
Shifting Hash Table: An Efficient Hash Table with
Delicate Summary

Jie Jiang∗, Yibo Yan‡, Mengyu Zhang∗, Binchao Yin†, Yumeng Jiang∗,
Tong Yang∗, Xiaoming Li∗, Tengjiao Wang∗

∗ Department of Computer Science, Peking University, China
† Beijing University of Posts and Telecommunications, China

‡ School of Electronics and Computer Engineering (SECE), Peking University, China

Abstract—Hash tables have been broadly used in many security
applications. These applications require fast query speed and
high memory efficiency. However, the query speed degrades when
hash collisions happen. The design goal of this paper is to achieve
high load factor as well as fast query at the same time. In this
paper, we propose a novel hashing scheme, namely the Shifting
Hash Table (SHT), which consists of two parts. The first part is an
enhanced version of the Bloom filter checking which subtable(s)
may contain the incoming items, and the second part contains
a cuckoo hashing based hash table which stores the key-value
pairs. The key technique of this paper is that we divide items
into two categories: at-home and abroad. We only insert the
second kind of items (abroad) into the Bloom filter, thus the
memory usage of the filter is significantly reduced. We conducted
extensive experiments and the results show that SHT significantly
outperforms the state-of-the-art. Specifically, SHT can query an
item using on average less than 1.05 bucket probes and even
using 1 bit per entry in the fast memory, and achieve a high
load factor which is 95% at the same time.

I. INTRODUCTION

As a basic data structure, the hash table is widely used
in many security applications, such as authentication and
identification in RFID [1], [2], malware detection in IoT [3],
[4], etc. Many of these applications need high query speed
and low memory usage of index structures at the same time.
Owing to O(1) query complexity, hash tables are widely used
in such applications. Hash tables employ key-value structures
and set up key-to-bucket maps using hash functions. Due to
hash collisions, traditional hash tables cannot achieve a high
load factor during construction, which means there are many
empty buckets in the hash table. Therefore, we need offer
sufficient memory to accommodate all the items, and this
causes memory inefficiency.

Many open addressing methods are proposed to improve
the load factors of hash tables, and these methods allow an
item to be stored in multiple candidate positions. They use
a probe sequence to lookup items. A typical scheme named
Cuckoo hashing [5] has obtained wide acceptance in recent
years. In cuckoo hashing, each item has d candidate buckets.
When inserting a new item, the hash table can move items
among their candidate buckets to make room for the new item.
Through this way, cuckoo hashing can achieve a very high load

This work is supported by Primary Research & Development Plan of China
(2016YFB1000304), NSFC (61672061).

factor (e.g., 95%) with high probabilities. In cuckoo hashing,
querying an item needs probe at most d buckets. When the
item is in the hash table, d

2 probes are needed on average if
we do the probes sequentially. Although this overhead is low,
it still causes unnecessary bucket probes in the memory, which
will increase the query latency and occupy memory bandwidth.

To address this issue, one strategy is to use a small summary
to determine where the item can be located before probing all
the candidate buckets. This summary should be small enough
to be stored in the fast memory (such as SRAM in ASIC/FPGA
[6], CPU caches). The whole hash table is often too large
to be accommodated in the fast memory, and it can only be
stored in slow memory (such as DRAM [6]). Based on this
strategy, a straightforward method is grouping the buckets
as several subtables, and representing each subtable using a
Bloom filter [7], [8]. The Bloom filter [9] is a compact data
structure which is used to answer whether an item belongs
to a set. The Bloom filter has false positives, which means it
can report true even if the item does not belong to the set.
Suppose there are d subtables, and every item has exactly one
candidate bucket in each subtable, then we can build d Bloom
filters as the summary. When querying an item, we query the
d Bloom filters first, and only one subtable is reported when
no false positives happen. In this case, the item will be found
in the reported subtable. Because access to the fast memory
is fast, the query performance of such kind of hash tables is
determined by the time consumed in the slow memory part.
Thus, we can use the number of bucket probes as the metric
of the query performance. In such type of hash tables, because
the false positive rates of Bloom filters are proportional to the
number of items inserted, a key problem is how to reduce
the number of items inserted into the summary. Peacock [7]
reduces the number largely, but it uses multiple Bloom filters,
which makes queries of the summary more complicate. To this
end, we propose a novel hash table, namely the Shifting Hash
Table (SHT). SHT also consists of two parts: a summary in
the fast memory and a cuckoo hashing based hash table in the
slow memory. Our SHT algorithm has two key techniques as
follows: First, in the hash table part, we classify the items into
two categories: at-home and abroad, and only the “abroad”
items are inserted into the summary. Furthermore, we add three
rules to the eviction mechanism of original cuckoo hashing,



