefore, as Figure 10(e) shows, the convergence
rate of ZipML is faster than Adam due to faster communication.
SketchML outperforms them significantly and is able to converge a
tolerance in a shorter time.

Linear Regression. As illustrated in Figure 9(b), SketchML
takes 32 seconds to train an epoch of Linear Regression, while
Adam and ZipML need 97 and 78 seconds. Figure 10(f) shows the
convergence of three approaches. ZipML is slower than Adam. As
explained before, it is caused by the defect of uniform quantification.
Overall, SketchML is the fastest and is able to converge to the same
loss as Adam.

4.4 Model Accuracy
Since MinMaxSketch produces underestimated gradients, there

is a doubt whether our method can correctly converge. We report
the convergence performance over KDD12 dataset. The experiment
settings are the same as Section 4.3. An algorithm is considered as
converged if the variation of loss is less than 1% within five epochs.

As illustrated in Table 2, three methods can converge to almost the
same model quality. However, SketchML converges much faster than
other two systems. According to our analysis, MinMaxSketch causes
underestimated gradients, while it dose not change the directions
of all the gradient dimensions. If a specific dimension of a gradient
is always underestimated, its convergence will be extremely slow.
However, the dynamic learning rate and the grouping strategy in

SketchML Adam ZipML

LR 0.6885 / 8.1h 0.6885 / 23h 0.6887 / 11h

SVM 0.9784 / 4.9h 0.9785 / 23h 0.9788 / 10h

Linear 0.2111 / 4.8h 0.2109 / 22h 0.2111 / 9.4h

Table 2: Model Accuracy. The metric is minimal loss against
converged time, separated by symbol “/". Run time is in hours.

Section 3.3 solve this problem by giving larger learning rate for a
slow dimension and reducing quantification error.

4.5 Scalability
Next, we assess the scalability of three methods. We change the

number of used workers (executors) and study how the cluster size
affects the performance. The results are presented in Figure 11. Due
to the space constraint, we only provide the results on the KDD12
dataset here. The results on the CTR dataset are similar. We increase
the number of workers (executors) from five to ten, then to fifty, and
evaluate the average run time taken by each epoch.

Logistic Regression. As shown in Figure 11(a), the performance
of three methods increases when we increase the number of workers
from five to ten, i.e., SketchML becomes 1.7× faster, Adam 1.8×,
and ZipML 1.3×. Afterwards, we use fifty workers and find that
Adam suffers a performance deterioration. The reason is that the
increase of communication cost overwhelms the benefit of compu-
tation cost. SketchML and ZipML, to the contrary, achieve 1.7×
and 1.6× improvements. Ideally, the performance speedup is five
when we use fifty workers instead of ten. However, in a distributed
environment, this ideal case is rare due to the influence of extra
communication.

Support Vector Machine. For Support Vector Machine, the re-
sults are similar as Logistic Regression. Three methods become
significantly faster when we increase the number of workers from
five to ten. However, when we next use fifty workers, Adam unfor-
tunately gets slower. SketchML and ZipML still benefit from the
increase of workers. Their performance is improved up to 2.3× and
2×, respectively.

Linear Regression. With ten workers, all the three approaches
are significantly faster in processing an epoch of Linear Regres-
sion than using five workers. And if we further use fifty workers,
SketchML and ZipML even run faster. Nevertheless, Adam encoun-
ters a worse performance for the same reason we have discussed.

4.6 Summary
In summary, SketchML outperforms Adam and ZipML on a range

of ML algorithms and datasets. SketchML consumes remarkably
less time to execute an epoch. Although it needs more epoch to
get converged, the overall performance still surpasses the other two
competitors. Besides, SketchML reveals a good ability of scalability.
We have also conducted more experiments to evaluate the perfor-
mance of SketchML, including the performance of a single node
system, the sensitivity against hyper-parameters, results on neural
nets, and different wight types. Due to the space constraint, we put
the experimental results and analysis in Appendix B.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

5 10 50

workers

0

500

1000

1500

2000

2500

se
co

n
d
s

SketchML Adam ZipML

(a) Logistic Regression, KDD12

5 10 50

workers

500

1000

se
co

n
d
s

SketchML Adam ZipML

(b) Support Vector Machine, KDD12

5 10 50

workers

0

500

1000

1500

2000

2500

se
co

n
d
s

SketchML Adam ZipML

(c) Linear Regression, KDD12

Figure 11: Scalability Comparison. The evaluated metric is the average run time per epoch in terms of the number of workers
(executors). Run time is in seconds.

Limitation. As stated in the introduction, our scenario has two
properties — sparse gradients and communication-intensive work-
loads. Therefore, there are a few cases where our method is not such
efficient. 1) For dense gradients, the value compression still works,
but the key compression is redundant. 2) For computation-intensive
workloads, the benefit of compression is not so significant.

