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Abstract—Frequent object mining has gained considerable
interest in the research community and can be split into frequent
item mining and frequent set mining depending on the type
of object. While existing sketch-based algorithms have made
significant progress in addressing these two tasks concurrently,
they also possess notable limitations. They either support only
software platforms with low throughput or compromise accuracy
for faster processing speed and better hardware compatibility.
In this paper, we make a substantial stride towards supporting
frequent object mining by designing SandwichSketch, which
draws inspiration from sandwich making and proposes two tech-
niques including the double fidelity enhancement and hierarchical
hot locking to guarantee high fidelity on both two tasks. We
implement SandwichSketch on three platforms (CPU, Redis, and
FPGA) and show that it enhances accuracy by 38.4x and 5x for
two tasks on three real-world datasets, respectively. Additionally,
it supports a distributed measurement scenario with less than
a 0.01% decrease in Average Relative Error (ARE) when the
number of nodes increases from 1 to 16.

Index Terms—Frequent Item Mining; Frequent Set Mining;
Data Streams; Sketch

I. INTRODUCTION

Frequent object mining in data streams is a fundamental but
challenging problem in numerous areas, including databases
and data mining [[1]]-[3]], network measurement [4]-[6], ma-
chine learning [7]-[9], and network security [10]-[12], etc.
It refers to finding objects whose frequencies/sizes are large
or exceed a threshold and reporting their frequencies. In the
scenario of large-scale data streams, sketch algorithms [13]]-
[15] have made significant advancements in terms of accuracy
and processing speed while using a small amount of resources.

Typically, the object comprises the item and the set, so
frequent object mining can be categorized into frequent item
mining and frequent set mining depending on the type of
object. For frequent item mining, there is no denying the
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significance of discovering frequent items in data streams. The
existing sketch solutions [16]-[20] have made considerable
strides in this respect. As for frequent set mining, a set is
made up of multiple items, and its frequency corresponds to
the aggregate of item frequencies within that set according
to subset sum estimation [21]], which is the theoretical foun-
dation for frequent set mining. It has applications across a
range of areas including machine learning [22], hierarchical
aggregation [23|], Distributed Denial-of-Service (DDoS) attack
detection [24], arbitrary partial key query [25] and database
query optimization and join size estimation [26]]. Moreover,
it facilitates merging operations, which makes it appropriate
for distributed scenarios. Given the growing importance of
frequent item and set mining in recent years, we aim to con-
centrate on sketch algorithms capable of effectively managing
both tasks concurrently.

An ideal system for frequent object mining should meet
three requirements: [R1] versatility (support frequent item
mining and frequent set mining simultaneously), [R2] fidelity
(provide high accuracy guarantee for the above two tasks)
and [R3] compatibility (have strong compatibility on soft-
ware and hardware platforms, e.g., CPU, Redis [27]], FPGA
[28]]). These requirements are motivated by practical needs in
real-world applications. First, versatility is essential because
many applications (e.g., network monitoring, database query
optimization, etc.) do require both tasks at the same time.
Second, fidelity is crucial to ensure accurate results, as even
small errors can be accumulated and lead to wrong decisions in
applications. Third, compatibility is necessary to deploy these
algorithms in diverse environments, where efficient resource
utilization and scalability are paramount.

Regrettably, as highlighted in Table [ while state-of-the-
art solutions such as Unbiased Space-Saving (USS) [29] and
CocoSketch [25] are competent in addressing both tasks at the
same time, they each have their own inherent limitations. USS
proposes variance minimization and presents the theoretical
optimum for frequent set mining. However, its actual imple-
mentation uses a double-linked list, which cannot achieve the
theoretical optimum due to the large amount of memory waste
caused by pointers. Additionally, it suffers from a long update
delay that hampers its ability to operate at high speed, making
it challenging to deploy on high-speed hardware platforms like
FPGA. CocoSketch proposes stochastic variance minimization
and circular dependency removal in an attempt to improve
the update speed and hardware compatibility of USS, but this
comes at the expense of some accuracy. These limitations
highlight the need for a solution that simultaneously achieves



versatility, fidelity, and compatibility.

TABLE I
OUR WORK V.S. PRIOR SOLUTIONS.

Solution Versatility  Fidelity Compatibility
USS v X X
CocoSketch v b 4 4
SandwichSketch v v 4

In this work, we present SandwichSketch, a sketch-based
measurement system for frequent object mining. SandwichS-
ketch conceptually resembles sandwich making. On the one
hand, similar to a sandwich that comprises two bread slices
with a layer of filling in between, SandwichSketch features
a comparison replacement layer (Stage 2) flanked by two
probability replacement layers (Stage 1 and Stage 3). On
the other hand, just like the process of making a sandwich
where the bottom bread layer is prepared first, then the
fillings are added, and finally the top bread layer is placed,
SandwichSketch processes each inserted item in a similar
sequential manner. Based on the sandwich making philosophy,
we propose two main techniques as follows aimed at fulfilling
our design requirements.

1) Double Fidelity Enhancement. Current solutions like USS
and CocoSketch utilize an unbiased probability replacement
strategy to avoid substantial error accumulation in frequent
set mining, aiming for unbiased estimation. We inherit this
strategy and equip SandwichSketch with an unbiased part as
Stage 3. Despite this, we find that distinguishing between
frequent and infrequent items can further enhance estimation
fidelity. Specifically, we introduce a heavy part (Stage 1 and
Stage 2) before the unbiased part (Stage 3) to better maintain
frequent items. When a new item inserts, it will first be
processed in the heavy part and frequent items will remain
here as much as possible. Other infrequent items will be
replaced in the heavy part and kicked to the unbiased part.
Moreover, we propose the pure replacement method to handle
item replacements in the heavy part to increase fidelity while
preserving unbiasedness. As the heavy part is applied to both
frequent item mining and frequent set mining, the fidelity of
both tasks is simultaneously improved. 2) Hierarchical Hot
Locking. Common methods for maintaining frequent items in
the heavy part are the probability replacement strategy and
the comparison replacement strategy. However, using only
one strategy has drawbacks. The probability strategy may let
frequent items be kicked out, and the comparison strategy
is sensitive to the order of item appearance. Therefore, in
the heavy part, we use the probability strategy in Stage 1 to
buffer frequent items and the comparison strategy in Stage 2
to precisely retain them. In this way, frequent items are better
maintained in the heavy part, ensuring accurate mining results.

