
Seesaw Counting Filter: An Efficient Guardian for Vulnerable
Negative Keys During Dynamic Filtering

Meng Li
Deyi Chen

menson@smail.nju.edu.cn
chendeyi@smail.nju.edu.cn

Nanjing University
Nanjing, China

Haipeng Dai
Rongbiao Xie

haipengdai@nju.edu.cn
rongbiaoxie@smail.nju.edu.cn

Nanjing University
Nanjing, China

Siqiang Luo
siqiang.luo@ntu.edu.sg

Nanyang Technological University
Singapore

Rong Gu
gurong@nju.edu.cn
Nanjing University
Nanjing, China

Tong Yang
yang.tong@pku.edu.cn
Peaking University
Beijing, China

Guihai Chen
gchen@nju.edu.cn
Nanjing University
Nanjing, China

ABSTRACT
Bloom filter is an efficient data structure for filtering negative keys
(keys not in a given set) with substantially small space. However,
in real-world applications, there widely exist vulnerable negative
keys, which will bring high costs if not being properly filtered,
especially when positive keys are added/deleted dynamically. To
address the problem, we propose SeeSaw Counting Filter (SSCF),
which is innovated with encapsulating the vulnerable negative keys
into a unified counter array named seesaw counter array, and dy-
namically modulating (or varying) the applied hash functions to
guard the encapsulated keys from being misidentified. Moreover,
we propose ada-SSCF to handle the scenarios where the vulnerable
negative keys cannot be obtained in advance. We extensively evalu-
ate our SSCF, which shows that SSCF outperforms the cutting-edge
filters by 3× on averages regarding accuracy while ensuring a low
operation latency. All source codes are in [2].

CCS CONCEPTS
• Information systems → Web indexing; Point lookups; Spam de-
tection; • Networks→ Network monitoring.

KEYWORDS
Bloom filter, Probabilistic Data Structure, Hash Modulation

ACM Reference Format:
Meng Li, Deyi Chen, HaipengDai, Rongbiao Xie, Siqiang Luo, RongGu, Tong
Yang, and Guihai Chen. 2022. Seesaw Counting Filter: An Efficient Guardian
for Vulnerable Negative Keys During Dynamic Filtering. In Proceedings of
the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3485447.3511996

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3511996

1 INTRODUCTION
Bloom filters are used widely. Designed for approximate mem-
bership testing problem, Bloom filter can reduce unnecessary access
to the whole collection of keys, which is critical to systems like
database and networking, especially considering the increasing
data volume nowadays. With only a bit array as the underlying
data structure, Bloom filter has been widely used due to its space ef-
ficiency and (insert/query) operation elegance, which only involves
several times of hash function computation and memory accesses.
Specifically, at insertion time, Bloom filter maps a positive key with
k hash functions to k different bits and sets them to 1. At query time,
a key is said to be in the filter if all its k mapped bits are 1. With such
simple operations, Bloom filter provides one-side error probability.
Specifically, only negative keys (i.e., keys not in the given set) will be
mistakenly identified to be (false) positive with bounded probability,
while all positive keys (i.e., keys in the given set) will be correctly
identified. The probability of generating a false positive is denoted
as false positive rate (FPR). Considering its performance and ele-
gance, Bloom filters have been widely used in many applications,
such as networking and database [11, 12, 14, 15, 18, 24].

Dynamicity is an emerging need. In the past decades, Bloom
filter has been extensively studied for static set filtering, where
the stored data is static and remains unchanged. For example, the
Bloom filter is built for sorted string tables [13] in KV-stores like
LevelDB [7]. However, there also exist important scenarios where
data are inserted and deleted dynamically. To process dynamic set
filtering, a variant named Counting Bloom filter (CBF) is proposed
by replacing the underlying bit array with a counter array [12].

The costs of different filtering errors can be very skewed.
One hidden assumption behind (Counting) Bloom filter is that
all negative keys are treated identically [6], which implies that
misidentifying of different items brings the same cost. However,
the recent works indicate that the cost of filtering error of different
negative keys can be significantly different or even very skewed [6,
10, 26]. For example, in the application of building a URL blacklist
with Bloom filter to block malicious URLs, a given URL will first
be checked if it is in the Bloom filter, and if yes, a new request is
generated to validate its safety [10]. However, a significantly large
cost will be brought when certain common URLs are misidentified.

2759

https://orcid.org/0000-0001-5764-960X
https://doi.org/10.1145/3485447.3511996
https://doi.org/10.1145/3485447.3511996
https://doi.org/10.1145/3485447.3511996

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Meng Li, et al.

Table 1: Comparison Among Filters

Filter Variants Cost-efficiency Dynamicity One-pass Building Prior Knowledge
Counting Bloom Filter [5, 12] × ✓ ✓ None
Learned Filter [9, 17, 25] × × × Positive & Negative keys
Weighted Bloom Filter [6] ✓ Partial ✓ Positive & Negative keys
Stacked Filter [10] ✓ Partial × Positive & Negative keys
HABF [26] ✓ × × Positive & Negative keys
SSCF/Ada-SSCF ✓ ✓ ✓ Vulnerable Negative Keys/None

2 0 0 3 1

Modulated

0

+1+1 +1

Vulnerable Negative Key:

Positive Key:

Counter Array

Figure 1: Hash Modulating

For instance, given a hotspot URL A (e.g., outlook.com) and a rarely-
visited URL B (e.g., mail.21cn.com), it is better to distinguish URL A
and URL B in building the filter, because treating A as a malicious
URL brings significantly more safety validation than B. Another
typical example is the Bitcoin Core whitelist [1], which is based on
Bloom filter and designed to relieve the communication overhead
by specifying which services should be provided to different IPs.
Here, misidentifying service permission to malicious IPs [21] may
raise the risks of being attacked. Similar examples include the access
control list in the intrusion detection system [3].

We refer to these negative keys with high misidentifying costs as
vulnerable negative keys. Note that these vulnerable negative key
set can usually be obtained upfront, e.g., the top popular websites
(or URLs) worldwide. As far as we know, there have been few
works regarding handling vulnerable negative keys during filtering,
especially in dynamic scenarios. Table 1 outlines the comparison
among different related filters, which can generally be divided into
two types: passive filters and active filters. Passive filters include
Counting Bloom filter and its variants [5, 12, 22], which can only
improve its FPR by passively increasing their space usage. Recently,
there have been a few works actively utilizing the prior knowledge
of negative keys and are referred to as active filters [6, 9, 10, 17,
25, 26]. However, these active filters that are based on machine
learning models suffer from several problems, including relying
on semantic knowledge of data, prolonged construction and query
latency, and no dynamicity [9, 17, 25]. Other active filters [6, 10, 26]
are only designed to work in static offline scenarios1, where positive
and negative keys need to be known in advance. Besides, these
filters [10, 26] need to scan keys multiple times, which makes them
cannot be applied in dynamic scenarios.

