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Abstract—Clock synchronization is an essential but challenging
task for IoT devices. The state-of-the-art data-driven Huygens
solution cannot achieve accuracy for IoT networks, because the
devices are usually weak in power to make massive timestamp
probing for data-driven solutions. We propose the SSA clock
synchronization scheme to improve the Huygens algorithm.
First, SSA has a sliding window mechanism to accumulate data
points for the data-driven SVM algorithm in Huygens, which
complements the issue of insufficient data points. Second, SSA
applies a smoothing method to the periodical estimated clock
offset and drift, which eliminates the noise introduced by the
larger sliding window. Third, SSA makes an adaptive clock
correction instead of the periodical correction in Huygens so as
to avoid correcting the clock before the algorithm could stably
estimate and smooth the clock offset and drift. We conduct
extensive experiments on a real device (Huawei Sound X), and the
results shows that our SSA can achieve synchronization accuracy
of around 20 microseconds in the actual working environment.

Index Terms—Clock synchronization, offset, drift, sliding win-
dow, smoothing, adaptive correction, machine learning

I. INTRODUCTION

LOCK synchronization plays a fundamental role in the
C process of data collection and transmission [[1]]-[3|] for
various explosively-growing IoT applications, such as high-
speed communications [4]]—[6]], industrial automation [7[]-[9],
and smart healthcare systems [[10]-[12], etc. Specifically, syn-
chronized clocks can provide timestamps to decide the order
of events among multiple devices, which further decides the
correctness or performance of the above mechanisms. Thus,
the granularity of synchronization accuracy could directly
affect the atop applications and the consequent quality of
user experience (QoE) [13], [14]. For example, the clock
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synchronization of the left and right channels of a smart
speaker in a stereo scene should preferably not exceed 1
millisecond, otherwise the human ear can discern it [[15]-[[17].

A variety of clock synchronization solutions are proposed,
which can provide accuracy at different granularity in their
own scenarios. For example, well-known schemes are Network
Time Protocol (NTP) [18]], Precision Time Protocol (PTP)
[19], Referencing Broadcast Synchronization (RBS) [20],
Time-synchronization Protocol for Sensor Network (TPSN)
[21], Flooding Time Synchronization Protocol (FTSP) [22],
Pair Broadcast Synchronization (PBS) [23]], Datacenter Time
Protocol (DTP) [24] and others [10], [25], [26]], while new
schemes have been proposed in recent years, such as Huygens
[27]], DPTP [28]], M-PTP [29]] and others [30]-[34]. Some of
them [24]], [27]-[29], [31] can even achieve nanosecond (ns)
synchronization accuracy. However, they are heavyweight, i.e.,
they incur a huge hardware overhead or complex deploymen-
t/implementation to work properly, which is unacceptable for
common [oT devices. For specific IoT device{] deployed on
commercial-grade hardware, the finest granularity achievable
with current clock synchronization efforts, as far as we know,
is only on the order of milliseconds (ms) (e.g., [[7], [33], [34],
[36]-138]).

Among the clock synchronization solutions, data-driven
algorithms combine the massive data measurement and data
analytic or machine learning methods to improve the synchro-
nization accuracy. The Huygens algorithm [27] is a repre-
sentative solution that provides the state-of-the-art most fine-
grained accuracy of tens of to hundreds of nanoseconds.
The Huygens algorithm periodically measures massive data
points of probing timestamps between devices, applies Support
Vector Machine (SVM) [39] to the data within each period to
estimate the clock offset and clock drift, and corrects the clock
according to the estimated clock offset and drift. Such a design
has shown its success in the device synchronization in a data
center environment.

However, IoT devices’ properties prevent the data-driven ap-
proach to be applied. Essentially, the IoT devices usually have
insufficient computation/communication capabilities to make
massive measurements, but also the wireless environment and
software measurement component could be rather noisy; thus,
it is challenging to apply data-driven methods to eliminate
noises in [oT device’s measurement data.

!Commercial-grade IoT devices in this paper mainly refer to relatively small
devices built on traditional hardware platforms such as microprocessors or
microcontrollers [35]], etc.



