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Abstract—Bloom filter is an efficient data structure for filtering
negative keys (keys not in a given set) with substantially small
space. However, in real-world applications, there widely exist vul-
nerable negative keys, which will bring high costs if not being
properly filtered, especially when positive keys are added/deleted
dynamically. Such problem gets more severe when keys within
one set are dynamically added or deleted. Recently, there are
works focusing on handling such (vulnerable) negative keys by
incorporating learning techniques. These learning-based filters fail
to work as the learning techniques can hardly handle incremental
insertions or deletions. To address the problem, we propose SeeSaw
Counting Filter (SSCF ), which is innovated with encapsulating
the vulnerable negative keys into a unified counter array named
seesaw counter array, and dynamically modulating (or varying)
the applied hash functions to guard the encapsulated keys from
being misidentified. Moreover, we design ada-SSCF to handle the
scenarios where the vulnerable negative keys cannot be obtained in
advance. We extensively evaluate our SSCF, which shows that SSCF
outperforms the cutting-edge filters by 3× on averages regarding
accuracy while ensuring a low operation latency. All source codes
are in (SSCF-authors).

Index Terms—Bloom filter, negaitve keys, query processing.

I. INTRODUCTION

B LOOM filters are used widely. Designed for approximate
membership testing problem, Bloom filter can reduce un-

necessary access to the whole collection of keys, which is critical
to systems like database and networking, especially considering
the increasing data volume nowadays. With only a bit array as
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the underlying data structure, Bloom filter has been widely used
due to its space efficiency and (insert/query) operation elegance,
which only involves several times of hash function computation
and memory accesses. To be specific, at insertion time, Bloom
filter maps a positive key with k hash functions to k different
bits and sets them to 1. At query time, a key is said to be
in the filter if all its k mapped bits are 1. With such simple
operations, Bloom filter provides one-side error probability.
Specifically, only negative keys (i.e., keys not in the given set)
will be mistakenly identified to be (false) positive with bounded
probability while all positive keys (i.e., keys in the given set)
will be correctly identified. The probability of generating a false
positive is denoted as false positive rate (FPR). Considering its
performance and elegance, Bloom filters have been widely used
in many applications such as information retrieval [2], network
applications [3], [4], database [5], [6], [7].

Dynamic is an Emerging Need: In the past decades, Bloom
filter has been extensively studied for static set filtering, where
the stored data is static and remains unchanged. For example,
the Bloom filter is built for sorted string tables [15] in KV-stores
like LevelDB [16]. However, there also exist important scenarios
where data are inserted and deleted dynamically. To process
dynamic set filtering, a Bloom filter variant named Counting
Bloom filter (CBF) is proposed by replacing the underlying bit
array with a counter array [3]. CBF has been widely applied in
various applications, including web caching [3], transactional
memory [17] and prefix matching [18].

The Costs of Different Filtering Errors Can be Very Skewed:
One hidden assumption behind (Counting) Bloom filter is that
all negative keys are treated identically [12], which implies that
misidentifying of different items brings the same cost. However,
the recent works indicate that the cost of filtering error of
different negative keys can be significantly different or even very
skewed [12], [13], [14]. For example, in the application of build-
ing a URL blacklist with Bloom filter to block malicious URLs,
a given URL will first be checked if it is in the Bloom filter,
and if yes, a new request is generated to validate its safety [13].
However, a significantly large cost will be brought when certain
common URLs are misidentified. For instance, given a hotspot
URL A (e.g., outlook.com) and a rarely-visited URL B (e.g.,
mail.21cn.com), it is better to distinguish URL A and URL B in
building the filter, because treating A as a malicious URL brings
significantly more safety validation than B. Another typical
example is the Bitcoin Core whitelist [19], which is based on
Bloom filter and designed to relieve communication overhead by
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TABLE I
COMPARISON AMONG FILTERS

specifying which services should be provided to different IPs.
Here, misidentifying service permission to malicious IPs [20]
may raise the risks of system being attacked.

We refer to these negative keys with high misidentifying cost
as vulnerable negative keys. Note that these vulnerable negative
key set can usually be obtained upfront, e.g., the top popular
websites (or URLs) worldwide. As far as we know, there have
been few works regarding handling vulnerable negative keys
during filtering especially in the dynamic scenarios. Table I
outlines the comparison among different filters related, which
can generally be divided into two types: passive filters and
active filters. Passive filters include Counting Bloom filter and
its variants [3], [8], [21], which can only improve its FPR by
passively increasing their space usage. Recently, there have been
a few works actively utilizing the prior knowledge of negative
keys, and are referred to as active filters [9], [10], [11], [12], [13],
[14]. However, these active filters that are based on machine
learning models suffer from several problems, including (1)
relying on how well the used machine learning models can fit the
underlying data distribution; (2) prolonged construction or query
latency; (3) no incremental key insertion or deletion allowed [9],
[10], [11]. Other active filters [12], [13], [14] are only designed
to work in static offline scenarios1, where positive and negative
keys need to be known in advance. Besides, these filters [13,14]
need to scan the full set of keys multiple times, which makes
these filters cannot be applied in scenarios where incremental
key insertions or deletions are required.

In this article, to handle the vulnerable negative keys, we
propose a filter named SeeSaw Counting Filter (SSCF for short).
SSCF has two components, including an underlying seesaw
counter array (SCA) and a lightweight hash table named Hash-
Modulator. Given vulnerable negative keys, SSCF encodes them
into the seesaw counter array, which can also record positive
keys at insertion time. Then at insertion time, SSCF applies k
default (or initial) hash functions and increases the k mapped
seesaw counters by one. Different from the Counting Bloom
filter, the applied hash functions can be modulated (or varied)
by SSCF during insertion time. As a classical technique in the
signal processing to safely mix signals to be separated later, the
modulating is borrowed here by varying the properties (i.e., hash
functions) of positive keys to guard vulnerable negative keys
from being inseparable from positive keys. An example of hash
modulating is shown in Fig. 1, in which the hash function h2 is
deprecated and modulated toh3 to guard vulnerable negative key
n1 (i.e., avoiding the third left counter being increased to > 0).

1Stacked filter [13] only allows minor insertion/deletion after building the
filter with the prior knowledge of all positive/negative keys.

Fig. 1. Hash modulating.

The modulated hash function is then stored into HashModulator,
and will be retrieved at query time. Moreover, we develop
the corresponding modulated query and deletion procedures
while ensuring one-side query error pattern as Counting Bloom
filter does, i.e., only false positives and no false negatives.
Meanwhile, to handle the scenarios where vulnerable negative
keys cannot be obtained in advance, we propose adaptive SSCF
(i.e., ada-SSCF), which takes vulnerable negative keys as input
dynamically and obtain continuously improved performance un-
der frequent key insertions/deletions. Compared with previous
works, SSCF/ada-SSCF provide a lightweight and flexible way
to be adaptive to dynamic workloads.