which reduce the the number of abroad items sharply. This
means that we only need a small summary in the fast memory.
Second, in the summary part, we propose an enhanced Bloom
filter in place of multiple Bloom filters to achieve fast query
speed. There is only one Bloom filter in the fast memory and
we represent the information of the subtable index(es) of an
item as the offsets in the Bloom filter. Specifically, to represent
that an item is in the sth subtable, we set the positions
with an offset s to 1, which are shifted from their original
positions. And the shifting information can be retrieved by
reading consecutive bits.

The key contributions of this paper are as follows:

• We propose a novel hash table, namely the Shifting Hash
Table (SHT), to achieve small fast memory usage, fast
query speed and high load factor at the same time.

• We derive the formulas of the number of bucket probes
of queries, and validate them using experiments.

• We carry out extensive experiments to compare our SHT
with peacock hashing and BCHT, and results show that
our SHT works much better. By using 1 bit per entry in
the fast memory, SHT can query an item using on average
less than 1.05 bucket probes when the load factor is 95%.

II. BACKGROUND

In this section, we will introduce cuckoo hashing, Bloom
filters and peacock hashing, which inspire our work. More
related work please refer to [10]–[14].

A. Variants of Cuckoo Hashing

Cuckoo hashing is one efficient technique to solve collisions
in the hash tables. The key idea of it is that each item has mul-
tiple candidate buckets in the hash table, and the existing items
in the table are allowed to be moved recursively among these
buckets to make room for new inserted items. The original
cuckoo hashing [5] uses two hash functions which map each
item to two buckets, and each bucket can accommodate one
item. To achieve higher load factor, two variants of cuckoo
hashing were proposed: d-ary cuckoo hashing (d-ary) [15]
and bucketized cuckoo hash tables (BCHT) [16], [17]. The d-
ary cuckoo hashing extends the number of hashing functions
from 2 to d, and using d subtables. Each item has exactly one
candidate bucket in each subtable. BCHT allows each bucket
in the hash table to accommodate d items. Both of the two
methods allow a hash table with (1 + ε)n memory cells to
accommodate n items when d = O(log(1/ε))).

In many memory architectures, BCHT has better query
performance than d-ary, because sequential accesses perform
better than random accesses in memory. In many hardwares,
the processor has to fetch several bytes from memory at a time,
e.g., most CPUs fetch a 64 bytes cache line from DRAM. This
means there is less difference between probing one cell and
probing four cells in terms of memory access if four cells can
fit into a cache line. Furthermore, one can use one instruction
to compare four keys by leveraging SIMD instructions [16] to
accelerate this process.

Since memory accesses take up more time than key com-
parisons, we can use the number of bucket probes to measure
the query speed. Like prior work [18], queries are classified as
positive queries and negative queries. If a query lookups a key
which is in the hash table, then it is a positive query, otherwise
it is a negative query. For BCHT, positive queries will incur
1.5 bucket probes on average, while negative queries will incur
2 bucket probes. Although BCHT is more efficient than d-ary,
it still causes many unnecessary bucket probes, which increase
the query latency and occupy the limited memory bandwidth.

