
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Constant IP Lookup With FIB Explosion
Tong Yang , Gaogang Xie , Alex X. Liu , Qiaobin Fu, Yanbiao Li, Xiaoming Li, and Laurent Mathy

Abstract— With the fast development of Internet, the forward-
ing tables in backbone routers have been growing fast in size.
An ideal IP lookup algorithm should achieve constant, yet small,
IP lookup time, and on-chip memory usage. However, no prior IP
lookup algorithm achieves both requirements at the same time.
In this paper, we first propose SAIL, a splitting approach to
IP lookup. One splitting is along the dimension of the lookup
process, namely finding the prefix length and finding the next
hop, and another splitting is along the dimension of prefix length,
namely IP lookup on prefixes of length less than or equal to
24 and that longer than 24. Second, we propose a suite of
algorithms for IP lookup based on our SAIL framework. Third,
we implemented our algorithms on four platforms: CPU, FPGA,
GPU, and many-core. We conducted extensive experiments to
evaluate our algorithms using real FIBs and real traffic from
a major ISP in China. Experimental results show that our
SAIL algorithms are much faster than well known IP lookup
algorithms.

Index Terms— IP lookup, FIB, SAIL, constant, IPv6.

I. INTRODUCTION

A. Background and Motivation

W ITH the fast development of Internet, the size of
Fowarding Information Base FIB (FIB) in backbone

routers grows rapidly. According to the RIPE Network
Coordination Centre, FIB sizes have become more than
700,000 entries [3]. At the same time, cloud computing and
network applications have driven the expectation on router
throughput to the scale of 200 Gbps. The fast growth of FIB
sizes and throughput demands bring significant challenges to
IP lookup (i.e., FIB lookup). An ideal IP lookup algorithm

iManuscript received September 25, 2017; revised April 13, 2018; accepted
June 6, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor M. Schapira. This work was supported in part by the Primary Research
& Development Plan of China under Grant 2016YFB1000304, in part by
the National Basic Research Program of China (973 Program) under Grant
2014CB340405, in part by the NSFC under Grant 61672061, Grant 61472184,
and Grant 61321491, in part by the Open Project Funding of CAS Key Lab of
Network Data Science and Technology, Institute of Computing Technology,
Chinese Academy of Sciences, National Science Foundation under Grants
CNS 1345307, CNS 1616317, and CNS 1616273, and in part by the Jiangsu
Innovation and Entrepreneurship (Shuangchuang) Program. The preliminary
version of this paper titled “Guarantee IP Lookup Performance with FIB
Explosion” was published in SIGCOMM 2014 [61]. (Corresponding authors:
Gaogang Xie; Alex X. Liu.)

T. Yang and X. Li are with the Department of Computer and Science, Peking
University, Beijing 100871, China (e-mail: yangtongemail@gmail.com).

G. Xie is with the Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China (e-mail: xie@ict.ac.cn).

A. X. Liu is with the Department of Computer Science and Engineer-
ing, Michigan State University, East Lansing, MI 48824 USA (e-mail:
alexliu@cse.msu.edu).

Q. Fu is with the Department of Computer Science, Boston University,
Boston, MA 02215 USA.

Y. Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China.

L. Mathy is with the Department of Computer and Science, University of
Liége, 4000 Liege, Belgium (e-mail: laurent.mathy@ulg.ac.be).

Digital Object Identifier 10.1109/TNET.2018.2853575

Fig. 1. Two-dimensional splitting of IP lookup.

should satisfy the following two harsh requirements. First, IP
lookup time should meet wire speed yet remain constant as FIB
sizes grow. IP lookup time is per packet cost and should be
optimized to the extreme to meet wire speed. Second, on-chip
memory usage should meet capacity constraints yet remain
constant as FIB sizes grow. On-chip memory (such as CPU
cache and FPGA block RAM) is about 10 times faster than
off-chip DRAM [13], but is limited in size (in the scale of a
few MB) and much more expensive than DRAM; furthermore,
as on-chip memory technologies advance, its sizes do not grow
much as compared to DRAM. With network virtualization,
a virtual router could have hundreds of virtual FIBs, which
makes fast FIB lookup with small on-chip memory even
more critical. Without satisfying these requirements, router
performance will degrade as FIB grows, and router hardware
will have to be upgraded periodically.

B. Summary and Limitations of Prior Art

IP lookup has long been a core networking issue and
various schemes have been proposed. However, none of
them satisfies the two requirements of both constant lookup
time and constant on-chip memory usage. Some algorithms
can achieve constant IP lookup time, such as TCAM based
schemes [15], [25] and FPGA based schemes [19], [21], but
their on-chip memory usage will grow quickly as FIB sizes
grow. Some algorithms, such as full-expansion [41] and
DIR-24-8 [18], can achieve constant memory usage by simply
pushing all prefixes to levels 24 and 32, but even the lookup
table for level 24 alone is too large to be stored in on-chip
memory.

C. Proposed SAIL Approach

In this paper, we propose SAIL, a Splitting Approach to IP
Lookup. We split the IP lookup problem along two dimensions
as illustrated in Figure 1. First, we split the IP lookup problem
into two sub-problems along the dimension of the lookup
process: finding the prefix length (i.e., finding the length of the
longest prefix that matches the given IP address) and finding
the next hop (i.e., finding the next hop of this longest matched
prefix). This splitting gives us the opportunity of solving the
prefix length problem in on-chip memory and the next hop
problem in off-chip memory. Furthermore, since on-chip and
off-chip memory are two entities, this splitting allows us to
potentially pipeline the processes of finding the prefix length
and the next hop.

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-4964-1135
https://orcid.org/0000-0002-6916-1326

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Second, we split the IP lookup problem into two sub-
problems along the dimension of prefix length: length � 24
and length � 25. This splitting is based on our key observation
that on backbone routers, for almost all traffic, the longest
matching prefix has a length � 24. This intuitively makes
sense because typically backbone routers do not directly
connect to small subnets whose prefixes are longer than 24.
Our observation may not hold for edge routers, and the edge
routers could have more long prefixes. However, even if all
prefixes are longer prefixes, the worst case performance of our
algorithm is still 2 off-chip memory accesses, and the on-chip
memory usage is still bounded � 4MB (See Table II). The
scope of this paper is on backbone routers. The key benefit of
this splitting is that we can focus on optimizing the IP lookup
performance for traffic whose longest matching prefix length
is � 24.

There is some prior work that performed splitting along the
dimension of the lookup process or the dimension of prefix
length; however, no existing work performed splitting along
both dimensions. Dharmapurikar et al. proposed to split the
IP lookup process into two sub-problems: finding the prefix
length using Bloom filters and finding the next hop using hash
tables [47]. Gupta et al. [18] and Pierluigi et al. [41] proposed
to split IP prefixes into 24 and 32 based on the observation that
99.93% of the prefixes in a backbone router FIB has a length
of less than or equal to 24. Note that our IP prefix splitting
criteria is different because our splitting is based on traffic
distribution and their splitting is based on prefix distribution.

D. Technical Challenges and Solutions

The first technical challenge is to achieve constant, yet
small, on-chip memory usage for any FIB size. To address
this challenge, in this paper, we propose to find the longest
matching prefix length for a given IP address using bitmaps.
Given a set of prefixes in a FIB, for each prefix length i
(0 � i � 32), we first build a Bi[0..2i − 1] whose initial
values are all 0s. Then, for each prefix p, we let Bi[|p|] = 1
where |p| denotes the binary value of the first i bits of p. Thus,
for all prefixes of lengths 0∼24 in any FIB, the total memory
size for all bitmaps is

∑24
i=0 2i = 4MB, which is small enough

to be stored in on-chip memory.
The second technical challenge is to achieve constant, yet

small, IP lookup time for any FIB size. To address this
challenge, in this paper, we classify the prefixes in the given
FIB into two categories: those with length � 24 and those
with length � 25. (1) For prefixes of length � 24, for each
prefix length i (0 � i � 24), we build a next hop array
Ni[0..2i − 1] in off-chip memory so that for each prefix
p whose next hop is n(p), we let Ni[|p|] = n(p). Thus,
given an IP address a, we first find its prefix length using
bitmaps in on-chip memory and find the next hop using
one array lookup in off-chip memory. To find the prefix
length using bitmps, for i from 24 to 0, we test whether
Bi[a � (32 − i)] = 1; once we find the first i so that
Bi[a� (32−i)] = 1 holds, we know that the longest matching
prefix length is i. Here a � (32 − i) means right shifting a
by 32− i bits. In this step, the maximum number of on-chip
memory accesses is 25. To find the next hop, suppose the
longest matching prefix length for a is i, we can find its next
hop Ni[a� (32− i)] by one off-chip memory access. (2) For
prefixes of length � 25, many IP lookup schemes can be
plugged into our SAIL framework. Possible schemes include

TCAM (Ternary Content Addressable Memory), hash tables,
and next-hop arrays. Choosing which scheme to deal with
prefixes of length � 25 depends on design priorities, but have
little impact on the overall IP lookup performance because
most traffic hits prefixes of length � 24. For example, to bound
the worst case lookup speed, we can use TCAM or next hop
arrays. For next hop arrays, we can expand all prefixes of
length between 25 and 31 to be 32, and then build a chunk
ID (i.e., offsets) array and a next hop array. Thus, the worst
case lookup speed is two off-chip memory accesses.

The third technical challenge is to handle multiple FIBs
for virtual routers with two even harsher requirements:
(1) Multi-FIB lookup time should meet wire speed yet remain
constant as FIB sizes and FIB numbers grow. (2) On-chip
memory usage should meet capacity constraints yet remain
constant as FIB sizes and FIB numbers grow. To address this
challenge, we overlay all FIB tries together so that all FIBs
have the same bitmaps; furthermore, we overlay all next hop
arrays together so that by the next hop index and the FIB
index, we can uniquely locate the final next hop.

II. RELATED WORK

As IP lookup is a core networking issue, much work
has been done to improve its performance. We can cate-
gorize prior work into trie-based algorithms, Bloom filter
based algorithms, range-based algorithms, TCAM-based algo-
rithms, FPGA-based algorithms, GPU-based algorithms, and
multi-FIB lookup algorithms.

Trie-Based Algorithms: Trie-based algorithms use the trie
structure directly as the lookup data structure or indirectly
as an auxiliary data structure to facilitate IP lookup or FIB
update. Example algorithms include binary trie [36], path-
compressed trie [26], k-stride multibit trie [50], full
expansion/compression [41], LC-trie [49], Tree Bitmap [52],
priority trie [23], Lulea [37], DIR-24-8 [18], flashtrie [34],
shapeGraph [20], trie-folding [16], DPP [28], OET [22],
DTBM [45], multi-stride compressed trie [38], and poptrie [7].
More algorithm can be found in the literature [29], [36],
[57], [60], [62].