5 RELATED WORK
Distributed machine learning (ML) has attracted more and more

interests in recent years. Many machine learning algorithms are
trained with the first-order-gradient optimization methods, stochastic
gradient descent (SGD) in most cases [8]. To distribute SGD, a
prevalent avenue is to partition the training dataset across a set of
workers and let each worker calculate gradients independently. A
coordinator then collects gradients from all the workers and updates
the trained model. With the trend of increasing data size and model
size, the phase of aggregating gradients becomes the main bottleneck
of the system. To address this problem, many works have studied
how to compress the gradients to save the communication cost.

Lossless compression methods have been widely used to compress
integer data, such as digital images [18]. However, these methods
cannot be used for floating-point gradients. A class of lossy meth-
ods was proposed to address this problem by transforming floating-
point data to low-precision representations. Some approaches choose
threshold based truncation [39] to encode floating-point data to one
bit. But this strategy is too aggressive for SGD to get converged since
a lot of gradients are abandoned. Another type of lossy method is
the quantification based method such as ZipML [5, 30, 45]. Instead
of using one bit, a quantification strategy transforms a floating-point
number to an integer according to the value range of original data.
Although this method seems a good solution as it achieves a tradeoff
between efficient compression and correct convergence, it cannot
fit the context of many large-scale ML cases. First, it is a general
phenomenon that the transferred gradients are sparse. This is unsur-
prising since many trained datasets are high dimensional and sparse.
To save space, we often store the nonzero elements in a gradient as
key-value pairs where the key refers to a gradient dimension and the
value refers to the corresponding dimension value. Existing quan-
tification methods only compress values, therefore the compression
performance is limited. Second, due to the data skew and complex
slopes of the objective function, the distribution of gradient values is
often nonuniform. Worse still, most gradient values locate in a small
range near zero. The current quantification techniques assume that

the processed data is uniformly distributed. They equally divide the
value range into several intervals. Therefore, many small gradient
values are quantified to zero, inducing a large quantization error.

The data sketch algorithm is an orthogonal technique that uses
a small data structure to approximate the original data distribution.
Currently, there are two categories of sketch algorithms, i.e., the
quantile sketch and the frequency sketch. The quantile sketch takes
a stream of items and produces a probabilistic data structure that
depicts the value distribution of items. Different from quantification
methods, a quantile sketch divides the value range into intervals such
that each interval contains the same number of items. In this way, it
can discover the pattern of a nonuniform distribution. As the most
classical method, GK sketch and its variants are extensively used
to conduct big data analytics [11, 16, 46]. The frequency sketch is
designed to estimate the occurring frequency of items [12]. Specif-
ically, the Count-Min sketch builds a few hash tables for the input
items, and addresses the hash collision by an additive-and-minimum
strategy. Although the existing sketch techniques are powerful in
their targeted scenarios, they cannot be directly applied to compress
gradient data. To the best of our knowledge, there is no work that
uses the sketch algorithms to compress floating-point gradients to
a low-precision representation and strengthen distributed machine
learning workloads.

6 CONCLUSION
In this paper, in order to accelerate distributed machine learning,

we proposed a sketch based method, namely SketchML, to com-
press the communicated key-value gradients. First, we introduced a
method that uses a quantile sketch and a bucket sort to represent the
gradient values with smaller binary encoded bucket indexes. Then,
we designed a MinMaxSketch algorithm to approximately compress
the bucket indexes. Further, we presented a delta-binary method to
encode the gradient keys. We also theoretically analyzed the error
bounds of proposed methods. Empirical results on a range of large-
scale datasets and machine learning algorithms demonstrated that
SketchML can be up to 10× faster than the state-of-the-art methods.

ACKNOWLEDGEMENTS
This research is funded by National Natural Science Founda-

tion of China (No. 61572039, 61702016, U1536201), 973 pro-
gram (No. 2014CB340405), China Postdoctoral Science Foundation
(2017M610019), and PKU-Tencent joint research Lab. Tong Yang
is the corresponding author.

SketchML: Accelerating Distributed Machine Learning with Data Sketches SIGMOD’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] [n. d.]. Data Sketches. https://datasketches.github.io/. ([n. d.]).
[2] [n. d.]. KDD Cup 2010. http://www.kdd.org/kdd-cup/. ([n. d.]).
[3] [n. d.]. KDD Cup 2012. https://www.kaggle.com/c/kddcup2012-track1. ([n. d.]).
[4] [n. d.]. MNIST. http://yann.lecun.com/exdb/mnist/. ([n. d.]).
[5] Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016. QSGD: Ran-

domized Quantization for Communication-Optimal Stochastic Gradient Descent.
arXiv preprint arXiv:1610.02132 (2016).

[6] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al.
2010. A view of cloud computing. Commun. ACM 53, 4 (2010), 50–58.

[7] Nathan Bell and Michael Garland. 2008. Efficient sparse matrix-vector multipli-
cation on CUDA. Technical Report. Nvidia Corporation.

[8] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010. 177–186.

[9] Léon Bottou. 2012. Stochastic gradient descent tricks. In Neural Networks: Tricks
of the Trade. 421–436.

[10] Sébastien Bubeck et al. 2015. Convex optimization: Algorithms and complexity.
Foundations and Trends® in Machine Learning 8, 3-4 (2015), 231–357.