B. Bloom filters and Peacock Hashing
Fortunately, some small but fast memories are available in

many devices, such as SRAM in FPGA and caches in CPU.
The latency of accessing these memories is small, and this
latency can be ignored compared with the slow memory, such
as DRAM. But their sizes are often too small to accommodate
the whole hash table. We can store a small summary of the
hash table in the fast memory to filter out some buckets which
cannot hold the items. Before querying the buckets in the slow
memory, we can query this summary first to get a subset of
candidate buckets. Then we only query the buckets in the
subset to reduce the unnecessary bucket probes.

Due to the space limitation of the fast memory, deterministic
algorithms cannot support constant time update and query in
such a small space. We rescue to the probabilistic algorithms
to design the summary, e.g., Bloom filters. The Bloom filter [9]
is a compact data structure which supports fast membership
queries with small space. A Bloom filter consists of an array
of m bits, which is initialized to 0. The Bloom filter uses k
independent hash functions, which map items to {0, 1, ...,m−
1} bit positions in the array. When inserting an item x, it
calculates k positions using the hash functions and set all these
positions to 1. To query an item x, get all the k bits which x
is hashed to. And if these bits are all 1, then report x is in the
set, otherwise report not. There are false positives in Bloom
filters, which means an item may be actually not in the set
even if the Bloom filter reports true.

The Bloom filter can record whether an item is in a subtable.
When a query incurs a false positive, the Bloom filter will
report the item is in this subtable, and it will lead to an
unnecessary bucket probe. The false positive rate of a Bloom
filter is proportional to the number of items inserted into it, so
an important problem is how to reduce this number. Peacock
hashing [7] is one of the algorithms that use Bloom filters as
their summary. Peacock hash uses a hierarchy of hash table
segments (a main table and several backup tables) whose sizes
form a geometric decreasing sequence. The main table is the
largest subtable, and it will be much larger than the sum of
the sizes of the backup tables. Peacock builds a summary
only for items in the backup tables: each backup table has
a corresponding Bloom filter in the fast memory to represent
the items in it, so the number of items in the Bloom filter can
be significantly reduced.

But Peacock has three shortcomings: 1) Due to the lack
of the mechanism of moving existing items, peacock cannot



achieve a high load factor (about 90% even use the bucketized
techniques, as shown in section VI). 2) It has to query multiple
Bloom filters in the fast memory, and these accesses cannot be
merged by some techniques like [8] because of the different
sizes of the Bloom filters. 3) When the hash table is full, it is
non-trivial to add a subtable directly because of the unequal
sizes of its subtables. These shortcomings motivate our design.

III. RELATED WORK

A large amount of literature focused on dealing with col-
lisions in hash tables. In this section, we focus on cuckoo
hashing and other work using open address schemes.

Cuckoo hashing is proposed in [5], and be generalized
to d-ary [15] and BCHT [17] to achieve high load factors.
Except for the two techniques, [19] demonstrates that the
insertion failure probability can be dramatically reduced by
using a constant-sized stash. [20] proposed partial key cuckoo
hashing which does not need the entire key to get hash
positions. This technique is useful when the key length is
variable and only part of the key can be stored in the index
data structure. [21] extends this idea to build a filter which
supports approximate membership query. [22] focus on how
to support concurrent insertions and queries. [23] designs
an on-chip data structure called discriminated vectors to do
membership screening. Rectangular Hash Table [24] utilizes a
bitmap to determine which key-value pair among buckets will
most quickly find a new empty bucket, and then kicks that
key value pair out. SmartCuckoo [25] can predetermine the
occurrence of the endless loop during item insertion. Recently,
Horton Table [18] is proposed to reduce the bucket probes, and
their method is similar to us. Horton table is also based on
BCHT, and each item has a primary bucket and several backup
buckets. If an item is not in its primary bucket, a 3-bit remap
entry for this item will be stored in its primary bucket, so
the candidate buckets can be known by probing the primary
bucket. Horton table does not need a summary in fast memory.
The shortcoming of Horton table is that one must probe the
primary bucket before probing other buckets, while in SHT
these probes can be done in parallel.