Challenges: In this article, we are mainly faced with three
challenges. The first challenge is how to ensure one-side query
error when the applied hash functions are modulated. To address
this challenge, we design a two-round query procedure, in which
a negative key is said to be not in the filter if and only if it is
both rejected with initial hash functions in the first round and
modulated hash functions in second round. The second challenge
is to mitigate the extra computation overhead brought by our
proposed (hash modulating) operation, which involves extra
hash function computation and memory accesses. To address the
challenge, we propose a lightweight modulating scheme named
one-modulating, which modulates at most one hash function but
still achieves significant performance gain with low operation
latency. The third challenge is, at deletion time, how to avoid the
inconsistent deletion of modulated hash functions from Hash-
Modulator since the information about which keys use the stored
modulated hash functions is not maintained. To address the
challenge, a counter field named ModulatedCounter indicating
the times of each modulated hash function being used is added,
and acts like a virtual lock preventing inconsistent deletion.

Contributions: The main contributions are as follows:
1) Problem formulation: We are the first to consider the

dynamic cost-efficient filtering problem, where the vul-
nerable negative keys can be obtained and positive keys
can be dynamically inserted/deleted.
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TABLE II
NOTATIONS

2) Cost-efficient filtering framework: We propose SSCF that
allows the applied hash functions to be modulated to guard
vulnerable negative keys, which can also be extended to
work with dynamically obtained vulnerable negative keys.

3) Theory: We provide a theoretical analysis of SSCF regard-
ing accuracy and parameter optimizations.

4) Evaluation: We evaluate SSCF on representative datasets
and show that, with the same total memory space, SSCF
achieves 3× or even higher accuracy (i.e., cost-weighted
FPR) with low operation latency comparable to Counting
Bloom filter.

II. BACKGROUND

Counting Bloom Filter: Designed for approximate member-
ship testing, Bloom filter [22] aims to represent a set of keys,
e.g.,S = {s1, · · · , sn}, by encoding them into a bit array with k
independent hash functions {h1, · · · , hk}. To insert a key x, the
array bits hi(x) are set to 1 for 1 ≤ i ≤ k; to check whether x
is in S, all mapped hi(x) bits are tested. If all hi(x) bits are 1, x
is said to be in S with a small false positive rate (FPR) and zero
false negative rate (FNR). To support deletion, Counting Bloom
filter (CBF) [3] is proposed by replacing the bit array with a
counter array. Meanwhile, the insertion operation increases the
mapped counter by one while the deletion operation decreases
the mapped counter by one. Frequently used notations used are
listed in Table II.

Evaluation Metric. To measure the filtering error incurred
by the misidentification of negative keys with different costs,
inspired by [13], [14], we propose a new metric named
cost-weighted FPR (CFPR for short), which is defined as∑

x∈Nu
F (x)·C(x)

∑
x∈Nu

C(x) , whereNu is the negative key set,F (x) ∈ [0, 1]

is the queried result of key x in filter F , and C(x) denotes the
cost of key x.

III. SEESAW COUNTING FILTER

A. Problem Formulation

The problem studied is formalized as Dynamic Cost-efficient
Filtering Problem (DCFP), i.e., given vulnerable negative keys

Fig. 2. Architecture of seesaw counting filter.

Fig. 3. Structure of hashModulator.

Fig. 4. Seesaw counter.

Nn with their respective misidentifying costs, when dynamically
inserting or deleting keys, how to minimize the overall cost
incurred by misidentification of negative keys.

B. High-Level Idea

To handle the above DCFP, our proposed SSCF is shown
in Fig. 2. We aim to encode vulnerable negative keys into the
underlying seesaw counter array, each of which has two fields for
recording negative keys and positive keys, as shown in Fig. 4(a).
At insertion or query time, similar to Counting Bloom filter, k
hash functions are applied and map to the underling k seesaw
counters. However, different from the standard Counting Bloom
filter, an applied hash function may be modulated if it maps the
inserted key to a seesaw counter that is already occupied by
negative keys, which is shown in Fig. 4(b). Specifically, if a
seesaw counter is preoccupied by a negative key, the seesaw
counter is said to lean to the negative cell and will be sealed to
prevent positive keys from being inserted into the counter. If a
hash function maps a positive key to a negative seesaw counter,
the hash modulating is then activated to find a modulated hash
function maps to another seesaw counter that is either empty or
positive, which is shown in Fig. 4(c). Note that the modulating
may fail, and the initial hash functions will be applied if there
is no such qualified modulated hash function that maps the
inserted key to empty or positive seesaw counters. In that case,
we will get a mixed seesaw counter with its negative and positive
cells being both occupied. However, if the modulating succeeds,
the modulated hash function is then stored into HashModulator
and will be retrieved at query time. The key insight behind the
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Algorithm 1: Negative Key Encoding.

modulating is to spare space for vulnerable negative keys from
unimportant negative keys.

Besides, the modulating may bring overhead due to hash
computation and memory accesses, which is a big concern in
dynamic scenarios. To reduce such overhead, we propose a
lightweight modulating policy named one-modulating, i.e., only
the hash function with the smallest index will be modulated
for each key. However, even with the one-modulating policy, a
significant performance gain can be observed since a negative
key is misidentified if all its k mapped counters are occupied by
positive keys, whose probability can already be greatly reduced
by our one-modulating policy.

C. Structure of SSCF

Seesaw Counting Array (SCA): As is shown in Fig. 2, SCA
is composed of an array of m seesaw counters, each of which
has two fields: negative (counter) cell and positive (counter)
cell as shown in Fig. 4. The negative cell records whether this
cell is mapped by vulnerable negative keys, which makes 1-bit
space size is already enough. Specifically, when a negative key
is mapped to a seesaw counter, its negative cell is set to 1.

As for the positive cell field, it is used to record the number
of keys inserted into the cell. Similar to Counting Bloom filter,
SSCF also has k accompanying hash functions, which is used
to map inserted keys to the underlying counter array during
insertion or query.

HashModulator: As shown in Fig. 3, HashModulator consists
of a cell array, each of which have two fields named Modu-
latedCounter and ModulatedIndex. The ModulatedIndex field
records the index of the stored modulated hash function, whose
times of being used is recorded in the ModulatedCounter field.
For a given key x, it is mapped to HashModulator with a public
hash function h0.

D. Negative Key Encoding

To construct SSCF, the vulnerable negative keys need to be
encoded first. The encoding procedure is similar to the insertion
process of the standard Counting Bloom filter. Specifically, as
shown by Steps 1− 4 of Algorithm 1, for a given negative key
x, the negative cells of the k seesaw counters in SCA mapped
by x are set to 1. Here, the negative cell field is 1-bit by default
in this article.

E. Modulated Insertion Procedure

After negative key encoding, as is shown in Fig. 5, the main
insertion procedure is innovated in hash modulating, including
five steps: (1) negative probing; (2) if no negative seesaw counter

Fig. 5. Modulated insertion procedure.

Fig. 6. Running example: Modulated insertion.

probed, the insertion finishes; (3) negative conflict detected
and hash modulating; (4) modulated insertion; (5) the insertion
finishes.

Running Example: As is shown in Fig. 6, when inserting
positive key x, it is mapped by two hash functions h1, h2
to seesaw counters S[1] and S[3]. However, the negative cell
of S[3] is probed to be non-empty, which then triggers the
hash modulating to find a new hash function to redirect x to
another seesaw counter with an empty negative cell. Suppose
the qualified new hash function is h4, as shown in the lower
half of Fig. 6, we need to record h4 into the empty cell M [4]
(mapped by h0) in HashModulator by increasing the Modula-
torCounter by one and setting ModulatedIndex to 4. However,
if the mapped cell is not empty, a trial of reusing the stored hash
function for hash modulating is conducted and is detailed in the
following hash modulating step. The three key steps, including
negative probing, hash modulating, and modulated insertion, are
as follows.