In this paper, to handle the vulnerable negative keys, we propose
a filter named SeeSaw Counting Filter (SSCF for short). SSCF has
two components, including an underlying seesaw counter array
(SCA) and a lightweight hash table named HashModulator. Then
at insertion time, SSCF applies k default (or initial) hash functions
and increases the k mapped seesaw counters by one. Different from
the Counting Bloom filter, the applied hash functions can be mod-
ulated (or varied) by SSCF during insertion time. As a classical
technique in signal processing to safely mix signals to be separated

1Stacked filter [10] only allows minor (or slow) insertion/deletion after building the
filter with the prior knowledge of all positive/negative keys.

later, the modulating is borrowed here by varying the properties
(i.e., hash functions) of positive keys to guard vulnerable negative
keys against being inseparable from positive keys. An example of
hash modulating is shown in Figure 1, in which the hash function
h2 is deprecated and modulated to h3 to guard vulnerable negative
key n1 (i.e., avoiding the third left counter being increased to > 0).
The modulated hash function is then stored into HashModulator,
and will be retrieved at query time. Moreover, we develop the corre-
sponding modulated query and deletion procedures while ensuring
one-side query error pattern as Counting Bloom filter does, i.e.,
only false positives and no false negatives. Meanwhile, to handle
the scenarios where vulnerable negative keys cannot be obtained in
advance, we propose adaptive SSCF (i.e., ada-SSCF), which takes vul-
nerable negative keys as input dynamically and obtain continuously
improved performance with frequent key insertions/deletions.

Challenges. In this paper, we are mainly faced with three chal-
lenges. The first challenge is how to ensure one-side query error
when the applied hash functions are modulated. To address this
challenge, we design a two-round query procedure, in which a
negative key is said to be not in the filter if and only if it is both
rejected with initial hash functions in the first round and modu-
lated hash functions in second round. The second challenge is how
to mitigate the computation overhead of hash modulating since
hash modulating will incur more hash function computation and
memory accesses, which is a big concern for dynamic scenarios.
To address the challenge, we propose a lightweight modulating
scheme named one-modulating, which modulates at most one hash
function but still achieves significant performance gain with low
operation latency. The third challenge is, at deletion time, how to
avoid the inconsistent deletion of modulated hash functions from
HashModulator since the information about which keys use the
stored modulated hash functions is not maintained. To address the
challenge, a counter field named ModulatedCounter indicating the
times of each modulated hash function being used is added and
acts like a virtual lock preventing inconsistent deletion.

Contributions. The main contributions are as follows:

(1) Problem formulation: We propose the dynamic cost-
efficient filtering problem, where the vulnerable negative
keys can be obtained and positive keys are dynamically in-
serted/deleted.

(2) Cost-efficient filtering framework: We propose SSCF
that allows the applied hash functions to be modulated to
guard vulnerable negative keys, which can also be extended
to work with dynamically obtained vulnerable negative keys.

(3) Evaluation: We evaluate SSCF on representative datasets
and show that, with the same memory space, SSCF achieves
3× or even higher accuracy (i.e., cost-weighted FPR) with
low operation latency comparable to Counting Bloom filter.

2760

Seesaw Counting Filter WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Modulated Hash

HashModulator

Initial Hash

Seesaw Counter Array

Figure 2: Architecture of Seesaw Counting Filter

2 BACKGROUND
Counting Bloom filter. Designed for approximate membership
testing, Bloom filter [4] aims to represent a set of keys, e.g., S =
{s1, · · · , sn }, by encoding them into a bit array with k independent
hash functions {h1, · · · ,hk }. To insert a key x , the array bits hi (x)
are set to 1 for 1 ≤ i ≤ k ; to checkwhether x is in S , all mappedhi (x)
bits are tested. If all hi (x) bits are 1, x is said to be in S with a small
false positive rate and zero false negative rate. To support dynamic
insertion and deletion, Counting Bloom filter (CBF) [12] is proposed
by replacing the bit array with a (counter) cell array. Meanwhile,
the insertion operation increases the mapped counter by one while
the deletion operation decreases the mapped counter by one. Note
that the underlying counter array may cause counter overflow,
which, however, can be sufficiently addressed by allocating 4 bits for
each counter [12]. Besides, the optimal hash function number k =
⌊B ln 2⌋, where B is the number of bits (or counters) per key [4, 12].
All notations used are listed in Table 2.

3 SEESAW COUNTING FILTER
3.1 Problem Formulation
The problem studied is formalized as Dynamic Cost-efficient
Filtering Problem (DCFP), i.e., given vulnerable negative keys
Nn with their respective misidentifying costs, when dynamically
inserting or deleting keys, how to minimize the overall cost incurred
by misidentification of negative keys.

To handle DCFP, we propose the seesaw counting filter (with
HashModulator and seesaw counter array) as shown in Figure 2.

3.2 High-level Idea
We aim to encode vulnerable negative keys into the underlying
seesaw counter array, each of which has two fields for recording
negative keys and positive keys, as shown in Figure 4(a). At in-
sertion or query time, similar to Counting Bloom filter, k hash
functions are applied and map to the underling k seesaw counters.
However, different from the standard Counting Bloom filter, an

Table 2: Notations
Symbol Description

Np Positive key capacity of SSCF
Nu The universe negative keys set
Nn The vulnerable negative keys set
Nn Number of vulnerable negative keys, i.e. Nn = |Nn |
B Number of seesaw counters per positive key in SCA
m Number of seesaw counters in SCA,m = B · Np
θ1/θ2 Size of negative/positive cell in bits per seesaw counter
HA Initial hash function set of SSCF
HB Backup modulated hash function set SSCF
k Number of initial hash functions (k = |HA |)
k̂ Number of backup modulated hash functions (k̂ = |HB |)
n Number of cells in HashModulator
η1 Size of ModulatedCounter field in bits in HashModulator
η2 Size of ModulatedIndex field in bits in HashModulator
C(x) The cost of filtering error for key x
α The ratio of space allocated to HashModulator

