
The VLDB Journal
https://doi.org/10.1007/s00778-019-00596-3

REGULAR PAPER

SKCompress: compressing sparse and nonuniform gradient in
distributed machine learning

Jiawei Jiang1,2 · Fangcheng Fu1,3 · Tong Yang4,5 · Yingxia Shao6 · Bin Cui7

Received: 16 December 2018 / Revised: 29 November 2019 / Accepted: 12 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Distributed machine learning (ML) has been extensively studied to meet the explosive growth of training data. A wide range
of machine learning models are trained by a family of first-order optimization algorithms, i.e., stochastic gradient descent
(SGD). The core operation of SGD is the calculation of gradients. When executing SGD in a distributed environment, the
workers need to exchange local gradients through the network. In order to reduce the communication cost, a category of
quantification-based compression algorithms are used to transform the gradients to binary format, at the expense of a low
precision loss. Although the existing approaches work fine for dense gradients, we find that these methods are ill-suited
for many cases where the gradients are sparse and nonuniformly distributed. In this paper, we study is there a compression
framework that can efficiently handle sparse and nonuniform gradients?We propose a general compression framework, called
SKCompress, to compress both gradient values and gradient keys in sparse gradients. Our first contribution is a sketch-based
method that compresses the gradient values. Sketch is a class of algorithm that approximates the distribution of a data stream
with a probabilistic data structure. We first use a quantile sketch to generate splits, sort gradient values into buckets, and
encode them with the bucket indexes. Our second contribution is a new sketch algorithm, namely MinMaxSketch, which
compresses the bucket indexes. MinMaxSketch builds a set of hash tables and solves hash collisions with a MinMax strategy.
Since the bucket indexes are nonuniform, we further adopt Huffman coding to compress MinMaxSketch. To compress the
keys of sparse gradients, the third contribution of this paper is a delta-binary encoding method that calculates the increment
of the gradient keys and encode them with binary format. An adaptive prefix is proposed to assign different sizes to different
gradient keys, so that we can save more space. We also theoretically discuss the correctness and the error bound of our
proposed methods. To the best of our knowledge, this is the first effort utilizing data sketch to compress gradients in ML. We
implement a prototype system in a real cluster of our industrial partner Tencent Inc. and show that our method is up to 12×
faster than the existing methods.

Keywords Distributed machine learning · Stochastic gradient descent · Quantification · Quantile sketch · Frequency sketch ·
Huffman coding

Jiawei Jiang and Fangcheng Fu contributed equally to this work.

B Tong Yang
yangtongemail@gmail.com

Jiawei Jiang
blue.jwjiang@pku.edu.cn ; jiawei.jiang@inf.ethz.ch

Fangcheng Fu
ccchengff@pku.edu.cn ; fangchengfu@tencent.com

Yingxia Shao
shaoyx@bupt.edu.cn

Bin Cui
bin.cui@pku.edu.cn

1 School of EECS & Key Laboratory of High Confidence
Software Technologies (MOE), Peking University, Beijing,
China

2 Department of Computer Science, ETH Zürich, Zürich,
Switzerland

3 Department of Data Platform, TEG, Tencent Inc., Beijing,
China

4 Department of Computer Science and Technology, Peking
University, Beijing, China

5 Peng Cheng Laboratory, Shenzhen, China

6 School of Computer Science & Beijing Key Lab of Intelligent
Telecommunications Software and Multimedia, Beijing
University of Posts and Telecommunications, Beijing, China

7 Department of Computer Science and Technology & Key
Laboratory of High Confidence Software Technologies
(MOE), Peking University, Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00596-3&domain=pdf
http://orcid.org/0000-0003-2402-5854

J. Jiang et al.

1 Introduction

1.1 Background andmotivation

Machine learning (ML) techniques have been widely used
in many applications, such as recommendation [19], text
mining [59], image recognition [30], video detection [23],
smart urban computing [65], and more [4,31,53,64]. With
the proliferation of training datasets, a centralized system is
unable to run ML tasks efficiently. Therefore, it is inevitable
to deploy ML in a decentralized environment [21]. We focus
on a subclass of ML models, such as logistic regression
[18], support vector machine [49], linear regression [46],
and neural network [30]. Generally, they are trained with
a widely used family of first-order gradient optimization
methods, namely stochastic gradient descent (SGD) [5,66].
To distribute these gradient-based algorithms, we partition
a training dataset over workers. The workers independently
propose gradients [11,20].

Under such setting, a major problem is the heavy com-
munication because the workers need to exchange gradients
with each other. The communication cost often dominates
the total cost. Although the network infrastructure is becom-
ing faster and faster nowadays, reducing gradient movement
is still beneficial in many fields we try to support, including
but not limited to the following cases.

Case 1: Large model A recent phenomenon of ML is the
rapid growth of model size. It has been acknowledged that a
large model gives a better representation of users or objects
and produces a better prediction [22]. However, a largemodel
also brings considerable communications in a distributed
cluster, which impedes the overall performance. Motivated
as such, it is non-trivial to squeeze the transferred data in this
large model case.

Case 2: Cloud environmentCloud platforms, such as Ama-
zon EC2, Alibaba Cloud, and Microsoft Azure, provide
resizable virtual services to make distributed computing eas-
ier [2]. And they often adopt an on-demand pricing that
charges a user according to the used bandwidth. Tominimize
cost, it is an everlasting goal to minimize the transmission
through the network.

Case3:Geo-distributedMLFormany international compa-
nies, it is infeasible to move data between data centers before
running ML algorithms. Generally, data movement over
wide-area-network (WAN) is much slower than local-area-
network (LAN). Reducing the communication cost between
data centers can help geo-distributed ML.

Case 4: Internet of things (IoT) IoT infrastructure tries
to integrate mobile phones, physical devices, vehicles, and
many other embedded objects in a unified network [15]. IoT
controls these objects to collect and exchange information.

In this huge and heterogeneous network, an efficient com-
munication infrastructure is of great value.

In the above ML cases, it is significant to reduce the com-
municated gradients through network and guarantee algorith-
mic correctness meanwhile. Often, compression techniques
are used to address this problem. The existing compression
approaches can be summarized into two categories—lossless
methods and lossy methods.

Lossless methods for repetitive integer data, such as Huff-
man coding, run-length encoding (RLE), DEFLATE, and
Rice [12,16,29,67], cannot be used for non-repetitive gradi-
ent keys and floating-point gradient values. Methods such as
compressed sparse row (CSR) can store matrix-type data via
taking advantage of data sparsity [3,51], but the performance
improvement is not large enough due to limited compression
performance.

Lossy methods are proposed to compress floating-point
gradients by a sparsification-based strategy [35,47] or a
quantification-based strategy [1,32,54,62]. The sparsification
approaches filter large gradients according to a threshold.
Some of them accumulate small gradients locally until reach-
ing the threshold. But the accumulated gradients, which
are stale, might harm the convergence. Instead, some other
methods abandon small gradients, at the risk of losing use-
ful information, especially for skewed datasets. At a high
level, the quantification approach is more promising since
it achieves a trade-off between compression performance
and convergence performance. But the existing quantifica-
tion approaches have two assumptions in common, which
are not true in real cases. (1) First, they assume that a gra-
dient vector needed to be compressed is dense. However, in
many real large-scale ML applications, gradient vectors are
sparse due to the sparsity of training data. If we store all the
dimensions of a sparse gradient vector and compress all of
them, a lot of time is wasted on zero gradient values. If we
store a sparse gradient vector in (key, value) pairs, the gra-
dient keys cannot be compressed. (2) Second, they assume
that the gradient values follow a uniform distribution. But,
according to our observation, the gradient values in a gradi-
ent vector generally conform to a nonuniform distribution.
Worse, most gradient values locate in a small range near zero.
The uniform quantification approach is unable to fit the sta-
tistical distribution of gradient values.

According to the above analysis, the existing compression
solutions are not powerful enough for large-scale gradient
optimization algorithms. Motivated by this challenge, we
study the question that what data structure should we use
to compress a sparse gradient vector?Unsurprisingly, meth-
ods designed for dense and uniform-distributed gradients can
perform poorly in a sparse and nonuniform-distributed set-
ting. To address this problem, we propose SKCompress, a
general compression framework that supports sparse gradi-
ents and fits the statistical distribution of gradients. Briefly

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

speaking, for a sparse gradient vector consisting of key-value
pairs, denoted by {(k j , v j)}dj=1, we use a novel sketch-based

algorithm to compress gradient values {v j }dj=1 and a delta-

binary encoding method to compress gradient keys {k j }dj=1.
They bring an improvement over state-of-the-art algorithms
of 2−12×. We also theoretically analyze the error bound and
the correctness of the proposed algorithms.

1.2 Overview of technical contributions

We first introduce the context for describing our proposed
method and then describe each contribution individually.