Negative Probing: The first step is negative probing, i.e.,
testing whether there are any negative seesaw counters mapped
by the initial hash functions. To be specific, given a key x to
be inserted, we use the initial k hash functions HA to probe its
mapped seesaw counters to check whether there exist any seesaw
counters with non-empty negative cells. If not, the positive
cells of k mapped seesaw counters are increased by 1, and the
modulated procedure ends. Otherwise, the hash modulating is
triggered for the hash function that maps the x to the seesaw
counter with a non-empty negative cell. There may be multiple
hash functions probed to be negative conflict, but only the one
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Algorithm 2: Modulated Insertion.

with the smallest index will be marked as the candidate to be
modulated. The probing procedure is shown in Steps 1− 6 of
Algorithm 2, in which the index of the hash function to be
modulated is denoted as idxold (Step 5).

Hash Modulating: With the obtained hash function to be
modulated, the hash modulating is activated to find a qualified
modulated hash function. However, we need to check whether
the mapped cell in HashModulator is empty (Steps 7− 8 of
Algorithm 2).

First, if the mapped cell in HashModulator is empty (i.e.,
ModulatedCounter is 0), we then proceed to find a qualified
modulated hash function from hash function candidate set HB
(Steps 9–14 of Algorithm 2). A qualified modulated hash func-
tion is found if it maps the inserted key x to an empty or positive
seesaw counter (Steps 12–14, Algorithm 2). If a qualified hash
function is found, its index denoted as idxnew will be stored into
HashModulator (Steps 16, Algorithm 2). Then the modulated
hash function comes into use, which will increase the positive
(counter) cell of its mapped seesaw counter by one as shown by
Steps 17–19 of Algorithm 2. However, if no qualified modulated
hash function is found, the hash modulating fails, followed by
which the original initial hash function is used, which is shown
in Steps 20 21 of Algorithm 2.

Second, if the mapped cell in HashModulator is occupied, we
will first check whether the stored hash function stored in the

Fig. 7. Modulated query procedure.

occupied cell can be reused. If the hash function can be reused,
we increase the positive (counter) cell of seesaw counter mapped
by the reused hash function by one (Steps 24 of Algorithm 2).
Otherwise, we turn to using the original initial hash function as
shown by Steps 25− 26 of Algorithm 2.

Modulated Insertion: Finally, we need to increase the Modu-
latedCounter field mapped by the key x by one, named Modu-
lated Insertion as shown in Step 26. After the modulated insertion
step, the whole insertion process ends as shown in Fig. 5.

F. Modulated Query Procedure

The query procedure is shown in Fig. 7 and Algorithm 3,
which can be divided into two rounds as shown in Fig. 7. To
ensure zero FNR2, we restrict that a key is rejected if and
only if it is rejected in both rounds. In the first round, the first
Step (Positive Probing, Fig. 7) is positive-probing, which probes
whether all mapped seesaw counters have non-empty positive
cells. If yes, the queried key is accepted by SSCF as shown by
Step 2 in Fig. 7. Otherwise, the second round is activated if only
one seesaw counter is probed to have an empty positive cell
(Positive Vacancy, Fig. 7). In the second round, we retrieve a
modulated hash function and accept x if the positive cell of the
new mapped seesaw counters is non-empty (Steps 4− 5, Fig. 7).
In other cases, the queried key is rejected.

Running Example: In Fig. 8, when querying key x, it is
mapped by two hash functions h1, h2 to seesaw counters S[1]
andS[3]. However, the positive cell ofS[3] is probed to be empty,
which makes key x is rejected in the first round and triggers the
procedure of retrieving the modulated hash function stored in
HashModulator, i.e., h4 in M [4]. With the retrieved h4, x is
redirected and mapped to S[8], which then makes x accepted in
the second round.

The procedure of modulated query is presented in Algo-
rithm 3, which includes the first query round (Steps 2− 6) and
the second round (Steps 7− 14). In the first round, SSCF first
checks the k initial hash functions by probing their mapped
seesaw counters. If all the probed positive cells are non-empty,
the queried key is accepted directly (Step 15, Algorithm 3). If
more than one positive cell is empty (Steps 4− 5, Algorithm 3),
the queried key x is rejected due to our one-modulating policy.
Otherwise, if only one positive cell is probed to be empty,

2FNR is abbreviated from false negative rate, which refers to the probability
rate of a positive key (keys in the given set) misidentified as a negative key (keys
not in the given set).
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Algorithm 3: Modulated Query (x).

Fig. 8. Running example: Modulated query.

the second round is activated to retrieve the modulated hash
function.

However, the retrieval may fail if the mapped cell of the
inserted key in HashModulator is empty (Steps 9−10, Algo-
rithm 3); otherwise, a modulated hash function is retrieved
with index denoted as idxnew (Step 11, Algorithm 3). The
retrieved modulated hash function is used by probing its mapped
seesaw counters (Steps 12−14, Algorithm 3). Considering that
a modulated hash function will be adopted if it maps to a seesaw
counter with an empty negative cell during insertion, the queried
key x is rejected when the negative cell is non-empty (Step 14,
Algorithm 3). Similarly, the queried key x is rejected if the
positive cell of the mapped seesaw counter is empty (Step 14,
Algorithm 3). In other cases, the queried key is accepted directly
(Step 15).

G. Modulated Deletion Procedure

Another essential operation is deletion, which involves de-
creasing the mapped counters in SCA and removing the modu-
lated hash function from HashModulator. However, the deletion
procedure is non-trivial since whether the applied hash functions
of a key are modulated is not recorded, which leads to FNR
if the modulated hash functions are deleted mistakenly (or
inconsistently). To handle the inconsistent deletion, we add a
counter field named ModulatedCounter to record how many
keys to be modulated are mapped to this cell and restrict that
the stored modulated hash function can only be deleted when
its ModulatedCounter is zero. By doing so, the inconsistent
deletion will be addressed since the ModulatedCounter field
indicates whether the stored modulated hash function in each
cell is occupied by other keys. Besides, regarding the keys failing
to be modulated, the HashedCounter field of their mapped cells
will also be increased by one to prevent potential inconsistent
deletion.

For a given key x to be deleted, how to delete it depends
on whether its hash functions were modulated during its pre-
vious insertion procedure. In the first case that a key is not
modulated, the deletion procedure is similar to that of Counting
Bloom Filter, i.e., decreasing the positive cells of mapped seesaw
counters in the underlying SCA. As for the second case that a
key is modulated, the deletion procedure is slightly different
and includes two parts: removing the modulated hash function
in HashModulator, and then decreasing the counter fields of
mapped cells.

The detailed pseudocode of deletion operation is illustrated in
Algorithm 4, which includes two parts: (1) decreasing the seesaw
counters from SCA (Steps 1− 6); and (2) removing modulated
hash function from HashModulator if needed (Steps 7− 18).