ModulatedCounter ModulatedIndex

Modulated Cell

Figure 3: Structure of HashModulator

applied hash function may be modulated if it maps the inserted
key to a seesaw counter that is already occupied by negative keys,
which is shown in Figure 4(b). Specifically, if a seesaw counter is
preoccupied by a negative key, the seesaw counter is said to lean
to the negative cell and will be sealed to prevent positive keys
from being inserted into the counter. If a hash function maps a
positive key to a negative seesaw counter, the hash modulating is
then activated to find a modulated hash function maps to another
seesaw counter that is either empty or positive, which is shown
in Figure 4(c). Note that the modulating may fail, and the initial
hash functions will be applied if there is no such qualified modu-
lated hash function that maps the inserted key to empty or positive
seesaw counters. In that case, we will get a mixed seesaw counter
with its negative and positive cells being both occupied. However,
if the modulating succeeds, the modulated hash function is then
stored into HashModulator and will be retrieved at query time. The
key insight behind the modulating is to spare space for vulnerable
negative keys from unimportant negative keys.

Besides, the modulating may incur extra overhead from hash
function computation and memory accesses, which is a big concern
in dynamic scenarios. To reduce such overhead, we propose a light-
weight modulating policy named one-modulating, i.e., only the hash
function with the smallest index will be modulated for each key
However, even with the one-modulating policy, a significant per-
formance gain can be observed since a negative key is misidentified
if all its k mapped counters are occupied by positive keys, whose
probability can already be greatly reduced by one-modulating.

3.3 Structure of SSCF
Seesaw Counting Array (SCA). As is shown in Figure 2, SCA is
composed of an array of m seesaw counters, each of which has
two fields: negative (counter) cell and positive (counter) cell as
shown in Figure 4. The negative cell records whether this cell is
mapped by vulnerable negative keys, which makes 1-bit space size
is already enough. Specifically, when a negative key is mapped to
a seesaw counter, its negative cell set to 1. As for the positive cell
field, it is used to record the number of keys inserted into the cell.
Similar to Counting Bloom filter, SSCF also has k accompanying
hash functions, which is used tomap inserted keys to the underlying
counter array during insertion or query.

HashModulator. As shown in Figure 3, HashModulator con-
sists of a cell array, each of which have two fields named Modulat-
edCounter and ModulatedIndex. The ModulatedIndex field records
the index of the stored modulated hash function, whose times of

Positive CellNegative Cell

(a) Empty Seesaw

Negative Cell Positive Cell

(b) Negative Seesaw

Negative Cell Positive Cell

(c) Positive Seesaw

Figure 4: Seesaw Counter

2761

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Meng Li, et al.

(3) Negative Con ct

(1) Negative Probing

(4) Modulated Insertion

HashModulator

(2) & (5)
FinishedSeesaw Counting Filter

Figure 5: Modulated Insertion Procedure

being used is recorded in the ModulatedCounter field. For a given
key x , it is mapped to HashModulator with a public hash function
h0.

3.4 Negative Key Encoding
To construct SSCF, the vulnerable negative keys need to be encoded
firstly. The encoding procedure is similar to the insertion process
of the standard Counting Bloom filter. Specifically, as shown by
Steps 1 − 4 of Algorithm 1, for a given negative key x , the negative
cells of the k seesaw counters in SCA mapped by x are set to 1.
Here, the negative cell field is 1-bit by default in this paper.

Algorithm 1: Negative Key Encoding
Data: Negative key set Nn , SSCF (SCA S, HashModulator M),

initial hash functions HA = {h1, · · · , hk }
1 for negative key x ∈ Nn do
2 for ith hash function hi ∈ H0 do
3 idx = hi (x) ;
4 Set the negative cell of S[idx] to 1;

3.5 Modulated Insertion Procedure
After negative key encoding, as is shown in Figure 5, the main
insertion procedure is innovated in hash modulating, including
five steps: (1) negative probing; (2) if no negative seesaw counter
probed, the insertion finishes; (3) negative conflict detected and
hash modulating; (4) modulated insertion; (5) the insertion finishes.

Running Example. As is shown in Figure 6, when inserting
positive key x , it is mapped by two hash functions h1,h2 to seesaw
counters S[1] and S[3]. However, the negative cell of S[3] is probed
to be non-empty, which then triggers the hash modulating to find a
new hash function to redirect x to another seesaw counter with an
empty negative cell. Suppose the qualified new hash function is h4,
as shown in the lower half of Figure 6, we need to record h4 into the
empty cellM[4] (mapped by h0) in HashModulator by increasing
the ModulatorCounter by one and setting ModulatedIndex to 4.
However, if the mapped cell is not empty, a trial of reusing the
stored hash function for hash modulating is conducted instead of
finding a new hash function and is detailed in the following hash
modulating step. The three key steps, including negative probing,
hashmodulating, andmodulated insertion, are explained as follows.

Negative Probing. The first step is negative probing, i.e., testing
whether there are any negative seesaw counters mapped by the
initial hash functions. To be specific, given a key x to be inserted,
we use the initial k hash functions HA to probe its mapped seesaw
counters to check whether there exist any seesaw counters with
non-empty negative cells. If not, the positive cells of k mapped
seesaw counters are increased by 1, and the modulated procedure

ends. Otherwise, the hash modulating is triggered for the hash
function that maps the x to the seesaw counter with a non-empty
negative cell. There may be multiple hash functions probed to be
negative conflict, but only the one with the smallest index will be
marked as the candidate to be modulated. The probing procedure
is shown in Steps 1 − 6 of Algorithm 2, in which the index of the
hash function to be modulated is denoted as idxold (Step 5).

HashModulating.With the obtained hash function to bemodu-
lated, the hash modulating is activated to find a qualified modulated
hash function. However, we need to check whether the mapped
cell in HashModulator is empty (Steps 7 − 8 of Algorithm 2).