DatamodelWefocus on a subclass ofMLalgorithms that are
trained with stochastic gradient descent (SGD), e.g., logis-
tic regression and support vector machine. The input dataset
contains training instances and their labels—{xi , yi }Ni=1. The
purpose is to find a predictive model θ ∈ R

D that minimizes
a loss function f . SGD iteratively scans each xi , calculates
the gradient gi = ∇ f (xi , yi , θ), and updates θ in the oppo-
site direction [6]: θ = θ − ηgi where η is a hyper-parameter
called the learning rate. Note that gi ∈ R

D is generally a
sparse vector when the training dataset is sparse. To save
space, we store the nonzero elements in a gradient vector,
denoted by key-value pairs {k j , v j }dj=1. In a distributed set-
ting, we choose the data-parallel strategy that partitions the
dataset over W workers [11]. With this scenario, we need
to aggregate gradients proposed by W workers, denoted by
{gw}Ww=1.

How to compress gradient values? The first goal is to
compress the gradient values in the key-value pairs, i.e.,
{v j }dj=1. Since the uniform quantification is ill-suited for
nonuniform-distributed gradients, we try to use other types
of data structure that can approximate the distribution of
data. We consider an alternative, called the sketch algorithm,
which is widely used to analyze a stream of data. The exist-
ing sketch algorithms include the quantile sketch [8,14] and
the frequency sketch [10]. Quantile sketches are used to esti-
mate the distribution of items, while frequency sketches are
used to estimate the occurring frequency of items. We pro-
pose to use a quantile sketch to read the gradient values and
generate several quantile splits. With the splits, we summa-
rize the gradient values into several buckets and then encode
each value by the corresponding bucket index b(v j). As each
bucket index is an integer, we still need four bytes for each
of them. We further investigate the possibility of compress-
ing the bucket indexes. At the first glance, the frequency
sketch seems a good candidate by using multiple hash tables
to approximately store integers. However, according to our
intuitive and empirical analysis, we find that it cannot be
extended to solve our problem since our context is com-
pletely different from the frequency scenario. The frequency

sketch might unpredictably increase the gradient values in
the query phase, causing unstable convergence. To address
this problem, we propose a novel sketch algorithm, called
MinMaxSketch. MinMaxSketch encodes the bucket indexes
using a multiple-hashing approximation. It employs a Min-
Max strategy to solve the hash collision problem during the
insertion phase and the query phase. Besides, we choose a
dynamic learning rate schedule to compensate the vanishing
of gradients and devise a grouping method to decrease quan-
tification error. Another potential problem ofMinMaxSketch
is the nonuniform distribution of bucket indexes, which is
incurred by the Min protocol in the insertion phase. We fur-
ther encode the bucket indexes with Huffman coding.

Empirically, the sketch-based algorithm is able to signif-
icantly reduce the communication cost. To the best of our
knowledge, this is the first effort that introduces a sketch
algorithm to optimize the performance of machine learning
tasks.

How to compress gradient keys?The second goal is to com-
press the gradient keys in the key-value pairs. Different from
gradient values that can bear a low-precision avenue, gradi-
ent keys are vulnerable to inaccuracy. Assuming we encode
a key but fail to decode it accurately due to the precision loss
during compression, we will unfortunately update a wrong
dimension of θ . Therefore, we need a lossless method to
compress gradient keys, otherwise we cannot guarantee the
correct convergence of optimization algorithms. Since the
key-value pairs are sorted by keys, meaning that the keys
are in ascending order, we propose to transform the keys to
delta keys. Specifically, each delta key stores the difference
of adjacent keys. Although a gradient key can be very large
for a high-dimensional model, the difference between two
neighboring keys is often in a small range.We then transform
each delta key to a binary representation, with the minimal
byte that is enough to hold it. According to our empirical
results, each delta key only consumes an average of about
1.27 bytes—3.2× smaller for a four-byte integer or 6.3× for
an eight-byte long-integer. In this binary transformation, a
prefix is created to indicate the number of bits consumed by
each gradient key. The above method uses a fixed-length pre-
fix. However, this is not ideal since the distribution of delta
keys is nonuniform that small delta keys appear more fre-
quently. In order to better fit this property, we propose an
adaptive approach that leverages a statistical cost model to
choose the best prefix scheme from the fixed-length candi-
date and the Huffman coding candidate.

Evaluation In order to systematically assess our proposed
methods, we implement a prototype on the top of Spark. On
a fifty-node real cluster of Tencent Inc., we use two large-
scale datasets to run a range of MLworkloads. Our proposed
framework SKCompress is 2−12× faster than the state-of-
the-art approaches.

123

J. Jiang et al.

Roadmap The rest of this paper is organized as follows. We
introduce the preliminary in Sect. 2. We give the overview of
SKCompress in Sect. 3, describe the compression of gradient
values in Sect. 4, and describe the compression of gradient
keys in Sect. 5. Section 6 analyzes the space cost. We show
the experimental results in Sect. 7, describe related work in
Sect. 8, and conclude this work in Sect. 9. We also present
the theoretical proof of SKCompress in “Appendix A.”

2 Preliminaries

In this section, we introduce some preliminary materials
related to the processed data and the sketch algorithms.

2.1 Definition of notations

To help the readers understand this work, we use the follow-
ing notations throughout the paper.

– W : number of workers.
– N : number of training instances.
– D: number of model dimensions.
– g: a gradient vector.
– d: number of nonzero dimensions in a gradient vector.
– (k j , v j): j th nonzero gradient key and gradient value in
a sparse gradient vector.

– m: size of a quantile sketch.
– q: number of quantile splits.
– s, t : row and column of MinMaxSketch. s denotes the

number of hash tables, and t denotes the number of bins
in a hash table.

– r : group number of MinMaxSketch.

2.2 Datamodel

TheML problem that we tackle can be formalized as follows.
Given a dataset {xi , yi }Ni=1 and a loss function f , we try to
find a model θ ∈ R

D that best predicts yi for each xi . For
this supervisedML problem, a common training avenue is to
use the first-order gradient optimization algorithm SGD. The
executions involve repeated calculations of the gradient gi =
∇ f (xi , yi , θ) over the loss function. Typically, gi ∈ R

D is a
sparse vector since the training instance xi is generally sparse.
In a distributed environment, since each worker proposes
gradient independently, we need to gather all the gradients
and update the trainedmodel.Assuming there areW workers,
our goal is to compress the gradients {gw}Ww=1 before sending
them. Once SGD finishes a pass over the entire dataset, we
say SGD has finished an epoch.

2.3 Quantile sketch

Consider a case of one billion comparable items, whose
values are unknown beforehand. An important scenario is
analyzing the distribution of item values in a single pass. A
brute-force sorting can provide the exact solution, but the
computation complexity is O(N log N) and the space com-
plexity is O(N). The expensive cost makes it infeasible for
a large volume of items.

Quantile sketch uses a small data structure to approximate
the exact distribution of item value in a single pass over the
items. The main component of quantile sketch is the quantile
summary which consists of a small number of points from
the original items [14]. Two major operations, merge and
prune, are defined for quantile summary. The merge oper-
ation combines two summaries into amerged summary,while
the prune operation reduces the number of summaries to
avoid exceeding the maximal size. Since there arem quantile
summaries in a quantile sketch, the computation complexity
is O(N) and the space complexity is O(m). In contrast to
the brute-force sorting, the total cost is reduced significantly.
Meanwhile, the existing quantile sketches also provide solid
error bounds. For example,YahooDataSketches [56] guaran-
tees 99% correctness whenm = 256. Once a quantile sketch
is built for these one billion items, the quantile summaries
are used to give approximate answers to any quantile query
q ∈ [0, 1]. For example, a query of 0.5 refers to the median
value of the items, and the quantile sketch returns an esti-
mated value for the item ranking 0.5 billion. With the same
manner, a query of 0.01 returns an estimated value for the
item ranking 10 million.

One classical quantile sketch is GK algorithm [14]. Some
works also design extensions of the GK algorithm [8,14,63].
GK algorithm maintains a summary data structure S(n, k) in
which there is an ordered sequence of k tuples in n previous
items. These tuples correspond to a subset of items seen so
far. For each stored item v in S, we maintain implicit bounds
on the minimum and the maximum possible rank of the item
v in total n items.

2.4 Frequency sketch

Another popular real case in a stream of data is the repeated
occurrences of items. Since it is impractical to store every
possible item due to the large value range of items, the
frequency sketch is proposed to estimate the frequency of
different values of items. Count-min sketch is a widely used
frequency sketch [10,57], as shown in Fig. 1. Essentially,
count-min sketch is similar to the principle of Bloom filter
[58]. The data structure is a two-dimensional array of s rows
and t columns, denoted by H . Each row is a t-bin hash table,
and associated with each row is a separate hash function
hi (−). In the insertion phase, an item x is processed as fol-

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

Fig. 1 An example of count-min sketch

lows: for each row i , we use the hash function to calculate a
column index hi (x), and increment the corresponding value
in H by one. In the query phase, the same hash procedure
obtains s candidates from H , and the minimum is chosen as
the final result.

