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ABSTRACT
When network is undergoing problems such as congestion,

scan attack, DDoS attack, etc., measurements are much more

important than usual. In this case, traffic characteristics in-

cluding available bandwidth, packet rate, and flow size dis-

tribution vary drastically, significantly degrading the perfor-

mance of measurements. To address this issue, we propose

the Elastic sketch. It is adaptive to currently traffic char-

acteristics. Besides, it is generic to measurement tasks and

platforms. We implement the Elastic sketch on six platforms:

P4, FPGA, GPU, CPU, multi-core CPU, and OVS, to process

six typical measurement tasks. Experimental results and the-

oretical analysis show that the Elastic sketch can adapt well

to traffic characteristics. Compared to the state-of-the-art,

the Elastic sketch achieves 44.6 ∼ 45.2 times faster speed

and 2.0 ∼ 273.7 smaller error rate.
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1 INTRODUCTION
1.1 Background and Motivation
Network measurements provide indispensable information

for network operations, quality of service, capacity planning,

network accounting and billing, congestion control, anom-

aly detection in data centers and backbone networks [1–9].

Recently, sketch-based solutions
1
[8, 10] have beenwidely ac-

cepted in networkmeasurements [2, 3, 11, 12], thanks to their

higher accuracy compared to sampling methods [2, 4, 12]

and their speed.

Existing measurement solutions [4, 8, 10, 12–17] mainly

focus on a good trade-off among accuracy, speed andmemory

usage. The state-of-the-art UnivMon [2] pays attention to

an additional aspect, generality, namely using one sketch to

process many tasks, and makes a good trade-off among these

four dimensions. Although existing work has made great

contributions, they do not focus on one fundamental need:

achieving accurate network measurements no matter how

traffic characteristics (including available bandwidth, flow

size distribution, and packet rate) vary. Measurements are

especially important when network is undergoing problems,

1
In this paper, sketches refers to data streaming algorithms that can be used

for network measurements.
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such as network congestion, scans and DDoS attacks. In such

cases, traffic characteristics vary drastically, significantly

degrading the measurement performance. Therefore, it is

desirable to achieve accurate network measurements when

traffic characteristics vary a lot.

The first traffic characteristic is the available bandwidth.

In data centers, administrators care more about the state

of the whole network than a single link or node, known

as network-wide measurements [2, 12, 18]. In data centers,

administrators can deploy many measurement nodes, which

periodically report sketches to a collector [2, 12, 18]. It re-

quires available bandwidth for measurements, which share

the same data plane as the user traffic. However, in data

centers, network congestion is common. It can happen fre-

quently within a single second [19] and be as large as more

than half of the network bandwidth [9]. In this case, on the

one hand, measurements are especially critical for conges-

tion control and troubleshooting. One cannot wait for the

available bandwidth to be sufficient to report the sketches,

because network problems should be handled immediately.

On the other hand, network measurements should not be a

burden for the network, as pointed out in [20–27]. A good

solution is to actively compress the sketch with little accu-

racy loss, thereby reducing bandwidth usage. Therefore, it

is desirable to compress the sketch. This has not been done

before in the literature. Besides passive compression during

congestion, network operators need to proactively control

the measurement tasks as well. For example, to keep service-

level agreements (SLA) during maintenance or failures [28],

operators tend to reduce measurements and leave the band-

width for critical user traffic.

The second characteristic is the packet arrival rate (packet

rate for short) [29, 30], which is naturally variable and could

vary drastically. For example, some routing protocols or

mechanisms are proposed to adjust the packet sending rate

to optimize network performance [31–33]. Also, when the

network is under attack (e.g., a network scan or a DDoS at-

tack), most packets tend to be small. In this case, the packet

rate is very high, even though the available bandwidth might

still be significant. The processing speed of existing sketches

on software platforms is fixed in terms of packet rate. There-

fore, it does not work well when the packet rate suddenly

becomes much higher, likely failing to record important in-

formation, such as the IP addresses of attackers. Therefore,

in this case, it is desirable to accelerate the processing speed

by actively discarding the unimportant information.

The third characteristic is flow size distribution. It is

known that most flows are small [34], referred to as mouse

flows, while a very few flows are large, referred to as elephant

flows [4, 22, 35–37]. An elegant solution is to accurately sepa-

rate elephant flows from mouse flows, and use different data

structures to store them. However, the flow size distribution

varies. One might think we can predict traffic and allocate

appropriate size of memory for sketches in advance. It may

be easy to predict the number of elephant flows in one hour,

but hard at timescales of seconds or milliseconds. Therefore,

it is desirable to design an elastic data structure which can

dynamically allocate appropriate memory size for elephant

flows.

In summary, this leads us to require our sketch to be elas-
tic: adaptive to bandwidth, packet rate, and flow size dis-

tribution. Besides them, there are three other requirements

in measurements: 1) generic, 2) fast, and 3) accurate. First,

each measurement node often has to perform several tasks.

If we build one data structure for each task, processing each

incoming packet requires updating all data structures, which

is time- and space-consuming. Therefore, one generic data

structure for all tasks is desirable. Second, to be fast, the

processing time of each packet should be small and constant.

Third, being accurate implies that the error rate should be

small enoughwhen using a given amount ofmemory. Among

all existing solutions, no solution is elastic, and only two

well known solutions claim to be generic: UnivMon [2] and

FlowRadar [18]. However, our experimental results in Sec-

tion 7 show that UnivMon is practically not accurate, while

FlowRadar is not memory efficient.

1.2 Our Solution
In this paper, we propose a novel sketch, namely the Elastic

sketch. It is composed of two parts: a heavy part and a light
part. We propose a separation technique named Ostracism
to keep elephant flows in the heavy part, and mouse flows

in the light part.

To make it “elastic”, we do the following. 1) To be adaptive

to bandwidth, we propose algorithms to compress and merge

sketches. First, we can compress our sketch into an appro-

priate size to fit the current available bandwidth. Second, we

can use servers to merge sketches, and reduce the bandwidth

usage. 2) When the packet rate becomes high, we change

the processing method: each packet only accesses the heavy

part to record the information of elephant flows exclusively,

discarding the information of mouse flows. In this way, we

can achieve much faster processing speed at the cost of rea-

sonable accuracy drop. 3) As the number of elephant flows

varies and is unknown in advance, we propose an algorithm

to dynamically increase the memory size of the heavy part.

To make our solution “generic”, we do the following. 1)

To be generic in terms of measurement tasks, we keep all

necessary information for each packet, but discard the IDs

of mouse flows, which is based on our observation that the

IDs of mouse flows are memory consuming but practically

useless. 2) To be generic in terms of platforms, we propose

a software and a hardware version of the Elastic sketch, to

make our sketch easy to be implemented on both software



and hardware platforms. Further, we tailor a P4 version of

the Elastic sketch, given the popularity of this platform [38].