In conclusion, combining double fidelity enhancement with
hierarchical hot locking satisfies requirements [R1] and [R2].
Furthermore, operating in a pipeline format enables Sand-
wichSketch to conveniently meet the requirement [R3].

We implement SandwichSketch prototypes on various soft-
ware (e.g., CPU and Redis) and hardware (e.g., FPGA)
platforms. Our evaluation is under three tasks (heavy hitter
detection, heavy change detection, and hierarchical heavy

hitter detection). For frequent item mining, the ARE of
SandwichSketch achieves 31.7x and 38.4x improvements on
CAIDA and Web Page datasets, respectively. For frequent
set mining, the ARE of SandwichSketch is 5x and 4.5x
better than those of CocoSketch and USS, respectively, and
is just 1.2x worse than the theoretical optimum. Addition-
ally, SandwichSketch achieves 0.4 Mops and 230 Mops on
Redis and FPGA, respectively. In addition, our experiments
also verify that SandwichSketch is suitable for distributed
scenarios. When the number of nodes increases from 1 to
16, the decreases in F1 Score and ARE of SandwichSketch
are less than 0.37% and 0.01%, respectively. We have open-
sourced code of SandwichSketch and other baseline algorithms
on GitHub [30].

II. BACKGROUND AND RELATED WORK
A. Problem Definitions

Many data analysis problems involve the following SQL
statement including some filters and group by conditions.
Frequent object mining including frequent item mining and
frequent set mining can also be transformed into this schema
depending on whether there is group by clause.

SELECT dimensions, sum(metric)
FROM table

WHERE filters

GROUP BY dimensions

Before the sketch measurement starts, we first define unit
dimensions of measurement. For frequent item mining, there
is no group by clause and we can identify frequent items or
heavy hitters over unit dimensions through filters. For frequent
set mining, there are arbitrary group by dimensions called set
dimensions except for a small restriction that set dimensions
cannot be finer granularity than unit dimensions. We can
aggregate a number of items to build a set by utilizing the
group by clause, use sum function to acquire the total metric
of each set and define filters to find frequent sets.

B. Applications

It has many applications of frequent set mining including
machine learning [22], hierarchical aggregation [23], DDoS
attack detection [24]], arbitrary partial key query [25]], database
query optimization and join size estimation [26]. In addition,
it supports merge operations, making it ideal for distributed
scenarios. In such case, we can initially measure the data
subset in each node using a sketch, and subsequently merge
all sketches to respond to queries over all data.

To illustrate, let’s consider the problem of hierarchical
aggregation [23] in the context of network traffic data. IP
addresses are organized hierarchically to differentiate between
various subnets. Each subnet (e.g., 172.168.10.%) is a set of
many IP addresses (e.g., 172.168.10.0,...,172.168.10.255).
We can monitor the flow size of IP addresses and perform
the group by clause to acquire the size of arbitrary subnet by
summing all sizes of IP addresses sharing the same IP prefix.

It can also be readily applied to multidimensional measure-
ment, where it’s necessary to measure and query the metric



across various dimensions. For example, in DDoS attack
detection, it can be challenging to identify a few dimensions
which need to be measured in advance [24]], [31[]-[37]]. Thus,
it becomes necessary to track numerous potential flow dimen-
sions such as 5-tuple, SrcIP/DstIP, and their arbitrary prefixes
[24]. By applying frequent set mining, we can predefine the
broadest dimension range called the unit dimension (e.g., 5-
tuple), prior to measurement, and measure item frequency over
this unit dimension. Post the measurement window, we can
query over any set dimension (e.g., SrcIP/DstIP) which is a
part of unit dimension by aggregating all related items.

C. Existing Solutions and Limitations

Although recent efforts including Unbiased Space-Saving
(USS) [29] and CocoSketch [25] have taken a significant step
toward frequent object mining, they still have some unac-
ceptable limitations. Apart from these two, there are almost
no outstanding works on mining frequent items and frequent
sets simultaneously: They are basically studied separately, with
the former dominating. Next, we will introduce the USS and
CocoSketch in detail, and briefly introduce other works.
Unbiased Space-Saving: Unbiased Space-Saving (USS) [29]]
firstly proposes the technique of variance minimization to
achieve unbiased estimation with minimum estimation vari-
ance. It consists of an array with (key, value) buckets. For an
incoming item with key e and value w, if e is already recorded
in a bucket, USS will increment the counter of this bucket by
w and the variance will not increase. Otherwise, USS will
find the bucket with minimum size C,;,, increase it by w,
and replace the key in this bucket with e with the probability
ﬁ Due to the variance minimization, USS achieves the
theoretical optimum for frequent set mining. However, it is
obvious that USS must scan all buckets to check whether there
is a matched bucket or find the bucket with minimum size
during each update process. The time complexity of update
process is O(n) where n is the number of buckets (e.g., the
scale of 10%) in the USS. Such update strategy makes it hard
to run with high throughput and deploy on the high-speed
hardware such as FPGA. In practice, the implementation of
USS often uses a double-linked list to maintain the minimum
bucket, which wastes lots of memory on pointers and results
in lower accuracy.

CocoSketch: CocoSketch consists of d arrays with same
number of (key,wvalue) buckets. In order to overcome the
problem of high update overhead of USS, CocoSketch [25]
proposes the stochastic variance minimization. Instead of
scanning all buckets, it randomly selects d (e.g., 1,...,4)
hashed buckets. For an incoming item with key e and value w,
if e is already recorded in one of d hashed buckets, CocoSketch
will increment the counter of this bucket by w. Otherwise,
CocoSketch will find the one with minimum size C,,;, among
d hashed buckets, increase it by w, and replace the key in this
bucket with e with the probability Cm:: T In addition, for
improving the hardware compatibility, CocoSketch introduces
circular dependency removal technique, which independently
runs stochastic variance minimization on each array and sep-
arates the update of key and value into two stages for each

array. Finally, it reports the median value of d hashed buckets
as the estimated value. Although CocoSketch is the state-
of-the-art (SOTA) algorithm for frequent set mining, it still
has some drawbacks. Compared with variance minimization,
stochastic variance minimization sacrifices some accuracy to
some extent because it looks for the local minimum instead
of the global minimum in the insertion process. In addition,
circular dependency removal will further weaken the accuracy
guarantee. Because each array is updated independently, it
loses the step of finding minimum among d hashed buckets
which results in larger estimation variance.