In the first part, all initial k hash functions are applied to
identify the hash function to be modulated, which is shown in
Steps 2− 6 of Algorithm 4. If the hash function to be modulated
is identified, its index is denoted as idxold as shown by Step 6
of Algorithm 4. As for the other remaining hash functions, the
positive cells of their mapped seesaw counters are decreased by
one (Steps 4− 5, Algorithm 4).

In the second part, if no hash function identified in the first
part, the deletion finishes directly (Steps 7− 8, Algorithm 4).
Otherwise, with identified hash function to be modulated (i.e.,
indexed by idxold), we need to retrieve its corresponding mod-
ulated hash function (indexed by idxnew) from HashModulator
as shown in Steps 9− 10 of Algorithm 4. Afterwards, we need
to check whether the retrieved hash function belongs to the key
to be deleted, i.e., whether the retrieved hash function maps the
key to a seesaw counter with empty negative cell and non-empty
positive cell (Steps 11− 12, Algorithm 4). If yes, the positive
cell of the mapped seesaw counter is decreased by one (Step 13,
Algorithm 4), otherwise the positive cell of seesaw counter
mapped by the identified hash function to be modulated (indexed
by idxold) is decreased by one (Steps 14− 15, Algorithm 4).
Finally, if the ModulatedCounter field is zero, the modulated
hash function stored in this mapped cell is removed since no
key is occupying the cell, which is shown in Steps 16− 18.
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Algorithm 4: Modulated Deletion(x).

Meanwhile, we denote the retrieved the index of the modulated
hash function as idxnew as well as the index of its mapped cell
as jnew. After that, the deletion procedure mainly goes through
all hash functions one by one, and decreases the counter field
of mapped cell by one, which is as shown by Steps 7− 16
of Algorithm 4. For each encountered hash function during
the loop, it may be non-modulated or modulated. If the hash
function is non-modulated, we directly decrease the counter field
of its mapped cell by one, which is shown by Steps 9− 10 of
Algorithm 4. As for the modulated hash function, the situation
is a little different and needs to be handled according to whether
the cells mapped are occupied, which can be divided into the
following three cases.

Case 1. The counter field of the cell mapped by the raw hash
function is zero: When the counter field of cell mapped by the
raw hash function is probed to be zero, then raw hash function
(indexed by idxold) must be modulated since x is inserted.
Therefore, we decrease the counter field of cell mapped by
modulated hash function by one (Steps 11− 13, Algorithm 4).

Case 2. The counter field of the cell mapped by the modulated
hash function is zero: When the counter field of cell mapped by
the modulated hash function is probed to be zero, then raw hash
function (indexed by idxold) is modulated and the counter field
of mapped cell by the raw hash function is then decreased by
one (Steps 14− 15, Algorithm 4).

Case 3. Both of the counter fields of the cells mapped by the
raw and modulated hash functions are non-zero: Concerning
Case 3, there is no way to distinguish whether the modulated
hash function is applied or not and thus lazy deletion (skip
decrement step) is conducted (Step 16, Algorithm 4) to ensure
zero false negative.

Fig. 9. Adaptive seesaw counter.

H. Extension: Adaptive SSCF

When the vulnerable negative keys may not be obtained
in advance, we propose adaptive SSCF (ada-SSCF for short),
which can take (or absorb) the vulnerable keys as input at
runtime. These newly inserted negative keys will be first stored
into the adaptive-bits but will not be used during query time,
which thus will not affect the cost-weighted FPR as shown in
Fig. 9(a). Particularly, as shown in Fig. 9(b), the adaptive-bit of
a seesaw counters will then be safely transported (or moved)
to the negative cell once the positive cell (of the same seesaw
counter) is empty because the empty seesaw counter is not
being used by any positive key. These transported negative cell
will be used during hash modulating process to achieve lower
cost-weighted FPR, which is similar to our raw version SSCF
as shown in Fig. 1. Besides, such transport may be blocked if
the positive cell is not empty and will not be carried out until
the positive cell decreases to zero due to deletion operations,
which are frequent in dynamic scenarios. In other words, the
performance of ada-SSCF improves over time. As shown in
Fig. 9(a), ada-SSCF also has HashModulator but is equipped
with a new adaptive seesaw counter array, each of which has an
extra cell named Adaptive-bit recording the vulnerable negative
keys at runtime.

All operations of Ada-SSCF are the same as that of SSCF
except the extra operation of adaptive encoding of vulnerable
negative keys. Now we introduce how to encode vulnerable
negative keys at runtime. Given vulnerable negative key x, x
is mapped with the k initial hash functions to the underlying
adaptive seesaw counters. For each mapped seesaw counter, we
set its adaptive-bit field to 1. However, with only Adaptive-bit
cell being set, the hash modulating will not be triggered even if
this cell is mapped by positive keys since the hash modulating
only relies on the negative cell. To address this problem, we
need to transport this encoded Adaptive-bit to the negative cell
field of the same cell. According to whether the positive cell
is empty in the same counter, the transportation can be divided
into two cases. First, as shown in Fig. 9(b), if the positive cell is
empty, the corresponding negative cell in the same cell can be
set to 1 safely since this mapped positive cell is not occupied by
any positive keys. Second, if the positive cell is not empty, the
transportation is then blocked since directly setting the negative
cell may make it hard to distinguish whether the applied hash
functions of positive keys mapped to this cell are modulated or
not, which may further lead to the inconsistent deletion or even
FNR. Therefore, as shown in Fig. 9(c), direct transportation is
not feasible and will be blocked if the positive cell is non-empty.
However, in dynamic scenarios, the key deletion operations
are frequent, which involve decreasing the positive cells. With
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enough key deletions, the positive cell of one seesaw counter
will decrease to zero. Once the positive cell becomes empty,
the key deletion operation needs to check the Adaptive-bit and
resume the previously blocked transport procedure, i.e., setting
the negative cell to 1 if the Adaptive-bit is 1.

IV. THEORETICAL ANALYSIS

A. Ratio of Non-Empty Negative Cells

Lemma IV.1. The ratio of (non-empty negative cell) seesaw

counters is μ ≈ 1− e
− k

B
Nn
Np in expectation, where k is the

number of hash functions, B is the average number of counters
per positive key in SCA, Nn is the number of negative keys to
be encoded, and Np is the capacity of positive keys in SSCF.

Proof. Considering that there areNn negative keys, the prob-
ability that a seesaw counter is not mapped by all negative keys
is 1− (1− 1

m )k·Nn . Therefore, the ratio of negative seesaw

counters is μ = 1− (1− 1
m )k·Nn ≈ 1− e−

kNn
m in expectation.

Besides, considering that the counter per key is B in SCA, then

μ ≈ 1− e
− k·Nn

B·Np . �

B. Hash Modulating

Lemma IV.2. After inserting Np positive keys, the expected
number of triggered hash modulating is ϕ = Np · (1− (1−
μ)k).