We propose the SSA clock synchronization scheme to

overcome this challenge, which consists of three techniques:
Sliding Window, Smoothing and Adaptive Correction. It in-
herits Huygens’s periodical measurement, estimation, and
correction but makes three improvements as follows: (1)
It introduces a Sliding window mechanism to complement
the insufficient data points within each interval, where each
window spans multiple intervals. (2) It applies a Smoothing
method to denoise the estimation among intervals. (3) And
it Adaptively corrects device clock based on the estimation
and smoothing result. Our prototypes and experiments show
that in the actual working environment of the smart speaker
(Huawei Sound X) with 5SGHz WiFi, the average clock offset
and drift of SSA are 19.97 us and 0.91 pus/s, which are 5.27
and 4.90 times better than the original Huygens, respectively.
The experimental results validate the effectiveness of our three
improvements/techniques.
Our key contributions: 1) Our above SSA scheme success-
fully adapts the original Huygens from the data center sce-
nario to the Wireless Local Area Network (WLAN) scenario
where ordinary IoT devices generally work, and significantly
promotes the synchronization granularity of ordinary IoT
devices: from millisecond (ms) to microsecond (us) level; 2)
Compared with other state-of-the-art data-driven schemes, we
are the first to actually implement the proposed solution from
the algorithm/system level to the product level.

The remaining part of this paper is organized as follows.
Section [[I| describes the latest related work, background, and
motivation of clock synchronization for IoT devices. Section
describes the design of SSA. Section [[V] presents the im-
plementation and evaluation of SSA. And Section [V]concludes
this paper.

II. BACKGROUND AND MOTIVATION
A. State-of-the-Arts

1) Data-driven methods for clock synchronization:

In practice, synchronization protocols are likely to suffer
from noise such as network fluctuations and queuing de-
lays, which significantly reduces accuracy. And researchers
tried data-driven correction methods to eliminate the noise.
Huygens [27] uses SVM to remove abnormal points during
synchronization and adopts the median values (hyperplane) as
the measured clock offset, and further obtains the drift. SLMT
[30] uses linear programming to estimate clock offset and drift,
employs temperature compensation and assumes piecewise
linearity of the clock. To alleviate the delay asymmetry of
the Internet, the multi-hop precision time protocol (M-PTP)
[29] calculates the distribution of random delays based on
SVM, and then utilizes the L-estimator to estimate the offset.
It requires that both nodes to be synchronized must support
PTP and be deployed on expensive switches.

2) Hardware/Physical methods for clock synchronization:

DPTP [28] implements clock synchronization on the net-
work data-plane by designing programmable switching ASICs,
but it requires expensive hardware support. Sundial [31] uti-
lizes specialized hardware to provide a failure-tolerant peri-
odic clock synchronization that restores back-up clocks by

performing fast failure detection. Graham [32] builds a failure
model based on the physical properties of the local clock
and the desired synchronization accuracy, and fits enough data
points collected from large-scale commodity sensors to further
improve the accuracy.

3) Clock synchronization for loT devices:

At present, there are very few clock synchronization mech-

anisms specifically proposed for ordinary IoT devices, and
they can almost achieve millisecond granularity. For example,
some work [33]], [36]], [37] achieves granularity of around tens
of milliseconds, while others [7], [34], [38] can achieve a
synchronization fine-grained range of about 0.1 ~ 1 ms with
better hardware assistance.
Summary: We enumerate some of the above state-of-the-
art clock synchronization schemes for comparison in Table [I]
where Hardware Requirements refer to the hardware require-
ments (combined price and deployment cost, etc.) to achieve
the synchronization granularity shown. Although some of them
can reach the granularity of tens of nanoseconds, the hardware
constraints of ordinary IoT devices do not allow them to reach
such accuracy.

B. Preliminaries of Huygens

Clock offset and drift. We use the symbols in Table [LI| to
elaborate the clock synchronization. IoT devices use quartz
crystal oscillator to count time. When the oscillator does
not work in the proper environment (e.g., temperature and
humidity), its resonance frequency changes, causing inaccurate
time counting. And this time counting inaccuracy is called
clock drift D. The clock drift accumulates over time, resulting
in a clock offset A. Their relationship is

At) = /tt D(x)dz + A(to). (1)

Timestamp Probing (Fig. [I). The clock synchronization
protocol needs devices to probe each other (device-to-device).
When device A probes device B, the probing packet leaves
device A at A’s clock time t° and arrives at B at B’s clock
time t”. Thus, we have the OWD from A to B

dap =" —Ap(t")) — (t° — Aa(t?)).