Bloom Filter Based Algorithms: Dharmapurikar et al.
proposed the PBF algorithm where they use Bloom filters
to first find the longest matching prefix length in on-chip
memory and then use hash tables in off-chip memory to
find the next hop [47]. Lim et al. [30] proposed to use
one bloom filter to find the longest matching prefix length.
These Bloom filter based IP lookup algorithms cannot achieve
constant lookup time because of false positives and hash
collisions. Furthermore, to keep the same false positive rate,
their on-chip memory sizes grow linearly with the increase
of FIB size. Bloom filter variants can be found in the
literature [8]–[10], [58], [59].

Range-Based Algorithms: Range-based algorithms are
based on the observation that each prefix can be mapped into
a range in level 32 of the trie. Example such algorithms are
binary search on prefix lengths [32], binary range search [36],
multiway range trees [42], and DXR [33].

TCAM-Based Algorithms: TCAM can compare an incoming
IP address with all stored prefixes in parallel in hardware
using one cycle, and thus can achieve constant lookup time.
However, TCAM has very limited size (typically a few Mbs
like on-chip memory sizes), consumes a huge amount of
power due to the parallel search capability, generates a lot

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: CONSTANT IP LOOKUP WITH FIB EXPLOSION 3

TABLE I

SYMBOLS USED IN THE PAPER

of heat, is very expensive, and difficult to update. Some
schemes have been proposed to reduce power consump-
tion by enabling only a few TCAM banks to participate
in each lookup [15]. Some schemes use multiple TCAM
chips to improve lookup speed [25], [39], [44]. Devavrat and
Pankaj proposed to reduce the movement of prefixes for fast
updating [12].

FPGA-Based Algorithms: There are two main issues
to address for FPGA-based IP lookup algorithms: (1) how
to store the whole FIB in on-chip memory, and (2) how to
construct pipeline stages. Some early FPGA-based algorithms
proposed to construct compact data structures in on-chip
memory [31], [43]; however, these compact data structures
make the lookup process complex and therefore increase the
complexity of FPGA logics. For FPGA in general, the more
complex the logics are, the lower the clock frequency will be.
To improve lookup speed, Hamid et al. proposed to only store
a part of data structure in on-chip memory using hashing [19].
To balance stage sizes, some schemes have been proposed to
adjust the trie structure by rotating some branches or exchang-
ing some bits of the prefixes [11], [14], [21].

GPU-Based Algorithms: Leveraging the massive parallel
processing capability of GPU, some schemes have been pro-
posed to use GPU to accelerate IP lookup [46], [63].

Multi-FIB Lookup Algorithms: The virtual router capability
has been widely supported by commercial routers. A key issue
in virtual routers is to perform IP lookup with multiple FIBs
using limited on-chip memory. Several schemes have been
proposed to compress multiple FIBs [24], [27], [48].

III. SAIL BASICS

In this section, we present the basic version of our SAIL
algorithms. Table I lists the symbols used in this paper.

A. Splitting Lookup Process

We now describe how we split the lookup process for a
given IP address into the two steps of finding its longest
matching prefix length and finding the next hop. Given a
FIB table, we first construct a trie. An example trie is
in Figure 2(b). Based on whether a node represents a prefix in
the FIB, there are two types of nodes: solid nodes and empty
nodes. A node is solid if and only if the prefix represented by
the node is in the FIB. That is, a node is solid if and only
if it has a next hop. A node is an empty node if and only
if it has no next hop. Each solid node has a label denoting
the next hop of the prefix represented by the node. For any

Fig. 2. Basic SAIL Algorithm. (a) is an FIB. (b) is the corresponding trie.
(c) includes bitmaps and next hop arrays.

node, its distance to the root is called its level. The level of
a node locates a node vertically. Any trie constructed from
a FIB has 33 levels. For each level i, we construct a array
Bi[0..2i − 1] of length 2i, and the initial values are all 0s.
At each level i (0 � i � 32), for each node v, let p(v)
denote its corresponding prefix and |p(v)| denote the value
of the binary string part of the prefix (e.g., |11 ∗ | = 3). If v
is solid, then we assign Bi[|p(v)|] = 1; otherwise, we assign
Bi[|p(v)|] = 0. Here |p(v)| indicates the horizontal position
of node v because if the trie is a complete binary tree then
v is the |p(v)|-th node at level i. Figure 2(c) shows the s for
levels 0 to 4 of the trie in 2(b). Taking B3 for level 3 as
an example, for the two solid nodes corresponding to prefixes
001*/3 and 111*/3, we have B3[1] = 1 and B3[7] = 1. Given
the 33 s B0, B1, · · · , B32 that we constructed from the trie for
a FIB, for any given IP address a, for i from 32 to 0, we test
whether Bi[a � (32 − i)] = 1; once we find the first i that
Bi[a� (32−i)] = 1 holds, we know that the longest matching
prefix length is i. Here a � (32 − i) means right shifting a
by 32 − i bits. For each Bi, we construct a next hop array
Ni[0..2i − 1], whose initial values are all 0s. At each level i,
for each prefix p of length i in the FIB, denoting the next hop
of prefix p by n(p), we assign Ni[|p|] = n(p). Thus, for any
given IP address a, once we find its longest matching prefix
length i, then we know its next hop is Ni[a� (32− i)].

B. Splitting Prefix Length

Based on our observation that almost all the traffic of
backbone routers has the longest matching prefix length � 24,
we split all prefixes in the given FIB into prefixes of
length � 24, which we call short prefixes and prefixes of
length � 25, which we call long prefixes. By this splitting,
we want to store the s of prefixes of length � 24 in on-chip
memory. However, given an IP address, because it may match
a long prefix, it seems that we need to search among both short
and long prefixes, which makes this splitting not much useful.
In this paper, we propose a technique called pivot pushing
to address this issue. Our basic strategy is that for a given
IP address, we first test its longest matching prefix length is
within [0, 24] or [25, 32]; thus, after this testing, we continue
to search among either short prefixes or long prefixes, but not
both. We call level 24 the pivot level.

Given a trie and a pivot level, the basic idea of pivot pushing
is two-fold. First, for each internal solid node on the pivot
level, we push its label (i.e., the next hop) to a level below the
pivot level. Second, for each internal empty nodes on the pivot

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

level, we let it inherit the label of its nearest solid ancestor
node, i.e., the next hop of the first solid node along the path
from this empty node to the root, and then push this inherited
label to a level below the pivot level. In this paper, we assume
that the root always has a label, which is the default next hop.
Thus, for any internal empty nodes on the pivot level, it always
can inherit a label.

Given a trie and an IP address a, traversing a from the
root of the trie downward, for any internal or leaf node v that
the traversal passes, we say a passes v. Based on the above
concepts, we introduce Theorem 1.

Theorem 1: Given a trie constructed from a FIB, after pivot
pushing, for any IP address a, a passes a node on the pivot
level if and only if its longest matching prefix is on the pivot
level or below.

Proof: Given a trie and an IP address a that passes a node
v on the pivot level, there are two cases: (1) v is a leaf node,
and (2) v is an internal node. For the first case where v is a leaf
node, then a’s longest matching prefix is p(v) (i.e., the prefix
represented by node v) and thus a’s longest matching prefix is
on the pivot level. For the second case where v is an internal
node, because of pivot pushing, a must pass a solid node on
a level below the pivot level, which means that a’s longest
matching prefix is below the pivot level. �

Based on Theorem 1, we construct the bitmap array for the
pivot level l as follows: for any node v at level l, we assign
Bl[|p(v)|] = 1; in other words, Bl[i] = 0 if and only if there is
no node at level l that corresponds to the prefix denoted by i.
Thus, given an IP address a, Bl[a� (32− l)] = 1 if and only
if its longest matching prefix is on the pivot level or below. In
SAIL, we choose level 24 to be the pivot level. By checking
whether B24[a � 8] = 1, we know whether the longest
matching prefix length is � 23 or � 24, which will guide us to
search either up or down. Consider the example in Figure 2(b),
taking level 4 as the pivot level, node C at level 4 is an internal
solid node, pushing C to level 5 results in a new leaf solid node
H with the same next hop as C. Note that after pushing node
C down, node C becomes empty.

Given a pivot pushed trie, we build a bitmap array and
a next hop array for each level of 0 to 24 as above. Note
that for any i (0 � i � 23) and any j (0 � j � 2i − 1),
Bi[j] = 1 if and only if there is a solid node at level i that
corresponds to the prefix denoted by j; for level 24 and any j
(0 � j � 224 − 1), B24[j] = 1 if and only if there is a node,
no matter solid or empty, at level 24 that corresponds to the
prefix denoted by j. Note that B24[j] = 1 and N24[j] > 0 if
and only if there is a leaf node at level 24 that corresponds
to the prefix denoted by j, which means that the longest
matching prefix length is 24. Note that B24[j] = 1 and
N24[j] = 0 if and only if there is an empty node at level
that corresponds to the prefix denoted by j, which means that
the longest matching prefix length is � 25. Thus, given an IP
address a, if B24[a� 8] = 0, then we further check whether
B23[a � 9] = 1, B22[a � 10] = 1, · · · , B0[a � 32] = 1
until we find the first 1; if B24[a� 8] = 1, then we know a’s
longest matching prefix length is � 24 and further lookup its
next hop in off-chip memory. It is easy to compute that the
on-chip memory usage is fixed as

∑24
i=0 2i = 4 MB. Consider

the example in Figure 2. Given an address 001010, as the pivot
level is 4, since B4[001010 � 2] = B4[0010] = B4[2] = 1
and N4[001010 � 2] = N4[0010] = N4[2] = 0, then we
know that the longest matching prefix length is longer than
4 and we will continue the search at levels below 4.

The pseudocode for the above SAIL Basic, denoted by
SAIL_B, is shown in Algorithm 1.