Owing to the separation and discarding of unnecessary

information, our sketch is accurate and fast: experimental

results show that our sketch achieves 44.6 ∼ 45.2 times

faster speed and 2.0 ∼ 273.7 smaller error rate than the

state-of-the-art: UnivMon [2].

1.3 Key Contributions
• We propose a novel sketch for network measurements,

namely the Elastic sketch. Different from previous work,

we mainly focus on the ability of the sketch to adapt to

bandwidth, packet rate and flow size distribution. The

Elastic sketch is also generic, fast and accurate.We propose

two key techniques, one to separate elephant flows from

mouse flows, and another for sketch compression.

• We implement our sketch on six platforms: P4, FPGA,

GPU, CPU, multi-core CPU, and OVS, to process six typical

measurement tasks.

• Experimental results show that our sketch works well on

all platforms, and significantly outperforms the state-of-

the-art for each of the six tasks.

2 BACKGROUND AND RELATEDWORK
In this section, we first discuss the challenges of adaptive

measurements. Second, we show how to achieve generality.

Finally, we introduce the most well-known network mea-

surement systems from the literature.

2.1 Challenges of Adaptive Measurements
As mentioned above, when network does not work well,

the network measurement is especially important. In this

case, traffic characteristics vary drastically, posing great chal-

lenges for measurement.

First, it is challenging to send measurement data (e.g.,
sketch) in appropriate size according to the available band-

width. When the available bandwidth is small, sending a

large sketch will cause long latency and affect user traffics.

Furthermore, all existing solutions fix the memory size be-

fore starting measurement. The problem is how to make the

sketch size smaller than the available bandwidth, especially

when network does not work well. A naive solution is to

build sketches in different sizes for the same network traffic.

For example, one can build two sketches S1, S2 with the

memory size of M and M/2, and then we can send S2 to the

collector when the available bandwidth is small. A better

solution is to build only S1, and quickly compress it into

a half. It is not hard for the compressed S1 to achieve the

same accuracy with S2. However, it is challenging for the

compressed S1 to achieve much higher accuracy than S2,

which is one design goal of this paper.

Second, it is challenging to make the processing speed

adaptive to the packet rate, which could vary drastically

during congestion or attack. Existing sketches often have

constant processing speed, but require several or even more

than 10memory access for processing one packet. The design

goal is 2 memory accesses for processing each packet when

packet rate is low, and 1 memory access when packet rate is

high. However, it is challenging to keep high accuracy when

using only one memory access.

Third, in real network traffic, the flow size distribution is

skewed and variable. “Skewed” means most flows are mouse

flows [34], while a few flows are elephant flows [4, 22, 35].

To achieve memory efficiency, one can manage to separate

elephant flows from mouse flows. As elephant flows are

often more important than mouse flows, it is desirable to

assign appropriate memory size for the elephant flows. Un-

fortunately, the number of elephant flows is not known in

advance and hard to predict [39]. Therefore, it is challenging

to dynamically allocate more memory for the elephant flows.

2.2 Generic Method for Measurements
We focus on the following network measurement tasks those

have been extensively studied.

Flow Size Estimation: estimating the flow size for any flow

ID. A flow ID can be any combinations of the 5-tuple, such

as source IP address and source port, or only protocol. In this

paper, we consider the number of packets of a flow as the

flow size. This can be also used for estimating the number

of bytes for each flow: assuming the minimal packet is 64

bytes, given an incoming packet with 120 bytes, we consider

it as ⌈ 120
64
⌉ = 2 packets.

Heavy Hitter Detection: reporting flows whose sizes are
larger than a predefined threshold.

Heavy Change Detection: reporting flows whose sizes in

two adjacent time windows increase or decrease beyond a

predefined threshold, to detect anomalous traffic.

Flow size Distribution Estimation: estimating the distri-

bution of flow sizes.

Entropy Estimation: estimating the entropy of flow sizes.

Cardinality Estimation: estimating the number of flows.

Generic solutions can use one data structure to support

all these measurement tasks. If the IDs and sizes of all the

flows are recorded, then we can process these tasks, but

recording all flow IDs is difficult and needs high memory

usage[4, 12]. We observe that flow IDs of mouse flows are not
necessary for these tasks. As most flows are mouse flows,

discarding IDs of mouse flows can significantly save memory

and bandwidth of transmission. For this, we need to separate

elephant flows from mouse flows. To address this problem,

we leverage the spirit of Ostracism, and propose a fast and

accurate separation algorithm. Finally, our sketch is both

generic and memory efficient.



Another meaning of generic is that the algorithm can be

implemented on various platforms. For small companies, the

traffic speed may be not high, and measurement on CPU is a

good choice. For large companies, the traffic speed could be

very high, and then hardware platforms should be used for

measurements to catch up with the high speed. Therefore,

the measurement solution should be generic, and can make

good performance trade-off on different platforms.

2.3 Network Measurements Systems
Recently, well-known systems for measurements in-

clude UnivMon [2], Trumpet [40], OpenSketch [11],

FlowRadar [18], SketchVisor [12], Marple[41], Pingmesh[42],

and DREAM[43]. Among them, FlowRadar and UnivMon

are generic, and thus are the most related work to this paper.

FlowRadar [18] records all flow IDs and flow sizes in a

Bloom filter [44] and an Invertible Bloom Lookup Table

(IBLT) [45]. To reduce memory usage, the authors propose an

elegant solution of network-wide decoding. However, com-

pared with sketches, its memory usage is still much higher.

UnivMon[2] is based on a key method named universal

streaming [46]. Accuracy is guaranteed thanks to the the-

ory of universal streaming. UnivMon is the first work to be

generic, and achieves good performance. However, it does

not handle the problem of variable traffic characteristics.

To the best of our knowledge, our sketch is the first work

that relies on a single data structure which is adaptive to

bandwidth, packet rate, and flow size distribution.

3 ELASTIC SKETCHES
3.1 Basic Version
Rationale: As mentioned above, we need to separate ele-

phant flows from mouse flows. We simplify the separation to

the following problem: given a high-speed network stream,

how to use only one bucket to select the largest flow? As the

memory size is too small, it is impossible to achieve the ex-

actly correct result, thus our goal is to achieve high accuracy.

Our technique is similar in spirit to Ostracism (Greek: ostrak-

ismos, where any citizen could be voted to be evicted from

Athens for ten years). Specifically, each bucket stores three

fields: flow ID, positive votes, and negative votes. Given an

incoming packet with flow ID f1, if it is the same as the flow

in the bucket, we increment the positive votes. Otherwise,

we increment the negative votes, and if
#neдative votes
#posit ive votes ⩾ λ,

where λ is a predefined threshold, we expel the flow from

the bucket, and insert f1 into it.

3.1.1 Data Structure and Operations.
Data structure: As shown in Figure 1, the data structure

consists of two parts: a “heavy” part recording elephant flows

and a “light” part recordingmouse flows. The heavy partH is

a hash table associated with a hash functionh(.). Each bucket

f1
h(.)