We define the relative clock offset between A and B as
Asp = Ay — Ap. Note that App = —Apa, and Ayp
varies with time due to clock drift accumulation.

We further make two assumptions: (1) ¢t and ¢° are close
so that Ap(t") = Ap(t®), and (2) the one-way delay (OWD)
in the two directions between A and B are the same, i.e.,
dap = dpa, denoted as d. The formula above is rewritten as

(t° — ") = Aup(t*) — d.

On the reverse path, each probe from B to A follows the
formula
(" —1t°) = Aap(t®) +d.

The Huygens Algorithm [27]]. In the Huygens algorithm,
each probe from A to B would generate a data point x = ¢°
and y = (t°* — t"), and each one from B to A generates
x =1t° and y = (t" — t°). The two sets of data points fall



TABLE I: Comparison between state-of-the-art synchronization schemes.

State-of-the-art Schemes Huygens M-PTP DPTP Sundial Graham X-Sync SSA (Ours)
Synchronization Granularity | 10s ~ 100s ns | 100s ns | 10s ~ 100s ns 100s ns lus 100s ps ~ 1ms 20 ps
Application Scenarios Data Center LAN Data Center Data Center | Data Center WLAN WLAN
Hardware Requirements High High High High High Low Low

TABLE II: symbols and their meaning.

Symbol Meaning
t the global real-world time
A a device’s clock offset
C a device’s local clock time, C =t + A
D a device’s clock drift
ts a probe packet’s sending timestamp
t" a probe packet’s receiving timestamp
d the one-way delay (OWD)

! CB = t+AB M
Device B

Device A
evice t"(Probed)

Fig. 1: The derivation process of two devices exchanging
timestamps to measure clock offset.

into two parts in the z — y plane with a distance 2d. Fig. 2]
shows the measurement results of the two sets. In the short
measurement period, A 4 5(¢°) can be viewed as a straight line
(i.e., clock drift D(t) does not have bursty variation). Thus,
the Huygens algorithm applies soft-margin SVM to find
the two border lines of the two sets (from A to B and from
B to A in Equation (I)) and the center line between the two
border lines over a 2-second interval. The distance d can be
calculated from the distance between lines, the clock offset
A,p(t) (at time t) can be calculated from the line, and the
clock drift is the slope of the line.

The Huygens algorithm has an optimization — coded
probing — to eliminate noisy data points. When one device
probes another one, it sends two consecutive packets and gets
four device clock timestamps: packet 1 with ¢{ and ¢] and
packet 2 with 3 and t5, as shown in Fig. 8] The coded probing
check whether two sending timestamps and two receiving
timestamps’ differences |(t5 — t7) — (t5 — t5)| is farther than
a threshold e, if the difference exceeds ¢, the data points are
discarded as noise; otherwise, both data points are counted in
the SVM algorithm.

C. WLAN Clock Synchronization: Challenge

The synchronization of IoT devices in WLAN scenarios
has two properties. First, the timestamp probing in WLAN
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Fig. 2: SVM processing calculation diagram of the Huygens
algorithm (figures taken from Y. Geng, et.al [27]).
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Fig. 3: Coded probing of the Huygens algorithm.



scenarios is noisy. In the wireless channel, the probing signal
can be disturbed by the channel noise; [oT devices are exposed
to open environments, and their quartz crystal oscillators can
be influenced by environmental condition such as temperature
and humidity [26]]. Inside the devices, the clock read/write are
software based, which could also be disturbed by the device
OS scheduling. Second, IoT devices are weak in computation
and communication [41]], [42], and it is difficult for them to
generate frequent and stable probing in limited time [27]], [43],
[44].

The two properties create a dilemma for the data-driven
algorithms. Therefore, data-driven algorithms need to periodi-
cally measure timestamps and eliminate noise. But the length
of the periodical measurement interval is hard to decide. If the
measurement interval is too short, IoT devices cannot generate
sufficient data points for the data-driven algorithm, causing the
intra-interval estimation to be inaccurate; if the measurement
interval is too large, the IoT device may not be in a stable state
(7.e., having clock drift variation), the average estimation of a
long interval cannot stand for the instantaneous estimation at
the end of the interval.