Others: 1) Frequent item mining. The research community has
generally adopted sketch-based solutions for finding frequent
items (and related heavy hitters and heavy changes), but even
the SOTA ones [38]-[42] do not consider frequent sets. 2)
Frequent set mining. Hyper-USS [43] is the SOTA sketch
scheme for this problem. Notably, it targets multi-attribute
subset queries where items carry multiple numerical values.
Ours, as well as USS and CocoSketch, focuses on single-
attribute frequent object mining.

ITII. OVERVIEW
A. Problem Scope

Requirements: SandwichSketch has three design require-
ments:

o [R1] Versatility: SandwichSketch should support frequent
item mining and frequent set mining.

o [R2] Fidelity: SandwichSketch should provide high accu-
racy guarantee for above two tasks.

o [R3] Compatibility: SandwichSketch should have strong
compatibility on both software (e.g., CPU and Redis
[27]) and hardware (e.g., FPGA [28]) platforms with high
throughput.

SandwichSketch Architecture: Prior to initiating the mea-
surement, it’s imperative to first define unit dimensions, which
can cover arbitrary set dimensions we aim to query in the
future. Figure E] illustrates the SandwichSketch architecture,
and the detailed processing steps are as follows:

Step 1: In the Data plane, we deploy a sketch to measure
unit metric over unit dimensions. Whenever an item is coming,
the sketch will be updated based on the insertion algorithm
(see details in §TV-B).

Step 2: At the end of each measurement window, Sand-
wichSketch’s control plane will scan the whole structure only
once, aggregate estimated results of the sketch and build
both Item_Query_Table and Set_Query_Table (see details in
SIV-O).

Step 3: Utilizing the query table from the control plane,
operators can employ SQL statements to query the estimated
metric of any dimension in the query front-end (see details in

SIV-C).

B. Sandwich Making Philosophy

The key philosophy of SandwichSketch is called Sandwich
Making. The reason why we call it is that it has the following
two figurative characteristics:
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Fig. 1. Overview of the SandwichSketch architecture, which composes of data

« Analogous to the structure of a sandwich with a filling layer
between two slices of bread, the SandwichSketch structure
also comprises two probability replacement layers (Stage 1
and Stage 3) and a comparison replacement layer (Stage 2)
between them.

o Just like the sandwich making process, first making the
bottom layer of bread, then placing the filling ingredients
and finally covering the top layer of bread, SandwichSketch
also processes the inserted item in three parts in sequence.

In line with the sandwich making philosophy, we propose
two primary techniques to better align with our design require-
ments.

1) Technique I: Double Fidelity Enhancement:

The subset sum estimation theory forms the theoretical
foundation for frequent set mining. This theory necessitates
that the estimated unit metric of unit dimensions is unbiased to
avoid significant error accumulation during the group by pro-
cess. Generally, existing solutions like USS and CocoSketch
employ an unbiased probability replacement strategy to ensure
unbiased estimation, and we continue to apply this strategy.
Specifically, we designate one array as the unbiased part (Stage
3). When an item (e, w) is inserted to the bucket (I D, count)
of the unbiased part, it will first increment the counter by w
and then replace I D with e with the probability m

However, we believe that there is potential for further
enhancement of estimation fidelity. We find that separating
frequent and infrequent items is an effective technique to
boost the accuracy for frequent object mining. Therefore, we
consider adding a heavy part (Stage 1 and Stage 2) which is
composed of a number of (I D, count) bucket arrays before the
unbiased part to better maintain frequent items. Specifically,
during the insertion process, a new item will first be processed
in the heavy part, in which frequent items will stay here with
the greatest probability and infrequent items will be replaced
and kicked to the unbiased part.
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plan, control plane and query front-end.

To ensure unbiasedness of the combination of the heavy
part and the unbiased part, we introduce the pure replace-
ment method to handle item replacement in the heavy part.
Specifically, when item replacement occurs, if replacement
condition holds, the new item will occupy the whole bucket
and the ID and count of original item will be evicted to next
array. Otherwise, the new item will be directly inserted to the
next array. Essentially, each bucket in the heavy part is a pure
bucket as the count of this bucket entirely belongs to the item
identified by ID in this bucket. Given that the buckets in the
heavy part are pure buckets and the unbiased part achieves an
unbiased estimation, we can ensure that the estimated value
across two parts is unbiased, as proven in

For frequent item mining, we depend on the heavy part to
report the estimation results because the majority of memory
is allocated here, ensuring that nearly all frequent items are
stored here. Furthermore, given that the buckets in the heavy
part are pure buckets, the estimated value of each item is
very close to the real value. As for frequent set mining, we
employ both the heavy part and the unbiased part to achieve
an unbiased estimation and answer the query. Compared with
CocoSketch and USS, which provide an entirely unbiased
value, the majority of our unbiased value is pure value, and a
small fraction is an unbiased value. Therefore, our estimated
value is expected to be more accurate. By introducing the
heavy part and the pure replacement method, we can augment
the fidelity of both tasks simultaneously.

2) Technique II: Hierarchical Hot Locking:

To maintain frequent items in the heavy part, while ensuring
hardware compatibility, common approaches include (1) the
probability replacement strategy (items with higher frequency
have a higher chance of staying), or (2) the comparison
replacement strategy (items with higher frequency are certain
to stay). Unfortunately, the use of only one of these strategies
is not effective (as proven in §VI-B). If only the probability



replacement strategy is used, it is possible for larger items to be
kicked to the unbiased part, and the goal of retaining frequent
items may not be fully achieved. If only the comparison
replacement strategy is used, the strategy is sensitive to the
chronological order in which frequent items appear. The fre-
quency of each item is small when it first occurs, thus frequent
items that appear later cannot be retained effectively through
frequency comparison. As a result, in the heavy part, we
initially use the probability replacement strategy (in Stage 1) to
buffer frequent items, followed by the comparison replacement
strategy (in Stage 2) to accurately lock frequent items.