Despite the query efficiency, the hash methods all face a
collision problem that two different items might be mapped
to the same hash bin by the hash function. How to address
the hash collision is therefore a vital issue. Count-min sketch
ignores hash collisions and increases the hash bin once it
is chosen. Obviously, the queried candidates are equal to or
larger than the true frequency q̃ due to the possibility of hash
collision. Therefore, the minimum operation of frequency
sketch chooses the one closest to q̃ .

3 The overview of SKCompress

We first walk through an overview of the framework in this
section and then describe each component individually in the
following sections.

Figure 2 illustrates the overview of our proposed frame-
work SKCompress. There are five major components in the
framework, i.e., quantile-bucket quantification,MinMaxSketch,
Huffman coding, dynamic delta-binary encoding, and adap-
tive prefix. The first three components together compress the
gradient values, while the fourth and the fifth components
together compress the gradient keys.

EncodephaseThe frameworkperforms encoding as follows:

1. Quantile sketch is used to generate candidate splits, with
which we use bucket sort to summarize the gradient val-
ues.

2. The gradient values are represented by the bucket
indexes.

3. The bucket indexes are inserted into the MinMaxSketch
by applying the hash functions on the keys.

Fig. 2 The framework overview of SKCompress

4. We use Huffman coding to encode the items in the
MinMaxSketch.

5. The keys are transformed into their increments, denoted
by delta keys in this paper.

6. We use binary encoding to encode the delta keys with
flexible bytes, instead of using fixed four-bytes. Each
encoded delta key has a fixed-length prefix indicating
the consumed bytes.

7. We further convert each fixed-length prefix to an adaptive
prefix.

Decode phase In the decode phase, the framework recovers
the compressed gradients by the following procedures:

1. The adaptive prefixes are recognized so that each delta
key can be identified.

2. The delta keys are recovered to the original gradient keys.

123

J. Jiang et al.

Fig. 3 An example of nonuniform gradient values

3. The items in MinMaxSketch are decoded according to
Huffman coding.

4. The recovered gradient keys are used to query the
MinMaxSketch.

5. The bucket index of each gradient value is obtained from
the MinMaxSketch.

6. The gradient value is recovered by choosing the bucket
value with the bucket index.

4 Compression of gradient values

In this section, we introduce the mechanism of compress-
ing gradient values, including three components—quantile-
bucket quantification, MinMaxSketch, and Huffman coding
for MinMaxSketch.

4.1 Quantile-bucket quantification

The component of quantile-bucket quantification compresses
the gradient values {v j }dj=1.

MotivationDifferent from the integer gradient keys, the gra-
dient values are floating-point numbers.Many existingworks
have shown that gradient optimization algorithms are capa-
ble of working properly in the presence of noises [32,38]. For
example, SGD calculates a gradient with only one training
instance, resulting in inevitable gradient noises due to noisy
data. Although SGD might oscillate for a while due to noisy
gradients, it can go back to the correct convergence trajectory
afterward [6].

Driven by the requirement of robustness against noises,
we ask can optimization algorithms converge with quan-
tified low-precision gradients? Intuitively, since SGD can
converge with random noises, low-precision gradients are
able to work as well. Compared with unpredictable noises,

Fig. 4 The module of quantile-bucket quantification

the quantification error is usually controllable and bounded
[1]. Therefore, SGD is likely to converge normally.

Quantification choices The current quantification methods
mostly adopt the uniform strategy in which the floating-point
numbers are linearly mapped to integers [62]. However, uni-
form quantification is ill-suited for gradients. Figure 3 is an
example of the distribution of gradient values. We train a
public dataset [25] with SGD and select the first generated
gradient. The x-axis refers to the gradient values, while the
y-axis refers to the count of gradient values falling into an
interval. In this example, the value range of the gradient val-
ues is [− 0.353, 0.004], but most of them are near zero. It
verifies that gradient values generally conform to a nonuni-
form distribution. A uniform quantification equally divides
the range of gradient values and cannot capture the nonuni-
form distribution of data. Since most gradient values are
close to zero, methods such as ZipML quantify them to zero.
Therefore, many gradient values are ignored, causing slower
convergence.

To address the defect of uniform quantification, we inves-
tigate the employment of quantile sketch to capture the data
distribution of gradient values. Briefly speaking, we equally
divide all the values into several parts, instead of equally
dividing the range of values. The proposed quantile-bucket
quantification consists of three steps.

Step 1: Quantile split We build a quantile sketch with the
gradient values and generate quantile splits, as shown in
Fig. 4.

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

1. We scan all the gradient values and insert them into a
quantile sketch. Here, we choose Yahoo DataSketches
[56], a state-of-the-art quantile sketch.

2. q quantiles are used to get candidate splits from the quan-
tile sketch. Detailed, we generate q averaged quantiles
{0, 1

q , 2
q , . . . ,

q−1
q }.

3. We use the generated quantiles and the maximal value as
candidate split values, denoted by {rank(0),
rank(1q), rank(2q), . . . , rank(1)}. Note that the number
of items whose values are between two sequential splits
is N

q , meaning that we divide items by the number rather
than the value. Each interval between two splits has the
same number of gradient values.

Step 2: Bucket sort Given quantile splits, we proceed to
quantify the gradient values with bucket sort.

1. We call each interval between two splits a bucket. The
smaller split is the lower threshold of the bucket, and the
larger split is the higher threshold.

2. Based on the bucket thresholds, each gradient value
belongs to one specific bucket. For instance, the value
of 0.21 in Fig. 4 is classified to the fourth bucket.

3. Each bucket is represented by the mean value, i.e., the
average of two splits.

4. Each gradient value is transformed into the correspond-
ingbucketmean.This operation introduces quantification
errors.

Step 3: Index encodeAlthough we quantify gradient values
with bucket mean values, the consumed space remains the
same. For the purpose of reducing space cost, we choose an
alternative that stores the bucket index. We encode the mean
value of a bucket as the bucket index. For example, after
quantifying 0.21 to the mean value of the fourth bucket, we
further encode it by the bucket index starting from zero, i.e.,
three for 0.21.

Step 4: Binary encodeGenerally, the number of buckets is a
small integer. We compress the bucket indexes by encoding
them to binary numbers. If q = 256, one byte is enough to
encode the bucket indexes. In this way, we reduce the space
taken from 8d bytes to d bytes. Besides, we need to transfer
the mean values of buckets in order to decode the gradient
values. Therefore, the total space cost is d + 8q bytes. Since
q � d in most cases, we can decrease the transferred data to
a large extent.

Proof of variance boundThe proposed quantification-based
method ineluctably incurs quantification variances. We sta-
tistically analyze the bound of variance in “Appendix A.1.”

Summary Through an in-depth anatomy of the existing
quantification methods, we find that they cannot capture

Fig. 5 MinMaxSketch. The insert phase uses a Min strategy, and the
query phase uses a Max strategy

the distribution property of gradients. We therefore inves-
tigate nonuniform quantification methods. By designing a
technique that combines quantile sketch and bucket sort, we
successfully encode gradient values to small binary numbers
and achieve self-adaption to data nonuniformity. The key-
value pair (k j , v j) is encoded to (k j , b(v j)) where b(v j)

denotes the binary bucket index. In practice, we find that
q = 256 is often enough to obtain comparable prediction
accuracy.

4.2 MinMaxSketch

The component of quantile-bucket quantification has com-
pressed gradient values with a compression rate close to
eight. We next study the possibility of going a step further.
The gradient keys need to be recovered precisely so that low-
precision techniques cannot be used. As a result, we focus
on the bucket index.

Motivation Since we have converted the gradient values
to bucket indexes, which are integers, we consider low-
precision methods designed for integers. Among the existing
works, frequency sketch is a classical probabilistic data struc-
ture that reveals powerful capability in processing a stream
of data [10]. However, the underlying scenario of frequency
sketch is totally different from our setting. Frequency sketch
aims at a set of items, each of whichmight appear repeatedly.
Frequency sketch tries to approximately guess the frequency
of an item with a relatively small space. In contrast, there is
no repeated gradient key in our targeted task and our goal is
to approximate each single bucket index.

123

J. Jiang et al.

If we use the additive strategy of frequency sketch, it is
nearly impossible to get a good result. Assuming that we add
a bucket index to the current hash bin, the hash bin might
be updated arbitrarily. Intuitively, hash bins ever collided
are magnified in an unpredictable manner. Therefore, most
decoded gradient values are much larger than the original
value. Amplified gradients then cause unstable convergence.
According to our empirical results, optimization methods
often easily get diverged with larger gradients.

Due to the problem described above, we need to design a
completely different data structure for our targeted scenario.
Although frequency sketch does not work, its multiple hash
strategy is useful in solving hash collisions. The same strat-
egy is also adopted in other methods such as Bloom filter.
Based on this principle, we propose a new sketch, namely
MinMaxSketch, in this section.

Insert phase To begin with, we scan all the items and insert
them into the sketch. Figure 5 illustrates how the insertion
works.

1. Each input item is composed of original key and the
encoded bucket index—(k j , b(v j)).

2. We use s hash functions to calculate the hash codes. In
Fig. 5, there are three hash functions, h1(−), h2(−), and
h3(−).