Proof. With one positive key to be inserted, the hash function
modulating is triggered if one or more applied hash functions
map the inserted key to a negative seesaw counter, whose prob-
ability is 1− (1− μ)k. By the linearity of expectation, withNp
positive keys, the expected number of triggered hash modulating
is ϕ = Np · (1− (1− μ)k). �

Lemma IV.3. Suppose there are ϕ times of hash modulating
and n = s · ϕ cells in HashModulator, the load factor of Hash-
Modulator is L = (1− e−

1
s ), where s is a constant scale factor

that varies the space size of HashModulator.
Proof. Considering that each key is mapped to HashMod-

ulator with a public hash function (i.e., h0), the load factor
of HashModulator is then equivalent to the number of cells
being occupied. We start with considering probability of the
complementary case, i.e., a cell is not mapped by all keys to
be modulated, which is given by (1− 1

s·ϕ )
ϕ. That is to say, a

cell will be occupied with probability 1− (1− 1
s·ϕ )

ϕ. By the

linearity of expectation, the load factor L is (1− (1− 1
s·ϕ )

ϕ) ≈
(1− e−

ϕ
s·ϕ ) = (1− e−

1
s ).

Lemma IV.4. When the load factor of HashModulator is L,
the probability that one hash function modulating is successful is
Pms = L(1− μ) + (1− L)(1− μ2η2 ), where μ is the ratio of
negative seesaw counters in SCA and η2 is the ModulatedIndex
field size in HashModulator.

Proof. The hash modulating is successful if it switches one
initial hash to a modulated hash function that maps to an empty
or positive seesaw counter in SCA. According to the whether
the key mapped by the key to insert, the hash modulating can be
divided into the following two cases.

In the first case, if the mapped cell is empty in HashModulator
(with probability 1− L), there will be at most 2η2 backup
modulated hash functions to be used since the ModulatedIndex
is η2-bit in size. Then the probability that the hash modulat-
ing is successful, i.e., at least one modulated hash function
maps to empty or positive seesaw counter, is given by Pms1 =
(1− L)(1− μ2η2 ).

In the second case, if the mapped cell is occupied in HashMod-
ulator (with probabilityL), only modulated hash function stored
in this cell can be used. Similar to the first case, the probability
of a successful hash modulating is Pms2 = L(1− μ). �

By combing Pms1 and Pms2, the probability of a successful
hash modulating is Pms = L(1− μ) + (1− L)(1− μ2η2 ) =
(1− μ2η2)− L(μ− u2

η2).
Lemma IV.5. After inserting Np positive keys, there is ψ ≈

1− e−
k(1−τ ·Pms)

B ratio of negative seesaw counters with positive
cell being non-empty in expectation, where τ is a constant
coefficient.

Proof. When inserting a positive key, the positive cell of a
negative seesaw counter is occupied if the hash modulating fails
or more than one hash function maps the inserted key to negative
seesaw counter at the same time during the insertion of one single
key. First, as per Lemma IV.4, the probability of one unsuccessful
modulating is 1− Pms. Second, we analyze the probability of
more than one negative seesaw counter being mapped at the
insertion of one single key. Without loss of generality, the applied
k hash functions are assumed to be uniformly random, which
indicates the number of negative seesaw counters being mapped
during one positive key insertion obeys the Binomial distribution
B(k, μ). Therefore, the number of negative seesaw counters
mapped during the insertion of one single positive key, which is
denoted as ψ1 and is given by

ψ1 =

k∑
i=1

(
k

i

)
μi(1− μ)k−i((1− Pms) · i+ Pms · (i− 1))

=

k∑
i=1

(
k

i

)
μi(1− μ)k−i(i− Pms)

=

k∑
i=0

(
k

i

)
μi(1− μ)k−i(i− Pms)

−
(
k

0

)
μ0(1− μ)k(0− Pms)

= kμ− Pms + (1− μ)kPms

= kμ− Pms(1− (1− μ)k). (1)

Note that the obtainedψ1 depends onPms that further depends
on the number of inserted keys. Therefore, the number of hash
functions mapped to negative seesaw counters can be formulated
as

∑Np

i=1 i ∗ ψ1(i), where i denotes the number of positive keys
already being inserted and ψ1(0) ≤ ψ1(i) ≤ ψ1(Np). Then, the
ratio of negative seesaw counters with positive cells also being
occupied can be bounded by ψ ≤ 1− (1− 1

mμ )
Np·ψ1 , where

ψ1 is short for ψ1(Np) for the sake of concision. Moreover,
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the value of
∑Np

i=1 i ∗ ψ1(i) can be explicitly calculated and
thus denoted as τ · ψ1 ·Np for simplicity, where τ is a constant
coefficient. Then, the ratio of negative seesaw counters with pos-
itive cells also being occupied is ψ = 1− (1− 1

mμ )
τ ·Np·ψ1 =

1− e−
k(1−τ ·Pms)

B .
This completes the proof. �
Lemma IV.6. After inserting Np positive keys, λ = 1−

e−
k
B (1+ μ

1−μPms) ratio of non-negative seesaw counters are with
non-empty positive cell in expectation.

Proof. For a given empty seesaw counter in SCA, it is set
either if mapped by the initial hash functions or if mapped by
modulated hash functions. Meanwhile, during the insertion of
Np positive keys, the number of applied initial hash functions
is (1− μ)Npk and the number of applied modulated hash func-
tions is ϕ · Pms as per Lemma IV.1 and IV.4. Therefore, the
probability of a non-negative seesaw counter with non-empty
positive cell is

λ = 1−
(
1− 1

(1− μ)m

)(1−μ)Npk+ϕ·Pms

≈ 1− e−
k+

kμ
1−μ

Pms

B = 1− e−
k
B (1+ μ

1−μPms).

This completes the proof. �

C. Cost-Weighted FPR of SSCF

Theorem IV.1. When querying a vulnerable negative key, its
FPR is FPV = ψk−1(ψ + (1− ψ)kλ(1− e−

1
s )(1− μ)).

Proof. When querying a vulnerable negative key, it is identi-
fied to be positive if it is misidentified with initial hash functions
or modulated hash functions. First, with initial hash functions,
a false positive occurs when all the mapped seesaw counters
are with non-empty positive cells, whose probability is given
by FPV1

= ψk, where ψ is the ratio of seesaw counters with
non-empty negative and positive cell as shown in Lemma IV.5.
Second, if a vulnerable negative key is misidentified, there
should be only one initial hash function mapping to a seesaw
counter with empty positive cell, whose probability is given by
FPV2

= kψk−1(1− ψ) · (Lλ)(1− μ). By combing FPV1
and

FPV2
, we have

FPV = FPV1
+ FPV2

= ψk + kψk−1(1− ψ) · (Lλ)

= ψk−1
(
ψ + (1− ψ)(1− μ)kλ

(
1− e−

1
s

))
. (2)

This completes the proof. �
Theorem IV.2. When querying a non-vulnerable negative key,

its FPR is FPN = (μψ + (1− μ)λ)k−1((μψ + (1− μ)λ) +

(1− (μψ + (1− μ)λ))k(1− μ)λ(1− e−
1
s )).

Proof. Similar to that of querying a vulnerable negative
key, a non-vulnerable negative key is misidentified if it is
either misidentified with initial or modulated hash func-
tions. For the initial hash functions, a false positive occurs
when all mapped cells are occupied, which has probabil-
ity FPN1

= (μψ + (1− μ)λ)k. As for the modulated hash
functions, its probability isFPN2

= k(μψ + (1− μ)λ)k−1(1−
(μψ + (1− μ)λ))L(1− μ)λ. Therefore, the FPR of querying

non-vulnerable negative keys can be derived as

FPN = FPN1
+ FPN2

= (μψ + (1− μ)λ)k−1 ((μψ + (1− μ)λ)

+ (1− (μψ + (1− μ)λ)) · k(1− μ)λ
(
1− e−

1
s

)))
.