(f1,5,T,15)
4

92

1

7

0

(key, vote+, flag, vote
-
)

Heavy part Light part

(f3,12,F,11)

f5
h(.)

f8
h(.)

f1,6,T,15

f5,1,F,0

(f4,7,F,55)

11++

f9
h(.) f9,1,T,0

. . .

. . .
f4 2

+7
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-
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f8
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g2(.)
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Figure 1: Basic version of Elastic. To insert f9, after in-
crementing votes−, vote−

vote+ ⩾ λ = 8, hence f4 is evicted
from the heavy part and inserted into the light part.

of the heavy part records the information of a flow: flow ID

(key), positive votes (vote
+
), negative votes (vote

−
), and flag.

Vote
+
records the number of packets belonging to this flow

(flow size). Vote
−
records the number of other packets. The

flag indicates whether the light part may contain positive

votes for this flow.

The light part is a CM sketch. A CM sketch [10] consists

of d arrays (L1, L2, ..., Ld ). Each array is associated with

one hash function, and is composed ofw counters. Given an

incoming packet, the CM sketch extracts the flow ID, com-

putes d hash functions to locate one counter per array, and

increments thed counters (we call themd hashed counters)
by 1. The query is similar to the insertion: after obtaining

the d hashed counters, it reports the minimum one.

Insertion:2 Given an incoming packet with flow ID f , we
hash it to the bucket H[h(f )%B], where B is the number

of buckets in the heavy part. Suppose the bucket stores

(f1,vote
+, f laд1,vote

−). Similar to Ostracism, if f matches

f1, we increment vote+. Otherwise, we increment vote− and

decide whether to evict f1 according to the two votes. Specif-
ically, there are four cases:

Case 1: The bucket is empty. We insert (f , 1, F , 0) into it,

where F means no eviction has happened in the bucket. The

insertion ends.

Case 2: f = f1. We just increment vote+ by 1.

Case 3: f , f1, and
vote−
vote+ < λ after incrementing vote− by

1 (λ is a predefined threshold, e.g., λ = 8)
3
. We insert (f , 1)

into the CM sketch: increment the hashed counters by 1.

Case 4: f , f1, and
vote−
vote+ ⩾ λ after incrementing vote−

by 1. We “elect” flow f by setting the bucket to (f , 1,T , 1),
and evict flow f1 to the CM sketch: increment the mapped

counters by vote+. Note that in this case the flag is set to T

2
During insertions, we follow one principle: the insertion operations must

be one-directional, because it is hard to perform back-tracking operations

on hardware platforms.

3
According to our experimental results on different datasets, we find when

λ ∈ [4, 128], the accuracy is optimal and has little difference, and we choose

λ = 8. More detailed reason are provided in Section B.8 of our technical

report [47].



(true), because some votes of flow f may be inserted into

the light part before f is elected.

Query: For any flow not in the heavy part, the light part

(the CM sketch) reports its size. For any flow f in the heavy

part, there are two cases: 1) The flag of f is false. Its size is

the corresponding vote
+
with no error; 2) The flag of f is

true. We need to add the corresponding vote
+
and the query

result of the CM sketch.

3.1.2 Accuracy Analysis.
The estimated value of a flow in the Elastic sketch has the

following error bound, and the detailed proof is provided in

our technical report [47].

Theorem 3.1. Let vector f = (f1, f2, ..., fn) denote the size
vector for a stream, where fi denotes the size of the i-th flow.
Given two parameters ϵ andδ , letw = ⌈ eϵ ⌉ (e is Euler’s number)
and d = ⌈ln 1

δ ⌉. Let Elastic with d (d is the number of counter
arrays) and w (w is the number of counters in each array)
records the stream with f. The reported size ˆfi by Elastic for
flow i is bounded by

ˆfi ⩽ fi + ϵ ∥fl ∥1
4 < fi + ϵ ∥f∥1 (1)

with probability at least 1− δ , where fL denotes the size vector
of the sub-stream recorded by the light part.

According to Theorem 3.1, the estimation error of Elastic is

bounded by ∥fl ∥1, instead of ∥f∥1 in Count-Min. In practice,

often, most packets of a stream are recorded in the heavy

part, ∥fL ∥1 is usually significantly smaller than ∥f∥1. Thus
Elastic has a much tighter error bound than Count-Min when

the parameters (d andw) are the same.

The accuracy of Elastic is high in most cases, owing to

the separation of elephant flows and mice flows. 1) There is

no error in the heavy part: for the flows with flag of false,

the recorded vote
+
is the flow size with no error; for flows

with flag of true, the recorded vote
+
is one part of the flow

size still with no error, while the other part is recorded in

the light with error. 2) In the light part, we do not record

the flow ID, and only record the sizes of mice flows, and

thus can use many small counters (e.g., 8-bit counters), while
traditional sketch needs to use a few large counters (e.g., 32-
bit counters) to accommodate the elephant flows. Therefore,

our light part can be very accurate. In summary, the accuracy

of both elephant and mice flows is high.

The accuracy of Elastic drops in the worst case – elephant

collisions: when two or more elephant flows are mapped

into the same bucket, some elephant flows are evicted to the

light part and could make some mouse flows significantly

over-estimated.

Elephant collision rate: defined as the number of buckets

mapped by more than one elephant flows divided by the total

4 ∥x∥1 is the first moment of vector x, i.e., ∥x∥1 =
∑
xi .

number of buckets. It is proved that the number of elephant

flows that mapped to each bucket follows a Binomial distri-

bution in the literature [48]. We show only the following

formula of the elephant collision rate Phc , and the detailed

proof is provided in Section A.1 of our technical report [47].

Phc = 1 −

(
H

w
+ 1

)
e−

H
w (2)

where H is the number of elephant flows andw is the num-

ber of buckets. For example, when H/w = 0.1 or 0.01, the

elephant collision rate is 0.0046 and 0.00005, respectively.

Solutions for elephant collisions: Obviously, reducing
the hash collision rate can reduce the elephant collision rate.

Thus, we use two classic methods [49–57]: 1) by using multi-

ple sub-tables (see Section 4.2); 2) by usingmultiple key-value

pairs in one bucket (see Section 4.3).

3.2 Adaptivity to Available Bandwidth
To adapt to the available bandwidth, we propose to compress

the sketches before sending them. Most flows are mouse

flows, thus the memory size of the light part is often much

larger than that of the heavy part. In this section, we will

show how to compress and merge the light part - CM sketch.

To the best of our knowledge, this is the first effort to com-

press sketches.

3.2.1 Compression of Sketches.
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Figure 2: The Equal Division Compression algorithm.

To compress a sketch, our key idea is first to group the

counters, and then merge counters in the same group into

one counter.