Algorithm 1 SAIL_B
Input: arrays: B0, B1, · · · , B24

Input: Next hop arrays: N0, N1, · · · , N24

Input: a: an IP address
Output: next hop of the longest matched prefix

1 if B24[a� 8] = 0 then
2 for j = 23; j > 0; j −− do
3 if Bj [a� (32− j)] = 1 then
4 return Nj[a� (32− j)]
5 end
6 end
7 end
8 else if N24[a� 8] > 0 then
9 return N24[a� 8]

10 end
11 else
12 lookup at levels 25 ∼ 32
13 end

There are multiple ways to handle prefixes of length � 25.
Below we give one simple implementation using next hop
arrays. Let the number of internal nodes at level 24 be n.
We can push all solid nodes at levels 25∼31 to level 32. After-
wards, the number of nodes at level 32 is 256∗n because each
internal node at level 24 has a complete subtree with 256 leaf
nodes, each of which is called a chunk. As typically 256∗n is
much smaller than 232 based on our experimental results on
real FIBs, constructing a next hop array of size 232 wastes too
much memory; thus, we construct a next hop array N32 of size
256∗n for level 32. As we push all solid nodes at levels from
25 to 31 to level 32, we do not need s B25, B26, · · · , B32.
Now consider the nodes at level 24. For each leaf node, its
corresponding entry in B24 is 1 and its corresponding entry in
next hop array N24 is the next hop of this node. For each
internal node, its corresponding entry in B24 is 1 and its
corresponding entry in next hop array N24 is the chunk ID
in N32, multiplying which by 256 plus the last 8 bits of the
given IP address locates the next hop in N32. To distinguish
these two cases, we let the next hop be a positive number and
the chunk ID to be a negative number whose absolute value is
the real chunk ID value. To have negative values, chunk IDs
are named starting from 1. With our pivot pushing technique,
looking up an IP address a is simple: if B24[a� 9] = 0,
then we know the longest matching prefix length is within
[0, 23] and further test whether B23[a � 8] = 1;
if B24[a � 8] = 1 ∧ N24[a � 8] > 0, then we know that
the longest matching prefix length is 24 and the next hop is
N24[a � 8]; if B24[a � 8] = 1 ∧ N24[a � 8] < 0, then we
know that the longest matching prefix length is longer than
24 and the next hop is N32[(|N24[a� 8]|−1)∗256+(a&255)].

C. FIB Update for SAIL Basic

We now discuss how to adjust the lookup data structures
when the given FIB changes. Note that the FIB update
performance for levels 25∼32 is less critical than that for
levels 0∼24. As most traffic hits levels 0∼24, when the lookup

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: CONSTANT IP LOOKUP WITH FIB EXPLOSION 5

data structures for levels 0∼24 in on-chip memory change,
no lookup can be performed before changes are finished
and therefore may cause packet losses. For the lookup data
structures in off-chip memory, one possible solution is to
store two copies of the lookup data structures in two memory
chips so that while one copy is being updated, the other
copy can be used to perform lookups. Furthermore, many
IP lookup schemes that can handle prefixes of length � 25
can be plugged into SAIL_B. Different IP lookup schemes
have different FIB update algorithms. Therefore, in this paper,
we focus on the update of data structures in on-chip memory.

For SAIL_B, updating the on-chip lookup data structures is
simple: given an update prefix p with length of l, whose next
hop is denoted by h where h = 0 means to withdraw prefix p
and h > 0 means to announce prefix p, if l < 24, we assign
Bl[|p|] = (h > 0) (i.e., if h > 0, then we assign Bl[|p|] = 1;
otherwise, we assign Bl[|p|] = 0). If l = 24, for the same
update, we first locate the node in the trie, if it is an internal
node, then B24 is kept unchanged; otherwise, we assign
B24[|p|] = (h > 0). Note that for one FIB update, we may
need to update both the on-chip and off-chip lookup data
structures. A router typically maintains the trie data structure
on the control plane and uses it to compute the changes that
need to be made to off-chip lookup data structures. Because
little traffic hits the off-chip lookup data structures for levels
25∼32, updating the off-chip lookup data structures often can
be performed in parallel with IP lookups on the on-chip data
structures.

IV. SAIL OPTIMIZATION

In this section, we first present two optimization techniques
of our SAIL algorithms, which favor the performance of FIB
update and IP lookup, respectively. We use SAIL_U to denote
SAIL_B with update oriented optimization, and SAIL_L to
denote SAIL_B with lookup oriented optimization. Then,
we extend SAIL_L to handle multiple FIBs.

A. Update Oriented Optimization

Data Structures & Lookup Process: In this optimization,
by prefix expansion, we push all solid nodes at levels 0 ∼ 5
to level 6, all solid nodes at levels 7 ∼ 11 to level 12, all solid
nodes at levels 13 ∼ 17 to level 18, and all solid nodes at levels
19 ∼ 23 to level 24. With this 4-level pushing, looking up an
IP address a is the same as without this pushing, except that
if B24[a � 8] = 0, then we further check whether B18[a �
14] = 1, B12[a � 20] = 1, and B6[a � 26] = 1 till we
get the first 1. This 4-level pushing brings two benefits to
IP lookup. First, it reduces the maximum number of array
lookups in on-chip memory from 24 to 4. Second, it reduces
the on-chip memory usage by 49.2% because we do not need
to store B0 ∼ B5, B7 ∼ B11, B13 ∼ B17, and B19 ∼ B23.

FIB Update: While improving lookup speed and reducing
on-chip memory usage, this pushing incurs no extra cost to the
update of on-chip data structures. With this pushing, we still
achieve one on-chip memory access per FIB update because
of three reasons. First, for any FIB update, it at most affects
26 = 64 bits due to the above pushing. Second, typically by
each memory access we can read/write 64 bits using a 64-bit
processor. Third, as the lengths of the four s B6, B12, B18, and
B24 are dividable by 64, the 64 bits that any FIB update needs
to modify align well with word boundaries in on-chip memory.
We implement each of these four s as an array of 64-bit

Fig. 3. Example data structure of SAIL_L. (a) is a trie. (b) includes bitmaps
and next hop arrays.

unsigned integers; thus, for any FIB update, we only need
to modify one such integer in one memory access.

B. Lookup Oriented Optimization

Data Structures: In SAIL_B and SAIL_U, the maximum
numbers of on-chip memory accesses are 24 and 4, respec-
tively. To further improve lookup speed, we need to push nodes
to fewer number of levels. On one hand, the fewer number of
levels means the fewer numbers of on-chip memory accesses,
which means faster lookup. On the other hand, pushing levels
0 ∼ 23 to 24 incurs too large on-chip memory. To trade-off
between the number of on-chip memory accesses and the
data structure size at each level, we choose two levels: one
is between 0∼23, and the other one is 24. In our experiments,
the two levels are 16 and 24. In this optimization, by prefix
expansion, we first push all solid nodes at levels 0 ∼ 15 to
level 16; second, we push all internal nodes at level 16 and
all solid nodes at levels 17∼23 to level 24; third, we push all
internal nodes at level 24 and all solid nodes at levels 25 ∼ 31
to level 32. We call this 3-level pushing. For level 16, our data
structure has three arrays: array B16[0..216−1], next hop array
N16[0..216 − 1], and chunk ID array C16[0..216 − 1], where
the chunk ID starts from 1. For level 24, our data structure
has three arrays: array B24, next hop array N24, and chunk
ID array C24, where the size of each array is the number of
internal nodes at level 16 times 28. For level 32, our data
structure has one array: next hop array N32, whose size is the
number of internal nodes at level 24 times 28.

Lookup Process: Given an IP address a, using a(i,j) to
denote the integer value of the bit string of a from the i-th bit
to the j-th bit, we first check whether B16[a(0,15)] = 1; if yes,
then the a(0,15)-th node at level 16 is a solid node and thus
the next hop for a is N16[a(0,15)]; otherwise, then the a(0,15)-
th node at level 16 is an empty node and thus we need to
continue the search at level 24, where the index is computed
as (C16[a(0,15)] − 1) ∗ 28 + a(16,23). At level 24, denoting
(C16[a(0,15)] − 1) ∗ 28 + a(16,23) by i, the search process is
similar to level 16: we first check whether B24[i] = 1, if yes,
then the i-th node at level 24 is a solid node and thus the next
hop for a is N24[i]; otherwise, the i-th node at level 24 is an
empty node and thus the next hop must be at level 32, to be
more precise, the next hop is (C24[i]−1)∗28+a(24,31). Figure 3
illustrates the above data structures and IP lookup process
where the three pushed levels are 2, 4, and 6. The pseudocode
for the lookup process of SAIL_L is in Algorithm 2, where
we use the bitmaps, next hop arrays, and the chunk ID arrays
as separate arrays for generality and simplicity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 2 SAIL_L
Input: arrays: B16, B24

Input: Next hop arrays: N16, N24, N32

Input: Chunk ID arrays: C16, C24

Input: a: an IP address
Output: the next hop of the longest matched prefix.

1 if B16[a� 16] = 1 then
2 return N16[a� 16]
3 end
4 i← ((C16[a� 16]− 1)� 8) + (a� 16� 24)
5 else if B24[i] = 1 then
6 return N24[i]
7 end
8 else
9 return N32[((C24[i]− 1)� 8) + (a&255)]

10 end

Fig. 4. Memory management for SAIL_L.

Two-Dimensional Splitting: The key difference between
SAIL_L and prior IP lookup algorithms lies in its
two-dimensional splitting. According to our two-dimensional
splitting methodology, we should store the three arrays B16,
C16, and B24 in on-chip memory and the other four arrays
N16, N24, C24, and N32 in off-chip memory as shown
in Figure 4. We observe that for 0 � i � 216−1, B16[i] = 0 if
and only if N16[i] = 0, which holds if and only if C16[i] �= 0.
Thus, the three arrays of B16, C16, and N16 can be combined
into one array denoted by BCN , where for 0 � i � 216 − 1,
BCN [i](0,0) = 1 indicates that BCN [i](1,15) = N16[i] and
BCN [i](0,0) = 0 indicates that BCN [i](1,15) = C16[i].
Although in theory for 0 � i � 216 − 1, C16[i] needs
16 bits, practically, based on measurement from our real FIBs
of backbone routers, 15 bits are enough for C16[i] and 8 bits
for next hop; thus, BCN [i] will be 16 bits exactly. For
FPGA/ASIC platforms, we store BCN and B24 in on-chip
memory and others in off-chip memory. For CPU/GPU/many-
core platforms, because most lookups access both B24 and
N24, we do combine B24 and N24 to BN24 so as to improve
caching behavior. BN24[i] = 0 indicates that B24[i] = 0, and
we need to find the next hop in level 32; BN24[i] > 0 indicates
that the next hop is BN24[i] = N24[i].

FIB Update: Given a FIB update of inserting/deleting/
modifying a prefix, we first modify the trie that the router
maintains on the control plane to make the trie equivalent to
the updated FIB. Note that this trie is the one after the above
3-level pushing. Further note that FIB update messages are
sent/received on the control plane where the pushed trie is
maintained. Second, we perform the above 3-level pushing on
the updated trie for the nodes affected by the update. Third,
we modify the lookup data structures on the data plane to
reflect the change of the pushed trie.

Fig. 5. Example of SAIL for multiple FIBs. (a) is the first tire. (b) is the
second trie. (c) is the merged trie.