3. Once a hash bin is chosen in the i th hash table, we
compare the current value H(i, hi (k j)) and b(v j). If
H(i, hi (k j)) > b(v j), we replace the current value by
b(v j). Otherwise, we do not change the current value.

As the nameofMinMaxSketch implies, the symbol ofMin
refers to the choice of minimum bucket index in the insert
phase. The reason behind this design decision is to avoid
the increase in hash bin and therefore avoid the increase in
decoded gradients.

Query phase Once a MinMaxSketch is built, the next ques-
tion is how to query results from the sketch. In accordance
with the insert phase, the query phase operates as follows.

1. The input is a gradient key, denoted by k j . s hash func-
tions are applied to k j , and each hash function chooses
one hash bin from the hash table.

2. Given s candidates from different rows, we select the
maximal one as the final result. In Fig. 5, three candidates
are {0, 2, 2}, and we choose 2 as the result.

The choice ofmaximal candidates corresponds to theMax
symbol ofMinMaxSketch. Sincewe select theminimumcan-
didate in the insert phase, the choice of maximal candidate

in the query phase produces the one closest to the original
value.

Analysis As a type of probabilistic data structure,
MinMaxSketch and many other sketch algorithms suffer
from a problem, that is, the queried result is not guaranteed to
be exactly the same as the original value. Therefore, it is nec-
essary to analyze the queried performanceofMinMaxSketch.

Basically, there are two kinds of errors when query-
ing a sketch: overestimated error and underestimated error.
Overestimated error brings larger queried results, while
underestimated error brings smaller queried results.All exist-
ing frequency sketches either have both errors or only have
overestimated error [10]. That is to say, they all have over-
estimated error. Unfortunately, overestimated error brings
non-trivial degradation for our setting. As analyzed before, if
we query an overestimated bucket index from the sketch, the
decoded gradient value is generally amplified. The overesti-
mation of gradient values often gives rise to an unpredictable
and unstable convergence.

In contrast, MinMaxSketch introduces underestimated
error. In the insert phase, we choose the smaller value in
the presence of hash collisions. Therefore, the hash bin is
not larger than all related bucket indexes. Consequently,
the queried result is underestimated. The underestimation of
bucket index then generally incurs underestimated gradient
value.

As the readers might suspect, can optimization algorithms
converge with underestimated gradients? Theoretically, opti-
mization algorithms such as SGDmove toward the optimality
following the opposite direction of gradients. Obviously,
reducing the scale of gradients might slow down the con-
vergence rate somewhat, yet still on the correct convergence
track. On the contrary, an uncontrolled increase in the scale
of gradients might risk jumping over the optimality.

To sum up, MinMaxSketch might decrease the scale of
gradients, yet still guarantees the correct convergence. How-
ever, although MinMaxSketch makes sense intuitively and
theoretically, it cannot work empirically with this original
version. Next, we will discuss two major problems and
describe our solutions.

Problem 1: Reversed gradient Above, we state that
MinMaxSketch often provides decayed gradients. However,
this statement is not always true. Indeed, the bucket index is
decayed with MinMaxSketch. But the parsed gradient value
is uncertain as we need to query the bucket mean value with
the bucket index. We find that the sign of the decoded gradi-
ent value could be reversed. Figure 6 shows an example of
reversed gradients. Ten gradient values are put into five buck-
ets. Nevertheless, there are two cases where MinMaxSketch
produces reversed gradients.

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

Fig. 6 An example of reversed gradient. There are two cases.

– Case 1 The third bucket includes gradient values from
− 0.05 to 0.03. The mean of the bucket is − 0.01. On
this occasion, 0.01 is encoded to− 0.01. Therefore, even
if MinMaxSketch decodes the correct bucket index, it
reverses the sign of 0.01 anyway.

– Case 2 The other four buckets fortunately avoid the
first case as they exclude the value of zero. But,
MinMaxSketch might produce reversed gradients for
them too. For example, the value of 0.14 belongs to
the fifth bucket. However, if MinMaxSketch produces
a smaller bucket index, e.g., one in Fig. 6, the queried
value becomes −0.09.

Gradient optimization algorithms such as SGD are robust
to decayed gradients, yet vulnerable to reversed gradients.
With reversed gradients, they are likely to diverge.

Solution 1: Separation of positive/negative gradients The
reason of problem 1 is that we quantify positive and nega-
tive gradients together. To address this problem, we design
a mechanism that handles positive and negative gradients
independently.

1. For positive and negative gradients, we build two sepa-
rate quantile sketches and quantify them with separate
buckets. With this strategy, the first bucket for positive
gradients is closest to zero, while the last bucket for neg-
ative gradients is closest to zero.

2. Basedon the quantifiedgradient values,webuild one pos-
itive MinMaxSketch and one negative MinMaxSketch.

3. In the insert phase, in order to achieve the goal of decay-
ing gradients, we choose the bucket index closest to the
“minimum bucket.” Here, the “minimum bucket” refers
to the bucket having the minimum mean, i.e., the first
bucket for positive gradients and the last bucket for neg-
ative gradients.

Problem 2: Vanishing gradient As aforementioned, Min-
MaxSketch yields decayed gradients, which we call the

problem of vanishing gradient. Although the correct con-
vergence is not harmed, the convergence rate is inevitably
reduced due to reduced step in each SGD iteration.

Solution 2: Adaptive learning rate and grouped
MinMaxSketch We design two methods to compensate the
problem of vanishing gradient.

– Adaptive learning rate Due to the data skewness, dif-
ferent dimensions of the trained model converge at a
different speed. Adaptive learning rate methods such as
Adam and AMSGrad [27,44] are proposed to solve this
convergence imbalance by scheduling the learning rates
to be inversely proportional to the historical gradients.
Motivated by this, we introduce to solve the problem of
vanishing gradient via an adaptive learning rate method.
In “AppendixC,”we show that bothAdamandAMSGrad
can help SKCompress converge faster. Since Adam and
AMSGrad show similar convergence in our experiments,
we choose Adam as the optimizer of our method, which
has also been adopted by many research studies [28,34].

– Grouped MinMaxSketch According to our empirical
results, the introduction of adaptive learning rate can sig-
nificantly enhance the convergence rate. However, we
find that it cannot achieve the optimality. With the mech-
anism of MinMaxSketch, the difference between the
original bucket index and the decoded bucket index can
be as large as q, the number of quantile splits. When the
trainedmodel is near the optimality, the gradients are very
small themselves. The adaptive learning rate is unable to
fully compensate the decline of decoded bucket index.
To address this problem, we design a group strategy for
MinMaxSketch throughout the training.We divide all the
buckets into r groups and create one MinMaxSketch for
each of them. For example, if q = 256 and r = 8, we
divide the buckets into 8 groups—[0,32), [32,64), etc.
The maximal decoded error of bucket index is reduced
from q to q

r . And the error of decoded gradient is there-
fore reduced.

Proof of error boundWe also theoretically discuss the error
bound and correctness of MinMaxSketch. Due to the space
limitation, we present detailed proof in “Appendix A.2.”

Summary MinMaxSketch is designed to compress the
bucket index generated by the component of quantile-bucket
quantification. MinMaxSketch handles the disturbance of
hash collision through a min protocol in the insert phase
and a max protocol in the query phase. We further propose
techniques to address the reversal and decay of decoded gra-
dients.

123

J. Jiang et al.

Fig. 7 An example of Huffman coding for MinMaxSketch

4.3 Huffman coding for MinMaxSketch

Although MinMaxSketch has significantly compressed gra-
dient values, we proceed to use the technique of Huffman
coding to compress MinMaxSketch.

MotivationEach item inMinMaxSketch takes a fixed-length
space. In particular, we often use q = 256 meaning that each
item needs one byte. If the values of items are uniformly dis-
tributed, giving them a fixed length is convincing. However,
are items in MinMaxSketch uniformly distributed?

Since quantile sketch assures that each bucket contains
the same number of gradient values, the bucket indexes are
uniformly distributed before building MinMaxSketch. How-
ever, owing to the Min protocol in the insertion phase of
MinMaxSketch, the distribution of items changes and smaller
values occur more.With this nonuniform setting, the original
method is not ideal. We propose to use Huffman coding to
encode items in MinMaxSketch.

Step 1: Frequency of occurrence During the insertion
operation of MinMaxSketch, we summarize the occurrence
frequencies of all the items. Figure 7 showcases an example.
The frequencies of four items are 6, 3, 2, and 1, respectively.
The value range of item is [0,3] so that we use two bits to
encode them. For example, the original code of 1 is 0b01,
and that of 3 is 0b11. Note that since MinMaxSketch con-
sists of several rows, we can parallelize this process with
multi-threading.

Step 2: Build Huffman treeWe build the Huffman tree with
the frequencies of items. The construction algorithm uses a
priority queue where the item with the lowest frequency is

given the highest priority. The procedure is presented below:

1. Create a leaf node for each item and add it to the priority
queue.

2. While there is more than one node in the queue:

2-1. Remove the two nodes of highest priority (lowest fre-
quency) from the queue.