Specifically, we come up with a pure probability replace-
ment strategy in Stage 1 and a comparison replacement
strategy in Stage 2. In Stage 1, any inserted item (e, w) whose
key does not match the key in the bucket (ID,count) will
occupy this bucket with the probability _—t—-. The value
of inserted item is higher, the probability of occupying this
bucket is higher. In Stage 2, the replacement will occur when
the key does not match and w > count, which means that the
larger item will definitely occupy the bucket. For a new item,
there is a certain probability that it will first stay in Stage 1.
If it ends up being a frequent item, it will stay in Stage 1 with
high probability. Even if a frequent item is kicked to Stage 2,
it will be maintained in Stage 2 with high probability due to
higher frequency. If it turns out to be an infrequent item, it
will probably not stay in the heavy part and will eventually
be inserted into the unbiased part.

In summary, double fidelity enhancement and hierarchical
hot locking achieve the goal of [R1] and [R2] well.

C. Hardware Compatibility

Strong hardware compatibility is one of our major design
goals. Using FPGA as a hardware deployment example, we
analyze factors that influence its performance as follows:

« First, the ability of an algorithm to run in a pipeline is
an essential factor for improving processing speed. On
one hand, if the update algorithm follows a unidirectional
workflow, it can more easily facilitate the program to run in a
pipeline. On the other hand, if the steps of the algorithm are
highly coupled, it becomes difficult to decouple them into
different modules. Strong independence between different
modules also aids in running algorithms in a pipeline.

« Second, computational complexity also has significant influ-
ence on processing throughput. If the combination or timing
logic to be completed in one clock cycle is too complex,
the processing delay will increase, resulting in a lower clock
frequency. Therefore, the update complexity of the algorithm
should be as simple as possible.

The sandwich making philosophy helps SandwichSketch
facilitate the hardware performance. First of all, similar to the
process of sandwich making, the update of SandwichSketch
follows a unidirectional workflow. In addition, just like the
structure of sandwich, SandwichSketch consists of three inde-
pendent modules, which can be decoupled easily. Moreover,
update operations including assignment, counter increment,
numerical comparison and probability calculation are not so-
phisticated so that the computational complexity is low. More

TABLE I
SYMBOLS AND NOTATIONS.
Symbol Description
e the item
fle) the real value of item e
f(e) the estimated value of item e

the number of buckets in one array
the memory ratio of Stage 1 and Stage 2
the hash function corresponding to ‘" array

d the number of arrays in SandwichSketch
l
r

A;lj] the j* bucket in the it array
A;[jlID | the key field in A;[j]
A;[j].count | the value field in A;[j]

importantly, the hardware version of SandwichSketch is the
same as the software, which has no accuracy loss for hardware
compatibility. In a word, SandwichSketch can be implemented
in a pipeline on the hardware platform (e.g., FPGA) with high
throughput and accuracy (see details in §VI-F), which satisfy
the design requirement [R3].

IV. DETAILED DESIGN
A. Data Structure

We first list the frequently used symbols in Table [l As
shown in Figure 2| SandwichSketch consists of the heavy part
(including Stage 1 and Stage 2) and the unbiased part (Stage
3). Each stage contains d;, do and 1 arrays respectively (d =
di+do+1,7r = %). Each array maintains [ buckets. Each
bucket records a particular item key and its estimated value.
Let A;[j](1 < i < d,1 < j <) be the j' bucket of the
ith array, and A;[j].ID and A;[j].count be its key and value.
The d arrays are associated with d independent hash functions
hi(.), ..., ha()).

B. Insertion Operation

We regard each inserting item in each array as a pair of
(e,w), where e is the item key and w is the item value. When
an item inserts into SandwichSketch, it will be processed in the
Stage 1, Stage 2 and Stage 3 in sequence. In the i*" array(1 <
1 < d), according to the information of A;[h;(e)], there are
three cases for these three parts as follows:

e Case 1: If e matches A;[h;(e)].ID, we will increment
A;[hi(e)].count by w and return.

o Case 2: If A;[h;(e)] is empty, we will insert the item into
the empty bucket and return, which sets A;[h;(e)].ID to e
and sets A;[h;(e)].count to w.

o Case 3: Otherwise, these three parts will use different
strategies to process the insertion. There are three sub-cases:

1) For Stage 1: We use pure probability replacement
strategy to keep larger item in the bucket. With
the probability Mm , we  replace
(A;[h;(e)].ID, A;[hi(e)].count) with (e,w) and the
item (A;[h;(e)].ID, A;[h;(e)].count) will be evicted to
the next array. Otherwise, we directly insert item (e, w)
into the next array if the probability condition is not
satisfied.
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Fig. 2. Insertion example in SandwichSketch (with di,d2 = 1).

2) For Stage 2: We use comparison
strategy to store larger item in the bucket.
w is larger than A;[h;(e)].count, we replace
(A;[h;i(e)].ID, A;[hi(e)].count) with (e,w) and the
item (A;[h;(e)].ID, A;[h;(e)].count) will be evicted to
the next array. Otherwise, we directly insert item (e, w)
into the next array.

3) For Stage 3: We use unbiased probability replacement
strategy to achieve unbiased estimation. Specifically, we
first increase A;[h; (e)] count by w directly. And then with
probability s, we replace A;lhi(e)].ID
with e if the probaﬁ)lhty condition is satisfied.

replacement
When

When the item is inserted into the next array, we process it

according to the above strategies. In this way, an inserted item
will be processed in these three parts in sequence so that the
update process can be pipelined, which is friendly to pipelined
hardware platforms.
Example (Figure : We set dy,ds = 1 as an example. To
insert item (e, 1), we first use hash function to map the item to
the bucket with content (ey, 8) in the 1°* array, which belongs
to Stage 1. Because 63 # e4, We try to replace item with
the probability m = é ~ 11.1%. Assumed that
the probability condition is satisfied, we replace (e4,8) with
(e3,1) and (e4,8) will be evicted to 2"? array, which belongs
to Stage 2. And then, we map e, to the (e7, 6) bucket and find
that ey # e7. Therefore, we replace (e7,6) with (e4, 8) due to
8 > 6 and (e, 6) will be evicted to 3" array, which belongs to
Stage 3. In this part, we also map (e7,6) to the (eg, 3) bucket
and find the item key is not matched. So we first increase the
value by 6 (from 3 to 9) and finally replace eg with e; with
the probability W = 3 ~ 66.7%. To insert item
(e2,1), we find ey # eg in the mapped bucket so that we try
to replace (es,2) with the probablhty z ~ 33.3%. Assumed
that replacement fails, (e2, 1) will be dlrectly inserted into 2"¢
array. In the mapped bucket in this array, we find that the item
key is matched and we increment the value by 1 (from 4 to
5). Up to this point, the whole update process is finished.