Besides cuckoo hashing, some other open addressing
schemes are proposed to solve collisions. Hopscotch hashing
[26] moves items in a sequential range to achieve high load
factors, and this technique has better cache locality during
hash table operations. Path hashing [27] organizes the buckets
as a binary tree to solve collisions without the help of moving
items in the hash table, which is better for non-volatile memory
technologies (NVMs). RwHash [28] dynamically moves items
within a bucket when updating based on cache mechanism and
update sequence, which significantly reduces collisions.

Fast Hash Table (FHT) [6] is the first scheme which uses
a small summary in fast memory to reduce the memory
accesses in slow memory. Segmented hashing [8] uses multiple
subtables and builds one Bloom filter for each subtable. Both
of these two algorithms need large fast memory to build the

1 0 0 1 1 0 1 0 1 1 1

1 0 0 2 1 0 1 0 2 2 3

x

y

z

T0 T1 Td-1…
items

x

z

y

Slow Memory

Fast Memory

Hash TableSummary

CBF

BF
0 1 2 3 4 5 6 7 8 9 10

Fig. 1. The architecture of SHT

summary. Peacock [7] reduces the summary size largely, and
the detail is introduced in section II.

IV. SHIFTING HASH TABLES

In this section, we will introduce our proposed algorithm,
the Shifting Hash Table (SHT). At a high level, SHT is based
on cuckoo hashing, and uses an enhanced Bloom filter to
reduce bucket probes. The structure of SHT is shown in Fig. 1.
SHT consists of two parts: the hash table part and the summary
part. We will show the design details and interactions of these
two parts in the following subsections.

A. The Design of the Hash Table

The hash table of SHT is based on d-ary cuckoo hashing
which contains d subtables (T0, T1, ..., Td−1). Each subtable Ti
has a hash function hi corresponding to it to locate a candidate
bucket for an item. The main difference is that we classify the
items in the hash table into two categories: at-home items and
abroad items. Besides the group of hash functions hi(.)(0 6
i ≤ d) corresponding to the subtables, we use another hash
function g : U 7→ [0, d) to decide a home subtable for x.
Although an item has one candidate bucket in each of the d
subtables, it is stored in only one of the buckets at the same
time. The item in its home subtable is called an at-home item,
otherwise it is an abroad item. The candidate bucket in x’s
home subtable is called x’s home bucket, which is calculated
by hg(x)(x). In Fig. 1, solid lines point to items’ home buckets,
and dashed lines point to items’ other candidate buckets. In
Fig. 1, both of x and y are at-home items, and z is an abroad
item because its home subtable is Td−1 rather than T1.

To keep the number of at-home items as large as possible,
we add three rules on the eviction mechanism of the original
cuckoo hashing: 1) SHT always tries to insert an item to its
home bucket first. 2) SHT never allows an abroad item to
evict an at-home item. And 3) when there are both an abroad
item and an at-home item can be evicted to make room for
the inserted item, the abroad item should be evicted first.
These rules will limit the efficiency of eviction degrade the
load factor. Therefore, we also apply the bucketized technique
on the hash table: The hash table in SHT contains d bucket
arrays, and each bucket consists of w cells. As shown in our



experiments (Section VI), SHT can easily achieve a high load
factor (e.g., 95%) with small d and w, e.g. d = 8 and w = 8.

B. The Design of the Summary
We leverage an enhanced Bloom filter (BF) to summarize

the abroad items. By building one Bloom filter for each
subtable, it is easy to find out whether an item is in a subtable
or not, but this causes several Bloom filter queries during
one query. Thus, we enable a Bloom filter to report which
subtable(s) may accommodate the item through modification.
Assume that the item x is in the subtable Ts, we set the
position offset by s to 1, instead of setting the hashed position
to 1. For example, in Fig. 1, there are 3 hash functions for
the BF, and the item z is in the subtable T1, where s is
1. Assuming hashed values of x are 2, 7, and 9, we set
the position 2+1, 7+1, and 9+1 to 1. Correspondingly, the
query operation should get the consecutive d bits at each
hash position and do bitwise AND operations to get candidate
subtables may contain a target item. Note that the BF only
records location information of abroad items.