2-2. Create a new internal node with these two nodes as
children. The frequency of the new node is equal to
the sum of the two nodes’ frequencies.

2-3. Add the new node to the queue.

3. The remaining node is the root node and the tree is com-
plete.

Step 3: Generate Huffman code Once the Huffman tree
is set, we assign different bits to different branches, i.e, 0
to the left branch and 1 to the right branch. Then, we can
directly obtain the Huffman code of each item according to
their locations in the tree. Specifically, the example in Fig. 7
encodes item 0 as 0b0, item 1 as 0b10, item 2 as 0b110, and
item 3 as 0b111.

Summary As shown in Fig. 7, the original space cost of
MinMaxSketch is 24 bits, while the space cost after Huff-
man coding is 21 bits, bringing a 12.5% improvement. With
more small items, the performance improvementwill bemore
obvious.

5 Compression of gradient keys

In this section, we introduce the mechanism of compress-
ing gradient keys, including two components—delta-binary
encoding and adaptive prefix.

5.1 Delta-binary encoding

The above three components emphasize the compression of
gradient values. Next, we introduce the component of delta-
binary encoding, which compresses the gradient keys in a
gradient consisting of key-value pairs {k j , v j }dj=1.

Motivation For floating-point numbers and integer num-
bers, we can use low-precision compression methods if they
can bear a certain precision loss. However, the integer gra-
dient keys are unable to tolerate errors. Assuming a case
that we compress a key but cannot recover it accurately,
a wrong dimension of the trained model will be updated.
This phenomenon will cause unpredictable convergence and
divergence even worse. Therefore, we must design a lossless
compression method for the gradient keys.

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

Fig. 8 An example of delta-binary encoding

Through an analysis of the data distribution of gradient
keys, we find that they have three characteristics. First, the
keys are non-repetitive. Second, the keys are ordered in an
ascending order. Third, although the keys can be very large in
many high-dimensional applications, the difference between
two neighboring keys is much smaller. Motivated by this
intuition, we propose to only store the increment of keys.
Our method is composed of two major steps, as shown in
Fig. 8 and introduced below.

Step 1: Delta encoding The gradient keys are stored in an
array.We scan the array from the end to the start and calculate
the difference between two adjacent keys. Afterward, we get
the increments of keys, which we call the delta keys.

Step 2: Binary encoding Through delta encoding, it is obvi-
ous that the delta keys are much smaller than the original
keys. If we store the delta keys in the format of integers or
long-integers, then the compression is meaningless because
the consumedmemory space and communication cost remain
the same.

To solve this problem, we assign different spaces to dif-
ferent delta keys and encode them in the binary format.
A threshold module receives each delta key and outputs
the least number of bytes needed to hold it. Specifi-
cally, one byte can handle a range of [0, 255], two bytes
[256, 65535], three bytes [65536, 16777215], four bytes
[16777216, 4294967295]. The number of required bytes is
encoded to a binary number, called the prefix. For exam-
ple, the prefix of one byte is 0b00, that of two bytes is 0b01,
and so forth. Finally, the delta keys are encoded into binary
numbers with byte prefixes.

Note that, there are several existing methods that can be
used to compress integers, such as run-length encode (RLE)
andHuffman coding.However, RLEandHuffman coding are
typically used to compress a data sequence in which a data
value might occur consecutively. They need to store every

gradient keywithout compressing and introduce an extra data
structure. Therefore, they are useless for non-repetitive gra-
dient keys.

Summary In order to compress gradient keys without preci-
sion loss, we store the increment of keys and use a threshold
mechanism to encode them into the binary format. The key-
value gradient pair (k j , v j) is transformed into (Δk j , v j)

where Δk j denotes the binary incremental key. As we will
theoretically analyze in “Appendix A.3” and evaluate in the
experiment, the average byte needed by each key is below
1.5 bytes.

5.2 Adaptive prefix for delta keys

Above,we describe delta-binary encoding,which uses binary
representation to encode eachdelta key according to its range.
Basically, this method divides the range of delta key evenly
and generates several intervals. With the thresholds of these
intervals,we decode each delta keywith a different number of
intervals. In this way, we can use fewer bytes for smaller delta
keys and therefore save space. To help the decoding of delta
key, we use a prefix to indicate the number of intervals
taken by each delta key. The prefix uses a fixed strategy that
each prefix consumes the same number of bits. However,
since the distribution of delta keys is unknown beforehand,
can this fixed prefix adapts to the distribution?

Motivation To understand this problem, we conduct exper-
iments to assess the distribution of delta keys with a range
of datasets. We find that the distribution of delta keys is not
always uniform. In many cases, small delta keys occur more
frequently, and large gradient keys occur less. This is unsur-
prising since relevant features are often closer in the feature
vector. They are likely to appear together andyield small delta
keys. In order to deal with this nonuniform distribution, we
revisit the fixed-length prefix and possible alternatives.

Briefly speaking, our goal is to divide an integer into m
intervals, where m ∈ {2, 4, 8, 16} typically and assign an
appropriate number of intervals to each delta key. Themethod
of delta-binary encoding divides the value range of an integer
evenly, so that each interval contains b = 32

m bits. Whenm =
8, for instance, one interval can handle a range of [0, 15], two
intervals [16, 255], etc. Specifically, the method proposed in
Sect. 5.1 chooses m = 4 so that the size of each interval is
actually a byte.

After encoding the delta keys with different intervals, the
next step is building a prefix array that indicates the number of
intervals. The method proposed in Sect. 5.1 uses m = 4, and
each prefix is two bits. The fixed-length prefix cannot adapt
to the nonuniform distribution of delta keys. Intuitively, if the
prefix module can adapt to the distribution of delta keys and
use smaller space for more frequent items, the space cost can
be reduced.

123

J. Jiang et al.

Fig. 9 Two possible schemes for delta key encoding

Two schemes To indicate the number of required intervals
for each delta key, we consider two schemes: (i) using logm
bits for each interval; or (ii) using Huffman coding accord-
ing to the frequency of intervals. Note that the first scheme
is actually the fixed-length prefix proposed in Sect. 5.1. A
prefix with logm bits can represent a range of [0,m−1] and
therefore is enough to encode m intervals. It is obvious that
these two schemes fit different scenarios. If the features of the
training data occur randomly, the distribution of delta keys is
close to a uniform distribution. In this case, the first scheme
works well. Nevertheless, in many cases, the distribution of
features is not uniform. In this case, the second scheme is bet-
ter since more frequent intervals are represented with fewer
bits.

We showcase two schemes in Fig. 9. The range of an inte-
ger, which is 32 bits, is divided into m = 8 intervals so that
each interval contains b = 4 bits. One interval can encode
[0.15], two intervals [16,255], and three intervals [256, 4096].
The delta keys are transformed according to this rule, and the
size is 14 intervals, i.e., 56 bits. Once the binary delta keys
are set, we next calculate the prefix array. If we choose the
first scheme to calculate the prefix, each prefix consumes
log 8 = 3 bits, hence the size of the prefix array is 24 bits.
If we choose the second scheme, the Huffman code is gener-
ated for each interval. Using Huffman coding, the space cost
is reduced from 24 bits to 14 bits, yielding an improvement
of 42%.

The choice of optimal scheme In our method, the choice of
m and the choice of prefix scheme can be decided on-the-fly

by scanning the delta keys for only one pass. The procedure
is presented as follows.

1. For each delta key Δk j , we find the index k such that
2k ≤ Δk j < 2k+1. Then, k + 1 is the minimal number
of bits required to represent Δk j . The occurrences of k
are recorded in an array occur31k=0.

2. We enumerate all the possible values ofm ∈ {2, 4, 8, 16}
over occur and calculate the number of intervals needed
to encode each delta key.

3. With the number of intervals, we can accurately calcu-
late the number of bits taken by each scheme. From all
the candidates, we can easily select the optimal choice,
including the encoding scheme and the value of m.

Summary With the adaptive prefix and the deterministic
selectionmechanism, the optimal strategy is obtained accord-
ing to the space cost. And the computation complexity is
linear to the number of delta keys.

6 Analysis of space cost

Combining the above components, we get a unified frame-
work SKCompress. In this section, we explicitly analyze the
space cost of our methods.

– Quantile-bucket quantification The mean values of
buckets need to be transferred by the network. The size
is 8q bytes. Generally, q is a small integer.

– MinMaxSketch We build r grouped sketches. The size
of each individual MinMaxSketch is s×t

r ×⌈

log256 q
⌉ =

s×t
r × ⌈ 1

8 log2 q
⌉

. The total size of MinMaxSketch is
s × t × ⌈ 1

8 log2 q
⌉

.
– Delta-binary encoding As we will discuss in
“Appendix A.3,” the expected bytes taken for each delta
key is

⌈ 1
8 log2

r D
d

⌉

. The byte flag needs 1
4 byte per key.

In practice, we find that the average size for each key is
1.27 bytes approximately.