SAIL_L can perform FIB updates efficiently because of two
reasons, although one FIB update may affect many trie nodes
in the worst case. First, prior studies have shown that most
FIB updates require only updates on a leaf node [60]. Second,
the modification on the lookup arrays (namely the arrays, next
hop arrays, and the chunk ID arrays) is mostly continuous,
i.e., a block of a lookup array is modified. We can use the
memcpy function to efficiently write 64 bits in one memory
access on a 64-bit processor.

C. SAIL for Multiple FIBs

We now present our SAIL_M algorithm for handling
multiple FIBs in virtual routers, which is an extension of
SAIL_L. A router with virtual router capability (such as Cisco
CRS-1/16) can be configured to run multiple routing instances
where each instance has a FIB. If we build independent data
structures for different FIBs, it will cost too much memory.
One classic method is to merge all virtual FIBs into one, and
then perform lookup on the merged one. Our design goal is
to achieve constant on-chip memory and constant lookup time
regardless of the number and the size of the virtual FIBs.
No prior algorithm can achieve this goal. Next, we first show
the classic merging method, and then show how to apply our
SAIL framework to it.

Classic Merging Method of Virtual FIBs: Given m FIBs
F0, F1, · · · , Fm−1, first, for each Fi (0 � i � m−1), for each
prefix p in Fi, we change its next hop ni(p) to a pair (i, ni(p)).
Let F ′

0, F
′
1, · · · , and F ′

m−1 denote the resulting FIBs. Second,
we build a trie for F ′

0 ∪ F ′
1 ∪ · · · ∪ F ′

m−1, the union of all
FIBs. Note that in this trie, a solid node may have multiple
(FIB ID, next hop) pairs. Third, we perform leaf pushing
on this trie. Leaf pushing means to push each solid node to
some leaf nodes [50]. After leaf pushing, every internal node
is empty and has two children nodes; furthermore, each leaf
node v corresponding to a prefix p is solid and has m (FIB ID,
next hop) pairs: (0, n0(p)), (1, n1(p)), · · · , (m−1, nm−1(p)),
which can be represented as an array N where N[i] = ni(p)
for 0 � i � m− 1. Intuitively, we overlay all individual tries
constructed from the m FIBs, stretch all tries to have the same
structure, and then perform leaf pushing on all tries.

Based on the overlay trie, we run the SAIL_L lookup
algorithm. Note that in the resulting data structure, in each
next hop array N16, N24, or N32, each element is further an
array of size m. Figure 5 shows two individual tries and the
overlay trie.

Lookup Process: Regarding the IP lookup process for
multiple FIBs, given an IP address a and a FIB ID i, we first
use SAIL_L to find the next hop array N for a. Then, the next
hop for IP address a and a FIB ID i is N[i].

Two-Dimensional Splitting: Regarding memory manage-
ment, SAIL_M exactly follows the two-dimensional splitting

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: CONSTANT IP LOOKUP WITH FIB EXPLOSION 7

TABLE II

THEORETICAL BOUNDS FOR SAILS

strategy illustrated in Figure 4. We store BC16, which is the
combination of B16 and C16, and B24 in on-chip memory,
and store the rest four arrays N16, N24, C24, and N32 in
off-chip memory. The key feature of our scheme for dealing
with multiple FIBs is that the total on-chip memory needed
is bounded to 216 ∗ 17 + 224 = 2.13MB regardless of the
sizes, characteristics and number of FIBs. The reason that we
store BC16 and B24 in on-chip memory is that given an IP
address a, BC16 and B24 can tell us on which exact level, 16,
24, or 32 that we can find the longest matching prefix for a.
If it is at level 16 or 24, then we need 1 off-chip memory access
as we only need to access N16 or N24. If it is at level 32, then
we need 2 off-chip memory access as we need to access C24

and N32. Thus, the lookup process requires 2 on-chip memory
accesses (which are on BC16 and B24) and at most 2 off-chip
memory accesses.

FIB Update: Given a FIB update of inserting/deleting/
modifying a prefix, we first modify the overlay trie that the
router maintains on the control plane to make the resulting
overlay trie equivalent to the updated FIBs. Second, we modify
the lookup data structures in the data plane to reflect the
change of the overlay trie.

D. Theoretical Bounds for SAILs

SAIL achieves contant yet small on-chip memory as shown
in Table II. For SAIL_B, the upper bound of on-chip memory
usage is (

∑24
i=0 2i)/1024/1024/8 = 4 MB. For SAIL_U,

the upper bound of on-chip memory usage is (26+212+218+
224)/1024/1024/8 ≈ 2.03 MB. For SAIL_L and SAIL_M,
the upper bound of on-chip memory usage is (216 +216 ∗16+
224)/1024/1024/8≈ 2.13 MB as we have a bitmap at level
16, and we also have a Chunk ID array at level 16. For on-chip
memory accesses, the worst case of all SAIL algorithms ranges
from 2 to 25. For off-chip memory accesses, the worst case of
all SAIL algorithms is bounded to 2. For SAIL_M, the upper
bounds for memory usage and the number of memory accesses
are independent of the number of FIBs and the size of each
FIB. For SAIL_B and SAIL_U, they only need 1 on-chip
memory access per update. However, the update complexity of
the other two algorithms is unbounded. In summary, as long
as a routers has � 4 MB on-chip memory and the off-chip
memory is large enough (� 4 GB), the lookup speed of SAILs
will be fast and bounded. No existing algorithms other than
SAIL can achieve this.

E. Comparison With Typical IP Lookup Algorithms

We qualitatively compare our algorithm SAIL_L with six
well known algorithms in Table III in terms of time and
space. Among all these algorithms, only our algorithm has the
on-chip memory bound, supports four platforms, and supports
virtual FIB lookup. Our algorithm is much faster than all
the other algorithms. In the worst case, our algorithm only
needs two off-chip memory accesses. All of these benefits are

attributable to our two dimensional splitting and pivot pushing
techniques. Our SAIL_L algorithm has the following two
shortcomings. The first shortcoming of our SAIL_L algorithm
is that the update speed in the worst case is unbounded.
Fortunately, the average update speed is 2 off-chip memory
access per update (see Figure 12). If one cares about the update
performance most, we recommend the SAIL_U algorithm,
which achieves O(1) on-chip update time, but is slower than
SAIL_L. Our SAIL_L algorithm only supports CPU, GPU,
FPGA and many-core platforms, and the second shortcoming
is that it currently does not support multi-core platforms,
which will be done in the future work.

V. SAIL IMPLEMENTATION

A. FPGA Implementation

We simulated SAIL_B, SAIL_U, and SAIL_L using Xilinx
ISE 13.2 IDE. We did not simulate SAIL_M because its
on-chip memory lookup process is similar to SAIL_L. In our
FPGA simulation of each algorithm, to speed up IP lookup,
we build one pipeline stage for the data structure correspond-
ing to each level.

We use Xilinx Virtex 7 device (model XC7VX1140T) as the
target platform. This device has 1,880 block RAMs where each
block has 36 Kb, thus the total amount of on-chip memory is
8.26MB [1]. As this on-chip memory size is large enough,
we implement the three algorithms of SAIL_B, SAIL_U, and
SAIL_L on this platform.

B. CPU Implementation

We implemented SAIL_L and SAIL_M on CPU platforms
because their data structures have less number of levels as
compared to SAIL_B and SAIL_U, and thus are suitable
for CPU platform. For our algorithms on CPU platforms,
the less number of levels means the less CPU processing steps.
In contrast, in FPGA platforms, because we build one pipeline
stage per level, the numbers of levels in our algorithms do not
have direct impact on IP lookup throughput.

Our CPU experiments were carried out on an Intel(R)
Core(TM) i7-3520M. It has two cores with four threads, each
core works at 2.9 GHz. It has a 64KB L1 code cache, a 64KB
L1 data cache, a 512KB L2 cache, and a 4MB L3 cache.
The DRAM size of our computer is 8GB. The actual CPU
frequency that we observe in our programs is 2.82GHz.

C. GPU Implementation

We implemented SAIL_L in GPU platforms based on
NVDIA’s CUDA architecture [40]. In our GPU implementa-
tion, we store all data structures in GPU memory. Executing
tasks on a GPU consists of three steps: (1) copy data from
the CPU to the GPU, (2) execute multiple threads for the
task, (3) copy the computing results back to the CPU; these
three steps are denoted by H2D, kernel execution, and D2H,
respectively. Thus, there is a natural communication bottleneck
between the CPU and the GPU. To address this limitation,
the common strategy is batch processing; that is, the CPU
transfers a batch of independent requests to the GPU, and
then the GPU processes them in parallel using many cores.
In our GPU implementation, when packets arrive, the CPU first
buffers them; when the buffer is full, the CPU transfers all their
destination IP addresses to the GPU; when the GPU finishes all
lookups, it transfers all lookup results back to the CPU. For our

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III

COMPARISON WITH TYPICAL IP LOOKUP ALGORITHMS

GPU based SAIL implementation, the data copied from the
CPU to the GPU are IP addresses, and the computing results
copied from the GPU to the CPU are the next hops for these
IP addresses. In our GPU implementation, we employed two
optimization techniques to speed up IP lookup performance:
memory coalesce and multi-streaming.

The basic idea of memory coalesce is to let threads
with continuous IDs read memory of continuous locations
because GPU schedules its threads to access the main mem-
ory in the unit of 32 threads. In our GPU implementation,
after the CPU transfers a batch of 32 ∗ n IP addresses to
the GPU’s memory denoted as an array A[0..32 ∗ n − 1],
if we assign threads t0, t1, · · · , t32∗n−1 to process the IP
addresses A[0], A[1], · · · , A[32 ∗ n − 1], respectively, then
all these 32 ∗ n IP addresses can be read in n mem-
ory transitions by the GPU, instead of 32 ∗ n memory
accesses.

The basic idea of multi-streaming, which is available on
INVIDA Fermi GPU architecture, is to pipeline the three steps
of H2D, kernel execution, and D2H. According to the CUDA
computing model, data transfers (i.e., H2D and D2H) and
kernel executions within different streams can be parallelized
via page-locked memory. A stream is a sequence of threads
that must be executed in order. In our GPU implementation,
we assign each 32 ∗ k (k � 1) threads to a unique stream.
Thus, different streams of 32 ∗ k threads can be pipelined,
i.e., while one stream of 32 ∗ k threads is transferring data
from the CPU to the GPU, one stream of 32 ∗ k threads is
executing their kernel function, and another stream of 32 ∗ k
threads is transferring data from the GPU to the CPU.

D. Many-Core Implementation

We implemented SAIL_L on the many-core platform Tilera
TLR4-03680 [5], which has 36 cores and each core has a
256K L2 cache. Our experiments were carried out on a 64-bit
operation system CentOS 5.9. One L2 cache access needs
9 cycles. In our many-core implementation, we let one core to
serve as the main thread and all other cores to serve as lookup
threads, where each lookup thread performs all steps for an
IP address lookup.