[11] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[12] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[13] Jeffrey Dean, Greg Corrado, Rajat Monga, et al. 2012. Large scale distributed deep
networks. In Advances in neural information processing systems. 1223–1231.

[14] L Peter Deutsch. 1996. DEFLATE compressed data format specification version
1.3. (1996).

[15] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[16] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-
tion of quantile summaries. In ACM SIGMOD Record, Vol. 30. 58–66.

[17] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and
future directions. Future generation computer systems 29, 7 (2013), 1645–1660.

[18] Stuart C Hinds, James L Fisher, and Donald P D’Amato. 1990. A document skew
detection method using run-length encoding and the Hough transform. In Pattern
Recognition, 1990. Proceedings., 10th International Conference on, Vol. 1. IEEE,
464–468.

[19] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More effective
distributed ml via a stale synchronous parallel parameter server. In Advances in
neural information processing systems. 1223–1231.

[20] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied
logistic regression. Vol. 398. John Wiley & Sons.

[21] Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu. 2015. Ten-
centrec: Real-time stream recommendation in practice. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. ACM,
227–238.

[22] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware dis-
tributed parameter servers. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data. ACM, 463–478.

[23] Jiawei Jiang, Ming Huang, Jie Jiang, and Bin Cui. 2017. TeslaML: Steering
Machine Learning Automatically in Tencent. In Asia-Pacific Web (APWeb) and
Web-Age Information Management (WAIM) Joint Conference on Web and Big
Data. Springer, 313–318.

[24] Jie Jiang, Jiawei Jiang, Bin Cui, and Ce Zhang. 2017. TencentBoost: A Gradient
Boosting Tree System with Parameter Server. In Data Engineering (ICDE), 2017
IEEE 33rd International Conference on. 281–284.

[25] Jiawei Jiang, Yunhai Tong, Hua Lu, Bin Cui, Kai Lei, and Lele Yu. 2017. GVoS: A
General System for Near-Duplicate Video-Related Applications on Storm. ACM
Transactions on Information Systems (TOIS) 36, 1 (2017), 3.

[26] Rie Johnson and Tong Zhang. 2013. Accelerating stochastic gradient descent
using predictive variance reduction. In Advances in neural information processing
systems. 315–323.

[27] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[28] Donald E Knuth. 1985. Dynamic huffman coding. Journal of algorithms 6, 2
(1985), 163–180.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[30] Mu Li, Ziqi Liu, Alexander J Smola, and Yu-Xiang Wang. 2016. DiFacto: Dis-
tributed Factorization Machines. In Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining. ACM, 377–386.

[31] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. 2014. Efficient
mini-batch training for stochastic optimization. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 661–670.

[32] Brendan McMahan and Matthew Streeter. 2014. Delay-tolerant algorithms for
asynchronous distributed online learning. In Advances in Neural Information
Processing Systems. 2915–2923.

[33] Deanna Needell, Rachel Ward, and Nati Srebro. 2014. Stochastic gradient descent,
weighted sampling, and the randomized kaczmarz algorithm. In Advances in
Neural Information Processing Systems. 1017–1025.

[34] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser,
Karol Kurach, and James Martens. 2015. Adding gradient noise improves learning
for very deep networks. arXiv preprint arXiv:1511.06807 (2015).

[35] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro.
2009. Robust stochastic approximation approach to stochastic programming.
SIAM Journal on optimization 19, 4 (2009), 1574–1609.

[36] Yurii Nesterov. 1983. A method for unconstrained convex minimization problem
with the rate of convergence O (1/kˆ 2). In Doklady AN USSR, Vol. 269. 543–547.

[37] Ning Qian. 1999. On the momentum term in gradient descent learning algorithms.
Neural networks 12, 1 (1999), 145–151.

[38] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 936.
John Wiley & Sons.

[39] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
DNNs.. In INTERSPEECH. 1058–1062.

[40] Johan AK Suykens and Joos Vandewalle. 1999. Least squares support vector
machine classifiers. Neural processing letters 9, 3 (1999), 293–300.

[41] Reginald P Tewarson. 1973. Sparse matrices. Academic Press.
[42] Lele Yut, Ce Zhang, Yingxia Shao, and Bin Cui. 2017. LDA*: a robust and

large-scale topic modeling system. Proceedings of the VLDB Endowment 10, 11
(2017), 1406–1417.

[43] Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

[44] Ce Zhang and Christopher Ré. 2014. DimmWitted: A study of main-memory
statistical analytics. Proceedings of the VLDB Endowment 7, 12 (2014), 1283–
1294.

[45] Hantian Zhang, Kaan Kara, Jerry Li, Dan Alistarh, Ji Liu, and Ce Zhang. 2016.
ZipML: An End-to-end Bitwise Framework for Dense Generalized Linear Models.
arXiv:1611.05402 (2016).

[46] Qi Zhang and Wei Wang. 2007. A fast algorithm for approximate quantiles in
high speed data streams. In Scientific and Statistical Database Management, 2007.
SSBDM’07. 19th International Conference on. IEEE, 29–29.