– Huffman coding and adaptive prefixWe use Huffman
coding to compress MinMaxSketch. Similarly, the adap-
tive prefix proposed in Sect. 5.2 also contains Huffman
coding. Since the effect of Huffman coding is affected
by the distribution of items, the compression ratio is not
deterministic. It is hence impossible to give a certain
number beforehand. However, the introduction of Huff-
man coding and adaptive prefix at least brings no extra
space. Aswewill show in Sect. 7.2, these two approaches
make the system 1.2×faster.

Summary To sum up, the total space cost of our method is at
most d × (

⌈ 1
8 log2

r D
d

⌉ + 1
4) + 8q + s × t × ⌈ 1

8 log2 q
⌉

.

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

Compared with the original size 12d, we can save a lot
of communication cost by choosing appropriate hyper-
parameters.

7 Experiments

We validate the effectiveness and efficiency of our proposed
methods by conducting extensive experiments.

7.1 Experiment setting

Implementation We implement a prototype on Spark. The
prototype is compiled with Java 8 and Scala 2.11.7. There
are two types of nodes in Spark, the driver and the execu-
tor. The training dataset is partitioned over executors. Each
executor reads the subset and calculates gradients. The driver
aggregates gradients from the executors and broadcasts the
aggregated gradients to the executors. Specifically, the driver
first (1) decodes each encoded gradient from each executor
upon receiving, then (2) sums over the decoded gradients,
and finally (3) encodes the summed gradient and broadcasts
the encoded gradient to all executors. In practice, we use the
aggregate API in Spark to implement such customized
all-reduce operation. This process iterates until convergence.
Note that there are other communication patterns, such
as parameter-server, all-gather, and reduce-scatter. But the
study of communication approaches is orthogonal to our
research goal.1

Clusters We use two clusters in our experiments. Cluster-1
is a ten-node cluster in our lab. Each machine is equipped
with 32 GB RAM, 4 cores, and 1-Gbps Ethernet. We use this
cluster to assess the effectiveness of our proposed methods.
Cluster-2 is a 300-node productive cluster in Tencent Inc.
In this large-scale cluster, each machine is equipped with 64
GB RAM, 24 cores, and 10-Gbps Ethernet. We compare the
end-to-end performance of three competitors inCluster-2. As
shared by many users in an industrial environment, Cluster-2
is governed by Yarn and has a constraint of 8 GB memory
per node for each task.

Datasets As shown in Table 1, we use three datasets in our
experiments. The first dataset KDD10 is a public dataset
published by KDD CUP 2010 [25], consisting of 19 mil-
lion instances and 29 million features. The second dataset
KDD12 is the next generation of KDD10 [26], consisting of

1 Gradient compression can bring larger speedup for all-reduce systems
than parameter-server systems, owing to the single bottleneck problem
of the driver node. Parameter-sever systems accelerate communication
by using more machines and larger bandwidth to aggregate the gradi-
ents. Following the setting of previous works on gradient compression,
ourwork tries to compress gradients in all-reduce systemswithout using
more machines.

Table 1 The information of evaluated datasets, including the size, the
number of instances, and the number of features

Dataset Size # Instance # Features

KDD10 5 GB 19 M 29 M

KDD12 22 GB 149 M 54 M

CTR 100 GB 300 M 58 M

149 million instances and 54 million features. The task is
predicting whether a user will follow an item recommended
to the user in a social networking site. Items can be persons,
organizations, or groups. The third dataset CTR is a pro-
prietary dataset of Tencent Inc. CTR is used to predict the
click-through-rate of advertisements.

Machine learning models For statistical models, we choose
three popularmachine learningmodels—�2-regularized logis-
tic regression (LR), support vector machine (SVM), and
linear regression (linear). Their loss functions are formalized
in Table 2.

We train three ML models with Adam SGD, which is
the most popular choice of relevant works [27]. Adam SGD
stores a decaying average of past gradients and decaying
average of squared gradients:

mt = β1mt−1 + (1 − β1)gt , vt = β2vt−1 + (1 − β2)g
2
t

where β1 and β2 denote two hyper-parameters close to 1.
Then, m and v are used to update the trained model: θt+1 =
θt − η√

vt+ε
mt .

Baselines We compare SKCompress with two competitors:
Adam SGD [27] and ZipML [62]. Adam SGD is the most
widely used first-order gradient optimization recently. It
combines the advantages of momentum [40,43] and adap-
tive learning rate [13,36,60]. It hence automatically adapts
to both the slope of the objective function and the importance
of gradient dimensions. ZipML designs a fixed-point quan-
tification method to compress gradient values to integers.
It has shown powerful performance on a range of machine
learning algorithms. Note that the Adam strategy is applied
to all the baselines for the purpose of fairness.

We compare SKCompress with five competitors: Adam
SGD [27], ZipML [62], DGC [35], QSGD [1], and TernGrad
[54].

1. Adam SGD is the most widely used first-order gradient
optimizationmethod recently. It combines the advantages
of momentum [40,43] and adaptive learning rate [13,36,
44,60].
Note that the adaptive strategy of Adam is applied to all
the baselines for the purpose of fairness, and the Adam
we implement communicates with sparse gradients.

123

J. Jiang et al.

Table 2 The evaluated ML models, including logistic regression, support vector machine, and linear regression

Machine learning model Loss function Gradient

Logistic regression f (x, y, θ) = ∑N
i=1 log(1 + exp(−yi θTxi)) + λ

2 ||θ ||2 ∂ f
∂θ

= ∑N
i=1 − yi

1+exp(yi θTxi)
xi + λθ

Support vector machine f (x, y, θ) = ∑N
i=1 max(0, 1 − yi θTxi) + λ

2 ||θ ||2 ∂ f
∂θ

= ∑N
i=1 −yi xi I{yi θTxi < 1} + λθ

Linear regression f (x, y, θ) = ∑N
i=1

1
2 (yi − θTxi)2 + λ

2 ||θ ||2 ∂ f
∂θ

= ∑N
i=1 −(yi − θTxi)xi + λθ

Labels are stored as −1 and 1. I{·} is the indicator function

2. ZipML designs a fixed-point quantification method to
compress gradient values to integers. It has shown pow-
erful performance on a range of linear models.

3. DGCdrops up to99.9%gradients to reduce the communi-
cation and proposes a series of optimizations to amortize
the accuracy loss.

4. QSGDuses the l2-norm of the gradient to quantize gradi-
ent values to several bits. Besides, a stochastic rounding
strategy is proposed to introduce randomness.

5. TernGrad quantizes gradient values to ternary levels—
{−1,0,1}. Similar as QSGD, TernGrad also adopts a
stochastic rounding method.

Metrics To measure the performance of SKCompress and
other competitors, we follow prior art and measure the
average run time per epoch and the loss function with
respect to the run time. We do not count the time used
for data loading and result outputting for all systems
[61].

Protocol The input dataset is partitioned into two subsets—
75% as the training dataset and 25% as the test dataset. We
train the ML models on the train dataset and assess the qual-
ity of the trained model on the test dataset. To achieve a
trade-off between convergence robustness and convergence
speed, we adopt a popular trick of SGD that uses a batch
of instances instead of only one instance [5]. Better, in a
distributed environment, mini-batch SGD can decrease the
synchronization frequency and save a lot of communication
cost. Following the choice of [17], we set the batch size as
10% of the size of the training dataset. As the authors of
Adam SGD [27] suggested, we choose 0.9 for β1, 0.999
for β2, and 10−8 for ε. We use a grid search to tune the
optimal learning rate η. Specifically, we tune the optimal
learning rate with Adam SGD and use this value for all the
candidates. The regularization coefficient λ is set to be 0.01.
We find that ZipML converges badly if we set its quantified
size to be one byte, thus we set it to be two bytes via fine-
tuning. There are a few hyper-parameters in SKCompress.
The size of quantile sketch is 128 by default. The size of
MinMaxSketch is 2× d

5 . We set the sparsity level of DGC as
90%, and choose the compression size of QSGD as one byte.
We also compare different choices of compression size for

QSGD via a tuning experiment. The detailed results are in
“Appendix B.”

7.2 Efficiency of proposedmethods

SKCompress consists of five components. In this section, we
train the KDD10 dataset on ten executors of Cluster-1 to val-
idate the efficiency of our proposed components. We assign
5 GB memory for the driver and each executor. We begin
with the basic method Adam and consolidate our proposed
components gradually. The results are presented in Fig. 10.

Run time According to the results in Fig. 10a, our proposed
methods can significantly accelerate the execution of three
different ML algorithms. Compared with Adam, the com-
ponent of delta-binary encoding alone improves the system
performance by up to 2.3×. The addition of quantile-bucket
quantification further accelerates the speed by up to 4.4×.
The MinMaxSketch alone achieves at most 4.3× improve-
ments. Finally, the Huffman coding and adaptive prefix
together make the system 1.2× faster. The results demon-
strate that our proposed methods are efficient in reducing the
data movement through the network.