E. Deployment in PEARL

We deployed the SAIL_L algorithm in PEARL [53], which
is a virtual router platform. It needs to perform IP lookup
for each incoming packet. In default, it uses the path com-
pressed trie [17], [49], which is a classic IP lookup algorithm.
We replace the path compressed trie algorithm by our SAIL_L
algorithm. Then we perform experiments to test the IP lookup
speed using the real trace (see trace details in Section VI.A).
Experimental results show that after deploying SAIL_L to
PEARL, the lookup speed becomes around 28 times faster.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To obtain real FIBs, we used a server to establish a peer
relationship with a tier-1 router in China so that the server
can receive FIB updates from the tier-1 router but does not
announce new prefixes to the tier-1 router; thus, gradually,
the server obtained the whole FIB from the tier-1 router. Note
that it is hardly feasible to dump the FIB of a tier-1 router to
hard disk, as the overhead incurred on the router is expensive
and we are not permitted to do that due to the administrative
policy. We use the Quagga to dump the FIB every hour [2].
We captured real traffic in one of the tier-1 routers interfaces
for the first 10 minutes of each hour between October 22nd
08:00 AM 2013 to October 23rd 21:00 PM.

Prefix Hit Analysis: For the FIBs in most backbone routers,
the traffic hits the prefixes of length <= 24. For the FIBs in
AS border routers, there could be more traffic hitting prefixes
of length > 24. As a result, the lookup speed of SAILs could
be slower. However, the worst case of lookup speed is still
2 off-chip memory accesses.

In addition, the datasets of routing tables provided by
RIPE NCC are archives of the snapshots. we down-
loaded 18 snapshots from www.ripe.net [3]. The time of
first six snapshots collected from rrc00 is 8:00 AM on
January 1st of each year from 2008 to 2013, respectively, and
are denoted by FIB2008, F IB2009, · · · , F IB2013. The rest
twelve snapshots were taken at 08:00 AM on August 8 in
2013 from 12 different collectors, and thus are denoted by
rrc00, rrc01, rrc03, · · · rrc07, rrc10, · · · , rrc15. We also
generated 37 synthetic traffic traces. The first 25 traces contain
packets with randomly chosen destinations. The other 12 traces
were obtained by generating traffic evenly for each prefix
in the 12 snapshots from the 12 collectors at 08:00 AM on
August 8 in 2013. We call such traffic prefix-based synthetic
traffic. The prefix based traffic is produced as follows: we
generally guarantee that each prefix is matched with the
same probability. In practice, however, when we generate
traffic for a prefix, the produced traffic could match longer
prefixes because of the LPM rule. We do not change the order
of synthetic traffic. Specifically, given two prefixes a1, a2,
suppose a2 is after a1 in the FIB, then the synthetic traffic for
a2 is also after those for a1. As the source code for synthetic
traffic is available at [4], the experimental comparison is fair.

As the website of ripe.net which is actually the largest
open website for FIBs has FIBs from only these locations,
we conducted experiments on all available FIBs, no cherry-
pick. We have conducted experiments to test the percentage
of longer prefixes, and the results are shown in Table IV.
This table shows that the percentages of FIBs from different
locations and different years are similar, around 1% to 2%.

We evaluated our algorithms on four metrics: lookup speed
in terms of pps (# of packets per second), on-chip memory size

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: CONSTANT IP LOOKUP WITH FIB EXPLOSION 9

TABLE IV

THE PERCENTAGE OF LONG PREFIXES OF 23 IPV4 FIBS

in terms of MB, lookup latency in terms of microsecond, and
update speed in terms of the total number of memory accesses
per update. For on-chip memory sizes, we are only able to
evaluate the FPGA implementation of SAIL algorithms. For
lookup latency, we evaluated our GPU implementation because
the batch processing incurs more latency.

We compared our algorithms with six well-known IP lookup
algorithms: PBF [47], LC-trie [49], Tree Bitmap [52], Lulea
Lulea [37], DXR [33], and Poptrie [7]. For DXR, we imple-
mented its fastest version – D18R. We validated the cor-
rectness of all algorithms through exhaustive search: we first
construct an exhaustive 232 = 4G lookup table where the next
hop of an IP address a is the a-th entry in this table; second, for
each IP address, we compare the lookup result with the result
of this exhaustive table lookup, and all our implementations
pass this validation.

B. Performance on FPGA

We evaluated the performance of our algorithm on FPGA
platforms in comparison with PBF, which is best suitable
for FPGA platforms among the five well known algorithms,
because the other five algorithms did not separate their data
structures for on-chip and off-chip memory.

We first evaluate SAIL_L for on-chip memory consumption
in comparison with PBF. Note that PBF stores its Bloom filters
in on-chip memory. We compute the on-chip memory usage of
PBF as follows. In [47], it says that PBF needs 1.003 off-chip
hash probes per lookup on average, given a routing table size
of 116, 819. To achieve 1.003 off-chip memory accesses per
lookup assuming the best scenario of one memory access per
hash probe, the overall false positive rate of the filters should
be 0.003. Thus, each Bloom filter should have a false positive
rate of 0.003/(32−8) since PBF uses 24 filters. Assuming that
these Bloom filters always achieve the optimal false positive,
then from 0.003/(32 − 8) = (0.5)k, we obtain k = 13 and
m/n = 18.755, where m is the total size of all Bloom filters
and n is the number of elements stored in the filter. Thus,
given a FIB with n prefixes, the total on-chip memory usage
of PBF is 18.755 ∗ n.

Fig. 6. On-chip memory usage over 6 years.

Fig. 7. On-chip memory usage of 12 FIBs.

Our experimental results on on-chip memory usage show
that within the upper bound of 2.13MB, the on-chip memory
usage of SAIL_L grows slowly and the growth rate is slower
than PBF, and that the on-chip memory usage of SAIL_L
is smaller than PBF. For on-chip memory usage, the fun-
damental difference between SAIL_L and PBF is that the
on-chip memory usage of SAIL_L has an upper bound but
that of PBF grows with the number of prefixes in the FIB
linearly without a practical upper bound. Figure 6 shows the
evolution of the on-chip memory usage for both SAIL_L
and PBF over the past 6 years based on our results on
the 6 FIBs: FIB2008, F IB2009, · · · , and FIB2013. Figure 7
shows the on-chip memory usage of the 12 FIBs rrc00, rrc01,
rrc03, · · · rrc07, rrc10, · · · , rrc15. Taking FIB rrc00 with
476,311 prefixes as an example, SAIL_L needs only 0.759MB
on-chip memory.

We next evaluate SAIL_L for lookup speed on FPGA
platform Xilinx Virtex 7. We did not compare with PBF
because [47] does not provide implementation details for its
FPGA implementation. We focus on measuring the lookup
speed on the data structures stored in on-chip memory
because off-chip memory lookups are out of the FPGA chip.
As we implement the lookup at each level as one pipeline
stage, SAIL_B, SAIL_U, SAIL_L have 24, 4, 2 pipeline
stages, respectively. The more stages our algorithms have,
the more complex of the FPGA logics are, and the slower
the FPGA clock frequency will be. Our experimental results
show that SAIL_B, SAIL_U, SAIL_L have clock frequencies
of 351MHz, 405MHz, and 479MHz, respectively. As each of
our pipeline stage requires only one clock cycle, the lookup
speed of SAIL_B, SAIL_U, SAIL_L are 351Mpps, 405Mpps,
and 479Mpps, respectively.

Let us have a deeper comparison of SAIL_L with PBF. The
PBF algorithm without pushing requires 25 ∗k hash computa-
tions and memory accesses in the worst case because it builds
25 Bloom filters, each of which needs k hash functions. With
pushing, PBF needs to build at least 1 Bloom filter because
the minimum number of levels is 1 (by pushing all nodes to
level 32), although which is impractical. Further we assume
that PBF uses the Kirsch and Mitzenmacher’s double hashing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Lookup speed with real traffic and real FIBs.

scheme based Bloom filters, which uses two hash functions
to simulate multiple hash functions [6]. Although using the
double hashing technique increases false positives, we assume
it does not. Furthermore, suppose the input of hashing is
2 bytes, suppose PBF uses the well known CRC32 hash
function, which requires 6.9 clock cycles per input byte.
With these unrealistic assumptions, the number of cycles
that PBF requires for searching on its on-chip data struc-
tures is 6.9× 2× 2. In comparison, SAIL_L requires only
3∼10 instructions as discussed in Section V-B and needs only
4.08 cycles per lookup based on Figure 8. In summary, even
with many unrealistic assumptions that favor PBF, SAIL_L
still performs better.

C. Performance on CPU

We evaluated the performance of our algorithm on CPU
platforms in comparison with LC-trie, Tree Bitmap, Lulea,
DXR’s fastest version – D18R, and Poptrie. The CPU has two
cores, but we only use one core to perform the lookups for
all algorithms. We exclude PBF because it is not suitable for
CPU implementation due to the many hashing operations.

Our experimental results show that SAIL_L is several
times faster than LC-trie, Tree Bitmap, Lulea, D18R, and
Poptrie. For real traffic, SAIL_L achieves a lookup speed
of 673.22∼708.71 Mpps, which is 34.53∼58.88, 29.56∼31.44,
6.62∼7.66, 4.36∼5.06, 1.59∼1.72 times faster than LC-trie,
Tree Bitmap, Lulea, D18R, and Poptrie, respectively. For
prefix-based synthetic traffic, SAIL_L achieves a lookup
speed of 589.08∼624.65 Mpps, which is 56.58∼68.46,
26.68∼23.79, 7.61∼7.27, 4.69∼5.04, 1.23∼1.32 times faster
than LC-trie, Tree Bitmap, Lulea, D18R, and Poptrie, respec-
tively. For random traffic, SAIL_L achieves a lookup speed
of 231.47∼236.08 Mpps, which is 46.22∼54.86, 6.73∼6.95,
4.24∼4.81, 2.27∼2.31, 1.13∼1.14 times faster than LC-trie,
Tree Bitmap, Lulea, D18R, and Poptrie, respectively. Figure 8
shows the lookup speed of these 6 algorithms with real traffic
on real FIBs. The 12 FIBs are the 12 FIB instances of the
same router during the first 12 hours period starting from
October 22nd 08:00 AM 2013. For each FIB instance at a
particular hour, the real traffic that we experimented is the
10 minutes of real traffic that we captured during that hour.
Figure 9 shows the lookup speed of these 6 algorithms with
prefix-based synthetic traffic on the 12 FIBs downloaded from
www.ripe.net. Figure 10 shows the lookup speed of these
6 algorithms with random traffic on FIB2013. From these
figures, we further observe that for each of these 6 algo-
rithms, its lookup speed on real traffic is faster than that on
prefix-based traffic, which is further faster than that on random
traffic. This is because real traffic has the best IP locality,
which results in the best CPU caching behavior, and random

Fig. 9. Lookup speed with prefix-based traffic on 12 FIBs.