Grouping: As shown in Figure 2, given a sketch A of size

zw ′×d (widthw = zw ′
, depth d , z is an integer representing

the compression rate). Our grouping method proceeds as

follows: 1)We split A into z equal divisions. The size of each
division is w ′ × d . 2) We build a sketch B of size w ′ × d . 3)
Counters with the same index in its division ({Ak

i [j]}k=1, ...,Z )

are in the same group, so we can set Bi [j] = OPzk=1{A
k
i [j]}

(1 ⩽ i ⩽ d , 1 ⩽ j ⩽ z), where OP is the merging opera-

tor (e.g., Max or Sum). To query sketch B, we only need to

change the hash function hi (.)%w to hi (.)%w%w ′
, owing to

the following lemma.

Lemma 3.2. Given an arbitrary integer i , two integers w
andw ′, ifw is divisible byw ′, then (i%w) %w ′ = i%w ′ .



For example, (10%6)%3=10%3. This lemma will be repeated

leveraged in this paper.

Merging: we propose two merging methods. The first

method is to sum up the counters in each group, i.e., Bi [j] =∑z
k=1{A

k
i [j]}. We name this method Sum Compression

(SC). As mentioned in Section 2, to adapt to available band-

width, one can build two CM sketches S1 and S2 with mem-

ory size of M and M/2. A better solution is to compress S1 to

a half. Using SC, the compressed S1 has the same accuracy

as S2, while SC does not take advantage of the information

recorded by S1. The second method is Maximum Com-
pression (MC). Instead of “sum”, we can use “maximum”,

i.e., Bi [j] = max{A1

i [j],A
2

i [j], ...,A
z
i [j]}. Compared with SC,

the sum operation in MC uses more information in S1, and

thus has better accuracy.

Error bound of maximum compression (MC): Given a

CM sketch with size d ×zw , we compress it into size of d ×w
using MC. Given an arbitrarily small positive number ϵ and

an arbitrary flow fj , the absolute error of the sketch after

maximum compression is bounded by

Pr {n̂j ⩾ nj + ϵN } ⩽

{
1 −

(
1 −

1

ϵzw

) [
1 −

N
zw (nj + ϵN )

]z−1}d
(3)

where nj is the real size of fj , n̂j is the estimated size of fj ,
and N is the total number of packets.

About SC and MC, we have the following conclusions:

1) We prove that after Sum Compression, the error bound

of the CM sketch does not change, while after maximum

compression, the error bound is tighter. 2) We prove that

using MC, the compressed CM sketch has over-estimation

error but no under-estimation error. 3) Our Compression is

fast, and our experimental results show that the compressing

speed is accelerated by 5 ∼ 8 times after using SIMD (Single

Instruction and Multiple Data). 4) There is no need for de-

compression. 5) Compression does not require any additional

data structure. We refer the interested reader to the detailed

proof and experiments in Section A.2, A.3, A.4, A.5, and B.7

of our technical report [47].

3.2.2 Merging of Sketches.

Measurement
node
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Measurement
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CollectorMeasurement
Tasks
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Answers

periodic
report

Elastic Sketch
in data plane

Measurement
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Server

Server

Sketch	merging

Sketch	merging

Figure 3: Network-widemeasurements. Servers can be
used to merge sketches when the network is large.

As shown in Figure 3, one can use servers to save band-

width. Each server receives many sketches from measure-

ment nodes, merges them, and then sends them to the collec-

tor. For the sake of merging, we need to use the same hash

functions for all sketches. If they have common flow IDs, we

propose to use a naive method – Sum merging. Otherwise,

we propose a novel method, namely Maximum merging.

Sum Merging: Given two CM sketches of the same size

d × w , the Sum merging algorithm just adds the two CM

sketches, by adding every two corresponding counters. This

algorithm is simple and fast, but not accurate.

Maximum Merging for same-size sketches: Our algo-
rithm is named Maximum Merging (MM). As shown in

Figure 4, given two sketches A and B of size w × d , we
build a new sketch C also of size w × d . We simply set

Ci [j] =max{Ai [j],Bi [j]} (1 ⩽ i ⩽ d , 1 ⩽ j ⩽ w). For exam-

ple in Figure 4, C1[2] =max{A1[2],B1[2]} =max{3, 4} = 4.

This merging method can be easily extended to multiple

sketches. Obviously, after MM merging, the sketch still has

no under-estimation error. We can also merge two sketches

of different widths, and the details are shown in Section A.8

of our technical report [47].
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3.3 Adaptivity to Packet Rate
In measurement nodes, there is often an input queue to buffer

incoming packets. The packet rate (i.e., the number of incom-

ing packets per second) is variable: in most cases, it is low,

but in the worst case, it is extremely high [31–33, 58]. When

packet rate is high, the input queue will be filled quickly,

and it is difficult to record the information of all packets. To

handle this, the state-of-the-art solution SketchVisor [12],

leverages a dedicated component, namely fast path, to absorb

excessive traffic at high packet rate. However, it needs to

travel the entire data structure in the worst case, albeit with

an amortizedO(1) update complexity. This incurs substantial

memory accesses and hinders performance. In contrast, our

proposed method always needs exactly one memory access.

We propose a new strategy to enhance the insertion speed

when needed. When the number of packets in the input

queue is larger than a predefined threshold, we let the in-

coming packets only access the heavy part, so as to record

the information of elephant flows only and discard mouse

flows. The insertion process of the heavy part is almost un-

changed except in the following case: if a flow f in a bucket

is replaced by another flow f ′, the flow size of f ′ is set to



the flow size of f . Therefore, each insertion needs one probe

of a bucket in the heavy part. When packet rate goes down,

we use our previous algorithms.

Fortunately, this strategy achieves much higher speed

at the cost of slightly degrading the accuracy. When this

strategy is activated, we do not discard the light part, but

only do not update it during insertion, as light part will still

be used during queries. This means that only information

recorded by the light part when high packet rate occurs is

lost. This strategy does not affect much the query accuracy

in most cases, since the packet rate is usually low.

3.4 Adaptivity to Flow Size Distribution

(f1,…) (f3,…) (f6,…) (f1,…) (f3,…) (f6,…)

h(f3)%4=2
h(f3)%8=6

f2

h(f2)%8

(f2,…)

Copy part

Figure 5: Duplication of the heavy part of Elastic. The
original number of buckets in the heavy part is 4, and
becomes 8 after duplication.

A key metric of the flow size distribution is the number of

elephant flows. As it can vary a lot, it is hard to determine

the size of the heavy part. To address this issue, we need

to make the heavy part adaptive to changes in the traffic

distribution. We propose a technique to dynamically double

the heavy part. It works as follows. Initially, we assign a small

memory size to the heavy part. As more and more elephant

flows are inserted, the heavy part will become full. We

define a threshold T1. If an incoming packet is mapped into

a bucket in which all flows are larger than T2, we regard

the bucket is full. If the number of full buckets exceeds a

threshold, we regard the heavy part is full. When the heavy

part becomes full, we propose the following copy operation:
just copy the heavy part and combine the heavy part with the
copy into one. The hash function is changed from h(.)%w
to h(.)%(2w). Again, this copy operation works thanks to

Lemma 3.2. After the copy operation, half of the flows in the

buckets should be removed. The remove operation can be

performed incrementally. For each insertion, we can check

all flows in the mapped bucket, and on average half of the

flows are not mapped to that bucket and can be removed.