Breakdown of run time To better illustrate the effective-
ness of compression, we decouple the run time of Adam into
computation and communication, as presented inTable 3. For
all the three models, the majority of run time, more than 90
percentages, is spent on communication. This is unsurpris-
ing because the computation complexity of linear models
is not large, while the communication involves several time-
consuming stages, including serialization, networkbuffering,
network transmission, and deserialization. By significantly
squeezing the communication, our proposed compression
method can enhance the overall speed.

Message size and compression rate The main advantage
of compression is reducing the size of messages. Figure 10b
presents the average message size and compression rate dur-
ing the execution. Due to the space constraint, we present
the result of LR, and the results of other algorithms are sim-
ilar. Compared with the uncompressed gradient message,
our method decreases the message size from 35.58 to 3.55
MB—a 10× compression rate. As the reader might suspect,
sparsification-based methods can obtain a larger compres-

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

(a) Run time per epoch

(b)Message size and compression rate

(c) CPU overhead

(d) Impact of batch size and sparsity

Fig. 10 Efficiency of proposedmethods. The evaluatedmetric is the run
time per epoch. Adam refers to the basic method without our methods.
Key refers to the component of delta-binary encoding. Quan refers to
the component of quantile-bucket quantification. MinMax refers to the
component of MinMaxSketch. Huffman refers to the component of
Huffman coding. AdaPre refers to the component of adaptive prefix

sion ratio. For instance,DGCreports a 270× improvement on
deep neural networks. However, the ultimate goal of gradient
compression is the overall convergence rate rather than the
compression ratio. If a compression method cannot increase
the convergence rate ofMLmodels, the compression effort is
in vain. As we will illustrate and discuss in the experiments,
sparsification-based methods such as DGC are not suited for
linear models although they work well for deep neural net-
works.

CPU overhead To evaluate the computation overhead
brought by compression, we conduct an experiment and
present the result in Fig. 10c. Unsurprisingly, our method

Table 3 Time breakdown of Adam (KDD10, per epoch in seconds)

Model Run time Computation Communication

LR 243 6.3 (2.6%) 236.7 (97.4%)

SVM 227 6.6 (2.9%) 220.4 (97.1%)

Linear 261 4.2 (1.9%) 256.8 (98.1%)

introduces 31% CPU usage in average. The peak CPU usage
is not obviously influenced.

Impact of batch size and sparsity Since our method com-
presses sparse gradients, it raises a question that how the data
sparsity affects the performance. In our setting, the sparsity
of a gradient is influenced by the batch size. Therefore, we
change the sparsity by changing the ratio of the batch size.
The default ratio is 10% of the dataset. As Fig. 10d illus-
trates, the sparsity of gradient decreases from 10 to 1.77%
when we decrease the ratio from 10 to 1%. Meanwhile, a
smaller batch size incurs more frequent communication and
therefore increases the run time per epoch from 33 to 75 s.

According to the analysis in Sect. 6, the communica-
tion cost of delta-binary encoding is directly affected by
the data sparsity. Therefore, we record the performance of
delta-binary encoding against the variation of data sparsity in
Fig. 10d. The average size taken by each gradient key is about
1.25 bytes when the sparsity is 10%, and the size is increased
to about 1.27 bytes as the sparsity approaches zero. Com-
pared with the original 4 bytes, the delta-binary encoding
achieves significant compression performance. This result is
consistent with the theoretical analysis in Sect. 6.

7.3 End-to-end performance

In this section, we compare the end-to-end performance of
SKCompress, Adam, ZipML, DGC, QSGD, and TernGrad
on Cluster-2. We decouple the end-to-end performance as
the run time per epoch and the loss in terms of run time. The
average run time per epoch of KDD12 and CTR is presented
in Fig. 11. The loss regarding run time is presented in Fig. 12.

7.3.1 Results on KDD12 dataset

For the KDD12 dataset, we use ten executors to run the
combinations of three compression methods and three ML
algorithms. We assign 5 GB memory for the driver and each
executor. Figure 11a shows the average run time per epoch.
Figure 12 reports the convergence rate which is measured by
the loss function in terms of run time.

Logistic regression As shown in Fig. 11a, SKCompress runs
much faster than Adam and three quantization approaches—
ZipML, QSGD, and TernGrad. Adam needs to communicate
the original gradients without any compression. Therefore,

123

J. Jiang et al.

(a)KDD12 Dataset (b)CTR Dataset

Fig. 11 End-to-end system comparison (run time). The evaluated met-
ric is the run time per epoch. Run time is in seconds. LR refers to logistic
regression. SVM refers to support vector machine. Linear refers to lin-

ear regression. We take three runs and report the average (standard
deviation for all numbers < 10% of the mean)

Adam is the slowest. ZipML,QSGD, andTernGrad are 3.7×,
2.3×, and 3× faster than Adam by compressing the gra-
dient values. However, ZipML, QSGD, and TernGrad are
unable to compress the gradient keys. SKCompress only
needs 89 s to process an epoch, bringing 11.7×, 3.1×,
5.2×, 3.8× improvements over four competitors. The per-
formance improvements come from the reduction of gradient
data transferred through the network. And the improvement
will become more significant with the increase in executors
because more executors inevitably yield more communi-
cations. DGC performs similarly as SKCompress, because
DGC drops 90% of the gradients at the expense of sort-
ing gradient values. Although Cluster-2 is equipped with
faster network, the network is more congested than Cluster-
1 since Cluster-2 serves many applications simultaneously.
Therefore, SKCompress runs slower on Cluster-2 than on
Cluster-1. It demonstrates that compressing the commu-
nicated messages is of great value even in a high-speed
environment.

For the convergence rate, we can see in Fig. 12a that
ZipML converges much faster than Adam. QSGD achieves
similar performance as ZipML while TernGrad cannot con-
verge. The reason is that TernGrad quantizes a gradient to
only three levels and recovers the gradient using the max-
imal absolute value in the gradient. This operation could
largely increase most original gradient values, causing large
quantization error and unpredictable convergence. Maybe
TernGrad is suitable for deep learningmodels where gradient
noise can help jump from the local optimal, it is not suit-
able for convex linear models. In contrast, QSGD is much
better by using more quantization levels. DGC converges
the fastest at the beginning but converges very slow after-
ward. As we will analyze in Sect. 7.3.2, the datasets trained
by linear models are often skewed. DGC might drop the
gradients of some features throughout the training process,
even though these features can provide useful information.
Overall, SKCompress beats the competitors significantly and

achieves the best trade-off between efficiency and conver-
gence rate.

Support vector machine The result of support vector
machine is similar to that of logistic regression. Adam
is the slowest, followed by three quantization methods.
SKCompress and DGC only take 114 and 144 s—10.9×
and 8.6× faster than Adam. Meanwhile, as can be seen in
Fig. 12c, the convergence rate of SKCompress is signifi-
cantly faster than the baselines. We can find an interesting
phenomenon in Fig. 12c, that is, SKCompress reveals its
advantages more clearly than ZipML as time goes by. As
explained above, ZipML quantifies many small gradients
to zero. As the training algorithm proceeds, the gradients
become even smaller since themodel is approaching the opti-
mal solution. As a result, the convergence of ZipMLbecomes
slower since more gradients are quantified to zero.

Linear regression For linear regression, Adam takes
903 seconds per epoch, while SKCompress only needs 88
seconds. As Fig. 12e shows, ZipML, DGC, QSGD, and
SKCompress are significantly faster than Adam. The conver-
gence of DGC is not stable, especially when it approaches
the optimum, since the sparsification strategy makes sparse
gradients even sparser and drops many useful values. Tern-
Grad cannot converge owing to its aggressive quantization
approach.

7.3.2 Results on CTR dataset

For the larger dataset CTR, we use 50 executors on Cluster-
2. We assign 8 GB memory for the driver and each executor
due to the memory limitation. The run time statistics and
convergence curves are presented in Figs. 11b and 12.

Logistic regression On this larger dataset, Adam still runs
the slowest. The speed ofZipML,DGC, andQSGD is similar.
SKCompress is 4.1× and 2.8× faster thanAdamandZipML.
Note that the speedup of SKCompress on CTR is smaller

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

(a) Logistic Regression, KDD12 (b)Logistic Regression, CTR

(c)Support Vector Machine, KDD12 (d)Support Vector Machine, CTR

(e)Linear Regression, KDD12 (f)Linear Regression, CTR

Fig. 12 End-to-end system comparison (convergence rate). The evaluated metric is the testing loss in terms of run time. Run time is in seconds.
We take three runs and report the average (standard deviation for all numbers < 10% of the mean)

than that on KDD12 since KDD12 is sparser than CTR. As
each instance of CTR generates more nonzero gradient pairs,
the gradient density is higher, resulting in higher computa-
tion cost. As a consequence, the performance improvement
brought by the reduction of communication cost is not as
large as that on KDD12 dataset. The performance of DGC
is much worse on this dataset than on KDD12 owing to the
same reason. Since the gradient of CTR has more nonzero
gradient pairs, the extra computation cost brought by sorting
operation amortizes the benefit of communication reduction.
Although ZipML runs faster than Adam, its convergence rate
is worse. This phenomenon verifies that the uniform quan-

tification of ZipML is unable to work on all datasets due
to distinct distribution of gradients. TernGrad cannot con-
verge on this dataset owing to the same reason described in
Sect. 7.3.1. In contrast, the convergence rate of SKCompress
and QSGD is much better. DGC cannot converge on this
dataset as well. According to our observation, this is caused
by the data skewofCTRdataset inwhich some features occur
frequently while some others occur rarely. The less frequent
features often contain more discriminating information, but
DGC probably drops these features with a batch training set-
ting. Therefore, the convergence rate of DGC is very slow.
This phenomenon shows that DGC cannot work well on all

123

J. Jiang et al.

Fig. 13 Comparison with a single node system. (KDD10, LR)

datasets, while SKCompress reveals the ability of general-
ization across different datasets.