[47] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining interesting
locations and travel sequences from GPS trajectories. In Proceedings of the 18th
international conference on World wide web. ACM, 791–800.

[48] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. 2010. Paral-
lelized stochastic gradient descent. In Advances in neural information processing
systems. 2595–2603.

[49] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on information theory 23, 3 (1977), 337–343.

A MATHEMATICAL ANALYSIS OF
SKETCHML

In this section, we theoretically analyze the correctness and the
error bound of the three components of SketchML.

A.1 Quantile-Bucket Quantification
A.1.1 Variance of Stochastic Gradients.
A series of existing works has indicated that stochastic gradient

descent (SGD) suffers from a slower convergence rate than gradient
descent (GD) due to the inherent variance [35]. To be precise, we
refer to Theorem A.1.

THEOREM A.1. (Theorem 6.3 of [10]) Let 𝑓 be convex and 𝜃* the
optimal point. Choosing step length appropriately, the convergence
rate of SGD is

E[𝑓(1
𝑇

𝑇∑︁
𝑡=1

𝜃𝑡+1)− 𝑓(𝑤*)] 6 Θ(
1

𝑇
+

𝜎

𝑇
),

https://datasketches.github.io/
http://www.kdd.org/kdd-cup/
https://www.kaggle.com/c/kddcup2012-track1
http://yann.lecun.com/exdb/mnist/

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

where 𝜎 is the upper bound of mean variance

𝜎2 >
1

𝑇

𝑇∑︁
𝑡=1

E||𝑔𝑡 −∇𝑓(𝜃𝑡)||2.

A key property of a stochastic gradient is the variance. Many
methods are applied to reduce the variance, such as mini-batch [31],
weight sampling [33] and SVRG [26].

We refer 𝑔 = {𝑔𝑖}𝑑𝑖=1 to the quantificated gradient. Here we
abuse the notation that in Theorem A.1 the subscript of 𝑔𝑡 indicates
the 𝑡-th epoch to which it belongs, while in the following analysis
that of 𝑔𝑖 indicates the 𝑖-th nonzero value of gradient. The variance
of 𝑔 can be decomposed into

E||𝑔 −∇𝑓(𝜃)||2 6 E||𝑔 − 𝑔||2 + E||𝑔 −∇𝑓(𝜃)||2.
The second term comes from the stochastic gradient, which can be
reduced by the methods mentioned above. Our goal is to find out a
quantification method to make the first term as small as possible.

A.1.2 Variance Bound of Quantile-Bucket Quantification.
In our framework, we use the quantile-bucket quantification

method. For the sake of simplicity, we regard the maximum value
in the gradient vector as the 𝑞 + 1-st quantile. The value range
of gradients, denoted by [𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥], is split into 𝑞 intervals by
𝑞 + 1 quantiles 𝑣 = {𝑣𝑗}𝑞+1

𝑗=1 . Since we separate positive and neg-
ative values and create one quantile sketch for each of them, we
assume there is always a quantile split that equals to 0. Specifi-
cally, 𝜑𝑚𝑖𝑛 = 𝑣1 < · · · < 𝑣𝑏𝑧𝑒𝑟𝑜 = 0 < · · · < 𝑣𝑞+1 = 𝜑𝑚𝑎𝑥.
Also, we assume [𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥] ⊂ [−1, 1], otherwise we can use
𝑀(𝑔) = ||𝑔|| as the scaling factor.

THEOREM A.2. The variance E||𝑔−𝑔||2 introduced by quantile-
bucket quantification is bounded by

𝑑

4𝑞
(𝜑2

𝑚𝑖𝑛 + 𝜑2
𝑚𝑎𝑥),

where 𝜑𝑚𝑖𝑛 and 𝜑𝑚𝑎𝑥 are the minimum and maximum values in the
gradient vector: 𝜑𝑚𝑖𝑛 = min {𝑔𝑖} , 𝜑𝑚𝑎𝑥 = max {𝑔𝑖}.

Proof: Using the quantiles as split values, the expected number of
values that fall into the same interval should be 𝑑

𝑞
, and for each 𝑔𝑖,

(𝑔𝑖 − 𝑔𝑖)
2 =

(︁1
2
(𝑣𝑏(𝑖) + 𝑣𝑏(𝑖+1))− 𝑔𝑖

)︁2
6

1

4
(𝑣𝑏(𝑖+1) − 𝑣𝑏(𝑖))

2,

where 𝑏(𝑖) is the index of bucket into which 𝑔𝑖 falls. Thus we have

E||𝑔 − 𝑔||2 = E[
𝑑∑︁

𝑖=1

(𝑔𝑖 − 𝑔𝑖)
2] 6

𝑑

4𝑞

𝑞∑︁
𝑗=1

(𝑣𝑗+1 − 𝑣𝑗)
2

=
𝑑

4𝑞

(︁ 𝑏𝑧𝑒𝑟𝑜−1∑︁
𝑗=1

(𝑣𝑗+1 − 𝑣𝑗)
2 +

𝑞∑︁
𝑗=𝑏𝑧𝑒𝑟𝑜

(𝑣𝑗+1 − 𝑣𝑗)
2
)︁

6
𝑑

4𝑞

(︂(︁ 𝑏𝑧𝑒𝑟𝑜−1∑︁
𝑗=1

(𝑣𝑗+1 − 𝑣𝑗)
)︁2

+
(︁ 𝑞∑︁

𝑗=𝑏𝑧𝑒𝑟𝑜

(𝑣𝑗+1 − 𝑣𝑗)
)︁2)︂

=
𝑑

4𝑞
(𝜑2

𝑚𝑖𝑛 + 𝜑2
𝑚𝑎𝑥).