Even though some buckets may end up not being cleaned,

this does not negatively impact the algorithm.

Example: As shown in Figure 5, we show how to insert the

incoming packet with flow f2 after duplication. We compute

h(f2)%8 and get the mapped bucket, in which flow f3 is. We

compute h(f3)%8 = 6 and find that it should be mapped to

the bucket in the copy part. Therefore, we replace f2 by f3.

Overhead:As the heavy part is often very small (e.g., 150KB),
the time overhead of copying an array of 150KB is often small

enough to be negligible.

In addition to enlarging the heavy part, we can also ac-

tively compress heavy part. The compression method is sim-

ilar to Maximum Compression (MC, Section 3.2.1). Different

from MC, for the heavy part, we merge buckets (key, vote+,
flag, vote−) rather than counters. Take merging two buckets

as an example. Given two buckets, for the two keys in the

buckets, we query their frequencies in the Elastic sketch, and

keep the larger one, and evict the other one into the light

part. The compression operation endows the Elastic sketch

the ability to actively release memory when needed.

4 OPTIMIZATIONS
4.1 Optimizing Light Part
Using CM sketch with d=1: For the CM sketch, a key met-

ric is the depth d , i.e., the number of arrays. Indeed, we can

achieve higher accuracy if using d=3 or 4. However, we rec-

ommend setting d = 1, because of two reasons: 1) We care

more about the feasibility of implementation and speed than

accuracy; 2) Our sketch is already very accurate.

4.2 Hardware Version of Elastic Sketches

Heavy part 1

(f3,12,F,11)f8

(f4,7,T,55)

f3,12,F,12

f9 f9,1,T,0

. . .

f4

𝜆=8, 55+1≥ 7 ∗ 𝜆

(f1,9,T,3)

. . .

. . .

. . .

(f4,2,T,11)

f8

f4,2+7,T,11

Heavy part 2

To query f4 : 9 + value in light part

1

7

0

2

Light part

Figure 6: Hardware version of the Elastic sketch.

As mentioned above, the first classic solution for elephant

collisions is using several sub-tables in the heavy part. Each

sub-table is exactly the same as the heavy part of the basic

version, but is associated with different hash functions. The

elephant collision rate decreases exponentially as the num-

ber of sub-tables increases linearly. As each sub-table has

the same operations, this version is suitable for hardware

platforms.

Examples: The insertion and query operations are slightly

different from the basic version, and here we use examples

to show the differences in Figure 6. 1) To insert f8, in the

first sub-table, the vote− is incremented by 1, and f8 will be
inserted into the next sub-table. 2) To insert f9 in the first

sub-table, f4 with flow size 7 is evicted, and inserted into

the next stage. In the second sub-table, f4 is mapped to the

bucket with f4. In this case, we just increment the value from

2 to 9. 3) To query a flow, as it could appear in multiple heavy

parts, we need to add all the values.



According to our experimental results, using 4 subtables

is a good trade-off between accuracy and feasibility of some

hardware implementations, such as P4Switch.

4.3 Software Version of Elastic Sketches

(f3,72,F)f8

(f2,16,F)f9

. . .
(f6,11,F)

(f1,74,F)

. . .
(f5,55,F)
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. . .
10+1

55+1

. . . 1

f4 2

+7

f8 +1

0(f9,1,T)

vote
-

12

Figure 7: Software version of the Elastic sketch.

As mentioned above, the second classic solution for ele-

phant collisions is: letting each bucket in the heavy part store

several flows. This allows several elephant flows be recorded

in one bucket, thus the elephant collision rate drops signif-

icantly. In this way, the bucket size could be larger than a

machine word, thus the accessing of the heavy packet could

be the bottleneck. Fortunately, this process can be acceler-

ated by using SIMD on CPU platforms, and thus this version

is suitable for software platforms. The differences from the

basic version are: 1) All the flows in each bucket share one

vote− field; 2) We always try to evict the smallest flow in the

mapped bucket.

Examples:We use two examples in Figure 7 to only show

the differences between this software version and the basic

version. 1) Given an incoming packet with flow f8, we first
hash it into a bucket. The bucket is full, and has no f8. We

increment the vote− from 10 to 11. The smallest flow is f6
with flow size 11. Because 11 ⩽ 11 ∗ λ = 11 ∗ 8, we do not

evict flow f6, but insert f8 into the light part. 2) Given an

incoming packet with flow f9, we first hash it into a bucket.

The bucket is full, and has no f9. We increment the vote−

from 55 to 56, because 56 ⩾ 7∗λ = 7∗8, we evict flow f4 into
the light part. After the eviction, we set the hashed bucket

to (f9, 1,T ), and set vote− to 0.

5 APPLICATIONS
Flow Size Estimation: Our Elastic can be directly used to

estimate flow size in packets. Our sketch has a unique charac-

teristic: for those flows that have a flag of false, our estimation

has no error. According to our experimental results, we find

that more than 56.6% flows in the heavy part have no error

when using 600KB memory for 2.5M packets.

Heavy Hitter Detection: For this task, we query the size

of each flow in the heavy part. If one’s size is larger than the

predefined threshold, then we report this flow as a heavy

hitter. We can achieve very high accuracy of detecting heavy

hitter, because we record flow IDs in the heavy part, only a

very small part of flows those are exchanged from the light

part could have error.

Heavy Change Detection: For two adjacent time windows,

we build two Elastic sketches, respectively. To find heavy

changes with threshold T , one common used method is to

check all flows in each time window with size no less than

T . Therefore, we check all flows in the heavy parts of the

two sketches, and if the size difference of a flow in the two

windows is larger than T , we report it as a heavy change.

Estimation of Flow Size Distribution, Entropy, and
Cardinality: These three tasks care about both the elephant

flows and mouse flows. For flows in the heavy part, we can

get their information directly. For flows in the light part, we

can get the needed information from the counter distribution.

So at the end of each time window, we collect the counter

distribution array (n0,n1, ...,n255) of the light part, where ni
is the number of counters whose value is i . Then we send

this array together with the heavy part and the compressed

light part to the collector.

1) Estimating flow size distribution: we first estimate the

distribution of the light part using the basic MRAC algorithm

proposed by [17], and then sum it with the distribution of

the heavy part.

2) Estimating entropy: we compute the entropy based on the

flow size distribution as −
∑
(i ∗ ni

m log
ni
m ), wherem is the

sum of ni , and ni is the number of flows with size of i .
3) Cardinality: we first count the number of distinct flows

in the heavy part. Then we calculate the number of distinct

flows in the light part using the method of linear counting

[59]. The cardinality is the sum of the two numbers.