D. Our Proposed Solution

We propose SSA to overcome the challenge. SSA is a
combination of three improvements for Huygens — Sliding
window, Smoothing, and Adaptive correction. SSA makes
periodic measurement, estimation, and correction like Huy-
gens. To overcome the issue of insufficient data point within
each interval, it introduces a sliding window mechanism to
collect more data for the SVM based estimation. The sliding
window looks backward to previous intervals and accumulate
sufficient data points for SVM. However, the sliding window
may introduce cross-interval noise, thus SSA further applies
data smoothing to the per-interval estimation from SVM. SSA
applies linear regression for this smoothing.

Finally, even with the sliding window, the device still takes
a while to accumulate data points in the beginning and after
resetting the clock drift. With sufficient data points, per-
interval SVM based estimation can be stable. SSA checks
the standard deviation of the clock drift estimation in past
intervals, and adaptively chooses to correct the clock only
when the standard deviation is small.

E. The Tool: SVM

SVM is a powerful supervised learning algorithm for linear
and nonlinear classification. A linear SVM is provided by the
set of data points (z;,1;) (1 <i < N), where x; is R?, and I;
is a binary label, i.e., the “upper bound point” or “lower bound
point” in Fig. 2} SVM classifies points with similar labels, and
its goal is to find a hyperplane so that the distance from it to
the nearest data point of each label is maximized.

In this paper, we use SVM to “naturally” (non-artificial
labeling) distinguish the two classes of data points generated
by the two probing directions, namely “upper bound point” and
“lower bound point”. Note that these two sets of probes are on
different devices, and their measurements are not shared with
each other: each device measures independently and does not

perform duplicated calculations. Since noise is likely to cause
these two classes of data points to be mixed together, we can
ensure the accuracy of SVM by tuning the SVM parameter
svmC to denoise and separate the two classes of data points.
svmC illustrates the tolerance/elasticity of the SVM model to
misclassification (z.e., failure to distinguish two classes of data
points). The larger svmC is, the less error-tolerant the model
is, but overfitting may occur; the smaller svmC is, the more
error-tolerant the model is, but underfitting may occur. See
Section for the experiments of its impact.

III. THE SSA SYNCHRONIZATION ALGORITHM
A. Overall Workflow

We divide the workflow of SSA into three main steps:
1) Time slicing and estimation of clock offset and drift; 2)
Smooth clock offset and drift; 3) Adaptive correction of clock
frequency. The details are as follows.

o STEP 1. In SSA, the time is discretized into multiple time
slices. Within each time slice, coded probing is applied to
collect data points similarly to Huygens (see Section[[I-B|for
details). At the end of each time slice, the sliding window
mechanism is used to accumulate data points, and the SVM
algorithm is applied to estimate the clock offset and drift.
The raw measurement data points and the estimated clock
offset and drift are stored in the database.

o STEP 2. Next, SSA smooths the estimated clock offset
and drift. After the measurement and estimation of a time
slice ending at time ¢, the algorithm fetches the estimation
in previous intervals and applies linear regression [45]. In
this way, smoothed offset and drift are the points on the
regressed line at ¢, which are later stored in the database.

o STEP 3. Then, SSA computes the standard deviation of the
smoothed clock drift in the current and past few intervals.
If the standard deviation is small and less than a predefined
threshold: it indicates that sufficient data points have been
collected and the result is well denoised. Therefore, the
clock is corrected; otherwise, the clock is not corrected.

In the following Section [lII-B|to|II1I-D} we describe the three
techniques corresponding to the above three steps, respectively.

B. Sliding Window Technique

Huygens is deployed in data center networks with strong
computing power. It chooses the measurement slice/interval to
be 2 seconds, so a large number of data points can be generated
in each interval. However, common IoT devices lack resources
to provide such frequent probes, resulting in an insufficient
number of timestamps for the SVM algorithm to guarantee
measurement accuracy. For example, the Huawei Sound X [46]]
can only achieve 250 probes within an interval of 2 seconds
during normal work, unless we are willing to consume a lot
of computing resources to make more probes. In particular,
when more than two devices are to be synchronized, more
sparse data points have to be dealt with as one device (acting
as a server) has to send/receive data with multiple devices at
the same time.