(1)

COROLLARY A.3. When the distribution of gradients is not bi-
ased, i.e., there exists 𝛿 > 1 such that ||𝑣||2

𝑣2
1+𝑣2

𝑞+1
> 𝛿, Equation (1) is

bounded by 1
4(𝛿−1)

||𝑔||2.

Proof: Obviously 𝜑2
𝑚𝑖𝑛 + 𝜑2

𝑚𝑎𝑥 = 𝑣21 + 𝑣2𝑞+1 > 1
𝛿−1

∑︀𝑞
𝑗=2 𝑣

2
𝑗 .

Thus we have
𝑑

4𝑞
(𝜑2

𝑚𝑖𝑛 + 𝜑2
𝑚𝑎𝑥) 6

1

4(𝛿 − 1)

𝑞∑︁
𝑗=2

𝑑

𝑞
𝑣2𝑗 6

1

4(𝛿 − 1)
||𝑔||2.

Considering the most widely used uniform quantification method, Al-
istarh et al. proved the bound of its variance is min(𝑑

𝑞2
,
√
𝑑
𝑞
)||𝑔||2 [5].

Therefore quantile-bucket quantification generates a better bound
when 𝑑 goes to infinite.

A.2 MinMaxSketch
A.2.1 Error Bound of the MinMaxSketch.
Let 𝛼 represent the average number of counters in any given ar-

ray of the MinMaxSketch that are incremented per insertion. Note
that for the standard CM-sketch, the value of 𝛼 is equal to 1 be-
cause in the standard CM-sketch, exactly one counter is incremented
in each array when inserting an item. For the MinMaxSketch, 𝛼
is less than or equal to 1. For any given item 𝑒, let 𝑓(𝑒) represent
its actual frequency and let 𝑓(𝑒) represent the estimate of its fre-
quency returned by the MinMaxSketch. Let 𝑁 represent the to-
tal number of insertions of all items into the MinMaxSketch. Let
ℎ𝑖(.) represent the hash function associated with the 𝑖th array of
the MinMaxSketch, where 1 6 𝑖 6 𝑑. Let 𝑋𝑖,(𝑒)[𝑗] be the random
variable that represents the difference between the actual frequency
𝑓(𝑒) of the item 𝑒 and the value of the 𝑗 th counter in the 𝑖th array,
i.e., 𝑋𝑖,(𝑒)[𝑗] = 𝐴𝑖[𝑗] − 𝑓(𝑒), where 𝑗 = ℎ𝑖(𝑒). Due to hash col-
lisions, multiple items will be mapped by the hash function ℎ𝑖(.)
to the counter 𝑗, which increases the value of 𝐴𝑖[𝑗] beyond 𝑓𝑒 and
results in over-estimation error. As all hash function have uniformly
distributed output, 𝑃𝑟[ℎ𝑖(𝑒1) = ℎ𝑖(𝑒2)] = 1/𝑤. Therefore, the ex-
pected value of any counter 𝐴𝑖[𝑗], where 1 6 𝑖 6 𝑑 and 1 6 𝑗 6 𝑤,
is 𝛼𝑁/𝑤. Let 𝜖 and 𝛿 be two numbers that are related to 𝑑 and 𝑤 as
follows: 𝑑 = ⌈ln(1/𝛿)⌉ and 𝑤 = ⌈exp /𝜖⌉. The expected value of
𝑋𝑖,(𝑒)[𝑗] is given by the following expression.

𝐸(𝑋𝑖,(𝑒)[𝑗]) = 𝐸(𝐴𝑖[𝑗]− 𝑓(𝑒)) 6 𝐸(𝐴𝑖[𝑗]) =
𝛼𝑁

𝑤
6

𝜖𝛼

exp
𝑁.

Finally, we derive the probabilistic bound on the over-estimation
error of the MinMaxSketch.

𝑃𝑟[ˆ𝑓(𝑒) > 𝑓(𝑒) + 𝜖𝛼𝑁] = 𝑃𝑟[∀𝑖, 𝐴𝑖[𝑗] > 𝑓(𝑒) + 𝜖𝛼𝑁]

= (𝑃𝑟[𝐴𝑖[𝑗]− 𝑓(𝑒) > 𝜖𝛼𝑁])𝑑

= (𝑃𝑟[𝑋𝑖,(𝑒)[𝑗] > 𝜖𝛼𝑁])𝑑

6 (𝑃𝑟[𝑋𝑖,(𝑒)[𝑗] > exp𝐸(𝑋𝑖,(𝑒)[𝑗]))
𝑑

6 exp−𝑑 6 𝛿.