C. Query Operation

In the query process, we can regard each bucket in the
sketch as one row in the sketch_table. The key field and value

field of bucket correspond to unit dimensions and unit metric
respectively.

Query for frequent item mining: According to the algorithm
design, the query for frequent item mining mainly relies on
Stage 1 and Stage 2. After a measurement period, we will
scan Stage 1 and Stage 2 only once, aggregate unit metrics of
same items over unit dimensions and build a query table named
Item_Query_Table. If a query item does not exist in the query
table, we regard its estimated metric as 0. We provide a front-
end and the user can directly use SQL statement to acquire the
estimated metric of each item over unit dimensions. Through
setting filters, we can find frequent items or heavy hitters. The
SQL statement is as follow:

SELECT unit dimensions,metric
FROM (SELECT unit dimensions,
sum (unit metric)
FROM sketch_table
GROUP BY unit dimensions
) Item_Query_Table
WHERE filters

as metric

Query for frequent set mining: The query for frequent
set mining need information of all three parts. Firstly, like
the above process, we will scan all d arrays only once,
aggregate unit metrics of same items over unit dimensions
and build the Root_Query_Table. Subsequently, according to
arbitrary group by conditions, we can aggregate results in the
Root_Query_Table to build arbitrary set query table named
Set_Query_Table. It is important to notice that set dimensions
must be a finer granularity than unit dimensions. Through
setting filters, we can find frequent sets or heavy hitters. The
SQL statement is as follow:

SELECT set dimensions, sum(metric)
FROM (SELECT unit dimensions,
sum (unit metric)
FROM sketch_table
GROUP BY unit dimensions
) Root_Query_Table
WHERE filters
GROUP BY set dimensions

as metric

Examples of frequent set mining (Figure [3): We take the
hierarchical aggregation problem as an example. Suppose that



the unit dimension is SrclIP, the set dimension we want to query
is 24-bit prefix for SrcIP and the metric is flow size. We first
get the Root_Query_Table (left) and then aggregate the results
based on the 24-bit prefix for SrcIP to get the Set_Query_Table
(right). There are two rows which has the same 24-bit prefix
19.98.10.* for SrcIP, so we can merge their sizes and get the
estimated metric 1041 (520 + 521) of 19.98.10.*. Similarly,
the estimated metric of 34.52.73.% is 700 (243 + 457).

SrclP size

24-bit prefix .
19.98.10.26 521 for SrclP stze
3452.73.13 243 19.98.10.* 1041
19.98.10.16 520 34.52.73.* 700
46.73.32.16 784 46.73.32.* 784
34.52.73.27 457

Fig. 3. Example of frequent set mining.

V. ANALYSIS

In this section, we provide a rigorous mathematical anal-
ysis for SandwichSketch. First, we prove that the algorithm
achieves unbiasedness for frequent set mining in then
we present an error bound in

A. Preliminary

For an arbitrary item e in SandwichSketch, let fp(e), fo(e)
and fy (e) denote the inserted value in three parts, respectively.
According to the insertion process, we have

fe) = frle) + fole) + fu(e)

Let J/fl\a(e), fg(e) and ]/”E(e) denote the estimated value in three
parts respectively, since the first two parts are pure buckets and
don’t have hash collisions, which means when we try to insert
an item (eq, m), and it collides with (ep, n) at the first part or
the second part, we wouldn’t delete (e,,m) nor (e, n), but
we just put (e,, m) or (ep, n) to the next part, which means we
wouldn’t drop any count of items in the first or second part.
Therefore, we can conclude by that, in the query process, we

can deduce J/”;(e) = fp(e) and f;(e) = fo(e).

B. Unbiasedness

Theorem 1. For any set s of any set dimension, in SandwichsS-
ketch,

E[f(s)] = £(s)

Proof. We first prove that, for item e of unit dimension, in

SandwichSketch, E [f(e)] = f(e).

Let fi(e) be the estimated size of e before ' insertion.
Suppose that the incoming item is denoted as (e;, w) for the
t*" insertion. Here we prove the unbiasedness by showing that
the expected increment to f*(e) is w if e = e; and 0 otherwise.
__ Before the insertion, we have ft(e) = fp(e) + fc(e) +
fu(e). According to the insertion operation, each time an item
arrives, SandwichSketch will process d arrays in sequence, and
an item could be evicted from an array and inserted into the
next array.

Since Stage 1 and Stage 2 are consisted of pure buckets,
those arrays record accurate values. If the insertion process

~

does not reach Stage 3, the increment to f(e) is w if e = e
and O otherwise.

If the insertion process reaches Stage 3, we assume (e}, w’)
is inserted into Stage 3.

If e = e, there are two cases:

Case 1: if e # €}, it means that e is recorded in the first two
parts and fp(e) + fo(e) increase by w. Consider Stage 3. If
e is not recorded or h4(e) # ha(ey), the estimated value does
not change. Otherwise, the expected estimated value fy(e) =
Aglhg(e)].count becomes

Aglha(e)].count
Aqlha(e)].count + w’
=Aglhq(e)].count

- (Aglha(e)].count + w')

Therefore, the expected increment to f;(e) is 0 and the
expected increment to f(e) is w.

Case 2: e = e}, then based on the insertion process, we
can deduce that e is not recorded in the first two parts and
w’ = w. Consider Stage 3. If e is recorded, the estimated
value increase by w. Otherwise, the expected increment to
fu(e) can be calculated as:

w

Aglha(e)].count + w

- (Aglha(e)].count + w) — 0 =w
Therefore, the expected increment to f(e) is w.

If e # e, there are two cases:

Case 1: e # ey, then the change to fp(e) + fc(e) is 0.
Similar to above analysis, the expected increment to fi/(e) is
0, so the theorem holds.

Case 2: e = e}, then according to the insertion operation, the
recorded value of e is evicted into Stage 3, therefore fp(e) +
fc(e) decrease by w’. Similar to above analysis, the expected
increment to fy(e) is w’, so the expected increment to f(e)
is —w' +w =0.