(3)

This completes the proof. �
Theorem IV.3. Suppose that the encoded Nn negative keys

account for ε ratio of all costs, the cost-weighted FPR of SSCF
is CFPR(B, s) = ε · FPV + (1− ε) · FPN , where B is the
seesaw counters per key in SCA and s is the scale factor of
HashModulator.

Proof. The cost-weighted FPR is composed of two parts: the
false positive of vulnerable negative keys and non-vulnerable
keys. By the linearity of expectation, the cost-weighted FPR
arising from vulnerable keys is ε · FPV , where ε is the ratio of
costs of the encoded vulnerable negative keys. Similarly, as per
Theorem IV.2, the cost-weighted FPR of non-vulnerable key is
(1− ε) · FPN . Therefore, the cost-weighted FPR of SSCF is
ε · FPV + (1− ε) · FPN . �

D. Parameter Optimization

Suppose the memory space budget is M , the HashModula-
tor is allocated with α ·M space and SCA is allocated with
(1− α)M (α ∈ [0, 1]). Meanwhile, there arem seesaw counters
in SCA of SSCF and each seesaw counter is composed of two
fields, including θ1-bit negative cell and θ2-bit positive cell. Be-
sides, the positive key capacity of SSCF isNp and each positive
key is allocated with B seesaw counters cells. Therefore, we
have (1− α)M = m · (θ1 + θ2) = Np ·B · (θ1 + θ2). Then α
can be formulated as

α = 1− BNp (θ1 + θ2)

M
. (4)

Concerning HashModulator, it is allocated with (1− α)M
space with n cells, each of which has two fields: η1-bit Modu-
latedCounter and η2-bit ModulatedIndex. As per Lemma IV.3,
we can reformulate n as

n = sNp

(
1− e

− k2

B
Nn
Np

)
≈ s · k2 ·Nn

B
. (5)

Besides, the space of HashModulator is αM , which con-
sists of n ((η1 + η2)-bit in size) cells of size. Therefore,
we have αM = n(η1 + η2) and s can be reformulated as

s = αM

(η1+η2)(
k2 ·Nn

B )
=

MB−B2Np(θ1+θ2)
(η1+η2)(k2·Nn)

. Finally, as per Theo-

rem IV.3, the problem of how to obtain an optimal cost-weighted
FPR regarding space ratio allocated to HashModulator can be
formulated as follows:

minCFPR(B, s) = ε · FPV + (1− ε) · FPN

s.t.s =
MB −B2Np(θ1 + θ2)

(η1 + η2) (k2 ·Nn) , B ∈
[
1,

M

(θ1 + θ2)Np

]
.

(6)
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Note that similar to standard Counting Bloom filter, we set θ1 =
1 and θ2 = 4 by default in this article. How to set k, η1, η2 will be
discussed in our evaluations (Section V-B) and we focus on how
to obtain an optimized B. Considering that (6) can be evaluated
withO(1) time complexity, the parameterB is an integer within
range (1, M

(θ1+θ2)Np
). Therefore, the optimal B can be found

within o(log
M

(θ1+θ2)Np

2 ) time with binary search. Finally, with
the obtained optimal B, the optimal ratio α of space allocated
to HashModulator can be derived by plugging B into (4).

V. EXPERIMENT EVALUATION

In this section, extensive experiments are conducted to val-
idate the effectiveness of SSCF. Overall, we want to answer
the five key questions: (1) how do the parameters affect the
performance of SSCF? (2) when to adopt SSCF? (3) how does
SSCF ’s performance (i.e., accuracy and operation latency)
compared with other filters? and (4) how does the performance
of ada-SSCF evolves in the dynamic scenarios?

A. Experimental Setup

1) Comparison Filter Implementation: There are three com-
parison filters, whose implementation details are as follows. The
first filter is Counting Bloom filter (CBF) [3]. By inheriting
optimal the parameter setting of CBF, we set the number of hash
functions k = �ln 2 ·B� to minimize the FPR for CBF, where
B is the number of counters per key. Besides, each counter
cell is set to 4-bit according to [3], which is also inherited
by SSCF. The second comparison filter is Weighted Bloom
filter (WBF) [12]. However, considering that deletion is not
supported by WBF, we adapt WBF to our problem by replacing
its bit array with counter array, and name the adapted version
as Weighted Counting Bloom filter (WCBF for short). Besides,
as WCBF takes in the costs of queried keys as input, a default
portion (about 0.005%) of keys with the highest cost are stored.
Note that storing more keys consumes too much space since
the keys (or its ID like URL) may be very long in bits. The
third filter is Stacked Filter (SF) [13]. However, SF cannot
be borrowed directly here since the construction of SF relies on
the prior knowledge of positive and negative keys, which cannot
be obtained in advance in the dynamic scenarios. To adapt SF to
our problem, we build a three-layer SF with the second layer (i.e.,
negative filter layer) storing a default portion about 5% (same as
SSCF ) of negative keys with the highest cost. Besides, inspired
by [13], the space size allocated for each filter layer to make each
filter have roughly the same FPR. Moreover, to make SF support
deletion, we replace the Bloom filter in SF framework with
Counting Bloom filter. To achieve a head-to-head comparison,
we require the space consumption (including the auxiliary data
structures) of all filters evaluated to be the same. The memory
space consumption is indicated by the metric named bits-per-key
(i.e., bits per positive key), which equals to the total memory
space size in bits divided by the positive key number.

2) Experimental Infrastructure: We evaluate all the filters
on the same Linux server equipped with Intel Xeon Gold
5218R (2.10GH with 80 cores), 125 GB RAM. All filters are

TABLE III
DATASET SUMMARY

implemented with C++ and compiled with the same configura-
tions. The results reported are obtained with 10 repetitions.

3) Evaluation Metrics: We use the following metrics: (1)
cost-weighted FPR; (2) insertion latency; (3) query latency;
and (4) deletion latency. The first metric, i.e., cost-weighted
FPR, is a variant of standard FPR that takes key costs as
weighted factors. Specifically, the cost-weighted FPR is de-

fined as
∑

x∈Nu
F (x)·C(x)

∑
x∈Nu

C(x) , where Nu is the negative key set,

F (x) ∈ [0, 1] is the queried result of key x in filter F , and C(x)
is the cost of key x.

4) Data Sets: To validate the effectiveness of SSCF, the
following two data sets (summarized in Table III) are used:

1) Shalla’s Blacklists. Shalla’s Blacklists [23] (abbreviated as
Shalla) is a URL dataset, which contains malicious URLs
to be blocked and used here to simulate building a dynamic
white-list URLs that can be accessed safely.

2) YCSB. YCSB is a benchmark [24] designed by Yahoo for
performance evaluating of key-value stores.

3) CAIDA. CAIDA [25] is a set of collected Internet traf-
fics and hosted by University of California’s San Diego
Supercomputer Center.