Firstly, if the mapped cell in HashModulator is empty (i.e., Mod-
ulatedCounter is 0), we then proceed to find a qualified modulated
hash function from hash function candidate set HB (Steps 9 − 14
of Algorithm 2). A qualified modulated hash function is found if
it maps the inserted key x to an empty or positive seesaw counter
(Steps 12 − 14, Algorithm 2). If a qualified hash function is found,

Algorithm 2:Modulated Insertion
Data: Key x , SSCF (SCA S, HashModulator M), initial hash

functions HA , modulated hash functions HB

1 Set the hash function index to be modulated idxold = −1 and the
modulated hash function index idxnew = −1 ;

2 for the ith hash function hi ∈ HA do
3 j = hi (x) ;
4 if idxold < 0 and negative cell of S[j] larger than 0 then
5 idxold = i ;

else
6 Increase the positive cell of counter S[j] by 1;

if idxold > 0 then
7 jmod = h0(x) ;
8 if M[jmod].ModulatedCounter == 0 then
9 idxnew = -1 ;

10 for the ith hash function hi ∈ HB do
11 jnew = hi (x) ;
12 if S[jnew].nc == 0 then
13 idxnew = i ;
14 break;

15 if idxnew > 0 then
16 M [jmod].ModulatedIndex = idxnew ;
17 j = HB [idxnew](x) ;
18 Increase the positive cell of counter S[j] by 1;

else
19 j = HA [idxold](x) ;
20 Increase the positive cell of counter S[j] by 1;

else
21 idxnew = M[jmod].ModulatedIndex ;
22 j = HB [idxnew](x) ;

if S[j].nc == 0 then
23 Increase the positive cell of counter S[j] by 1;

else
24 j = HA [idxold](x) ;
25 Increase the positive cell of counter S[j] by 1;

26 Increase M[jmod].ModulatedCounter by one;

2762

Seesaw Counting Filter WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

0, 2 0, 3 1, 0 1, 0 0, 2

Modulated

0, 3

Positive Key:

SCA

S[1] S[3]S[2] S[4] S[5] S[6]

Negative Cell ,Positive Cell

0, 1 0, 0

S[7] S[8]

1, 0 2, 1 1, 1 0, 0 2, 0

Positive Key:

HashModulator
M[1] M[3]M[2] M[4] M[5] M[6]

ModulatedCounter, ModulatedIndex

0, 0 1, 1

M[7]

Figure 6: Running Example: Modulated Insertion

(3) Positive Vacancy

(1) Positive Probing

(4) Modulated Query

HashModulator

(2) & (5)
Accept

Yes
Seesaw Counting Filter

Figure 7: Modulated Query Procedure
its index denoted as idxnew will be stored into HashModulator
(Steps 16, Algorithm 2). Then the modulated hash function comes
into use, which will increase the positive (counter) cell of its mapped
seesaw counter by one as shown by Steps 17 − 18 of Algorithm 2.
However, if no qualified modulated hash function is found, the
hash modulating fails, followed by which the original initial hash
function is used, which is shown in Steps 19 − 20 of Algorithm 2.

Secondly, if the mapped cell in HashModulator is occupied, we
will first check whether the stored hash function stored in the
occupied cell can be reused. If the hash function can be reused, we
increase the positive (counter) cell of seesaw counter mapped by
the reused hash function by one (Steps 21 − 23 of Algorithm 2).
Otherwise, we turn to using the original initial hash function as
shown by Steps 24 − 25 of Algorithm 2.

Modulated Insertion. Finally, we need to increase the Modu-
latedCounter field mapped by the key x by one, named Modulated
Insertion as shown in Step 26. After the modulated insertion step,
the whole insertion process ends as shown in Figure 5.
3.6 Modulated Query Procedure
The query procedure is shown in Figure 7 and Algorithm 3, which
can be divided into two rounds as shown in Figure 7. To ensure
zero FNR, we restrict that a key is rejected if it is rejected in both
rounds. In the first round, the first Step (Positive Probing, Figure 7)
is positive-probing, which probes whether all mapped seesaw coun-
ters have non-empty positive cells. If yes, the queried key is ac-
cepted by SSCF as shown by Step 2 in Figure 7. Otherwise, the
second round is activated if only one seesaw counter is probed
to have an empty positive cell (Positive Vacancy, Figure 7). In the
second round, we retrieve a modulated hash function and accept x
if the positive cell of the newmapped seesaw counters is non-empty
(Steps 4 − 5, Figure 7). In other cases, the queried key is rejected.

Running Example. In Figure 8, when querying key x , it is
mapped by two hash functions h1,h2 to seesaw counters S[1] and
S[3]. However, the positive cell of S[3] is probed to be empty, which
makes key x is rejected in the first round and triggers the procedure
of retrieving the modulated hash function stored in HashModulator,
i.e., h4 inM[4]. With the retrieved h4, x is redirected and mapped
to S[8], which then makes x accepted in the second round.

0, 3 0, 3 1, 0 1, 0 0, 2

Modulated

0, 3

Query Key:

SCA

S[1] S[3]S[2] S[4] S[5] S[6]

Negative Cell , Positive Cell

0, 1 0, 1

S[7] S[8]

1, 0 2, 1 2, 1 1, 4 2, 0

Query Key:

HashModulator
M[1] M[3]M[2] M[4] M[5] M[6]

ModulatedCounter, ModulatedIndex

0, 0 1, 1

M[7]

Figure 8: Running Example: Modulated Query
The detailed procedure of modulated query is presented in Al-

gorithm 3, which includes the first query round (Steps 2 − 6) and
the second round (Steps 7 − 14). In the first round, SSCF firstly
checks the k initial hash functions by probing their mapped seesaw
counters. If all the probed positive cells are non-empty, the queried
key x is accepted directly (Step 15, Algorithm 3). If more than one
positive cell is empty (Steps 4 − 5, Algorithm 3), the queried key x
is rejected in the first round due to our one-modulating policy. Oth-
erwise, if only one positive cell is probed to be empty, the second
round is activated to retrieve the modulated hash function.

However, the retrieval may fail if the mapped cell of the inserted
key in HashModulator is empty (Steps 9 − 10, Algorithm 3); other-
wise, a modulated hash function is retrieved with index denoted as
idxnew (Step 11, Algorithm 3). The retrieved modulated hash func-
tion is used by probing its mapped seesaw counters (Steps 12 − 14,
Algorithm 3). Considering that a modulated hash function will be
adopted if it maps to a seesaw counter with an empty negative cell
during insertion, the queried key x is rejected when the negative

Algorithm 3:Modulated Query (x)

Data: Key x , SSCF (SCA S, HashModulator M), initial hash
functions HA , modulated hash functions HB

Result: Whether x is in SSCF
1 Set the hash function index to be modulated idxold = −1 and the

modulated hash function index idxnew = −1 ;
2 for the ith hash function hi ∈ HA do
3 j = hi (x) ;
4 if positive cell of S[j] is empty then

if idxold > 0 then
5 return false;

else
6 idxold = i ;