For other tasks (e.g., DDoS, SuperSpreader, and more [60–

62]), we will study how to apply Elastic in the future work.

6 IMPLEMENTATIONS
In this section, we briefly describe the implementation of

hardware and software versions of the Elastic sketch on

P4, FPGA, GPU platforms, and CPU, multi-core CPU, OVS

platforms, respectively. More implementation details are pro-

vided in our technical report, and the source code from all

platforms is available at Github [47].

6.1 Hardware Version Implementations
P4 Implementation: We have fully built a P4 prototype of

the Elastic sketch on top of a baseline switch.p4 [38] and

compiled on a programmable switch ASIC [63]. We add 500

lines of P4 code that implements all the registers and meta-

data needed for managing the Elastic sketch in the data

plane.

We implement both heavy part and light part of the hard-

ware version in registers instead of match-action tables be-

cause those parts require updating the entries directly from

the data plane. We leverage the Stateful Algorithm and Logi-

cal Unit (Stateful ALU) in each stage to lookup and update



Table 1: Additional H/W resources used by Elastic sketch,
normalized by the usage of the baseline switch.P4. The total
memory usage of our P4Switch is the product of the baseline
usage and the additional usage.

Resource Baseline Additional usage
Match Crossbar 474 5.9%

SRAM 288 12.5%

TCAM 102 0%

VLIW Actions 145 5.5%

Hash Bits 1605 2.3%

Stateful ALUs 4 75%

Packet Header Vector 277 0.36%

the entries in register array. However, Stateful ALU has its

resource limitation: each Stateful ALU can only update a

pair of up to 32-bit registers while our hardware version of

Elastic needs to access four fields in a bucket for an insertion.

To address this issue, we tailor our Elastic sketch implemen-

tation for running in P4 switch at line-rate but with a small

accuracy drop.

The P4 version of the Elastic sketch: It is based on the hard-

ware version of the Elastic sketch, and we only show the

differences below. 1) We only store three fields in two phys-

ical stages: vote
all

, and (key, vote
+
), where vote

all
refers

to the sum of positive votes and negative votes. 2) When

voteall
vote+ ⩾ λ′, we perform an eviction operation. We rec-

ommend λ′ = 32, and the reason behind is shown in Sec-

tion B of our technical report. 3) When a flow (f ,vote+)
is evicted by another flow (f1,vote

+
1
), we set the bucket to

(f1,vote
+ +vote+

1
). As mentioned in Section 4.2, we recom-

mend using 4 subtables in the hardware version. In this way,

we only need 4*2=8 stages for the heavy part, and 1 stage for

the light part, and thus in total 9 stages. Note, we are not us-

ing additional stages for Elastic. Instead, incoming packets go

through the Elastic sketch and other data plane forwarding

tables in parallel in the multi-stage pipeline. Table 1 shows

the additional resources that the Elastic sketch needs on top

of the baseline switch.p4 mentioned before. We can see that

additional resource use is less than 6% across all resources,

except for SRAM and stateful ALUs. We need to use SRAM to

store the Elastic sketch and stateful ALUs to perform transac-

tional read-test-write operations on the Elastic sketch. Note,

adding additional logics into ASIC pipeline does not really

affect the ASIC processing throughput as long as it can fit

into the ASIC resource constraint. As a result, we can fit

the Elastic sketch into switch ASIC for packet processing at

line-rate.

Comparison of the four versions: In sum, there are four

versions of the Elastic sketch, and we compare the accuracy

of them. Experimental results are shown in Figure 8. We

compare the accuracy of these four versions for two tasks:

flow size estimation and heavy hitter detection. As shown
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Figure 8: Accuracy comparison for three versions
of Elastic on the tasks of flow size estimation and
heavy hitter detection. Results are evaluated using the
CAIDA4 trace. Each algorithm uses 600KB memory.
The heavy part in Elastic is 150KB.

in Figure 8, the software, hardware, and P4 versions are

always more accurate than the basic version. Specifically,

when using monitoring time interval of 5s, for flow size

estimation, the software and hardware version are 2.14, 1.6
times, and 1.46 times more accurate than the basic version,

respectively; for heavy hitter detection, these three versions

are 1.18, 1.18, and 1.17 times more accurate, respectively.

FPGA Implementation:We implement the Elastic sketch

on a Stratix V family of Altera FPGA (model 5SEEBF45I2).

The capacity of the on-chip RAMs (Block RAM) is 54,067,200

bits. The resource usage information is as follows: 1) We use

1,978,368 bits of Block RAM, 4% of the total on-chip RAM. 2)

We use 36/840 pins, 4% of the total 840 pins. 3) We use 2939

logics, less than %1 of the 359,200 total available. The clock

frequency of our implemented FPGA is 162.6 MHz, meaning

processing speed of 162.6 Mpps.

GPU Implementation: We use the CUDA toolkit [64] to

write programs on GPU to accelerate the insertion time of

Elastic sketch. Two techniques, batch processing and multi-

streaming, are applied to achieve the acceleration. We use

an NVIDIA GPU (GeForce GTX 1080, the frequency is 1607

MHz. It has 8 GB GDDR5X memory and 2560 CUDA cores).

6.2 Software Version Implementations
We have implemented the software version of Elastic on

three software platforms: CPU, multi-core CPU, and OVS.

Implementation details are provided in the our technical

report [47], due to space limitation.

7 EXPERIMENTAL RESULTS
7.1 Experimental Setup
Traces: We use four one-hour public traffic traces collected

in Equinix-Chicago monitor from CAIDA [65]. The details

of these traces are shown in technical report. We divide each

trace into different time intervals (1s, 5s, 10s, 30s, and 60s).

For example, each one-hour trace contains 720 5s-long sub-

traces, and we plot 10
th

and 90
th

percentile error bars across



these 720 sub-traces. We use the CAIDA4 trace with a mon-

itoring time interval of 5s as default trace, which contains

1.1M to 2.8M packets with 60K to 110K flows (SrcIP). Due to

space limitations, we only show the results with the source

IP as the flow ID; the results are qualitatively similar for

other flow IDs (e.g., destination IP, 5-tuple).

Evaluation metrics:
• ARE (Average Relative Error): 1

n
∑n

i=1
|fi−f̂i |
fi

, where n is the

number of flows, and fi and f̂i are the actual and estimated

flow sizes respectively. We use ARE to evaluate the accu-

racy of flow size (FS) estimation and heavy hitter (HH)

detection. Note that the value of ARE for flow size esti-

mation could be larger than anticipated, since the sizes

of mouse flows are often over-estimated while they are

in the denominator of the ARE formula, leading to large

average value of relative error.

• F1 score : 2×PR×RR
PR+RR , where PR (Precision Rate) refers to the

ratio of true instances reported and RR (Recall Rate) refers

to the ratio of reported true instances. We use F1 score to
evaluate the accuracy of heavy hitter and heavy change

(HC) detection.