A.2.2 The Correctness Rate of the MinMaxSketch.
Next, we theoretically derive the correctness rate of the

MinMaxSketch, which is defined as the expected percentage of el-
ements in the multiset for which the query response contains no
error. In deriving the correctness rate, we make one assumption:
all hash functions are pairwisely independent. Before deriving this
correctness rate, we first prove following theorem.

THEOREM A.4. In the MinMaxSketch, the value of any given
counter is equal to the frequency of the least frequent element that
maps to it.

SketchML: Accelerating Distributed Machine Learning with Data Sketches SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Proof: We prove this theorem using mathematical induction on
number of insertions, represented by 𝑘.
Base Case 𝑘 = 0: The theorem clearly holds for the base case,
because before the insertions, the frequency of the least frequent
element is 0, which is also the value of all counters.
Induction Hypothesis 𝑘 = 𝑛: Suppose the statement of the theorem
holds true after 𝑛 insertions.
Induction Step 𝑘 = 𝑛+ 1: Let 𝑛+ 1st insertion be of any element
𝑒 that has previously been inserted 𝑎 times. Let 𝛼𝑖(𝑘) represent
the values of the counter 𝐹𝑖[ℎ𝑖(𝑒)%𝑤] after 𝑘 insertions, where
0 6 𝑖 6 𝑑 − 1. There are two cases to consider: 1) 𝑒 was the
least frequent element when 𝑘 = 𝑛; 2) 𝑒 was not the least frequent
element when 𝑘 = 𝑛.
Case 1: If 𝑒 was the least frequent element when 𝑘 = 𝑛, then
according to our induction hypotheses, 𝛼𝑖(𝑛) = 𝑎. After inserting 𝑒,
it will still be the least frequent element and its frequency increases to
𝑎+1. As per our MinMaxSketch scheme, the counter 𝐹𝑖[ℎ𝑖(𝑒)%𝑤]
will be incremented once. Consequently, we get 𝛼𝑖(𝑛+ 1) = 𝑎+ 1.
Thus for this case, the theorem statement holds because the value of
the counter 𝐹𝑖[ℎ𝑖(𝑒)%𝑤] after insertion is still equal to the frequency
of the least frequent element, which is 𝑒.
Case 2: If 𝑒 was not the least frequent element when 𝑘 = 𝑛, then
according to our induction hypotheses, 𝛼𝑖(𝑛) > 𝑎. After inserting 𝑒,
it may or may not become the least frequent element. If it becomes
the least frequent element, it means that 𝛼𝑖(𝑛) = 𝑎 + 1 and as
per our MinMaxSketch scheme, the counter 𝐹𝑖[ℎ𝑖(𝑒)%𝑤] will stay
unchanged. Consequently, we get 𝛼𝑖(𝑛+1) = 𝛼𝑖(𝑛) = 𝑎+1. Thus
for this case, the theorem statement again holds because the value of
the counter 𝐹𝑖[ℎ𝑖(𝑒)%𝑤] after insertion is equal to the frequency of
the new least frequent element, which is 𝑒.

After inserting 𝑒, if it does not become the least frequent element,
then it means 𝛼𝑖(𝑛) > 𝑎 + 1 and as per our the MinMaxSketch
scheme, the counter 𝐹𝑖[ℎ𝑖(𝑒)%𝑤] will stay unchanged. Conse-
quently, 𝛼𝑖(𝑛 + 1) = 𝛼𝑖(𝑛) > 𝑎 + 1. Thus, the theorem again
holds because the value of the counter 𝐹𝑖[ℎ𝑖(𝑒)%𝑤] after inser-
tion is still equal to the frequency of the element that was the least
frequent after 𝑛 insertions. �

Next, we derive the correctness rate of the MinMaxSketch. Let 𝑣
be the number of distinct elements inserted into the MinMaxSketch
and are represented by 𝑒1, 𝑒2, . . . , 𝑒𝑣 . Without loss of generality, let
the element 𝑒𝑙+1 be more frequent than 𝑒𝑙, where 1 6 𝑙 6 𝑣 − 1.
Let 𝑋 be the random variable representing the number of elements
hashing into the counter 𝐹𝑖[ℎ𝑖(𝑒𝑙)%𝑤] given the element 𝑒𝑙, where
0 6 𝑖 6 𝑑− 1 and 1 6 𝑙 6 𝑣. Clearly, 𝑋 ∼ Binomial(𝑣− 1, 1/𝑤).