7 if idxold > 0 then
8 jmod = h0(x) ;
9 if M[jmod].ModulatedCounter == 0 then
10 return false;

else
11 idxnew = M[jmod].ModulatedIndex ; ;
12 jnew = HB [idxnew](x); ;
13 if S[jnew] has non-empty negative cell or empty positive

cell then
14 return false;

15 return true ;

2763

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Meng Li, et al.
A

d
a

p
tiv

e
-b

it Negative Cell

Positive Cell

(a) Structure (b) Adaptive Encoding (c) Blocked Adaptive Encoding

Figure 9: Adaptive Seesaw Counter

cell is non-empty (Step 14, Algorithm 3). Similarly, the queried key
x is rejected if the positive cell of the mapped seesaw counter is
empty (Step 14, Algorithm 3). In other cases, the queried key is
accepted directly (Step 15).
3.7 Modulated Deletion Procedure
Another essential operation is deletion, which involves decreasing
the mapped counters in SCA and removing the modulated hash
function from HashModulator. We omit it here for space saving.
3.8 Extension: Adaptive SSCF
When the vulnerable negative keys may not be obtained in advance,
we propose adaptive SSCF (ada-SSCF for short), which can take
(or absorb) the vulnerable keys as input dynamically. Note that
these absorbed vulnerable negative keys may not bring immediate
decreased cost-weighted FPR but will contribute to continuously
improved cost-weighted FPR when keys are deleted and inserted.
In other words, the performance of ada-SSCF improves over time.
As shown in Figure 9(a), ada-SSCF also has HashModulator but
is equipped with a new adaptive seesaw counter array, each of
which has an extra cell namedAdaptive-bit recording the vulnerable
negative keys at runtime.

Now we introduce how to encode vulnerable negative keys at
runtime. Given vulnerable negative key x , x is mapped with the k
initial hash functions to the underlying adaptive seesaw counters.
For each mapped seesaw counter, we set its adaptive-bit field to 1.
However, with only Adaptive-bit cell being set, the hashmodulating
will not be triggered even if this cell is mapped by positive keys since
the hash modulating only relies on the negative cell. To address
this problem, we need to transport this encoded Adaptive-bit to
the negative cell field of the same cell. According to whether the
positive cell is empty in the same counter, the transportation can be
divided into two cases. Firstly, as shown in Figure 9(b), if the positive
cell is empty, the corresponding negative cell in the same cell can
be set to 1 safely since this mapped positive cell is not occupied by
any positive keys. Secondly, if the positive cell is not empty, the
transportation is then blocked since directly setting the negative cell
may make it hard to distinguish whether the applied hash functions
of positive keysmapped to this cell aremodulated or not, whichmay
further lead to the inconsistent deletion or even FNR. Therefore, as
shown in Figure 9(c), direct transportation is not feasible and will
be blocked when the positive cell is non-empty. However, in the
dynamic scenarios, deletions or insertions are frequent, and thus
makes the blocked transportation can be resumed and carried out
once the positive cell is decreased to 0.

4 EXPERIMENT EVALUATION
4.1 Experiment Setup
4.1.1 Comparison Filter Implementation. The first filter is
Counting Bloom filter (CBF) [12]. By inheriting the optimal parame-
ter setting of CBF, we set the number of hash functions k = ⌊ln2 ·B⌋
to minimize the FPR for CBF, where B is the number of counters per

key. Besides, each counter cell is set to 4-bit according to [12], which
is also inherited by SSCF. The second comparison filter is Weighted
Bloom filter (WBF) [6]. However, considering that deletion is not
supported by WBF, we adapt WBF to our problem by replacing
its bit array with counter array and name the adapted version as
Weighted Counting Bloom filter (WCBF for short). The third Filter
is Stacked Filter (SF) [10]. However, SF cannot be borrowed directly
here since the construction of SF relies on the prior knowledge of
positive and negative keys, which cannot be obtained in advance in
dynamic scenarios. To adapt SF to our problem, we build a three-
layer SF with the second layer (i.e., negative filter layer) storing
a default portion about 5% (same as SSCF) of negative keys with
the highest cost. Besides, inspired by [10], the space size allocated
for each filter layer to make each Filter have roughly the same
FPR. Moreover, to make SF support deletion, we replace the Bloom
filter in SF framework with Counting Bloom filter. To achieve a
head-to-head comparison, we require the space consumption of all
filters evaluated to be the same. The memory space consumption is
indicated by the metric named bits-per-key (i.e., bits per positive
key), which equals the total memory space size in bits divided by
the positive key number.

4.1.2 EvaluationMetrics. We use the following metrics: (1) cost-
weighted FPR; (2) insertion latency; (3) query latency; and (4) dele-
tion latency. The first metric, i.e., cost-weighted FPR, is a variant of
standard FPR that takes key costs as weighted factors. Specifically,
the cost-weighted FPR is defined as

∑
x∈Nu F (x)·C(x)∑

x∈Nu C(x) , where Nu is
the negative key set, F (x) ∈ [0, 1] is the queried result of key x in
filter F , and C(x) denotes the cost of key x .

4.1.3 Data Sets. To validate the effectiveness of SSCF, the follow-
ing two data sets are used:

(1) Shalla’s Blacklists: Shalla’s Blacklists [16] (abbreviated as
Shalla) is a URL dataset, which contains malicious URLs
to be blocked and used here to simulate building dynamic
white-list URLs that can be accessed safely.

(2) YCSB: YCSB is a benchmark [8] designed by Yahoo for per-
formance evaluating of key-value stores. We use YCSB here
to simulate network cache applications, where data are dy-
namically added or deleted. In such applications, filtering
the frequently missed access requests is important.

4.1.4 Cost Distribution. Considering that the keys from Shalla
and YCSB have no default cost, a skewed cost distribution (i.e., Zipf
distribution [23]) is generated. To reveal the correlation between
the cost skewness and filtering performance, various skewness
parameters (from 1.0 to 2.5) are generated.

4.2 Parameter Evaluation
Given the total memory space budget, the performance of SSCF
depends on the following parameters: (1) the number of initial
hash functions k ; (2) the size of ModulatedCounter field η1; (3) the
number of backup modulated hash functions k̂ and ModulatedIndex
field sizeη2; and (4) HashModulator space ratioα . We evaluate these
parameters on Shalla with 1.5 Zipf skewness to study their effects.