The summary should support the insertion, query, and
deletion operations, while the Bloom filter do not support
deletions. Similar to peacock, we use a counting Bloom filter
(CBF) to address this problem [29]. The CBF uses counters
instead of bits to support deletions. Because the CBF occupies
much memory, we put it in the slow memory as a mirror of
the BF in the fast memory. During deletion, we first decrease
the counters of CBF, and then reset the corresponding bit in
the Bloom filter to 0 only when one counter in the CBF is 0.
Notice that the CBF will only be accessed during insertion,
so the query speed will not be affected.

C. SHT Operations
Combining these two parts, the insertion and query proce-

dure of SHT are shown as follows.
Insertion: When inserting an item x, SHT first calculates g(x)
to locate its home subtable Tg(x). Then, SHT tries to insert
it into its home bucket Bx in the Tg(x). If x is already in
the Bx, or the Bx has at least one empty cell, the Bx will
accommodate x and end insertion. Otherwise, SHT will evict
an abroad item x′ in the Bx to make room for x. If all the
items in the Bx are at-home, SHT will not accommodate x
in the Bx. After x′ is evicted or x is not inserted into the
Bx, SHT will accommodate the x′ or x in its other candidate
buckets as cuckoo hashing does. While evicting items from
buckets to make room for new items, SHT always follows the
aforementioned three rules. Correspondingly, SHT updates the
BF and the CBF as mentioned above each time it evicts an
item or accommodate an item. Note that, during the insertion,
if an abroad item is evicted, it will be deleted from the CBF,
and if any counter(s) of the CBF comes to 0, the corresponding
bit(s) in the BF will be reset to 0.
Query: When querying an item, we should query the BF
first and get bit vectors. Then SHT queries the subtable(s)
determined through bitwise AND operations with the bit
vectors. If the item is not found, SHT probes the item’s home
bucket. The CBF is not accessed during this process.

D. Extensions
Using multiple subtables can accommodate more items than

preallocated memory cells by dynamically adding a subtable.
This technique also applies to our SHT algorithm. But the
change of the number of subtables may make the home
decision hash function (g(x)) failed. To address this issue,
we use linear hashing [30] as g(x). Only items in a specific
subtable (Ts) may be moved after adding a new subtable Tn.
The moving procedure can take a long time, and it shouldn’t
block the query procedure. Thus, we use a flag to represent
whether the moving procedure is over or not. If not, for an
item x in Ts or Tn, SHT will consider both Ts and Tn are
home subtables of x. This will cause additional bucket probes
when query x. Once moving is done, the flag will be reset,
and SHT will return to normal behavior.

V. ANALYSIS

In this section, we analyze the number of bucket probes of
both positive queries and negative queries in SHT. Because of
the false positives of the Bloom filter, the query results are not
exact, which leads to additional bucket probes.

Let f denotes the false positive rate of the Bloom filter,
Xi denotes the indicator variable that buckets in subtable Ti
need to be accessed, and L denotes the number of buckets
need to be probed. Although we get consecutive d bits during
querying the Bloom filter, they can be regarded as independent
queries in BF approximately. So the expectation of Xi is f
(E(Xi) = f ). For negative queries:

Lneg = E(Lneg)

= E(
∑

Xi + 1)

= 1 + (d− 1)f

(1)

For positive queries, query for home items should probe all
other abroad tables, and it is same as the negative queries.
For abroad items, suppose the probability of an item in each
subtable is equal, then on average abroad items may incur
(d−2)

2 false positives. We define the abroad ratio β as the
ratio between the number of abroad items and the number
of insertions. Therefore:

Lpos = βE(Labroad) + (1− β)E(Lat−home)

= β(1 +
(d− 2)

2
f) + (1− β)(1 + (d− 1)f)

= 1 + ((1− β

2
)d− 1)f

(2)

Suppose N is the number of insertions, there are βN items
in the Bloom filter. Although the insertion procedure in our
enhanced Bloom filter is different from that in the original one,
the effect of these insertions can be regarded as independent
because of items’ independency. Thus, we apply the analysis
of the original Bloom filter [31] to our one, i.e., given N , β
and the length of the Bloom filter m, the optimum k is:

k =
m

n
∗ ln 2 (3)

The false positive rate is 2−k under the optimum k.