From Theorem 1, we conclude that if 𝑒𝑙 has the highest frequency
among all elements that map to the given counter 𝐹𝑖[ℎ𝑖(𝑒𝑙)%𝑤],
then the query result for 𝑒𝑙 will contain no error. Let 𝐴 be the event
that 𝑒𝑙 has the maximum frequency among 𝑥 elements that map
to 𝐹𝑖[ℎ𝑖(𝑒𝑙)%𝑤]. The probability 𝑃{𝐴} is given by the following
equation:

𝑃{𝐴} =

(︂
𝑙 − 1
𝑥− 1

)︂
/

(︂
𝑣 − 1
𝑥− 1.

)︂
(where 𝑥 6 𝑙)

Let 𝑃 ′ represent the probability that the query result for 𝑒𝑙 from any
given counter contains no error. It is given by:

𝑃 ′ =

𝑙∑︁
𝑥=1

𝑃{𝐴} × 𝑃{𝑋 = 𝑥}

=

𝑙∑︁
𝑥=1

(︀
𝑙−1
𝑥−1

)︀(︀
𝑣−1
𝑥−1

)︀(︃𝑣 − 1

𝑥− 1

)︃(︁ 1

𝑤

)︁𝑥−1(︁
1− 1

𝑤

)︁𝑣−𝑥

=
(︁
1− 1

𝑤

)︁𝑣−𝑙

.

As there are 𝑑 counters, the overall probability that the query result
of 𝑒𝑙 is correct is given by the following equation.

𝑃CR{𝑒𝑙} = 1−
(︂
1−

(︁
1− 1

𝑤

)︁𝑣−𝑙
)︂𝑑

.

The equality above holds when all 𝑣 elements have different frequen-
cies. If two or more elements have equal frequencies, the correctness
rate increases slightly. Consequently, the expected correctness rate
𝐶𝑟 of the MinMaxSketch is bound by:

𝐶𝑟 >

∑︀𝑣
𝑙=1 𝑃CR{𝑒𝑙}

𝑣
=

∑︀𝑣
𝑙=1

(︁
1−

(︀
1− (1− 1

𝑤
)𝑣−𝑙

)︀𝑑)︁
𝑣

. (2)

A.3 Delta-Binary Encoding
Delta-Binary Encoding is a lossless compression method, but its

average space cost cannot be calculated exactly. Here we focus on
the expected size for one key. As aforementioned, we divide all the
quantile buckets into 𝑟 groups. Therefore, the number of nonzero
keys that fall into the same group is expected to be 𝑑

𝑟
. Assuming

the arrangement of dimensions in dataset is random, the expected
difference between two keys should be 𝑟𝐷

𝑑
. As a result, the expected

bytes for each key is
⌈︀
log256

𝑟𝐷
𝑑

⌉︀
=
⌈︀
1
8
log2

𝑟𝐷
𝑑

⌉︀
. For instance,

with 𝑟 = 8, we can compress each key into 1 byte if we choose a
large batch size such that 𝑑

𝐷
> 1

32
.

Fortunately, the arrangement of dimensions in dataset is usually
not random, i.e., dimensions with strong relationship happen to
appear in consecutive keys, which makes the difference between two
nonzero keys smaller. In practice, we find that the average size for
one key (including two flag bits) is around 1.5 bytes.

Considering bitmap, another useful data structure for storing keys
with compression rate up to 8. Nonetheless, in our framework bitmap
is not so useful as it should be. In order to indicate the keys for
different groups, we have to create one bitmap for each of them,
which comes out with

⌈︀
𝑟𝐷
8

⌉︀
bytes in total. As a result, Delta-Binary

Encoding is a better choice.

B MORE EXPERIMENTS
B.1 Comparison with A Single Node System

To give a reference point of performance, we compare SketchML
with SkLearn, a state-of-the-art single node system on Cluster-1.
Due to the memory constraint, we choose KDD10 dataset. SkLearn
is executed on a single machine, while SketchML is executed on five
and ten machines, denoted by SketchML-5 and SketchML-10. The
other settings are the same as Section 4.2. Figure 12 shows the run
time of twenty epochs. SketchML-5 is 2.1×, 2.7×, and 2× faster
than SkLearn in training three algorithms. SketchML-10 further
brings 1.3×, 1.6×, and 1.5× speedup compared with SketchML-5.

Although the distribution of SketchML brings nonnegligible com-
munication overhead, it still outperforms SkLearn as a result of
computation speedup, message compression, and faster data loading.
For example, SkLearn consumes more than ten minutes to load the
dataset owing to slow disk I/O. Using five machines reduces the

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui

LR SVM Linear
0

500

1000

1500

2000

2500

3000

se
co

nd
s

End-to-end Run Time

SketchML-10 SketchML-5 SkLearn

Figure 12: Comparison with SkLearn. (KDD10, LR)

2000 4000

seconds

0.212

0.22

lo
ss

Quantile Size

128 256

0 2000 4000

seconds

Number of Sketch Row

2 4

0 2000 4000

seconds

Number of Sketch Col

d/5 d/2

Figure 13: Sensitivity (KDD12, Linear, Convergence).
time of data loading to two minutes. For a small dataset, a single
machine is enough in many cases. However, for a large dataset, a sin-
gle machine is often impracticable owing to expensive data loading,
insufficient memory capacity, and limited computation power.