(1) Number of Initial Hash Functions k . In Figure 10(a), we vary
the initial hash function number against different counters per
key. Overall, the optimal k is 4 for B = 8 and increases to 8 for

2764

Seesaw Counting Filter WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

2 3 4 5 6 7 8
Initial Hash Number k

0.2

0.4

0.6

0.8

1.0

1.2

1.4
C
o
st

-w
e
ig

h
te

d
 F

PR
 (
x1

0
4
)

(a) Cost-weighted FPR vs. k

1 2 4 6 8 10 12
ModulatedCounter Size 1

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

C
o
st

-w
e
ig

h
te

d
 F

PR
 (
x1

0
4
)

O
ve

rf
lo

w

(b) Cost-weighted FPR vs. η1

1 2 4 6 8 10 12
Modulated Hash Number k

3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50

C
o
st

-w
e
ig

h
te

d
 F

PR
 (
x1

0
4
)

1-bit 2-bit 3-bit3-bit 4-bit

(c) Cost-weighted FPR vs. k̂ & η2

6 8 10 12 14 16 18 20
HashModulator Space Ratio (%)

4.0

4.2

4.4

4.6

4.8

5.0

5.2

C
o
st

-w
e
ig

h
te

d
 F

PR
 (
x1

0
4
)

15

20

25

30

35

Lo
a
d
 F

a
ct

o
r

(%
)

(d) Cost-weighted FPR vs. α

Figure 10: Parameter Evaluation

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 2

10 1

C
o
st

-w
e
ig

h
te

d
 F

PR

(a) Skewness = 1

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 4

10 3

10 2

10 1

C
o
st

-w
e
ig

h
te

d
 F

PR

(b) Skewness = 1.5

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 6

10 5

10 4

10 3

10 2

10 1

C
o
st

-w
e
ig

h
te

d
 F

PR

(c) Skewness = 2

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 8

10 6

10 4

10 2

100

C
o
st

-w
e
ig

h
te

d
 F

PR

(d) Skewness = 2.5
Figure 11: Cost-weighted FPR on Shalla vs. Skewness under the Same Memory Space (Varying from 3.5MB to 6.4MB)

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 2

10 1

C
o
st

-w
e
ig

h
te

d
 F

PR

(a) Skewness = 1

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 4

10 3

10 2

10 1

C
o
st

-w
e
ig

h
te

d
 F

PR

(b) Skewness = 1.5

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 8

10 6

10 4

10 2

100

C
o
st

-w
e
ig

h
te

d
 F

PR

(c) Skewness = 2

20 22 24 26 28 30 32 34 36
Bits Per Positive Key

10 11

10 9

10 7

10 5

10 3

10 1

C
o
st

-w
e
ig

h
te

d
 F

PR

(d) Skewness = 2.5

Figure 12: Cost-weighted FPR on YCSB vs. Skewness under the Same Memory Space (Varying from 29.8MB to 53.6MB)
B = 12, which roughly agrees with the optimal hash function
number setting k = ⌊B · ln(2)⌋ from CBF. Moreover, given the
number of seesaw counters per key B, the cost-weighted FPR drops
at first but then increases as B increases.

(2) ModulatedCounter Size η1. As is shown in Figure 10(b), the
ModulatedCounter size η1 is varied from 1 to 12. The results show
that when the η1 is small (≤ 2), the ModulatedCounter field size
is too small to record the times of stored modulated hash function
being used, and thus overflows; when η1 increases from 3 to 12, the
cost-weighted increases gradually since theModulatedCounter field
occupies more space but brings no benefits except the increased
capacity of each modulated hash function being used.

(3) Number of Modulated Hash Functions k̂ and Modulated Field
Size η2. The number of modulated hash functions k̂ is constrained
by the size η2 of ModulatedIndex field, i.e. k ≤ 2η2 . In Figure 10(c),
with k̂ increased from 1 to 12, the optimal k̂ is 2 and can be covered
by 1-bit ModulatedIndex. For k̂ < 2, the number of modulated hash
functions is limited, which brings down the successful probability of
hash modulating. As for k̂ > 2, the ModulatedIndex field consumes
more space to cover the modulated hash index (up to k̂), which
leads to cost-weighted FPR deterioration.

(4) HashModulator Space Ratio α . As is shown in Figure 10(d), we
vary α from 6% to 20%. The optimal cost-weighted FPR is achieved
when α = 10%. For α < 10%, the load factor L of HashModulator
is high, which leads to more hash collisions in HashModulator, and
thusmoremisidentification in the second query round of modulated
query procedure. For α > 10%, the space allocated for SCA becomes
too small, which leads to more misidentification in the first query
round, and thus higher cost-weighted FPR.

4.3 Overall Filtering Performance
In this subsection, we evaluate all filters by varying the space size,
and Zipf cost distribution skewness.

SSCF always has the smallest cost-weighted FPR under all space
settings and outperforms all the comparison filters at least by 1.55×
and up to two orders of magnitude on skewed data. For Shalla with
skewness 1.0, as shown in Figure 11(a), the cost-weighted FPR of
SSCF decreases from 2.99% to 0.57%. Among other filters, the SF
shows the best performance with cost-weighted FPR decreasing
from 5.62% to 0.63%. Even compared with SF, SSCF shows over
1.55× performance improvement and obtains larger performance
gain under larger skewness, which is as shown in Figure 11(b),
Figure 11(c) and Figure 11(d). Particularly, SSCF outperforms SF
over two orders of magnitude with 2.5 Zipf skewness, which is as
shown in Figure 11(d).

As is shown in Figure 12(a), for YCSB with skewness 1.0, the cost-
weighted FPR of SSCF decreases from 2.35% to 0.51%. Similar to that
on Shalla, SF also shows the best performance with cost-weighted
FPR decreasing from 4.80% to 0.54% on YCSB with Zipf skewness
1.0. Meanwhile, SSCF outperforms all the other comparison filters
by at least 1.45×. With the increased cost distribution skewness,
the performance gap enlarges as shown in Figure 12(b), Figure 12(c)
and Figure 12(d). As is shown in Figure 12(d), on YCSB with 2.5
Zipf skewness, SSCF also outperforms all other comparison filters
by over two orders of magnitude.
4.4 Operation Latency
4.4.1 Insertion Latency. The insertion latency of SSCF is about
1.47× the latency of CBF. As shown in Figure 13(a), on Shalla, the
insertion latency per key is 208ns for SSCF, 141ns for CBF, 250ns

2765

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Meng Li, et al.