Fig. 10. Lookup speed with random traffic on FIB2013.

Fig. 11. Percentages of 25 traffic traces with more than 24 bits matching
prefix length for the random traffic.

traffic has the worst IP locality, which results in the worst CPU
caching behavior.

As shown in Figure 11, the percentages of 25 traffic traces
with more than 24 bits matching prefix length range from
0.021% to 0.025%. These percentages are much smaller than
the ratio of longer prefixes of the FIB (2.3%), because longer
prefixes cover smaller ranges. For example, a leaf prefix node
at level 8 covers a range with a width of 232−8, while a prefix
node at level 32 only covers a range with a width of 1. All IP
lookup algorithms perform much slower because the cache
behaviour is very poor when randomly choosing an IP address
from the 4GB space.

We now evaluate the FIB update performance of SAIL_L
on the data plane. Figure 12 shows the variation of the number
of memory accesses per update for 3 FIBs (rrc00, rrc01, and
rrc03) during a period with 319 ∗ 500 updates. The average
numbers of memory accesses per update for these three FIBs
are 1.854, 2.253 and 1.807, respectively. The observed worst
case is 7.88 memory accesses per update.

We now evaluate the lookup speed of SAIL_M for virtual
routers. Figure 13 shows the lookup speed of SAIL_M algo-
rithm as the number of FIBs grows, where x FIBs means the
first x FIBs in the 12 FIBs rrc00, rrc01, rrc03, · · · rrc07,
rrc10, · · · , rrc15, for both prefix-based traffic and random
traffic. This figure shows that on average SAIL_M achieves
132 Mpps for random traffic and 366 Mpps for prefix-based
traffic.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: CONSTANT IP LOOKUP WITH FIB EXPLOSION 11

Fig. 12. # memory accesses per update.

Fig. 13. Lookup speed of SAIL_M for 12 FIBs using prefix-based and
random traffic.

Lookup Speed vs. Percentage of Long Prefixes: As shown
in Figure 14, the lookup speed of SAIL_L degrades to
448∼467Mpps, 357∼380Mpps, 271∼296Mpps for having
1%, 5%, 10% of longer prefixes, respectively. We also com-
pared SAIL_L with Poptrie, which has lookup speeds
of 162∼296Mpps, 150∼234Mpps, 124∼186Mpps for having
1%, 5%, 10% of longer prefixes, respectively. In conclusion,
SAIL_L is 1.47 ∼ 2.83 times faster than Poptrie. The
performance degradation of both algorithms is mainly because
all the longer prefixes are generated randomly, and the resulted
lookup tables have more chunks to maintain comparing with
the real FIBs that have better locality.

We exploit technological improvements that the authors of
the other algorithms didn’t have [55]. Basically, the amount of
on-chip memory we have is vastly superior to what there was
10 years ago [54], [56], and already larger than the theoretical
maximum value (4MB) that SAIL needs. So we can implement
our lookup algorithm in a much more straightforward way
than the others could. So we basically avoid some of the
complexities they had to put in to fit whatever was available
at the time.

The key idea of Poptrie [11] is similar to Lulea [36] as
they both compress the next hop arrays based on bitmaps
to achieve high memory efficiency. In Poptrie, it uses an
SIMD (Single Instruction Multiple Data) instruction named
Population Count (i.e., POPCNT) which can count the number
of 1s in a bitmap. As POPCNT is optimized by CPU internal
logics, it is much faster than software solutions for counting 1s.
Lulea was proposed in 1997 when CPUs did not support
POPCNT. Thus, Poptrie achieves faster speed than Lulea.
Poptrie has four weaknesses when compared with SAIL.
First, Poptrie has no memory upper bound and much more
memory accesses in the worst case. However, SAIL_L has
an upper bound (i.e., 2.13MB) for on-chip memory usage,
and at most 2 off-chip memory accesses per lookup. Second,
SAIL is much faster than Poptrie. Our experimental results
on real and synthetic datasets in Section VI.C show that

SAIL_L is 1.47 ∼ 2.83 times faster than Poptrie. Note
that the Poptrie authors didn’t use our open-sourced SAIL
implementation [4], we believe their implementation probably
introduces some unnecessary overhead that could potentially
degrade the performance of SAIL algorithm. And We use their
open source codes to conduct experimental comparison. Third,
Poptrie was only implemented in CPU platform, and cannot be
implemented on other platforms that do not support POPCNT,
such as Many-core platform Tirela [5] and FPGA [1] platform.
Fourth, the query speed of POPCNT will degrade linearly as
the number of virtual FIBs increases.

Moreover, the Poptrie paper claims that SAIL cannot com-
pile due to its structural limitation. In our previous paper,
in level 16, we indeed use 1 bit as flag, and other 15 bits
as next hop or ID of chunks. When the FIB is very large,
15 bits for chunk IDs could not be enough. This is a tiny
problem that can be addressed very easily: we can use only
16 bits for next hop or chunk ID, and use additional 216 bits
as the flag.

D. Evaluation on GPU

We evaluate SAIL_L on GPU platform with CUDA 5.0.
We carry out these experiments on a DELL T620 server
with an Intel CPU (Xeon E5-2630, 2.30 GHz, 6 Cores)
and an NVIDIA GPU (Tesla C2075, 1147 MHz, 5376 MB
device memory, 448 CUDA cores). These experiments use
the 12 FIBs rrc00, rrc01, rrc03, · · · rrc07, rrc10, · · · , rrc15
and prefix-based traffic. We measure the lookup speed and
latency with a range of CUDA configurations: the num-
ber of streams (1, 2, · · · , 24), the number of blocks per
stream (64, 96, · · · , 512), and the number of threads per block
(128, 256, · · · , 1024). The lookup speed is calculated as the
total number IP lookup requests divided by the total lookup
time. We use the Nvidia Visual Profiler tool to measure the
lookup latency.

We evaluated the IP lookup speed versus traffic size
(i.e., the number of IP addresses in one batch of data sent from
the CPU to the GPU). We generate 3 traffic traces of 3 different
sizes 30K, 60K, 90K. Figure 15 shows our experimental
results, from which we observe that larger traffic sizes lead
to higher lookup speed. For the traffic size of 30K, SAIL_L
achieves a lookup speed of 257∼322 Mpps. For the traffic size
of 60K, SAIL_L achieves a lookup speed of 405∼447 Mpps.
For the traffic size of 90K, SAIL_L achieves a lookup speed
of 442∼547 Mpps.

We evaluated the IP lookup latency versus traffic size.
Figure 16 shows our experimental results, from which we
observe that larger traffic sizes lead to higher lookup latency.
For the traffic size of 30K, SAIL_L has a lookup latency
of 90∼124 µs. For the traffic size of 60K, SAIL_L has a
lookup latency of 110∼152 µs. For the traffic size of 90K,
SAIL_L has a lookup latency of 122∼185 µs.

E. Evaluation on Many-Core Platform

We evaluated the lookup speed of SAIL_L versus the num-
ber of cores. We conducted our experiments on the many-core
platform Tilera TLR4-03680. Our experimental results show
that the lookup rate increases linearly as the number of cores
grows. Note that we only have the results of 35 cores,
because one core is responsible for traffic distribution and
results collection. Figure 17 shows the results on FIB rrc00

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 14. Lookup speed with different percentage of long prefixes on 12 FIBs. (a) rrc: 00, 01, 03. (b) rrc: 04, 05, 06. (c) rrc: 07, 10, 11. (d) rrc: 12, 14, 15.

Fig. 15. Lookup speed VS. traffic size.

Fig. 16. Lookup latency VS. traffic size.

Fig. 17. Lookup speed VS. # of cores.

using prefix-based traffic. We have observed similar results for
other FIBs.

VII. SCALABILITY FOR IPV6

A. SAIL for Small IPv6 FIBs

Our SAIL framework is mainly proposed for IPv4 lookup;
however, it can be extended for IPv6 lookup as well.
An IPv6 address has 128 bits, the first 64 bits represent the
network address and the rest 64 bits represent the host address.
An IPv6 prefix has 64 bits. The real IPv6 FIBs in backbone
routers from www.ripe.net only has around 14,000 entries,
which are much smaller than IPv4 FIBs. To deal with
IPv6 FIBs, we can push trie nodes to 6 levels of 16, 24, 32,
40, 48, and 64. To split along the dimension of prefix lengths,
we perform the splitting at level 48. In other words, we store
the and chunk ID arrays of levels 16, 24, 32, 40, and the array

Fig. 18. A hybrid architecture for large IPv6 FIBs.

of level 48 in on-chip memory. Our experimental results show
that the on-chip memory for an IPv6 FIB is about 2.2MB.
Although the on-chip memory usage for IPv6 is much larger
than that for IPv4 in the worst case because IPv6 prefix length
are much longer than IPv4, as IPv6 FIB sizes are orders of
magnitude smaller than IPv4 FIB sizes, the one-chip memory
usage for IPv6 is similar to that for IPv4.

B. SAIL for Large IPv6 FIBs

For large IPv6 FIBs, since the IPv6 address is much longer
than IPv4 address, we can combine the methods of bitmaps
in SAIL_U and Bloom filters. Specifically, we can split the
prefix length into several parts. Here we give an example (see
Figure 18): length 0∼24, length 25∼34, length 35∼44, length
45∼54, and length 55∼64. We propose a hybrid scheme that
uses bitmaps for the prefixes with length 0∼24 and Bloom fil-
ters (BF) for others. Bloom filters have false positives whereas
bitmaps do not have. The worst case of using Bloom filter
(PBF [47]) is when all Bloom filters report true. Although
this worst case happens with an extremely small probability,
we need to check all the hash tables at level 25 ∼ 64, which
is time-consuming.

Pivot Inheriting: To reduce the overhead in the worst case,
we propose a novel scheme named Pivot Inheriting. Pivot
inheriting is similar to our pivot pushing scheme. First, similar
to pivot pushing, we choose several pivot levels. Second, for
each pivot level, we only focus on the Internal and Empty
nodes (IE nodes). For each IE node, we set its next hop to
the next hop of its nearest ancestor solid node. After the IE
nodes inherit next hops, we call them pivot nodes. Then we
show how pivot inheriting alleviates the worst case. Basically,
after using pivot inheriting, we insert those pivot nodes in the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: CONSTANT IP LOOKUP WITH FIB EXPLOSION 13

TABLE V

ON-CHIP MEMORY USAGE

Fig. 19. Lookup process in the worst case.

corresponding hash table, but do not insert them in the Bloom
filters.