• WMRE (Weighted Mean Relative Error) [12, 17]:
∑z
i=1 |ni−n̂i |∑z
i=1(

ni +n̂i
2

)
,

where z is the maximum flow size, and ni and n̂i are the
true and estimated numbers of flows of size i respectively.
We useWMRE to evaluate the accuracy of the flow size

distribution (FSD).

• RE (Relative Error): |T rue−Estimated |
T rue , where True and

Estimate are the true and estimated values, respectively.

We use RE to evaluate the accuracy of entropy and cardi-

nality estimations.

• Throughput: million packets per second (Mpps). We use

Throuдhput to evaluate the processing speed of the six

tasks.

Setup: When comparing with other algorithms, we use the

software version of Elastic. Specifically, we store 7 flows

and a vote
−
for each bucket in the heavy part, and use one

hash function and 8-bit counters in the light part. For each

algorithm in each task, the default memory size is 600KB.

The heavy part does not dynamically resize except for the ex-

periments of adaptivity to traffic distribution (Section 7.4.3).

Detailed configurations for each task are as follows:

• Flow size estimation: We compare four approaches:

CM [10], CU [4], Count [14], and Elastic. For CM, CU, and

Count, we use 3 hash functions as recommended in [66].

• Heavy hitter detection: We compare six approaches: Space-

Saving (SS) [15], Count/CM sketch [10, 14] with a min-

heap (CountHeap/CMHeap), UnivMon [2], HashPipe [16]

and Elastic. For CountHeap/CMHeap, we use 3 hash func-

tions and set the heap capacity to 4096. For UninMon, we

use 14 levels and each level records 1000 heavy hitters. We

set the HH threshold to 0.02% of the number of packets in

one measurement epoch.

• Heavy change detection: We compare Reversible

sketch [67], FlowRadar [18], UnivMon, and Elastic. For

Reversible, we use 4 hash functions as recommended

in [67]. For FlowRadar, we use 3 hash functions in both

the Bloom filter [44] and the IBLT part [45]; we allocate

1/10 of the memory for the Bloom filter and the rest for

IBLT. UnivMon uses the same setting as before. We set the

HC threshold as 0.05% of total changes over two adjacent

measurement epochs.

• Flow size distribution: We compare MRAC [17] and Elastic.

• Entropy estimation: We compare UnivMon, Sieving [68],

and Elastic. UnivMon uses the same setting as before. We

use 8 sampling groups in Sieving.

• Cardinality estimation: We compare UnivMon, linear

counting (LC) [59], and Elastic. UnivMon uses the same

setting as before.

7.2 Accuracy
Figure 9(a)-(e) and 10(a)-(b) provide a comparison of the

accuracy of different algorithms for six tasks. Note that Elas-

tic only uses one data structure with memory of 600KB to

handle all six tasks.

Flow size estimation (Figure 9(a)):We find that Elastic of-

fers a better accuracy vs. memory usage trade-off than CM,

CU, and Count sketch. When using 600KB of memory, the

ARE of Elastic is about 3.8, 2.5, and 7.5 times lower than

the one of CM, CU, and Count. We also run the maximum

compression algorithm (§3.2.1) on a CM sketch with initial

16MB memory, and measure its ARE when its memory af-

ter compression (i.e., bandwidth) reaches 0.2, 0.4, ..., 1 MB,

respectively. We find that our compression algorithm signifi-

cantly improves the accuracy of CM sketch, making it nearly

approach the accuracy of Elastic.

Heavy hitter detection (Figure 10(a)-(b)): We find that

Elastic is much more accurate than the other five algorithms

for most memory sizes. Even with less than 200KB of mem-

ory, Elastic is able to achieve 100% precision and recall with

only 0.002 ARE, an ARE much lower than the other five

algorithms.

Heavy change detection (Figure 9(b)): We find that Elas-

tic always achieves above 99.5% F1 score while the best F1

score from the other algorithms is 97%. When using more

than 200KB of memory, the precision and recall rates of Elas-

tic both reach 100%. When using little memory, FlowRadar

can only partially decode the recorded flow IDs and frequen-

cies, causing a low F1 score.

Flow size distribution (Figure 9(c)): We find that Elas-

tic always achieves better accuracy than the state-of-the-

art algorithm (MRAC). When using 600KB of memory, the
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Figure 9: Accuracy comparison for five tasks. The heavy part in Elastic is 150KB.
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Figure 10: Accuracy comparison for heavy hitter detection. The
heavy part in Elastic is 150KB.

WMRE of Elastic is about 3.4 times lower than the one of

MRAC.

Entropy estimation (Figure 9(d)): We find that Elastic of-

fers a better estimation than the other two algorithms for

most memory sizes. When using a memory larger than or

equal to 400KB, Elastic achieves higher accuracy than both

state-of-the-art algorithms.

Cardinality estimation (Figure 9(e)): We find that Elas-

tic achieves comparable accuracy with the state-of-the-art

algorithm (LC).

ObservedWorst Cases: Here, we show the observed worst

cases of Elastic in the flow size estimation, instead of the

average errors shown in the above figures. Notice that the

estimation error of Elastic comes from two parts: 1) Some

elephant flows are recorded in the light part due to the hash

collisions in the heavy part, and this may incur overflows of

counters in the light part. 2) Some flows collide at the same

counter in the light part. In our experiments, over different

traces, we observe that at most 2 flows have under-estimation

error, and the maximum absolute error is 254 (i.e., a flowwith

size 1 is mapped to an overflowed counter). In each trace,

there are about 110,000 flows and the maximum flow size is

about 17,000. It means Elastic has small relative errors even

in the worst case.

7.3 Memory and Bandwidth Usage
We measure the memory and bandwidth usage of different

algorithms to achieve a fixed target accuracy, using different

traces and different monitoring time intervals. Here, “mem-

ory” refers to the memory that is originally allocated to

and used by the measurement algorithms, while “bandwidth”

refers to the amount of data that needs to be transferred after

each measurement epoch. When measuring the bandwidth

usage of Elastic, we set the original memory to 16MBwith

500KB heavy part, run the maximum compression algorithm

(§3.2.1), and measure the memory usage after compression

(as the bandwidth usage) to achieve the fixed target accuracy.

For the other measurement algorithms, their “memory” is

equal to “bandwidth”.

Monitoring time intervals (Figure 11(a)-(b)): We find

that for flow size estimation, Elastic uses less memory and

bandwidth than other algorithms for most monitoring time

intervals; for heavy change detection, Elastic always uses

much less memory and bandwidth than other algorithms.

Specifically, Elastic uses 150KB memory or bandwidth to

achieve 99% precision and recall rates for heavy change de-

tection, irrespective of the monitoring time interval.
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Figure 11: Memory (M.) and bandwidth (B.) usage for flow size
estimation and heavy change detection to achieve target accuracy
under different monitoring time intervals.
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Figure 12: Memory (M.) and bandwidth (B.) usage for flow size
estimation and heavy change detection to achieve target accuracy
on different traces.