Based on the above results, we can deduce that SandwichS-
ketch achieves unbiasedness for any item of unit dimension.
Therefore, for any set s of any set dimension, we have

zﬂe)]

ecs

E {f(s)} —E

= fle) = f(s)

ecs

C. Error Bound

We first introduce Chebyshev’s Inequality. Chebyshev’s
inequality is a fundamental result in probability theory, which
provides an upper bound on the probability that a random
variable deviates from its mean by a specified amount. The
only prerequisite for applying Chebyshev’s inequality is that
the random variable must have a finite mean g and finite, non-
zero variance o2. Formally, for any random variable X with
mean E[X] = p and variance Var(X) = o2, and for any
e > 0, the inequality states that

0.2

Pr(lX —ulze) < =
And our estimator fy(e) satisfies these prerequisites. This
result does not make any assumptions about the distribution



of X (such as normality), making it broadly applicable. In
essence, Chebyshev’s inequality quantifies how the variance of
a random variable controls the likelihood of large deviations
from the mean.

Theorem 2. For any item e of unit dimension, in SandwichS-
ketch,

P[|f(e) — f(e)| = ex/Fu(e) - fu(e) <6

where § = %
Proof. In Stage 3, the probability of a item occupying the
bucket is proportional to its size, suppose hg(e) = j, we have:

fu(e)

PlAq[j].ID = €] = Aa[j] count

Based on above probability, the expectation of the estimated
size in Stage 3 is:

- _ fule)

E[fv(e)] = Aalj].count - Aalj]-count = fy(e)

The variance can be calculated by:

o~

Var(fu (e)] = E [(Fu(e) ~ Elfu(e)))?]

In our context, there are two cases:

o Case A: The estimated value is A4[j].count with proba-
bility p1 = 74, Thus, 21 = Au[j].count.
¢ Case B: The estimate is 0 with probability ps = 1 — p;.

Thus, x5 = 0.
The mean is u = fy(e). Therefore, substitute into the variance
formula: Let fy(€) = .., fu(e;) in Stage 3. Then, we can
get the variance for Stage 3 is:

Var[fu(e)] :E[M - (Aglj].count — fu(e))?
(- M> 0= fu(e))?

=fu(e) - E[Ag4[j].count — fy(e)]
_fu(©) fu(®)
l

According to the insertion process, the first two parts don’t
introduce error, we have |f(e) — f(e)| = |fu(e) — fu(e)l,
therefore, based on the Chebyshev’s inequality, we have:

M\{(e) — f(e)| = e/ Fule)- fue)]
=P||fu(e) — fu(e)| = e/ fule) - fu(e)]
Varlfue)) 1

Sefule) fule) €l =9

VI. EVALUATION
A. Experimental Setup

Datasets: We use three real-world datasets in our experiments.

1) CAIDA Dataset: It is streams of anonymized IP packets
collected in the Equinix-Chicago monitor by CAIDA in
2018 [44]. We use the trace with a minitoring interval of

60s. Each item is a 5-tuple (13 bytes). There are around
27M items and 1.3M distinct items in this dataset.

2) Network Dataset: It contains users’ posting history on the
stack exchange website [45]]. Each item (4 bytes) represents
the ID of each user. There are around 10M items and 0.7M
distinct items in this dataset.

3) Web Page Dataset: It is collected from HTML documents
[46]. Each item (8 bytes) represents the number of distinct
terms in a web page. There are around 32M items and
0.9M distinct items.

Tasks: We evaluate our algorithm on the following tasks.

1) Heavy Hitter Detection: It reports objects whose frequen-
cies are larger than a predefined threshold.

2) Heavy Change Detection: It is aimed to find objects
whose frequencies increase/decrease beyond a predefined
threshold in the adjacent time windows.

3) Hierarchical Heavy Hitter Detection (HHH): It is a
variant of the hierarchical aggregation problem. In this
section, we define it as finding all IP prefixes whose
frequencies are larger than a given threshold.

Metrics: We evaluate our algorithm using the following met-
rics.

1) Recall Rate: The ratio of true positive items to all actual
items.

2) Precision Rate: The ratio of true positive items to all
reported items.

3) F1 Score: %};ﬁ‘gg. .

4) Average Relative Error (éRE): Ii‘i’l cw \f(e}(;el)”(e)\’
where f(e) is the real size, f(e) is the estimated size, and
W is the query set.

5) Throughput: Million operations (insertions) per second
(Mops).

CPU implementation: We implement SandwichSketch and

baseline algorithms in C++. The hash functions are imple-

mented using 32-bit Bob Hash [47]. We implement and

evaluate them on a 18-core CPU Server (Intel(R) Core(TM) i9-

10980XE CPU @ 3.00GHz) with 128 GB memory and 24.75

MB L3 Cache.

B. Experiments on Parameter Settings

In this section, we compare the performance of the algo-
rithm and user-set parameter settings on the CAIDA dataset.

1) Algorithm Parameters: The following experiments are
conducted on the heavy hitter detection, and we set the
threshold to 10~* of the total size of the dataset.

Firstly, we mainly introduce the effect of d; and dy. We
set the ratio » = 0.75 as the default value and compare 6
parameter combinations. The figure legend 2 : 2 means d; = 2
and dy = 2.

Varying d; and d; for frequent item mining (Figures 4(a)}
[@d®)): For 3 : 0 and 0 : 3, we can clearly find that their not
only recall rate but also ARE are less than other combinations,
which means that using only Stage 1 or Stage 2 will not work
accurately. For 2 : 2, 3 : 3 and 4 : 4, they have real close
performance and all achieve high accuracy. Specifically, when
memory is larger than 400KB, their recall rate is larger than
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Fig. 6. Varying the threshold, where I and S represent frequent item mining and frequent set mining, respectively.

98.4% and ARE is less than 0.7%. In order to achieve high
throughput, we finally choose 2 : 2 as the optimal parameter.
Varying d; and d, for frequent set mining (Figures
[d(e)): What’s obvious is that 3: 0 and 0 : 3 are two with the
worst performance. For 2 : 2, 3 : 3 and 4 : 4, the differences
in the precision rate, recall rate, and ARE are less than 1.3%,
0.09 and 0.2%, respectively. When querying 6 set dimensions
for these three parameter combinations, the precision rate and
the recall rate reach at least 92.0% and 96.5%, respectively,
and the ARE is less than 4.7%. As a result, we choose 2 : 2
as the optimal parameter considering the insertion speed.