5) Cost Distribution: Considering that the keys from Shalla
and YCSB have no default cost, a skewed cost distribution (i.e.,
Zipf distribution [26]) is generated. To reveal the correlation
between the cost skewness and filtering performance, various
skewness parameters (from 1.0 to 2.5) are generated.

B. Parameter Evaluation

Given the total memory space budget, the performance of
SSCF depends on the following parameters: (1) the number
of initial hash functions k; (2) the size of ModulatedCounter
field η1; (3) the number of backup modulated hash functions
k̂ and ModulatedIndex field size η2; and (4) HashModulator
space ratio α. We evaluate these parameters on Shalla with 1.5
Zipf skewness to study their effects. Besides, a portion (5%) of
negative keys with the highest costs are selected as the vulnerable
negative keys.

1) Number of Initial Hash Functions k: In Fig. 10(a), we vary
the initial hash function number against different counters per
key. Overall, the optimal k is 4 for B = 8 and increases to 8 for
B = 12, which roughly agrees with the optimal hash function
number setting k = �B · ln(2)� from CBF. Moreover, given
the number of seesaw counters per key B, the cost-weighted
FPR drops at first but then increases as B increases. This is
because a modestly large k increases number of cells being
checked and thus reduces cost-weighted FPR while an oversized
k leads to more occupied counters and thus higher cost-weighted
FPR. Considering that the optimal hash function configuration
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Fig. 10. Parameter evaluation.

is similar to that of CBF, we directly inherit the optimal hash
function number setting from CBF by setting, where the B is
the counter per positive key in SCA.

2) ModulatedCounter Size η1: As is shown in Fig. 10(b), the
ModulatedCounter size η1 is varied from 1 to 12. The results
show that when the η1 is small (≤2), the ModulatedCounter
field size is too small to record the times of stored modulated
hash function being used, and thus overflows; when η1 increases
from 3 to 12, the cost-weighted increases gradually since the
ModulatedCounter field occupies more space but brings no
benefits except the increased capacity of each modulated hash
function being used.

3) Number of Modulated Hash Functions k̂ and Modulated
Field Size η2: The number of modulated hash functions k̂ is
constrained by the size η2 of ModulatedIndex field, i.e.k ≤ 2η2 .
In Fig. 10(c), with k̂ increased from 1 to 12, the optimal k̂
is 2 and can be covered by 1-bit ModulatedIndex. For k̂ < 2, the
number of modulated hash functions is limited, which brings
down the successful probability of hash modulating. As for
k̂ > 2, the ModulatedIndex field consumes more space to cover
the modulated hash index (up to k̂), which leads to cost-weighted
FPR deterioration. Therefore, we set k̂ = 2 and η2 = 1 in the
following evaluations.

4) HashModulator Space Ratio α: As is shown in Fig. 10(d),
we vary α from 6% to 20%. The optimal cost-weighted FPR
is achieved when α = 10%. For α < 10%, the load factor L of
HashModulator is high, which leads to more hash collisions in
HashModulator, and thus more misidentification in the second
query round of modulated query procedure. For α > 10%, the
space allocated for SCA becomes too small, which leads to more
misidentification in the first query round, and thus higher cost-
weighted FPR.

C. When to Adopt SSCF?

In this subsection, we study when to adopt SSCF or more ex-
actly when will SSCF surpass other filters (CBF as an example),
which mainly depends on the cost distribution (i.e., skewness)
and the encoded negative key number Nn.

SSCF Benefits from Large Skewness: First, to explore how
does the skewness affect SSCF, we take the Zipf distribution as
an example and vary its skewness from 0.2 to 2.6. As shownin
Fig. 11, for the skewness≤ 0.6, CBF shows better cost-weighted
FPR as the encoded negative keys do not account for a large
portion of cost. As for the skewness larger than 0.6, SSCF shows

Fig. 11. Cost-weighted FPR ver-
sus skewness.

Fig. 12. Cost-weighted FPR versus
Nn
Np

with 1.0 skewness.

lower cost-weighted FPR and the performance gain continues to
enlarge exponentially. This is because for large skewness, these
encoded vulnerable negative keys accounts for the major costs,
which are actually taken special care of by SSCF.

SSCF Handles A Considerable Number of Vulnerable Neg-
ative Keys: Second, we focus on the parameter Nn, i.e., the
number of vulnerable negative keys. For the sake of clarity,
instead of considering Nn directly, we turn to its normalized
formulation Nn

Np
, whereNp is the positive key capacity in SSCF.

As shown in Fig. 12, we vary Nn

Np
from 2% to 30%. The

optimal cost-weighted FPR is achieved when Nn

Np
= 22%. For

Nn

Np
< 22%, the encoded negative keys do not cover the major

cost and lead to worse cost-weighted FPR. For Nn

Np
> 22%, the

increased number of encoded negative keys requires more space
for HashModulator, which leads to worse cost-weighted FPR. In
summary, with larger cost encapsulated by smaller (i.e., larger
skewness) Nn

Np
ratio of negative keys, SSCF is preferred.

D. Overall Filtering Performance

In this experiment, we evaluate all filters by varying the
space size (indicated by the bits per positive key), and Zipf cost
distribution skewness. Specifically, the bits per positive key is
increased from 20 to 36 and the skewness is increased from 1.0
to 2.5.

SSCF always has the smallest cost-weighted FPR under all
space settings and outperforms all the comparison filters at
least by 1.55× and up to two orders of magnitude on skewed
data: For Shalla with skewness 1.0, as shown in Fig. 13(a), the
cost-weighted FPR of SSCF decreases from 2.99% to 0.57%.
Among other filters, the SF shows the best performance with
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Fig. 13. Cost-weighted FPR on shalla versus skewness under the same memory space (varying from 3.5MB to 6.4MB).

Fig. 14. Cost-weighted FPR on YCSB versus skewness under the same memory space (varying from 29.8MB to 53.6MB).

Fig. 15. Cost-weighted FPR on CAIDA versus skewness under the same memory space (varying form 12MB to 22MB).

cost-weighted FPR decreasing from 5.62% to 0.63%. Even com-
pared with SF, SSCF shows over 1.55× performance improve-
ment and obtains larger performance gain under larger skewness,
which is as shown in Fig. 13(b), (c), and (d). Particularly, SSCF
outperforms SF over two orders of magnitude with 2.5 Zipf
skewness, which is as shown in Fig. 13(d).

As is shown in Fig. 14(a), for YCSB with skewness 1.0, the
cost-weighted FPR of SSCF decreases from 2.35% to 0.51%.
Similar to that on Shalla, SF also shows the best performance
with cost-weighted FPR decreasing from 4.80% to 0.54% on
YCSB with Zipf skewness 1.0. Meanwhile, SSCF outperforms
all the other comparison filters by at least 1.45×. With the
increased cost distribution skewness, the performance gap en-
larges as shown in Fig. 14(b), (c), and (d). As is shown in
Fig. 14(d), on YCSB with 2.5 Zipf skewness, SSCF also out-
performs all other comparison filters by over two orders of
magnitude.

As for CAIDA, the evaluation results are similar, which is
reported in Fig. 15(a), (b), (c), and (d). Specifically, with the in-
creased cost distribution skewness, our proposed SSCF consistly
achieves the best weighted-FPR with enlarged performance gaps
compared with other filters.