B.2 Sensitivity Against Hyper Parameters
SketchML contains three hyper-parameters — the size of quantile

sketch (default 128), the row of MinMaxSketch (default 4), and the
column of MinMaxSketch (default 𝑑

5
). Here, we vary their values

and investigate the sensitivity of our method. We run KDD12 dataset
to train a linear regression model on Cluster-2 and use the same
setting as Section 4.3.1.

default quan_256 row_4 col_d/2

Run time 360 353 420 383

Table 3: Sensitivity (KDD12, Linear, second per epoch).

Size of Quantile Sketch. As shown in Figure 13, a larger size
accelerates the training because the quantization error is reduced.
According to Table 3, the time consumed by each epoch is not
obviously affected.

Row of MinMaxSketch. We next study the influence of the row
of MinMaxSketch, i.e., the number of hash tables. More hash tables
can reduce the possibility of hash collision, at the expense of more
communication cost. Therefore, the convergence is slower when we
increase the number of rows to four.

Column of MinMaxSketch. The default column is 𝑑
5

where 𝑑
is the number of nonzero gradient items. Increasing the number
of column from 𝑑

5
to 𝑑

2
brings less efficient, yet more accurate,

compression. Overall, the convergence performance is significantly
enhanced.

B.3 Experiment on Neural Nets
The above evaluated algorithms belong to generalized linear mod-

els. However, our Sketch mechanism can be applied on Neural
Network models, such as multilayer perceptron (MLP) and Con-
volutional Neural Networks (CNN) by transferring gradients with
our compression method. In this section, we train an MLP model

0 100 200 300 400 500
time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

SketchML Adam ZipML

(a) Short-Term Convergence

0 500 1000 1500 2000 2500
time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

SketchML Adam ZipML

(b) Long-Term Convergence

Figure 14: Performance on Neural Nets.
as a representative on MNIST [4], which consists of 60000 training
images and 10000 testing images. The network is composed of one
input layer (size: 20× 20), two fully connected layers (size: 600),
and one output layer (size: 10). The batch size is 0.1% of the dataset,
i.e., 60 images. The learning rate is 0.005.

As shown in Figure 14(a), SketchML and ZipML converge faster
than Adam at the beginning of the training phase. In a long term,
SketchML achieves the fastest convergence rate and the smallest loss,
followed by Adam. Though MLP is a nonlinear model, SketchML
outperforms Adam because MinMaxSketch reduces the gradient
variance and therefore avoids model oscillation. ZipML, however,
cannot perform well in a long-term training. Since gradients become
smaller as the training proceeds, ZipML quantizes many of them to
zero and causes slow convergence.

We can also see that although SketchML still performs better NN
models, the performance gap is not as big as that on Linear Models.
As stated in the introduction, our scenario has two properties —
sparse gradients and communication-intensive workloads. For dense
gradients, the value compression still works, but the key compression
is redundant; and for computation-intensive workloads, the benefit
of compression is not that significant.

B.4 Weight Type of Compression
In Section 4.3, we use 16 bits for ZipML and double type for

Adam. Here, we evaluate more weight types and show the result in
Table 4. The experimental settings are the same as Section 4.3.1.

SketchML ZipML-8bit ZipML-16bit Adam-float Adam-double

100 231 278 725 1041

0.6905 0.6932 0.6919 0.6911 0.6914

Table 4: Different Weight Types (KDD12, LR). The first row
denotes the run time per epoch in seconds. The second row de-
notes the minimal loss after two hours.

ZipML runs 1.2× faster with 8 bits than 16 bits. However, as
stated in Section 4.1, ZipML converges badly even if we fine tune
the learning rate. Adam with float-type converges 1.4× faster than
the double-type counterpart. The performance improvement is unsur-
prising since the communication cost is reduced. SketchML achieves
the fastest speed — 2.3× and 7.1× faster than ZipML and Adam.
Within the same time, i.e., two hours, SketchML can converge to the
smallest loss compared with other four competitors, verifying the
fast convergence of SketchML.

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Overview of Technical Contributions

	2 Preliminaries
	2.1 Definition of Notations
	2.2 Data Model
	2.3 Quantile Sketch
	2.4 Frequency Sketch

	3 The Framework of SketchML
	3.1 Overview of The Framework
	3.2 Quantile-Bucket Quantification
	3.3 MinMaxSketch
	3.4 Delta-Binary Encoding
	3.5 Analysis of Space Cost

	4 Experiments
	4.1 Experiment Setting
	4.2 Efficiency of Proposed Methods
	4.3 End-to-end Performance
	4.4 Model Accuracy
	4.5 Scalability
	4.6 Summary

	5 Related Work
	6 Conclusion
	References
	A Mathematical Analysis of SketchML
	A.1 Quantile-Bucket Quantification
	A.2 MinMaxSketch
	A.3 Delta-Binary Encoding

	B More Experiments
	B.1 Comparison with A Single Node System
	B.2 Sensitivity Against Hyper Parameters
	B.3 Experiment on Neural Nets
	B.4 Weight Type of Compression