In addition, we set d; = 2, dy = 2 and measure the effect

of the ratio . We can dynamically adjust r to fit frequent item
mining or frequent set mining.
Varying the ratio  for frequent item mining (Figures 5(a)}
B®)): As the ratio r increases, the recall rate increases at the
same time. The reason is that frequent item mining totally
depends on Stage 1 and Stage 2. The larger the memory, the
higher the accuracy. Under 200KB and the ratio » = 0.9,
the recall rate and ARE are 95.4% and 1.2%, respectively.
Therefore, we choose the ratio » = 0.9 as the optimal value
for frequent item mining. Without considering frequent set
mining at all, we can set » = 1 to maximize accuracy.

Varying the ratio r for frequent set mining (Figures
B(e)): As for frequent set mining, too large or too small r
are both with low accuracy. When querying 6 set dimensions,
the ratio » = 0.5 achieves the best performance with 94.6%
precision rate, 96.8% recall rate, and 4.4% ARE.

Varying the ratio » for both two kinds of tasks (Figure [5):
We can observe that it has high accuracy for both frequent item
mining and frequent set mining query when the ratio r = 0.7.
Specifically, for frequent item mining, the recall rate of r =
0.7 is just 0.8% lower than that of the optimal parameter on
average, and the ARE of the optimal parameter is just 1.24x
better than that of » = 0.7. For frequent set mining, when
querying 6 set dimensions, the precision rate and recall rate
are only about 0.9% and 0.2% lower than those of the optimal
parameter, respectively, and the ARE of the optimal parameter
is just 1.05x better than that of » = 0.7.

2) The User-Set Parameter: We conduct the following
experiments on all tasks to evaluate the effect of threshold
varying and set the algorithm parameters based on the previous
winners.

Varying the threshold for all tasks (Figures [6(a){6(f): We
find that when the memory or the number of dimensions
is fixed, the change in throughput induced by varying the



threshold is small, with only the one on the Heavy Change (S)
being slightly clearer. Therefore, SandwichSketch can guaran-
tee good performance in throughput for varying thresholds.

C. Experiments on Frequent Item Mining

In this section, we compare SandwichSketch (“Ours” in the
figures) with 8 other sketches including Count-Min sketch
(CM) [13] with a d-left hashing table (CM-Hash), Count
sketch (C) [14] with a d-left hashing table (C-Hash), Unbiased
Space-Saving (USS) [29], CocoSketch [25], Space-Saving
(SS), Augmented sketch (AS) [17]], Salsa [19], LogLog filter
(LLF) [20]. We perform experiments on CAIDA, Network and
Web Page datasets and use 10M items. For heavy hitter and
heavy change detection, we set the threshold to be 2 x 10~°
of the total size of the dataset.

Implementation: We set d; = 2, do = 2 and 7 = 0.9 in
SandwichSketch. For an item inserted into CM-Hash/C-Hash,
it will first be inserted to CM/C and then return a query
value for this item. If the query value exceeds a threshold,
it will be inserted into the d-left hashing table. For CM-
Hash/C-Hash, we set the memory ratio of CM and C to 0.8
and 0.95, respectively, and the threshold to 256. USS and SS
uses an optimized implementation enhanced by a hash table
and a double-linked list (Naive implementation of USS has
a very high update delay). The hash table is used to check
whether an item is already in the USS. The double-linked list
is used to rank the buckets by their counters so that we can
find the minimal bucket as quickly as possible. For AS, the
filter consists of 32 buckets, and the rest of the memory is for
CM. Each bucket has ID field, new_count field and old_count
field. For Salsa, we use the CM version, set d = 4 and pick
s = 8 bit counters. For LLF, we allocate 75% memory for CU
sketch [15]]. We give 4 bits for each register, set the number
of hash functions to 3 and threshold to 5.

Heavy hitter detection with different memory (Figure [7):
Under 400KB memory, the F1 Score of SandwichSketch is
92.8% and 96.9% on two datasets, respectively, and other
baseline algorithms are still on a low level. On average, under
200KB memory, SandwichSketch achieves 53.1% and 45.4%
improvements on the F1 Score and is 31.7x and 38.4x better
on the ARE on two datasets, respectively.

Heavy change detection with different memory (Figure [8):
Under 400KB memory, the F1 Score of SandwichSketch is
above 95.6% and 91% on two datasets, respectively, and other
baseline algorithms are still on the low level. On average,
under 200KB memory, SandwichSketch achieves 49.5% and
54.2% improvements on the F1 Score and is 11.3x and 12.5x
better on the ARE on two datasets, respectively.

D. Experiments on Frequent Set Mining

In this section, we compare SandwichSketch (“Ours” in the
figures) with 3 other baseline algorithms including theoretical
optimal accuracy of frequent set mining (Ideal), Unbiased
SpaceSaving (USS) [29] and CocoSketch [25]. We take the
network measurement scenario to perform all kinds of ex-
periments on CAIDA dataset. For heavy hitter and heavy
change detection, we simultaneously querying 6 different set

dimensions (5-tuple, SrcIP, DstIP, (SrcIP, SrcPort) pair, (DstIP,
DstPort) pair and (SrcIP, DstIP)), set the threshold to be 10~
of the total size of dataset and report average metrics on these
dimensions. For HHH detection, we set the threshold to be
5x 1072,

Implementation: We set d; = 2, do = 2, 7 = 0.5 and the total
memory is 600KB in SandwichSketch. The implementation
of USS is the same as the version for frequent item mining.
Unfortunately, USS depends on a double-linked list, which
occupies lots of memory on pointers. In order to reflect
theoretical optimal accuracy of frequent set mining, we use
min-heap with (ID,count) buckets and only consider the
memory usage of all buckets.

Heavy hitter detection with different numbers of di-
mensions (Figures 9(@)}9(b)): The F1 Score of SandwichS-
ketch is above 95.6% regardless of the number of tracked
set dimensions while this value of CocoSketch and USS is
less than 83.4% and 42.6%. On average, the F1 Score of
SandwichSketch is 13.9% and 57.3% higher than those of
CocoSketch and USS, respectively, while the ARE is 5.1x
and 3.6 better. Compared with the theoretical optimum, the
difference in the F1 Score is just 1.7% and the ARE of
SandwichSketch is just 1.9x worse.

Heavy hitter detection with different memory (Figures
O(©H9(d)): The F1 Score of SandwichSketch is above 91.4%
except with 200KB memory while this value of CocoSketch
and USS is always lower than 90% and 88.5%. For the
ARE, SandwichSketch is 3x and 3.8x better than those of
CocoSketch and USS, respectively. Besides, the difference in
accuracy between SandwichSketch and the theoretical opti-
mum is quite small.