Traces (Figure 12(a)-(b)): We find that for flow size esti-

mation and heavy change detection, Elastic always uses

less memory and bandwidth than the other algorithms. We



observe that for flow size estimation, the bandwidth us-

age of Elastic is always less than its memory usage, con-

sistently with Theorem A.7 in Section A.5 of our techni-

cal report [47]. The reason that the bandwidth usage does

not significantly outperform the memory usage is that Elas-

tic itself has achieved extremely high accuracy and thus the

compression algorithm cannot easily improve it further.

7.4 Elasticity
7.4.1 Adaptivity to Bandwidth.
We first evaluate the accuracy of different compression

and merging algorithms. From Figure 13(a)-(b), we find that

the maximum algorithms always achieve better accuracy

than the sum algorithms for both aggregation and merging.

Specifically, maximum compression is between 1.24 and 2.38

times more accurate than sum compression, while maximum

merging is between 1.26 and 1.33 times more accurate than

sum merging.
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Figure 13: Accuracy comparison of different compression and
merging algorithms for CM sketch in flow size estimation.
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Figure 14: ARE and transmission delay comparisons for different
sketch sizes in flow size estimation. We use TCP to transmit data.
Transmitted data refers to the data that needs to be transmitted af-
ter compression (original memory is 16MB with 500KB heavy part).
For more details, please refer to §7.3

Next, we constrain our NIC bandwidth to 0.5Gbps, and

use this 0.5G NIC to evaluate the impact of available band-

width. Figure 14(a)-(b) show the results, where low available

bandwidth means that we transmit sketch data on this 0.5G

NIC with a consistently 0.5Gbps interfered traffic on it, and

high available bandwidth means that we transmit sketch

data without any interference of other traffic. We observe
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Figure 15: Loss rate and accuracy comparisons for heavy hitter
detection under different packet rates. “Elastic (quick)” means Elas-
tic without light part. Due to the constraint of our NIC speed (i.e.,
40Gbps), we simulate the packet arriving process purely inmemory
and use ring buffer with multiple threads to do the measurement.
The average number of heavy hitters in each traces is about 397. For
more details, please refer to §6.

that transmitting data under low available bandwidth has a

much longer latency than under high available bandwidth,

and the transmission latency increases almost linearly as the

transmitted data increases. Our Elastic provides a good trade-

off between the accuracy and transmission delay: under low

available bandwidth, we can send high-compression sketch

data with decent accuracy to avoid long transmission delay.

7.4.2 Adaptivity to Packet Rate.
From Figure 15(a)-(b), we find that Elastic can sustain

around 50Mpps packet rate without packet loss and with

perfect accuracy, while Elastic without light part can even

sustain around 70Mpps packet rate. For the other tested algo-

rithms, only Space-Saving (SS) and HashPipe could achieve

zero packet loss and perfect accuracy, but in that case, they

can only sustain 10Mpps packet rate.

7.4.3 Adaptivity to Traffic Distribution.
We change the traffic distribution by changing the per-

centage of true heavy hitters. Specifically, we change the

skewness of zipf distribution [69] and get multiple traces

with different percentages of true heavy hitters. From Fig-

ure 16(a)-(b), we find that the copy operation (§3.4) success-

fully avoids the accuracy degrading when traffic distribution

changes.
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Figure 16: Benefits of copy operation (§3.4) for heavy hitter detec-
tion and flow size distribution under different traffic distributions.



7.5 Processing Speed
7.5.1 CPU Platform (single core).
We conduct this experiment on a server with two CPUs

(Intel Xeon E5-2620V3@2.4GHZ) and 378GB DRAM. From

Figure 17, we find that Elastic achieves much higher through-

put than all other algorithms. Only three conventional al-

gorithms (i.e., MRAC, Sieving, LC) can reach a throughput

of 30Mpps, while Elastic can reach more than 80Mpps. In

particular, Elastic is 44.9 and 6.2 times faster than UnivMon

and FlowRadar, respectively.
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Figure 17: Processing speed comparison for six tasks onCPUplat-
form.

7.5.2 OVS Integration.
We integrate our Elastic into OVS 2.5.1 with DPDK 2.2.

We conduct this experiment on two servers, one for sending

packets and one for OVS. Each server is equipped with two

CPUs (Intel Xeon E5-2620@2.0GHz), 64 GB DRAM, and one

Mellanox ConnectX-3 40 Gbit/s NIC. The two servers are

connected directly through the NICs. From Figure 18, we find

that in OVS, the throughput of Elastic gradually increases

as the number of threads increases, while the overhead of

using Elastic gradually decreases.When using a single thread,

Elastic degrades the throughput of OVS by 26.8%; when using

4 threads, by 4.0% only; when using 8 threads, Elastic does

not influence the throughput.

7.5.3 Other Platforms.
From Figure 19, we find that Elastic achieves the highest

processing speed on the P4 switch and the second highest

speed on the GPU. Elastic achieves a comparable processing

speed on the CPU with 16 cores and the FPGA. The pro-

cessing speed of Elastic on CPU (16 cores), GPU (1M batch),

FPGA, and P4 switch is 1.9, 5.9, 1.9, 115.9 times higher than

on the CPU (single core).

8 CONCLUSION
Fast and accurate network measurements are important and

challenging in today’s networks. Indeed, with current highly

variable traffic characteristics, changes in available band-

width, packet rate, and flow size distribution can and do vary

drastically at times. So far, no work had focused on the is-

sue of enabling measurements that are adaptive to changing

traffic conditions.
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 32
 64

 128
 256
 512

 1024
 2048
 4096
 8192

CPU (single core)

CPU (16 cores)

GPU (1M batch)
FPGA P4

T
h
ro

u
g

h
p

u
t 

(M
p

p
s)

83.47

159.03

496.63

162.00

9672.00

Figure 19: Processing speed comparison for Elastic on different
platforms. For the implementation of CPUwith 16 cores, themaster
core sends flow IDs to 16 slave cores in a pollingmanner.We equally
(for both heavy and light parts) divide the 600KB of memory to the
16 slave cores. We deploy the Elastic sketch in P4 switch running
at line-rate of 6.5 Tbps, which translates into 9672Mpps when each
packet has the minimum size of 64 bytes.

We propose the Elastic sketch, which is adaptive in terms

of the three above traffic characteristics. The two key tech-

niques in our sketch are (1) Ostracism to separate elephant

flows from mouse flows and (2) sketch compression to im-

prove scalability. Our sketch is generic to measurement tasks

and works across different platforms. To demonstrate this,

we implement our sketch on six platforms: P4, FPGA, GPU,

CPU, multi-core CPU, and OVS, to process six typical mea-

surement tasks. Experimental results show that Elastic works

well when the traffic characteristics vary, and outperforms

the state-of-the-art in terms of both speed and accuracy for

each of the six typical tasks.
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