1 2 4 8 16
w (cell per bucket)

0.0

0.5

1.0

L
o
ad

fa
ct
o
r

Fig. 2. Maximum load factor

0.0 0.2 0.4 0.6 0.8
Load factor

0.00

0.05

0.10

0.15

A
b
ro
a
d
ra
ti
o

Fig. 3. Abroad ratio under different load factors

2 4 8 16
w (cell per bucket)

0.00

0.05

0.10

A
b
ro
ad

ra
ti
o

Fig. 4. Abroad ratio of SHT under different param-
eter settings (load factor = 0.5)

4 8 16
d (number of subtables)

0.0

0.5

1.0

1.5

A
v
g
.
b
u
ck
et
p
ro
b
es

Fig. 5. Validations of our formulas of positive and
negative queries

0.2 0.4 0.6 0.8
Load factor

1.0

1.1

1.2

1.3

A
v
g
.
b
u
ck
et
p
ro
b
es

Fig. 6. Positive query performance under different
load factors

0.0 0.2 0.4 0.6 0.8
Load factor

1.0

1.5

2.0

A
v
g
.
b
u
ck
et
p
ro
b
es

Fig. 7. Negative query performance under different
load factors

VI. EVALUATION

A. Experimental Setup

In the evaluation part, we explore the effect of parameters
on performance in our SHT algorithm, and compare SHT with
Peacock hashing and BCHT in terms of memory efficiency and
query performance. We mainly use three metrics:
Load factor: We insert items into the hash table sequentially
until the next item cannot be successfully inserted. The ratio
of the number of the inserted items and the number of memory
cells in the hash table is measured as the load factor which
reflects the memory efficiency of slow memory. A higher load
factor means less empty memory cells in the hash table.
Abroad ratio: The abroad ratio shows the number of items
in the summary which reflects the memory efficiency of fast
memory. A smaller abroad ratio means less fast memory is
required to represent the summary. For peacock, the items in
the backup tables are regarded as abroad items, because only
these items need to be inserted into the summary. For BCHT,
no summary is needed so we do not show this metric for it.
Average bucket probes in query: This regards to the query
performance in the hash table. We measure the bucket probes
in both positive queries and negative queries.

We generate 100 datasets, and each dataset contains 15M
key value pairs. The keys and values are both 4-bytes integers
and generated randomly from a uniform distribution. We
guarantee the keys in each dataset are distinct. We use the
first 10M items of each dataset as the insertion workload, and
the rest 5M items as the negative query workload. The inserted
items are used as the positive query workload. Each point in
the figures shows the mean value of these 100 results, and we
also plot the 5th and 95th percentile error bars in the figures.

We set the capacity (the number of memory cells) of each
hash table to 10M, same as the size of insertion workload.
For Peacock, we use the bucketized technique for collision

resolving. The scaling factor r is set to 10 as recommended in
its original paper [7], which means the common ratio of the
size of two adjacent subtables is 10. We use 8 subtables for
Peacock. The sizes of last two subtables are very small under
this setting, so we assume the buckets in these two subtables
can be stored in the fast memory, and the overhead of bucket
probes of them can be ignored. For BCHT, we use only two
hash functions, and 4 cells per bucket without specification.
For convenience, we use d-w-SHT to denote SHT with d
subtables and w cells per bucket, and use w-Peacock to denote
peacock hashing with w cells per bucket.