E. Operation Latency

1) Insertion Latency: The insertion latency of SSCF is about
1.47× the latency of CBF: As shown in Fig. 16(a), on Shalla,
the insertion latency per key is 208ns for SSCF, 141ns for CBF,
250ns for WCBF, and 310ns for SF. As for YCSB, the insertion
latency is 296ns for SSCF, 190ns for CBF, 277ns for WCBF,
and 438ns for SF. on CAIDA, the insertion latency is 326ns
for SSCF, 197ns for CBF, 283ns for WCBF, and 458ns for
SF. The insertion latency of SSCF is comparable to CBF since
the insertion procedure of SSCF is very similar to that of CBF
except the extra hash modulating procedure, which involves very
limited times of hash function computation and memory access.

2) Query Latency: The query latency of SSCF is similar to
the latency of CBF. The query latency per key on Shalla, as
shown in Fig. 16(b), is 163ns for SSCF; for CBF, it is 158ns;
for WCBF and SF, it is 195ns and 253ns, respectively. On
YCSB, the insertion latency for SSCF, CBF, WCBF and SF is
199ns, 211ns, 2548ns and 364ns, respectively. As for CAIDA,
the insertion latency for SSCF, CBF, WCBF and SF is 195ns,
209ns, 448ns and 334ns, respectively. At query time, SSCF, even
with modulated query procedure, only applies the roughly at
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Fig. 16. Operation latency.

Fig. 17. Ada-SSCF versus cost-weighted FPR.

most one more hash function, which makes the query latency
of be comparable to CBF’s query latency. WCBF suffers from
prolonged query latency as it needs to check the costs of queried
keys, and particularly, the computation overhead of the checking
process is non-negligible when the number of keys stored is
large. Moreover, SF shows large query latency since at least two
or three layers of filters need to be queried for both positive and
negative keys.

3) Deletion Latency: The deletion latency of SSCF is about
1.21× of CBF’s deletion latency: As shown in Fig. 16(c), the
deletion latency on Shalla is 314 ns, 258 ns, 236 ns, and 329
ns for SSCF, CBF, WCBF and SF, respectively. On YCSB, the
latency is 354ns for SSCF, 345 ns for CBF, 280 ns for WCBF
and 443 ns for SF. As for CAIDA, the deletion latency is 385
ns for SSCF, 320 ns for CBF, 315 ns for WCBF, and 430 ns
for SF. We note that benefited from fewer (1 less) applied hash
functions, SSCF achieves smaller latency compared with CBF.
Besides, similarly, the large deletion latency of SF comes from
the overhead of handling multiple filters of different layers.

F. Ada-SSCF is Robust in Dynamic Scenarios

In this subsection, we evaluate ada-SSCF in the dynamic
scenarios, where the vulnerable negative keys cannot be obtained
in advance. To be specific, at first, we only insert positive keys
into ada-SSCF and feed 5% the vulnerable negative keys with
the highest costs to ada-SSCF dynamically. Then, we randomly
delete and insert keys from ada-SSCF round by round with a
fixed ratio, which is as shown in Fig. 17. For example, a round
with 2% ratio means that in one single round, we randomly
delete 2% keys from SSCF and then randomly insert 2% new
keys into SSCF. It can be observed that with more and more

deletions and insertions, the cost-weighted FPR of ada-SSCF
improves gradually and finally surpasses the CBF. Particularly,
as shown in Fig. 17(a), the cost-weighted FPR of ada-SSCF
decreases from 5.7% to 0.08% with 2% ratio in 40 rounds
and can even reach up to 0.0019% with 10% ratio, which is
about two orders of magnitude improvement compared with
CBF. Similarly, as shown in Fig. 17(b), the cost-weighted FPR
of ada-SSCF decreases from 27% to 0.02% with 2% ratio in
40 rounds and even to 0.00038% with 10% ratio. Particularly,
in the scenarios where deletions are more than insertions, the
performance can even improve much faster.

VI. RELATED WORK

Filters That are Cost-Aware: The standard Bloom filter [22]
and its variants do not take into account the key costs [3], [8],
[27], [28], which makes all negative keys are treated identically.
Particularly, the CQF (counting quotient filter) [28], although be-
ing more space-efficient compared with CBF (counting Bloom
filter), also ignores the negative keys as well as the key costs
during construction time, which makes CQF achieves subop-
timal performance even when vulnerable negative keys can
be obtained. To handle keys with different costs, Bruck et al.
proposed to vary the hash functions of each key according to its
cost and formalized a new filter named Weighted Bloom filter
(WBF) [12]. Nonetheless, the problem is that WBF needs to
calculate the number of applied hash functions for each key at
query time, which thus requires the storage of key cost, and
then leads to high space usage and query latency at query time.
Considering that the varied hash function approach proposed
by WBF remains heuristic, Zhong et al. adopted a similar idea
but posed it as a constrained nonlinear integer programming
problem [29], which can only work offline. The recent proposed
stacked filter framework [13] proposes to learn from the work-
load in a structured way, i.e., stacking the filters one by one to
filter keys progressively. However, one important problem for
the stacked filter is that it needs prior knowledge of both positive
and negative keys, making it cannot be applied in dynamic
scenarios. Other filters like Rosetta [30] and SuRF [31] are
designed for range query.

Filters That are Learning-Based: Recently, there have been
several works that propose to utilize machine learning model
in the filter design. With an elaborately trained learned
model, existing learning-based works could achieve beyond the
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theoretical limit performance in terms of FPR and space ef-
ficiency [9], [32]. Kraska et al. proposed a learned Bloom
filter [9] to obtain optimized space efficiency by incorporating
machine techniques that can capture data distribution informa-
tion within a small learned model. However, the high space
efficiency achieved by the learning-based filter is at the sacrifice
of construction and query latency, which is unacceptable in
the dynamic scenarios. To reduce query latency, Mitzenmacher
proposed to add an initial Bloom filter on top of the learned
Bloom filter to reject the frequent queried negative keys as early
as possible [32]. Adaptive Learned Bloom filter was proposed
to use machine learning technique to measure the probability of
whether a key in the set and adaptively decides the number of
hash functions applied [11]. However, despite the remarkable
space efficiency, existing learning-based filters all suffer from
prolonged training and query latency. Besides, they cannot be
adapted to dynamic workloads since the learned models need
to be repeatedly retrained on new data, which is unacceptable
in dynamic scenarios. Based on customizing the hash function
in an offline setting, HABF is designed for static set filtering,
which does not support dynamic insertions or deletions [14].

VII. CONCLUSION

In this article, we have studied the proposed dynamic
cost-efficient filtering problem. Targeting at such problem, we
propose a new filter named (ada-)SSCF, which is innovated in
a lightweight negative key encoding mechanism and dynamic
hash method named hash modulating. With hash modulating,
SSCF provides the adaptivity of choosing applied hash functions
dynamically to prevent vulnerable negative keys from being
misidentified. To validate the performance, SSCF is extensively
evaluated on several representative data sets and outperforms
the standard Counting Bloom filter and other variants on the
whole regarding accuracy, construction time, query latency and
filter size.
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