Example: For example, as shown in Figure 18, we select
these pivot levels: 24, 34, 44, and 54, and then carry pivot
inheriting at these pivot levels. Then, we insert pivot nodes
(their prefixes and next hops) into the corresponding hash
tables at the pivot levels. Given an incoming IP address a,
when a matches an internal node at level 24 and all Bloom
filters report true, we have the worst case. In this case, our
lookup scheme proceeds in the following steps (see Figure 19):

Step I: We search a in the hash table at level 44: if the hash
table reports a miss, then go to step II; if the hash table reports
a leaf node, then the algorithm ends; if the hash table reports
an internal node, then go to step III;

Step II: We search a in the hash table at level 34: if the
hash table reports a miss, then we know that the matched
level is in 24∼33; if the hash table reports a leaf node, then
the algorithm ends; if the hash table reports an internal node,
then we know that the matched level is in 34∼43;

Step III: We search a in the hash table at level 54: if the
hash table reports a miss, then we know the matched level
is in 44∼53; if the hash table reports a leaf node, then the
algorithm ends; if the hash table reports an internal node, then
we know the matched level is in 54∼64.

Thus, the worst case of the number of hash table searches
can be reduced from 40 to 12. More pivot levels can further
reduce the number of hash table searches at the cost of
more off-chip memory usage. The overhead of our method
is reasonably more off-chip memory usage, and we will show
it in the experiments results. We need a flag with 2 bits for
each node to indicate whether the node is a leaf node, or an
internal node, or a pivot node.

C. Experimental Results for Large IPv6 FIBs

1) Experimental Setup: The real-world IPv6 FIBs are small
and only have around 13K entries. To evaluate the perfor-
mance of our algorithm for large IPv6 FIBs, we synthesize
IPv6 FIBs based on the real IPv4 FIBs downloaded from
www.ripe.net [3] using the synthetic method proposed in [51].
The sizes of synthetic large IPv6 FIBs are similar to those of
IPv4 FIBs. The IPv6 FIB sizes are around 10K, while the
IPv4 FIB sizes are around 660K in 2017, 66 times larger.
The IPv4 FIBs increase around 15% every year. Suppose
IPv6 FIBs also increase 15% every year. Then it will take
30 years for IPv6 FIBs to reach the current size of IPv4 FIBs.

Fig. 20. The number of pivot nodes at the pivot levels.

We conduct experiments for large IPv6 FIBs (see Table IV),
and results show that our algorithm works well. This means
that our algorithm will work well for next 30 years without
upgrading hardware.

2) On-Chip Memory Usage: The on-chip memory usage of
our scheme includes two parts: 24 bitmaps and 40 BFs. The
maximum memory usage of 24 bitmaps is 4MB. We evaluate
the memory usage of 40 BFs using the same parameters as
the experiments on PBF in Section VI-B: k = 13 and m/n =
18.755. The experimental results are shown in Table V, when
using synthetic large IPv6 tables. We generate one IPv6 table
according to one IPv4 FIB. The sizes of synthetic IPv6 FIBs
are similar to the corresponding IPv4 FIBs. For example,
the size of IPv4 table of rrc00 is 455 900, and the size
of the synthetic IPv6 table is also 455 900. The number of
prefixes at level 25∼64 is around 400K, and the BF memory
usage is around 1MB. Thus, the total memory is around
5MB, while the on-chip memory capacity of old-fashioned
FPGA is 6.6MB [1]. Modern ASICs have 50∼100MB on-chip
memory [35].

3) Additional Off-Chip Memory Usage: With pivot inher-
iting, the worst case of this hybrid scheme can be reduced
to 12 hash tables searches when using 4 pivot levels. The
overhead of pivot inheriting is the additional off-chip memory
usage.

We carry out pivot inheriting using the large synthetic
IPv6 FIBs based on the IPv4 FIBs downloaded from [3].
We choose the four levels (24, 34, 44, and 54) as the pivot
levels. In practice, for IPv4 FIBs, users can flexibly choose
appropriate pivot levels. Here we only show an example for
synthetic FIBs. It can be observed from Figure 20 that the
number of pivot nodes is around 300K at level 24, but only
1K at level 54. The total number of pivot nodes is a little large
than the size of synthetic IPv6 FIBs. Fortunately, these pivot
nodes only consume additional off-chip memory, but do not
consume on-chip memory at all. We show that the additional
memory usage incurred by pivot inheriting in Figure 21.

Figure 21 shows the additional and total memory usage
using pivot inheriting. It also shows the memory usage of
Tree Bitmap on large synthetic FIBs. The source code of
Tree Bitmap is available at [4]. For the sake of simplicity,
we assume that all off-chip data structures use hash tables.
To achieve small probability of hash collisions, we set the load

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 21. The additional and overall off-chip memory usage.

factor to be 0.1. This means that for n elements, we use 10×n
hash buckets. Using these parameter settings, the experimental
results are shown in Figure 21. It can be seen that the
additional memory usage ranges from 22.8 MB to 56.9 MB
with a mean of 49.6 MB, while the total memory usage
ranges from 39.3 MB to 99.3 MB with a mean of 86.5 MB.
Nowadays, the off-chip memory capacity is about 100 times
of the above total memory usage of the hash tables. Since the
off-chip memory is cheap, the overhead of pivot inheriting is
reasonable and affordable. Experimental results also show that
the total memory usage of Tree Bitmap ranges from 28.7 MB
to 71.1 MB with a mean of 61.8, and it is about 71.4 % of
that of our SAIL algorithm. However, Tree Bitmap does not
split the memory into on-chip and off-chip memory, and one
lookup needs multiple off-chip memory accesses. In contrast,
we only need less than 5 MB on-chip memory usage, and
10× buckets in the off-chip hash tables to achieve the speed
of about 1 off-chip memory access per lookup.

Analysis of IPv6 Lookup Performance: In the best case, all
Bloom filters have no error, then the lookup only needs one
hash table probe, which can be considered as one memory
access [47]. In the worst case, the longest matched prefix is
at level 24 or 54, and all Bloom filters report yes. Note that
Bitmaps have no false positive. In this case, our algorithm
needs 2 + 10 hash table probes, i.e., 12 off-chip memory
accesses. As we use 13 hash functions for each Bloom filter,
the false positive rate is 0.513 = 2−13 when using the
optimal setting. The probability that the worst case happens is
0.513∗(10−1) = 2−117. On average, each lookup needs around
one hash table probe.

VIII. CONCLUSION

We make four key contributions in this paper. First, we pro-
pose a two-dimensional splitting approach to IP lookup.
The key benefit of such splitting is that we can solve the
sub-problem of finding the prefix length � 24 in on-chip
memory of bounded small size, with the help of our pro-
posed pivot pushing algorithm. Second, we propose a suite of
algorithms for IP lookup based on our SAIL framework. One
key feature of our algorithms is that we achieve constant, yet
small, IP lookup time and on-chip memory usage. Another
key feature is that our algorithms are cross platform as the
data structures are all arrays and only require four operations
of ADD, SUBTRACTION, SHIFT, and logical AND. Note
that SAIL is a general framework where different solutions
to the sub-problems can be adopted. The algorithms proposed
in this paper represent particular instantiations of our SAIL
framework. Third, we extend our SAIL approach to IPv6, and
proposed a hybrid scheme. To improve the performance of
synthetic large IPv6 FIBs in the worst case, we propose a novel
technique called pivot inheriting. Fourth, we implemented our

algorithms on four platforms (namely FPGA, CPU, GPU, and
many-core) and conducted extensive experiments to evaluate
our algorithms using real FIBs and traffic from a major
ISP in China. Our experimental results show that our SAIL
algorithms are several times or even two orders of magnitude
faster than the well known IP lookup algorithms. Furthermore,
we have open sourced our SAIL_L algorithm and four well
known IP lookup algorithms (namely LC-trie, Tree Bitmap,
Lulea, and DXR) that we implemented in [4].

REFERENCES

[1] FPGA Data Sheet. Accessed: Aug. 2, 2015. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/data_sheets/ds180_
7Series_Overview.pdf

[2] Quagga Routing Suite. Accessed: Oct. 10, 2013. [Online]. Available:
http://www.nongnu.org/quagga/

[3] RIPE Network Coordination Centre. Accessed: Dec. 7, 2013. [Online].
Available: https://www.ripe.net/analyse/internet-measurements/routing-
information-service-ris/ris-raw-data

[4] SAIL Webpage. Accessed: Jun. 8, 2017. [Online]. Available:
http://net.pku.edu.cn/~yangtong/pages/SAIL.html

[5] Tilera Datasheet. Accessed: Oct. 10, 2013. [Online]. Available:
http://www.tilera.com/sites/default/files/productbriefs/TILE-Gx8036_
PB033-02_web.pdf

[6] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” in Proc. Eur. Symp. Algorithms. Berlin,
Germany: Springer, 2006, pp. 456–467.

[7] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population count
for fast and scalable software IP routing table lookup,” in Proc. ACM
SIGCOMM, 2015, pp. 57–70.

[8] H. Dai, L. Meng, and A. X. Liu, “Finding persistent items in distributed,
datasets,” in Proc. IEEE INFOCOM, Apr. 2018, pp. 1–9.

[9] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proc. VLDB Endowment, vol. 10, no. 4, pp. 289–300,
2016.

[10] H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li, “Noisy Bloom filters
for multi-set membership testing,” in Proc. ACM SIGMETRICS, 2016,
pp. 139–151.

[11] D. Pao, Z. Lu, and Y. H. Poon, “IP address lookup using bit-shuffled
trie,” Comput. Commun., vol. 47, pp. 51–64, Jul. 2014.

[12] D. Shah and P. Gupta, “Fast incremental updates on Ternary-CAMs for
routing lookups and packet classification,” in Proc. Hot Interconnects,
2000, pp. 1–9.

[13] F. Wang and M. Hamdi, “Matching the speed gap between SRAM and
DRAM,” in Proc. IEEE Int. Conf. High Perform. Switching Routing,
May 2008, pp. 104–109.

[14] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A tree based router
search engine architecture with single port memories,” in Proc. IEEE
ISCA, Jun. 2005, pp. 123–133.

[15] F. Zane, G. Narlikar, and A. Basu, “Coolcams: Power-efficient TCAMs
for forwarding engines,” in Proc. IEEE INFOCOM, Mar./Apr. 2003,
pp. 42–52.

[16] G. Rétvári, J. Tapolcai, A. Korösi, A. Majdán, and Z. Heszberger, “Com-
pressing IP forwarding tables: Towards entropy bounds and beyond,” in
Proc. ACM SIGCOMM, 2013, pp. 111–122.