In SSA, devices send probes as fast as they can, and still
apply coded probing to filter noisy probes. At the end of each
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interval, our algorithm looks backward to a window in early
intervals until the accumulated data points in the previous
neighboring intervals is sufficient for the SVM algorithm. SSA
then use SVM to compute the clock offset and drift at the end
of the interval, which is called the estimated clock offset and
drift.

As shown in the Fig. ] suppose we need to provide 1000
sets of timestamp data per interval when using independent
time slices. Through the sliding window technique, we only
need to provide 250 sets of data in each interval. However, it
is necessary to combine the data in multiple intervals in the
calculation. For example, when calculating the clock offset
and drift of the 4*" interval in the 5" interval, the sliding
window needs to use a total of 1000 sets of data for the 1°¢
~ 4 interval. Specifically, the timestamp batch-processing
based on sliding window includes the following three steps:

Collect k timestamp

Clock probing within

of the current time slice

I, “ L}
1/ . Probing o -~ data generated in the 1
| 18t ,, - current time slice |
1 clock A Joamll clock B e |
txt 1 txl rxd T KD
11 txa Xy B B e L Modlf)t/ ﬂ;ﬁ tlme:(ajt.amtpfj tx, and 1
A nd i e T A rx, to the unadjusted values
! Wiky Probing I8 qu,wf e and store them in the timestamp !
| clock A I clock B ) database together with tx; and rx; | |
1 txh T txd rxd S 1
! eensen ,,«";"0\‘ Get the latest timestamp from the I
1 R timestamp database according to 1
1 - ‘ . Y the amount of data required for 1
| clock A Bl clock B [72 \
. txk rxk txk rxk Batch-processing of timestamps to | |
A calculate the clock offset and drift .
] 1

Fig. 5: The process of timestamps batch-processing based on

sliding time slices.

1) In the current time slice, k probings are performed between
the probing device and the probed device, and 4 timestamps
are generated during each probing to indicate the sending
and receiving time of the packet on the two devices. The
number of probings k£ depends on the amount of data
required for SVM training and the length of the time slice.
Then, we use the coded probing to filter the k groups of
timestamp data, and the filter threshold is set according to
the probing frequency.

2)

The timestamps collected in the current time slice should

be corrected according to the cumulative clock correction
value recorded in the time slice database before processing,

restored to the value when the clock was not corrected, and
then stored in the timestamp database.

Take a certain amount of timestamps from the timestamp
database according to the amount of data required for
training, and then use these data to calculate the clock offset
A and drift D (estimated clock offset and drift), and the
calculation results are stored in the time slice database after
smoothing.

3)

C. Smoothing Technique

A longer sliding window may introduce more noise, result-
ing in inaccurate data obtained, which may cause fluctuations
and instability of the clock offset and clock drift calculated
by each time slice. Therefore, SSA applies linear regression
[45]] to smooth the calculation results, i.e., use the clock offset
values of the last several time slices/intervals to calculate the
clock offset and drift of the current interval, which will be
used as a basis for clock correction.

The clock offset of the last m X "
the start time ¢ 0_? the time slice Ay, Az, ..., Ap, Time slice
current time slice start time €4, t5, ..., ty database

[ ] +
H
H
H

The clock offset Aq and

Calculate the clock offset Ay and
clock drift Dy of the current time
slice by linear regression

Fig. 6: The process of smoothing measurement results using
linear regression.

SSA first obtains the clock offset A1, Aoy, -+, A, of the
last m time slices/intervals from the time slice database, and
the start time of the time slice ¢1, s, - - -, ¢,,. Then, these data
are linearly regression processed with the clock offset Ay and
the start time ¢y of the current time slice. Taking the time ¢
of each time slice as the independent variable and the clock
offset A as the dependent variable, linear regression is used to
obtain the regressed clock offset line. Based on this, the newly
smoothed clock offset Aj at the end of the current time slice
is obtained, and the ratio of the regressed line D} is the clock
drift. Finally, SSA stores the smoothed data of the current time
slice in the time slice database, and performs clock correction
accordingly.

D. Adaptive Correction Technique

Clock offset correction refers to modifying the time of
the device, and clock drift correction refers to adjust the
device time counting frequency so as to compensate the drift
difference between two clocks. In most solutions, the clock
correction is operated periodically together with the offset and
drift estimation.