Shalla YCSB0

100

200

300

400

500

In
se

rt
io

n
La

te
nc

y
(n

s/
ke

y)

(a) Insertion latency
Shalla YCSB

100

200

300

400

Q
ue

ry
 L

at
en

cy
 (

ns
/k

ey
) 2 0~

(b) Query latency
Figure 13: Operation Latency

for WCBF, and 310ns for SF. As for YCSB, the insertion latency is
296ns for SSCF, 190ns for CBF, 277ns for WCBF, and 438ns for SF.

4.4.2 Query Latency. The query latency of SSCF similar to the
latency of CBF. The query latency per key on shalla, as shown in
Figure 13(b), is 163ns for SSCF; for CBF, it is 158ns; for WCBF and
SF, it is 195ns and 253ns, respectively. On YCSB, the insertion la-
tency for SSCF, CBF, WCBF and SF is 199ns, 211ns, 2548ns and
364ns, respectively. WCBF suffers from high query latency as it
needs to check the costs of queried keys, and particularly, the com-
putation overhead of the checking process is non-negligible when
the number of keys stored is large.

4.5 Ada-SSCF is Robust in Dynamic Scenarios.
In this subsection, we evaluate ada-SSCF in the dynamic scenarios,
where the vulnerable negative keys cannot be obtained in advance.
To be specific, at first, we only insert positive keys into ada-SSCF
and feed 5% the vulnerable negative keys with the highest costs to
ada-SSCF dynamically. Then, we randomly delete and insert keys
from ada-SSCF round by round with a fixed ratio, which is as shown
in Figure 14. For example, a round with 2% ratio means that in one
single round, we randomly delete 2% keys from SSCF and then
randomly insert 2% new keys into SSCF. It can be observed that
with more and more deletions and insertions, the cost-weighted
FPR of ada-SSCF improves gradually and finally surpasses the CBF.
Particularly, as shown in Figure 14(a), the cost-weighted FPR of
ada-SSCF decreases from 5.7% to 0.08% with 2% ratio in 40 rounds
and can even reach up to 0.0019%with 10% ratio, which is about two
orders of magnitude improvement compared with CBF. Similarly, as
shown in Figure 14(b), the cost-weighted FPR of ada-SSCF decreases
from 27% to 0.02% with 2% ratio in 40 rounds and even to 0.00038%
with 10% ratio. Particularly, in the scenarios where deletions are
more than insertions, the performance improves much faster.

5 RELATEDWORK
Filters that are cost-aware. The standard Bloom filter and its

variants do not take into account the costs of keys [5, 12], which
makes all negative keys are treated identically. To handle keys with
different costs, Bruck et al. proposed to vary the hash functions of
each key according to its cost and formalized a new filter named
Weighted Bloom filter (WBF) [6]. Nonetheless, the problem is that
WBF needs to calculate the number of applied hash functions for
each key at query time, which thus requires the storage of key cost,
and then leads to high space usage and query latency at query time.
Considering that the varied hash function approach proposed by
WBF remains heuristic, Zhong et al. adopted a similar idea but posed
it as a constrained nonlinear integer programming problem [28],
which can only work offline. The recent proposed stacked filter

0 5 10 15 20 25 30 35 40
Round

10 2

10 1

100

101

C
o
st

-w
e
ig

h
te

d
 F

PR
 (

%
)

CBF

(a) Ada-SSCF on Shalla

0 5 10 15 20 25 30 35 40
Round

10 3

10 2

10 1

100

101

102

C
o
st

-w
e
ig

h
te

d
 F

PR
 (

%
)

CBF

(b) Ada-SSCF on YCSB

Figure 14: Ada-SSCF vs. Cost-weighted FPR

framework [10] proposes to learn from the workload in a structured
way, i.e., stacking the filters one by one to filter keys progressively.
However, one important problem for the stacked filter is that it
needs prior knowledge of both positive and negative keys, mak-
ing it cannot be applied in dynamic scenarios. Other filters like
Rosetta [19] and SuRF [27] are designed for range query problem.

Filters that are learning-based. With an elaborately trained
learned model, existing learning-based works could achieve beyond
the theoretical limit performance in terms of FPR and space effi-
ciency [17, 20]. Kraska et al. proposed a learned Bloom filter [17] to
obtain optimized space efficiency by incorporating machine tech-
niques that can capture data distribution information within a small
learned model. Adaptive Learned Bloom filter was proposed to use
machine learning technique to measure the probability of whether
a key in the set and adaptively decides the number of hash func-
tions applied [9]. However, despite the remarkable space efficiency,
existing learning-based filters all suffer from prolonged training
and query latency. Besides, they cannot be adapted to dynamic
workloads since the learned models need to be repeatedly retrained
on new data, which is unacceptable in dynamic scenarios. Based
on customizing the hash function in an offline setting, HABF is
designed for static set filtering, which does not support dynamic
insertions or deletions [26]. Besides, HABF needs to scan keys
repeatedly to obtain an optimized hashing schema, which incurs
heavy memory overhead from storing all keys during construction.

6 CONCLUSION
In this paper, we have studied the proposed dynamic cost-efficient
filtering problem. Targeting at such problem, we propose a new
filter named (ada-)SSCF, which is innovated in a lightweight nega-
tive key encoding mechanism and dynamic hash method named
hash modulating. With hash modulating, SSCF provides the adap-
tivity of choosing applied hash functions dynamically to prevent
vulnerable negative keys from being misidentified. To validate the
performance, SSCF is extensively evaluated on several representa-
tive data sets and outperforms the standard Counting Bloom filter,
stacked filter and other variants on the whole regarding accuracy,
construction time/memory, query latency and filter size.

ACKNOWLEDGMENTS
This work was supported in part by the Natural Science Foundation
of Jiangsu Province under Grant No. BK20181251, in part by the
Key Research and Development Project of Jiangsu Province under
Grant No. BE2015154 and BE2016120, in part by the National Natu-
ral Science Foundation of China (No. 61872178, No. 61832005, No.
61672276, NO. 62072230, U1811461), in part by the Collaborative
Innovation Center of Novel Software Technology and Industri-
alization, Nanjing University, in part by the Jiangsu High-level

2766

Seesaw Counting Filter WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Innovation and Entrepreneurship (Shuangchuang) Program, in part
by Alibaba Innovative Research Project, in part by Singapore MOE
AcRF Tier 1 (RG18/21), and NTU Startup Grant. Haipeng Dai and
Guihai Chen are the corresponding authors.