B. Results and Analysis

As shown in Fig. 2, SHT achieves high load factors under
different parameter settings. We also show the performance of
peacock and BCHT under different w. With w increase, all
these algorithms can achieve higher load factor. The growth
speed of SHT is slower than BCHT but higher than peacock.
For SHT, using more subtables can achieve higher load factor
under the same w. Specifically, 8-8-SHT can achieve 96.17%
load factor, and 4-16-SHT can achieve 96.50% load factor,
while 16-Peacock can achieve 90.17% load factor.

Fig. 3 shows the abroad ratios trends of 16-Peacock and
SHT during the insertion procedure. For convenience, we only
show some of the lines. We observe that SHTs with the same w
have almost the same abroad ratio during insertions, as shown
in Fig. 4. Fig. 4 shows the abroad ratio of SHT when the load
factor is 50%. (Some bars are missing because SHT cannot
achieve a load factor of 50% under some parameters.) When
d increases, the abroad ratio only slightly increases if we fix
w, which means the number of cells per bucket is the major
influencing factor to the abroad ratio. Back to Fig. 3, it shows
that with w = 16, only 10% items will be inserted into the
Bloom filter under 95% load factor, which is close to that of
16-Peacock when it achieving 90% load factor.



We validate the formulas in Fig. 5. In this experiment, we
use SHT with the same w to avoid the influence of different
abroad ratios. We fill up the tables to 80% load factor, and we
estimate the abroad ratio is 8% according to Fig. 3. And we
set the size and the number of hash functions of the Bloom
filter to optimize the false positive rate. We can see that the
empirical results is close to the theory results.

Finally, Fig. 6 and 7 shows the average bucket probes in
positive queries and negative queries. We set the size of Bloom
filter same as the number of memory cells, which means we
need 1 bit per cell in the fast memory. We set the optimized k
according to the size of the Bloom filter and the estimated
abroad ratio. With the number of items increasing, all of
these algorithms need more bucket probes in both positive
and negative queries. Both SHT and peacock need much
less bucket probes owing to filter function of the summary.
Compared with peacock, 8-16-SHT and 4-16-SHT performs
slightly better than 16-Peacock. Specifically, when the load
factor is 90%, 8-16-SHT needs 1.0064 and 1.0068 bucket
probes for positive queries and negative queries, respectively,
while 16-Peacock needs 1.0096 and 1.0105 bucket probes for
positive queries and negative queries, respectively. When the
load factor is 95%, 8-16-SHT needs 1.045 and 1.048 bucket
probes on average for positive queries and negative queries,
respectively, while 16-Peacock cannot achieve this load factor.

VII. CONCLUSION

Hash tables are widely used in many security applications.
In this paper, we propose a novel hash table scheme, named
Shifting Hash Table (SHT), achieving high load factor and
high query speed in terms of the bucket probes at the same
time. The novelty of SHT lies in two aspects: 1) SHT
divides the items into two kinds: at home and abroad, and
we create 3 rules to make the the number of abroad items
small; 2) we modify the Bloom filter into an enhanced one
to significantly reduce the query speed. Theoretical analysis
and experimental results show that our proposed Shifting Hash
Table significantly outperforms the state-of-the-art.

REFERENCES

[1] W. Xie, L. Xie, C. Zhang, Q. Zhang, and C. Tang, “Cloud-based
rfid authentication,” in 2013 IEEE International Conference on RFID
(RFID). IEEE, 2013, pp. 168–175.

[2] G. Tsudik, “Ya-trap: Yet another trivial rfid authentication protocol,” in
Fourth Annual IEEE International Conference on Pervasive Computing
and Communications Workshops (PERCOMW’06). IEEE, 2006, pp.
4–pp.

[3] H. Sun, X. Wang, R. Buyya, and J. Su, “Cloudeyes: Cloud-based mal-
ware detection with reversible sketch for resource-constrained internet of
things (iot) devices,” Software: Practice and Experience, vol. 47, no. 3,
pp. 421–441, 2017.

[4] D. Oh, D. Kim, and W. Ro, “A malicious pattern detection engine for
embedded security systems in the internet of things,” Sensors, vol. 14,
no. 12, pp. 24 188–24 211, 2014.