In SSA, the clock correction is more complicated. When
the system boots up, the sliding window cannot accumulate
sufficient data points, causing the SVM and the smoothing
not to be able to denoise effectively. In this case, it is not
proper to correct the clock. A good intuition is to check the
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Fig. 7: The process of clock adaptive correction is mainly
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stability of the clock drift first (lower standard deviation means
less noise), and correct the clock when the drift is stable.

Thus, the overall clock correction is as follows (Fig. [7). The
algorithm checks in the standard deviation of the smoothed
clock drift within a short duration and a long duration. There
are three cases. (1) If the standard deviation Stdp in the short
duration (Np intervals) is smaller than a threshold 7p (i.e.,
stable), both the clock offset and clock drift are corrected. (2)
Otherwise, the standard deviation Stdo in the long duration
(No intervals is checked with a threshold To. If Stdp is
smaller than 7o (i.e., relatively stable), the clock offset is
corrected (but the clock drift is not). (3) If both Stdp and
Stdo exceed their thresholds, the clock is not corrected.

Note that if the clock drift is corrected, i.e., Case I,
the sliding window should not span intervals before drift
correction. And there would not be sufficient data points
problem in near future to make a window, and the algorithm
is reset and warms up again. If the clock offset is correct, ¢.e.,
Case 2, when the sliding window still accumulates data point
between intervals, but it would apply the offset correction to
data points in early intervals (before the correction) so that all
data points in an SVM calculation have the same time counting
baseline.

IV. EVALUATION
A. Experimental Settings

Implementation. We directly evaluate the SSA synchroniza-
tion algorithm in the Huawei’s smart speaker product — Huawei
Sound X [46]. In particular, Huawei Sound X (Linux) has
a 32bit ARMV7 with 900MHz frequency, supports 802.11
a/b/g/m/ac WLAN in 2.4GHz/5GHz dual frequenc and Blue-
tooth 5.0. All code was implemented in C++. Our experimental
evaluation includes parameter tuning and system-synthetic
experiments (i.e., under real Huawei Sound X working con-
ditions).

Evaluation Metrics. For parameter tuning, we only use clock
drift measurements. For system-synthetic experiments, we use
both clock offset and drift measurements.

25GHz WiFi has a larger bandwidth than 2.4GHz WiFi and may perform
more stable, because Bluetooth also has a 2.4GHz frequency band, which may
cause interference to IoT devices working under 2.4GHz WiFi at the same
time.

Baseline. The original Huygens algorithm [27], disabling our
SSA with three techniques.

B. Results of Parameter Experiments

(1) Impact of the type of timestamp acquisition. It also
determines the type of clock adjustment. This experiment
compares two types: soft (network-card-driven timestamp),
emu (user mode timestamp). The difference between them
is that the availability of soft timestamp is based on the
actual situation of the network card on the host, while emu
timestamps can be supported by any host. As shown in Fig.
[ the soft type is obviously more stable than the emu type.
Therefore, we must choose soft type in system synthetic
experiments.

—=—emu —e— soft
20 *
_16
[3)
51
S 12
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Fig. 8: The impact of the type of timestamp acquisition, where
soft type is stable much earlier.

(2) Impact of SVM parameter (svmC). It is the elastic
parameter (also called penalty parameter in SVM) for calcu-
lating the clock offset. Since it is not a sensitive parameter,
we take svmC = 0.01,0.1,1,10 as empirical values to better
observe its impact through this experiment. As shown in Fig.
[l the drift at svmC = 0.1 tends to stabilize at the earliest,
followed by the drift at svmC = 1. Additionally, the drift

at svmC = 0.01 is the latest to stabilize, while the drift
at svmC = 10 fluctuates the most. Therefore, we choose
svmC = 0.1.

(3) Impact of the length of the sliding window (win_1len).
It is the number of timestamps recorded. As shown in Fig.
when win_len equals 2000 or 3000, the drift is stable at the
earliest. If this value is too large or too small, it will obviously
affect the stability of drift because it involves packet sending
speed. This will be explained later (see the analysis of (3)-(5)).
Therefore, we choose win_len = 2000.

(4) Impact of epoch. It represents the length of each time
slice, with the unit being seconds (s). This experiment is based
on the fact that we must collect enough timestamps to ensure
stability. As shown in Fig. clock drift with epoch = 20
shows the earliest and most stable convergence. Therefore, we
choose epoch = 20.
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Fig. 10: The impact of win_1len, and we choose win_len =
2000.