[17] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data
Structures in Pascal and C, vol. 2. Reading, MA, USA: Addison-Wesley,
1991.

[18] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in Proc. IEEE INFOCOM, Mar./Apr. 1998,
pp. 1240–1247.

[19] H. Fadishei, M. S. Zamani, and M. Sabaei, “A novel reconfigurable
hardware architecture for IP address lookup,” in Proc. IEEE ANCS,
Oct. 2005, pp. 81–90.

[20] H. Song, M. Kodialam, F. Hao, and T. V. Lakshman, “Scalable IP
lookups using shape graphs,” in Proc. IEEE Int. Conf. Netw. Protocols,
Oct. 2009, pp. 73–82.

[21] H. Le, W. Jiang, and V. K. Prasanna, “A SRAM-based architecture for
Trie-based IP lookup using FPGA,” in Proc. IEEE FCCM, Apr. 2008,
pp. 33–42.

[22] K. Huang, G. Xie, Y. Li, and A. X. Liu, “Offset addressing approach to
memory-efficient IP address lookup,” in Proc. IEEE INFOCOM, 2011,
pp. 306–310.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: CONSTANT IP LOOKUP WITH FIB EXPLOSION 15

[23] H. Lim, C. Yim, E. E. Swartzlander, “Priority tries for IP address
lookup,” IEEE Trans. Comput., vol. 59, no. 6, pp. 784–794, Jun. 2010.

[24] J. Fu and J. Rexford, “Efficient IP-address lookup with a shared
forwarding table for multiple virtual routers,” in Proc. ACM CoNEXT,
2008, Art. no 21.

[25] K. Zheng, C. Hu, H. Lu, and B. Liu, “A TCAM-based distributed parallel
IP lookup scheme and performance analysis,” IEEE/ACM Trans. Netw.,
vol. 14, no. 4, pp. 863–875, Aug. 2006.

[26] K. Sklower, “A tree-based packet routing table for berkeley unix,” in
Proc. USENIX Winter, 1991, pp. 93–99.

[27] L. Luo et al., “A trie merging approach with incremental updates for
virtual routers,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 1222–1230.

[28] H. Le and V. K. Prasanna, “Scalable tree-based architectures for IPv4/v6
lookup using prefix partitioning,” IEEE Trans. Comput., vol. 61, no. 7,
pp. 1026–1039, Jul. 2012.

[29] H. Lim and N. Lee, “Survey and proposal on binary search algorithms
for longest prefix match,” IEEE Commun. Surveys Tuts., vol. 14, no. 3,
pp. 681–697, 3rd Quart., 2012.

[30] H. Lim, K. Lim, N. Lee, and K.-H. Parl, “On adding Bloom filters
to longest prefix matching algorithms,” IEEE Trans. Comput., vol. 63,
no. 2, pp. 411–423, Feb. 2014.

[31] M. Meribout and M. Motomura, “A new hardware algorithm for fast
IP routing targeting programmable routers,” in Proc. Int. Conf. Network
Control Eng. QoS, Secur. Mobility. Boston, MA, USA: Springer, 2003,
pp. 164–179.

[32] W. Marcel, V. George, T. Jon, and P. Bernhard, “Scalable high speed IP
routing lookups,” in Proc. ACM SIGCOMM, 1997, pp. 25–36.

[33] M. Zec, L. Rizzo, and M. Mikuc, “DXR: Towards a billion routing
lookups per second in software,” ACM SIGCOMM Comput. Commun.
Rev., vol. 42, no. 5, pp. 29–36, Sep. 2012.

[34] M. Bando and H. J. Chao, “Flashtrie: Hash-based prefix-compressed
trie for IP route lookup beyond 100Gbps,” in Proc. IEEE INFOCOM,
Mar. 2010, pp. 821–829.

[35] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun., 2017,
pp. 15–28.

[36] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and
taxonomy of IP address lookup algorithms,” IEEE Netw., vol. 15, no. 2,
pp. 8–23, Mar./Apr. 2001.

[37] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” in Proc. ACM SIGCOMM, 1997,
pp. 3–14.

[38] M. Mittal, “Deterministic lookup using hashed key in a multi-stride
compressed trie structure,” U.S. Patent 7 827 218 B1, Oct. 29, 2013.

[39] M. J. Akhbarizadeh, M. Nourani, R. Panigrahy, and S. Sharma,
“A TCAM-based parallel architecture for high-speed packet forwarding,”
IEEE Trans. Comput., vol. 56, no. 1, pp. 58–72, Jan. 2007.

[40] NVIDIA CUDA C Best Practices Guide, Version 5.0, NVIDIA Corp.,
Santa Clara, CA, USA, Oct. 2012.

[41] P. Crescenzi, L. Dardini, and R. Grossi, “IP address lookupmade fast
and simple,” in Proc. Eur. Symp. Algorithms. Berlin, Germany: Springer,
1999, pp. 65–76.

[42] P. Warkhede, S. Suri, and G. Varghese, “Multiway range trees: Scalable
IP lookup with fast updates,” Comput. Netw., vol. 44, no. 3, pp. 289–303,
2004.

[43] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani, “Scalable,
memory efficient, high-speed IP lookup algorithms,” IEEE/ACM Trans.
Netw., vol. 13, no. 4, pp. 802–812, Aug. 2005.

[44] R. Panigrahy and S. Sharma, “Reducing tcam power consumption
and increasing throughput,” in Proc. High Perform. Interconnects,
Aug. 2002, pp. 107–112.

[45] S. Sahni and H. Lu, “Dynamic tree bitmap for ip lookup and update,”
in Proc. 6th Int. Conf. Netw. (ICN), Apr. 2007, p. 79.

[46] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated software router,” in Proc. ACM SIGCOMM, 2010,
pp. 195–206.

[47] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest pre-
fix matching using Bloom filters,” in Proc. ACM SIGCOMM, 2003,
pp. 201–212.

[48] H. Song, M. Kodialam, F. Hao, and T. Lakshman, “Building scalable
virtual routers with trie braiding,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[49] S. Nilsson and G. Karlsson, “IP-address lookup using LC-tries,” IEEE
J. Sel. Areas Commun., vol. 17, no. 6, pp. 1083–1092, Jun. 1999.

[50] V. Srinivasan and G. Varghese, “Fast address lookups using controlled
prefix expansion,” ACM Trans. Comput. Syst., vol. 17, no. 1, pp. 1–40,
1999.

[51] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random generator
for IPv6 tables,” in Proc. IEEE HPI, Aug. 2004, pp. 35–40.

[52] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: Hard-
ware/software IP lookups with incremental updates,” ACM SIGCOMM
Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122, 2004.

[53] G. Xie et al., “PEARL: A programmable virtual router platform,” IEEE
Commun. Mag., vol. 49, no. 7, pp. 71–77, Jul. 2011.

[54] K. Xie et al., “Fast tensor factorization for accurate Internet anomaly
detection,” IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3794–3807,
Dec. 2017.

[55] K. Xie et al., “On-line anomaly detection with high accuracy,”
IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1222–1235, Jun. 2018.

[56] K. Xie et al., “Accurate recovery of Internet traffic data: A sequential
tensor completion approach,” IEEE/ACM Trans. Netw., vol. 26, no. 2,
pp. 793–806, Apr. 2018.

[57] T. Yang et al., “Clue: Achieving fast update over compressed table
for parallel lookup with reduced dynamic redundancy,” in Proc. IEEE
ICDCS, Jun. 2012, pp. 678–687.

[58] T. Yang et al., “A shifting framework for set queries,” IEEE/ACM Trans.
Netw., vol. 25, no. 5, pp. 3116–3131, Oct. 2017.

[59] T. Yang et al., “A shifting Bloom filter framework for set queries,” ACM
J. VLDB Endowment, vol. 9, no. 5, pp. 408–419, Jan. 2016.

[60] T. Yang et al., “An ultra-fast universal incremental update algorithm for
trie-based routing lookup,” in Proc. ACM/IEEE ICNP, Oct./Nov. 2012,
pp. 1–10.

[61] T. Yang et al., “Guarantee IP lookup performance with FIB explosion,”
in Proc. ACM SIGCOMM, 2014, pp. 39–50.

[62] T. Yang et al., “Approaching optimal compression with fast update for
large scale routing tables,” in Proc. IEEE Int. Workshop Quality Service,
Jun. 2012, pp. 1–9.

[63] J. Zhao, X. Zhang, X. Wang, and X. Xue, “Achieving O(1) IP lookup
on GPU-based software routers,” ACM SIGCOMM Comput. Commun.
Rev., vol. 40, no. 4, pp. 429–430, 2010.

Tong Yang received the Ph.D. degree in com-
puter science from Tsinghua University in 2013.
He visited the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, China, from
2013 to 2014. He is currently a Research Assis-
tant Professor with the Computer Science Depart-
ment, Peking University. He published papers
in SIGCOMM, SIGKDD, SIGMOD, SIGCOMM
CCR, VLDB, ATC, ToN, ICDE, and INFOCOM.
His research interests include network measure-
ments, sketches, IP lookups, Bloom filters, sketches,
and KV stores.

Gaogang Xie received the Ph.D. degree in computer
science from Hunan University, Changsha, China,
in 2002. He is currently a Professor and the Director
of the Network Technology Research Center, Insti-
tute of Computing Technology, Chinese Academy
of Sciences, Beijing, China. His research interests
include programmable virtual routers, future Internet
architecture, and Internet measurement.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

Alex X. Liu received the Ph.D. degree in computer
science from The University of Texas at Austin
in 2006. His research interests focus on networking
and security. He received the IEEE & IFIP William
C. Carter Award in 2004, a National Science Foun-
dation CAREER Award in 2009, and the Michigan
State University Withrow Distinguished Scholar
Award in 2011. He received Best Paper Awards from
ICNP-2012, SRDS-2012, and LISA-2010. He is an
Associate Editor of the IEEE/ACM TRANSACTIONS
ON NETWORKING, an Associate Editor of the IEEE

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, and an Area
Editor of Computer Communications.

Qiaobin Fu received the B.Eng. degree from the
Dalian University of Technology in 2011 and the
M.S. degree from the University of Chinese Acad-
emy of Sciences in 2014. He is currently pursuing
the Ph.D. degree with Boston University in 2014.
His research interests focus on computer networking,
XIA, and cloud computing.

Yanbiao Li was born in 1986. He is currently a
Post-Doctoral Fellow with Hunan University and
a Visiting Research Associate with the Institute
of Computing Technology, Chinese Academy of
Science. His research interests focus on the future
Internet architecture and high performance packet
processing.

Xiaoming Li is currently a Professor in computer
science and technology and the Director of the
Institute of Network Computing and Information
Systems, Peking University, China.

Laurent Mathy photograph and biography not available at the time of
publication.