REFERENCES
[1] [n.d.]. https://bitcoinops.org/en/newsletters/2019/08/21/#bitcoin-core-16248.
[2] 2021. SSCF Source Code. https://anonymous.4open.science/r/SSCF-7505.
[3] Parvez Anandam. 2019. Network Access Control using Bloom filters. https:

//courses.cs.washington.edu/courses/csep521/07wi/prj/parvez.pdf.
[4] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Communications of ACM 13, 7 (1970), 422–426.
[5] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George

Varghese. 2006. An improved construction for counting bloom filters. In European
Symposium on Algorithms. Springer, 684–695.

[6] Jehoshua Bruck, Jie Gao, and Anxiao Jiang. 2006. Weighted Bloom filter. In
International Symposium on Information Theory. IEEE, 2304–2308.

[7] Denis Charles and Kumar Chellapilla. 2008. Bloomier filters: A second look. In
European Symposium on Algorithms. Springer, 259–270.

[8] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
symposium on Cloud computing. ACM, 143–154.

[9] Zhenwei Dai and Anshumali Shrivastava. 2019. Adaptive learned Bloom filter
(Ada-BF): Efficient utilization of the classifier. arXiv preprint (2019).

[10] Kyle Deeds, Brian Hentschel, and Stratos Idreos. 2020. Stacked filters: learning to
filter by structure. In Proceedings of International Conference on Very Large Data
Bases, Vol. 14. VLDB Endowment, 600–612.

[11] Facebook. 2013. A facebook fork of leveldb which is optimized for flash and big
memory machines. https://rocksdb.org/.

[12] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. 2000. Summary cache: a
scalable wide-area web cache sharing protocol. Transactions on Networking 8, 3
(2000), 281–293.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. ACM, 29–43.

[14] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei,
Sameh Elnikety, and Yuxiong He. 2017. BitFunnel: Revisiting signatures for
search. In Proceedings of International Conference on Research and Development in
Information Retrieval. ACM, 605–614.

[15] Google. 2011. LevelDB. A fast and lightweight key/value database library. http:
//code.google.com/p/leveldb/.

[16] Shalla Secure Services KG. 2021. Shalla’s Blacklists. http://www.shallalist.de/
index.html.

[17] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The
case for learned index structures. In Proceedings of the International Conference
on Management of Data. ACM, 489–504.

[18] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. 2006. Perfect hashing for network
applications. In International Symposium on Information Theory. IEEE, 2774–2778.

[19] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin,
and Stratos Idreos. 2020. Rosetta: A Robust Space-Time Optimized Range Filter
for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. ACM, Portland OR USA, 2071–2086. https:
//doi.org/10/gpcb5b

[20] Michael Mitzenmacher. 2018. A model for learned Bloom filters and optimizing
by sandwiching. In Advances in Neural Information Processing Systems. Curran
Associates, Inc., 464–473.

[21] Palo Alto Networks. 2019. Palo Alto Networks Malicious IP Address Feeds.
https://docs.paloaltonetworks.com/pan-os/8-1/pan-os-admin/policy/use-an-
external-dynamic-list-in-policy/palo-alto-networks-malicious-ip-address-
feeds.

[22] Salvatore Pontarelli, Pedro Reviriego, and Juan Antonio Maestro. 2016. Improving
counting Bloom filter performance with fingerprints. Inform. Process. Lett. 116, 4
(2016), 304–309.

[23] David MW Powers. 1998. Applications and explanations of Zipf’s law. In New
methods in language processing and computational natural language learning.
Association for Computational Linguistics.

[24] Do Le Quoc, Istemi Ekin Akkus, Pramod Bhatotia, Spyros Blanas, Ruichuan Chen,
Christof Fetzer, and Thorsten Strufe. 2018. Approxjoin: Approximate distributed
joins. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 426–438.

[25] Karan Singhal and PhilipWeiss. 2020. DeepBloom. https://github.com/karan1149/
DeepBloom/tree/master/data.

[26] Rongbiao Xie, Meng Li, Zheyu Miao, Rong Gu, Huang He, Haipeng Dai, and
Guihai Chen. 2021. Hash Adaptive Bloom filter. In Proceedings of International
Conference on Data Engineering. IEEE.

[27] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range
Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 International
Conference on Management of Data. ACM, Houston TX USA, 323–336. https:
//doi.org/10/gg224v

[28] Ming Zhong, Pin Lu, Kai Shen, and Joel Seiferas. 2008. Optimizing data popularity
conscious Bloom filters. In Proceedings of symposium on Principles of distributed
computing. ACM, 355–364.

2767

https://bitcoinops.org/en/newsletters/2019/08/21/#bitcoin-core-16248
https://anonymous.4open.science/r/SSCF-7505
https://courses.cs.washington.edu/courses/csep521/07wi/prj/parvez.pdf
https://courses.cs.washington.edu/courses/csep521/07wi/prj/parvez.pdf
https://rocksdb.org/
http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/
http://www.shallalist.de/index.html
http://www.shallalist.de/index.html
https://doi.org/10/gpcb5b
https://doi.org/10/gpcb5b
https://docs.paloaltonetworks.com/pan-os/8-1/pan-os-admin/policy/use-an-external-dynamic-list-in-policy/palo-alto-networks-malicious-ip-address-feeds
https://docs.paloaltonetworks.com/pan-os/8-1/pan-os-admin/policy/use-an-external-dynamic-list-in-policy/palo-alto-networks-malicious-ip-address-feeds
https://docs.paloaltonetworks.com/pan-os/8-1/pan-os-admin/policy/use-an-external-dynamic-list-in-policy/palo-alto-networks-malicious-ip-address-feeds
https://github.com/karan1149/DeepBloom/tree/master/data
https://github.com/karan1149/DeepBloom/tree/master/data
https://doi.org/10/gg224v
https://doi.org/10/gg224v

	Abstract
	1 Introduction
	2 Background
	3 Seesaw Counting Filter
	3.1 Problem Formulation
	3.2 High-level Idea
	3.3 Structure of SSCF
	3.4 Negative Key Encoding
	3.5 Modulated Insertion Procedure
	3.6 Modulated Query Procedure
	3.7 Modulated Deletion Procedure
	3.8 Extension: Adaptive SSCF

	4 EXPERIMENT Evaluation
	4.1 Experiment Setup
	4.2 Parameter Evaluation
	4.3 Overall Filtering Performance
	4.4 Operation Latency
	4.5 Ada-SSCF is Robust in Dynamic Scenarios.

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