(5) Impact of the (packet sending) speed. Its unit is
Packet Per Second (PPS). It can be obtained by calculating
speed=1/delay, where delay represents the time interval
between two consecutive probe packets sent by the host (unit
is pus). As shown in Fig. [I2] clock drift with speed = 285.7
shows the earliest and most stable convergence. However,
when the speed = 285.7, the corresponding CPU usage is
also the largest (no matter in the system state or the user
state), as shown in Fig. [I3] In fact, there is an upper limit
to the speed. If the speed becomes faster, the number of
timestamps in each time slice will be higher. At this time, the
offset will be calculated faster, causing the system to converge
and stabilize earlier. However, too fast speed also means that
a large number of timestamps are collected in a short time
(larger win_len), which in turn will put a heavy burden on
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Fig. 11: The impact of epoch, where epoch = 20 converges
the earliest.

the CPU and cause drift/offset quality degradation. Therefore,
after considering the CPU usage and synchronization accuracy,
we choose speed = 71.4 (i.e., delay=14000 us here) with
the smallest CPU usage.
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Fig. 12: The impact of speed, and we choose speed = 71.4
for the reasons in Fig. [I3]

Analysis of (3) to (5). Our requirement for SSA is not only to
ensure drift/offset stability, but also to ensure that a result can
be output in a short interval to adjust the clock, which is also
one of the ideal conditions for clock synchronization. In fact,
if the packet sending speed is too fast, it will cause instability.
This is the essential reason for using sliding windows.

(6) Impact of the offset threshold 7. It is an important
component of clock adaptive correction, as shown in Section
I-D] with the unit being ys. In this experiment, we fix the
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Fig. 13: The impact of the CPU load rate when speed varies,
where speed = 71.4 has the minimum CPU usage.

drift threshold 7p = 0, i.e., not adjusting 7p. Then we use 5
different 7o values (7o = 0.1, 0.5, 1, 3, 5) to observe the effect
on clock offset. As shown in Fig. [T4] when 7o = 0.1,0.5, 1,
the offset is very unstable and jitter is obvious; when Tp = 3,
the offset is the most stable. Therefore, we choose 7o = 3.
In fact, the difference of 7o affects the speed of convergence,
but these offsets finally converge to around 40 pus.
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Fig. 14: The impact of 75, where 7o = 3 is the earliest stable.

(7) Impact of the drift threshold 7. It is also an important
component of clock adaptive correction, as shown in Section
with the unit being ps/s. In this experiment, we fix the
offset threshold 7o = 3 according to the above 7o experiment,
and use 3 different Tp values (7p = 0.5,1, 3) to observe the
effect on both clock offset and drift. As shown in Fig. [I5(b)}
when Tp = 3, clock drift is the most stable. Correspondingly,
as shown in Fig. [[5(a)l when 7p = 3, the clock offset is
obviously the smallest on average. Therefore, we choose 7Tp =
3. We find that the values of these offsets are significantly
smaller than those in Fig. [[4] This is because the frequency
has been adjusted (Fig. m left), 7.e., when the drifts are O in
Fig. [I5(b)] The reason for frequency adjustments is based on
Tp, in order to make the stabilized offset more accurate.
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Fig. 15: The impact of Tp, where Tp = 3 is the earliest stable.

Analysis of (6) to (7). According to Fig. [/| the threshold is
variable. We don’t expect the frequency to be adjusted all the
time, which leads to instability of the clock. Therefore, during
the entire adaptive correction process, the drift adjustment is
getting slower, but the offset has been constantly adjusted
to avoid the accumulation of offset errors. In short, adaptive
correction allows the clock frequency and offset to be quickly
adjusted after the system is started, so that the error can be
quickly reduced to a small value.

(8) Impact of the connection status of the smart speaker.
Our default smart speaker is working under 2.4/5 GHz WiFi. In
this experiment, we observe the impact of drift connecting to
Bluetooth (BLT) and playing music under default conditions.
As shown in Fig. [T6] We find that clock drift is stable
earlier than the default setting when connecting to BLT and
playing music, i.e., it seems to work better in a real working
environment.
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Fig. 16: The impact of the connection status, where the
working environment with Bluetooth connected and playing
music at the same time is stable earlier.