Heavy change detection with different numbers of dimen-
sions (Figures [I0(@){I0(b)): When querying 6 set dimensions
at the same time, the F1 Score of SandwichSketch achieves
17.5% and 29% improvements while the ARE is 5x and 4.5x
better than those of CocoSketch and USS, respectively. Under
the different number of set dimensions, the F1 Score of Sand-
wichSketch is above 95.7%. As for the difference between
SandwichSketch and the theoretical optimum, the difference
in the F1 Score is just 1.7% and the ARE of the theoretical
optimum is just 1.2x better than that of SandwichSketch.

Heavy change detection with different memory (Figures
[T0(c){I0(d)): Under 200KB memory, the F1 Score of Sand-
wichSketch achieves 16.7% and 50.7% improvements while
the ARE of SandwichSketch is 2.8x and 5.1x better than
those of CocoSketch and USS, respectively. The F1 Score of
SandwichSketch is larger than 91.9% above 400KB memory
but this value of CocoSketch is always less than 85.6%. The
ARE of the theoretical optimum is just 1.5x better than that
of SandwichSketch, which is just a tiny gap.

1-d HHH detection with different memory (Figure [11): We
consider the source IP hierarchy of IPv4 in bit granularity (32
prefixes + 1 empty IP = 33 set dimensions) in HHH detection
(1-d HHH detection). Under 200KB memory and compared
with CocoSketch and USS, the F1 Score of SandwichSketch
achieves 9% and 29.7% improvements while the ARE is 3.8x
and 15x better, respectively. When memory is larger than
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Fig. 12. 2-d HHH detection with different memory.

or equal to 400KB, the difference in the F1 Score between
SandwichSketch and the theoretical optimum is less than
0.9%.

2-d HHH detection with different memory (Figure [12):
We consider the source IP and destination IP hierarchies of
IPv4 in bit granularity (33 x 33 = 1089 set dimensions) in
HHH detection (2-d HHH detection). Under 0.5MB memory,
the F1 Score of SandwichSketch achieves 12.5% and 40%
improvements while the ARE is 3.9x and 7.4x better than
those of CocoSketch and USS, respectively. Above 1MB, the
difference in the F1 Score between SandwichSketch and the
theoretical optimum is less than 0.7%, which means that the
performance of SandwichSketch is very close to the theoretical
optimal value.

E. Experiments on Software Platform

In this section, we compare the throughput of SandwichS-
ketch with CocoSketch on Redis platform.

Redis implementation: We implement the SandwichSketch
and CocoSketch as a module in the Redis, where user can
use the provided API to create SandwichSketch/CocoSketch,
insert items and execute queries. MurmurHash [48]] is used as
the hash function.

Throughput on Redis platform (Figure [13): The through-
put of the SandwichSketch/CocoSketch in Redis will not be
affected with the increase of memory configuration. The ex-
perimental results show that SandwichSketch and CocoSketch
in Redis achieve nearly 0.4 Mops throughput.
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Fig. 14. Throughput and resource usage on the FPGA platform.

FE. Experiments on Hardware Platform

In this section, we compare the performance (e.g., through-
put and resource usage) of SandwichSketch with the hardware
version of CocoSketch on an FPGA platform.

FPGA implementation: We implement SandwichSketch
on an experimental FPGA platform (Virtex-7 VC709
XC7VX690T) with 433200 Slice LUTs, 866400 Slice Reg-
isters, and 1470 Block RAM Tiles. The FPGA-based Sand-
wichSketch is fully pipelined, which can input an item in every
clock, and each item needs 30 clocks if it is inserted into the
bucket of Stage 3 module.

Throughput on the FPGA platform (Figure [[4(a)): The
difference in throughput between SandwichSketch and CocoS-
ketch is not significant. Under four different memory config-
urations, the throughput of these two algorithms is larger than
200 Mops. Specifically, with 0.25MB memory, SandwichS-
ketch is expected to achieve 230 Mops while CocoSketch
reaches 236 Mops.

Resource usage on the FPGA platform (Figure [14(b)):
The main resources of FPGA consist of Slice LUTs, Slice
Registers and Block RAM Tiles. Slice LUTs are lookup tables,
which are mainly used for combinational logic. Slice Registers
are cache resources and Block RAM Tiles are main storage
resources. Slice LUTs usage of SandwichSketch is only 0.5%
while CocoSketch needs 0.08%. Meanwhile, SandwichSketch
and CocoSketch need 0.2% and 0.04% Slice Registers, re-
spectively. The main resource usage for these two algorithms
is Block RAM Tiles, which achieves 5% and 1% for them,
respectively.

G. Experiments on Distributed Measurement

In a distributed scenario, there are N data streams Sq,
., SN (S = UiJ\LlSi) and each data stream S; contains m;
items. At the server node i, we deploy a sketch with the same
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memory configuration to measure the data stream S;. For each
item of the CAIDA dataset, we map it to a node by its hashed
value. In this experiment, we set the default memory to 600KB
and focus on the frequent set mining while querying 6 set
dimensions. Specifically, we will first merge results of sketches
from all nodes to acquire global results and then answer the
query over global results.

Heavy hitter detection with different number of nodes
(Figures [I5@HI5(b)): For SandwichSketch, the F1 Score
is at least 95% and the ARE is at most 4.4%. When the
number of nodes increases from 1 to 16, the decrease in the
F1 Score and ARE of SandwichSketch is less than 0.37%
and 0.01%, respectively, which means that the increase in the
number of nodes has little impact on frequent set mining. In
addition, it also proves that SandwichSketch is suitable for
sketch merging task. With 16 nodes, SandwichSketch achieves
10% improvement over CocoSketch on the F1 Score and is
2.81x better on the ARE.

VII. CONCLUSIONS

This paper takes an important step in supporting frequent
object mining, including frequent item mining and frequent
set mining, which has wide applications in data mining,
network and security fields. We draw on the philosophy of
sandwich making and propose a sketch-based measurement
framework named SandwichSketch. Thanks to the proposed
double fidelity enhancement and hierarchical hot locking tech-
niques, it can handle two key tasks with great fidelity. We
implement SandwichSketch on three popular platforms (CPU,
Redis and FPGA) and demonstrate that it outperforms the
SOTA solutions under three real-world datasets and supports
a distributed measurement scenario.
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