[5] R. Pagh and F. F. Rodler, Cuckoo hashing. Springer, Aug. 2001.
[6] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table

lookup using extended bloom filter: an aid to network processing,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 4, pp. 181–
192, 2005.

[7] S. Kumar, J. Turner, and P. Crowley, “Peacock hashing: Deterministic
and updatable hashing for high performance networking,” Proceedings
- IEEE INFOCOM, pp. 556–564, 2008.

[8] S. Kumar and P. Crowley, “Segmented hash: An efficient hash table
implementation for high performance networking subsystems,” 2005
Symposium on Architectures for Networking and Communications Sys-
tems, ANCS 2005, no. 1, pp. 91–103, 2005.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[10] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
Bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys and Tutorials, vol. 21, no. 2, pp. 1912–1949, 2019.

[11] S. Z. Kiss, É. Hosszu, J. Tapolcai, L. Rónyai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” in IEEE INFOCOM, 2018.

[12] H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li, “Noisy bloom filters
for multi-set membership testing,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 44, no. 1. ACM, 2016, pp. 139–151.

[13] H. Dai, M. Li, and A. Liu, “Finding persistent items in distributed
datasets,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1403–1411.

[14] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proceedings of the VLDB Endowment, vol. 10, no. 4,
pp. 289–300, 2016.

[15] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space efficient hash
tables with worst case constant access time,” in Annual Symposium on
Theoretical Aspects of Computer Science. Springer, 2003, pp. 271–282.

[16] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking simd
vectorization for in-memory databases,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 1493–1508.

[17] M. Dietzfelbinger and C. Weidling, “Balanced allocation and dictio-
naries with tightly packed constant size bins,” Theoretical Computer
Science, vol. 380, no. 1-2, pp. 47–68, 2007.

[18] A. D. Breslow, D. P. Zhang, J. L. Greathouse, N. Jayasena, and D. M.
Tullsen, “Horton tables: Fast hash tables for in-memory data-intensive
computing.” in USENIX Annual Technical Conference, 2016, pp. 281–
294.

[19] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing:
Cuckoo hashing with a stash,” SIAM Journal on Computing, vol. 39,
no. 4, pp. 1543–1561, 2009.

[20] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles. ACM,
2011, pp. 1–13.

[21] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, 2014, pp. 75–88.

[22] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, “Algorithmic
improvements for fast concurrent cuckoo hashing,” in Proceedings of the
Ninth European Conference on Computer Systems. ACM, 2014, p. 27.

[23] D. Li, J. Li, and Z. Du, “Deterministic and efficient hash table lookup
using discriminated vectors,” in 2016 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[24] T. Yang, B. Yin, H. Li, M. Shahzad, S. Uhlig, B. Cm, and X. Li,
“Rectangular hash table: Bloom filter and bitmap assisted hash table
with high speed,” in 2017 IEEE International Conference on Big Data
(Big Data). IEEE, 2017, pp. 837–846.

[25] Y. Sun, Y. Hua, S. Jiang, Q. Li, S. Cao, and P. Zuo, “Smartcuckoo: A
fast and cost-efficient hashing index scheme for cloud storage systems,”
in 2017 USENIX Annual Technical Conference (USENIX ATC 17).
USENIX{ Association}, 2017, pp. 553–565.

[26] M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch hashing,” in Dis-
tributed Computing. Springer, Sept. 2008, pp. 350–364.

[27] P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-volatile
memory systems,” in Proc. MSST, 2017.

[28] T. Song, Y. Yang, and P. Crowley, “Rwhash: Rewritable hash table for
fast network processing with dynamic membership updates,” in 2017
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS). IEEE, 2017, pp. 142–152.

[29] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 3, pp. 281–293, 2000.

[30] W. Litwin, “Linear hashing: a new tool for file and table addressing.”
in VLDB, vol. 80, 1980, pp. 1–3.

[31] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.