Discussion of convergence: Parameters (1) - (8) are different
in sensitivity to convergence/stable time. Specifically, we can
roughly sort their sensitivity according to the time values
of each parameter in Fig. [] - [I6] when they all converge
under different values as follows: (7) ~ (6) >> (2) >
(4) > (5) > (3) = (8) > (1). (6) and (7) are the most
sensitive because they are the key parameters that determine
the adaptive correction (Section of the clock. If they are
not tuned properly, the clock will be adjusted for a long time.
Similarly, (2) and (4), which are second only to (6) and (7)
in sensitivity, are also directly linked to our sliding window
and smoothing techniques (Section [[lI-B]and Section [[lI-C). In
general, the tuning of convergence-sensitive parameters needs
to be handled with caution.

C. Results of System-Synthetic Experiments

We select the optimal parameters for system-synthetic ex-
periments based on the results of the above-mentioned param-
eter tuning. In this experiment, we show the final clock drift
and clock offset under the full firepower of SSA and observe
how much our proposed SSA improves the Huygens clock
synchronization schem
(9) Results of clock drift. As shown in Fig. the experi-
mental results show that the clock offset of SSA has obvious
advantages compared with Huygens: the offset of SSA has
already stabilized at a small value, but the offset of Huygens
has not been stable and the value is always relatively large. For
the 2.4GHz + BLT + music scenario, the drift of SSA
stabilizes at an average of 0.835 us/s after about 144 seconds
of system startup. The average of all its drift is 1.30 us/s,
which is 3.03 times better than Huygens. For the 5GHz +
BLT + music scenario, the drift of SSA stabilizes at an

3For a fair comparison, the first or first two or three consecutive large offset
and corresponding drift values of SSA and Huygens when the system is just
started are not included in the calculation of the average and CDF, because
the offset values at these moments may be previous accumulation.
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Fig. 17: In the actual working environment, the clock drift of
SSA is obviously lower than that of the Huygens.

average of 0.331 us/s after about 156 seconds of system
startup. The average of all its drift is 0.91 pus/s, which is 4.90
times better than Huygens. For the comparison of different
scenarios of SSA, the drift of 2.4GHz + BLT + music
stabilizes earlier than that of 5GHz + BLT + music, but
the value of 5GHz + BLT + music is significantly smaller
when it stabilizes. In Fig. [[9(a)} we find the drift distribution
of SSA is significantly closer to the y-axis, which also proves
SSA has better clock drift.

(10) Results of clock offset. As shown in Fig.[T8] the experi-
mental results show that the clock offset of SSA is still higher
than that of Huygens as a whole. For the 2.4GHz + BLT +
music scenario, the average of all its offset is 19.96 ys, which
is 2.37 times better than Huygens. For the 5GHz + BLT +
music scenario, the average of all its offset is 19.97 us,
which is 5.27 times better than Huygens. For the comparison
of different scenarios of SSA, the offset variability trends of
2.4GHz + BLT + music and 5GHz + BLT + music
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Fig. 18: In the actual working environment, the clock offset
of SSA is basically lower than that of the Huygens.

are similar, but 2.4GHz + BLT + music fluctuates more
obviously. What they have in common is that their offset
values fluctuate slightly at about 10 us in the end, and the
best values are 0.135 ps (135 ns) and 0.859 us (859 ns),
respectively. Fig. [T9(b)] shows that the offset distribution of
SSA is also closer to the y-axis, proving that SSA has better
synchronization accuracy than Huygens.

V. CONCLUSION

Clock synchronization is fundamental, and its granularity
is important. Among the clock synchronization solutions, the
data-driven algorithms has attracted widespread attention in
improving synchronization accuracy, and the state-of-the-art
is the Huygens algorithm. However, directly adapting the
Huygens algorithm to IoT devices is challenging. To address
the problem, we propose an accurate microsecond-level clock
synchronization, namely SSA, for IoT devices. We conduct
extensive experiments with the Huawei Sound X in the actual
WiFi-connected working environment. Experimental results

1
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u 067 1
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Fig. 19: In the actual working environment, the CDF of SSA
is obviously closer to the y-axis and performs better than that
of the Huygens.

show that SSA can achieve synchronization accuracy of around
20 microseconds.
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