Support vector machine According to the results in
Fig. 11b, SKCompress brings 4.9× and 4.1× improvements
than Adam and ZipML. Other three baselines run in similar
speed. Compared with logistic regression and linear regres-
sion, support vector machine is easier to get converged on
this dataset. Therefore, as Fig. 12d shows, the convergence
rates of ZipML and QSGD are faster than Adam due to
faster communication. SKCompress outperforms them sig-
nificantly and is able to converge to a tolerance in a shorter
time. Similar to the above results, DGC and TernGrad cannot
converge.

Linear regression As illustrated in Fig. 11b, SKCompress
takes 29 s to train an epoch, while Adam and ZipML need 97
and 78 s. Figure 12f shows the convergence rates. ZipML
is slower than Adam, caused by the defect of uniform
quantification. Overall, SKCompress and QSGD perform
the best and are able to converge to the same loss as
Adam.
Convergence of QSGD The convergence of QSGD can
be similar to SKCompress on LR and linear regression
(e.g., Fig. 12b, f), while significantly worse on SVM (e.g.
Fig. 12d). This is caused by the property of the algorithm.
As shown in Table 2, the gradient of each wrongly classi-
fied instance in SVM is yi xi , even if the actual difference
between the prediction and the label is small. As a result,
the gradient of SVM has a large value range. With the uni-
form quantization strategy adopted in QSGD, such a large
value range inevitably leads to high quantization errors and
therefore slows down the convergence. In contrast, for LR
and linear regression, the gradient shrinks to zero when
the prediction is close to label. The value range of gra-
dients is smaller than SVM, especially when the model
approaches the optimum. Therefore, QSGD performs better
on LR and linear regression. The results verify that QSGD’s
uniform quantization cannot generalize to diverse scenar-
ios.

7.3.3 Comparison with a single node system

To give a reference point of performance, we compare
SKCompress with SkLearn, a state-of-the-art single node
system on Cluster-1. Due to the memory constraint, we
choose KDD10 dataset. SkLearn is executed on a single
machine, while SKCompress is executed on five and ten
machines, denoted by SKCompress-5 and SKCompress-10.
The other settings are the same as Sect. 7.2. Figure 13
shows the run time of twenty epochs. SKCompress-5 is 2.5×,
3.1×, and 2.3× faster than SkLearn in training three algo-
rithms. SKCompress-10 further brings 1.2×, 1.6×, and 1.6×
speedup compared with SKCompress-5.

Although the distribution of SKCompress brings nonneg-
ligible communication overhead, it still outperformsSkLearn
as a result of computation speedup, message compression,
and faster data loading. For example, SkLearn consumes
more than ten minutes to load the dataset owing to slow
disk I/O. Using five machines reduces the time of data load-
ing to two minutes. For a small dataset, a single machine is
enough in many cases. However, for a large dataset, a single
machine is often impracticable owing to expensive data load-
ing, insufficient memory capacity, and limited computation
power.

7.4 Model accuracy

Since MinMaxSketch produces underestimated gradients,
there is a doubt whether our method can correctly converge.
We report the convergence performance overKDD12dataset.
The experiment settings are the same as Sect. 7.3. An algo-
rithm is considered as converged if the variation of loss is
less than 1% within five epochs.

As illustrated in Table 4, Adam, ZipML, QSGD, and
SKCompress can converge to almost the same model qual-
ity. However, SKCompress converges much faster than the
other methods. According to our analysis, MinMaxSketch
causes underestimated gradients, while it does not change
the directions of all the gradient dimensions. If a specific
dimension of a gradient is always underestimated, its conver-
gencewill be extremely slow.However, the dynamic learning
rate and the grouping strategy in Sect. 4.2 solve this prob-
lem by giving larger learning rate for a slow dimension and
reducing quantification error. TernGrad cannot converge to
the optimal within one day since it does not fit sparse linear
models.

7.5 Scalability evaluation

Next, we assess the scalability of three methods. We change
the number of used workers (executors) and study how the
cluster size affects the performance. The results are presented
in Fig. 14. Due to the space constraint, we only provide

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

Table 4 Model accuracy
(KDD12)

SketchML Adam ZipML DGC QSGD TernGrad

LR 0.6885/6.7 h 0.6885/23 h 0.6887/11 h 0.6910/4 h 0.6885/8.1 h 0.69314/24 h

SVM 0.9784/4.1 h 0.9785/23 h 0.9788/10 h 0.9786/4 h 0.9784/9 h 1.0001/24 h

Linear 0.2111/3.8 h 0.2109/22 h 0.2111/9.4 h 0.2112/6.5 h 0.2110/5.8 h 0.2224/24 h

The metric is minimal loss against converged time in hours, separated by symbol “/”

(a) Logistic Regression, KDD12 (b) Support Vector Machine, KDD12 (c) Linear Regression, KDD12

Fig. 14 Scalability evaluation. The evaluated metric is the average run time per epoch in terms of the number of workers (executors). Run time is
in seconds

the results on the KDD12 dataset here. The results on the
CTR dataset are similar. We increase the number of workers
(executors) from five to ten, then to fifty, and evaluate the
average run time taken by each epoch.

Logistic regression As shown in Fig. 14a, the performance
of all the methods increases when we increase the number
of workers from five to ten, i.e., SKCompress becomes 1.8×
faster, Adam 1.8×, ZipML 1.3×, DGC 1.9×, QSGD 1.3×,
and TernGrad 1.3×.

Afterward,we use fiftyworkers and find thatAdam suffers
a performance deterioration. The reason is that the increase in
communication cost overwhelms the benefit of computation
cost. SKCompress, to the contrary, achieves 1.6× improve-
ments. Ideally, the performance speedup is five when we
use fifty workers instead of ten. To understand this concern,
we show a breakdown of per-batch run time in Table 5. We
decouple the total run time into four parts—gradient compu-
tation, SKCompress encoding, SKCompress decoding, and
communication.

– Gradient computation. The systemneeds 0.9 s to compute
a gradient with fifty workers, 4× faster than that with ten
workers.

– SKCompress encoding.With more workers, each worker
processes fewer instances. Therefore, the gradient before
aggregation is sparser, and SKCompress takes less time
to encode the gradient. The improvement of 2.2× is rea-
sonable since the gradient sparsity increases about 2×
according to our observation.2

2 The sparsity of the aggregated gradient remains unchanged since the
total batch size of all workers is the same.

– SKCompress decoding. Different from the encoding
phase, the decoding phase includes merging multiple
sketches and queries gradient values from the merged
sketch. Therefore, using fifty workers increases the time
cost by 1.26×.

– Communication.When usingmoreworkers, eachworker
processes fewer instances in a batch, resulting in a higher
gradient sparsity. In other words, the higher the number
of workers, the lower d. Since the size of MinMaxSketch
is 2 × d

5 , SKCompress outputs a smaller encoded gra-
dient. The time cost for the communication of encoded
gradients decreases from 3.7 to 1.8 s when we increase
the number of workers from 10 to 50.

The above results explain why SKCompress cannot
achieve linear speedup with fifty workers. The time cost of
gradient computationdecreases almost linearly.However, the
speedups of some operations, such as encoding and commu-
nication, are sublinear. Worse, the decoding of SKCompress
takes more time with more workers. Unsurprisingly, the
overall speedup is sublinear. We consider this as a poten-
tial limitation of SKCompress and treat it as future work to
improve the scalability.

Support vector machine For support vector machine, the
results are similar as logistic regression. All the methods
become significantly faster when we increase the number of
workers from five to ten. However, when we next use fifty
workers,Adamunfortunately gets slower.Othermethods still
benefit from the increase in workers. The performance of
SKCompress is improved up to 2.3×.

123

J. Jiang et al.

Table 5 Time breakdown for scalability evaluation (KDD12, LR, per batch in seconds)

workers Run time Gradient computation SKCompress encoding SKCompress decoding Communication

10 8.9 3.6 0.34 1.5 3.5

50 4.8 0.9 0.15 1.9 1.8

Linear regression With ten workers, all the six approaches
are significantly faster in processing an epoch of than using
five workers. And if we further use fifty workers, most
approaches even run faster. Nevertheless, Adam encounters
a worse performance for the same reason we have discussed.

7.6 Sensitivity evaluation

SKCompress contains three hyper-parameters—the size of
quantile sketch (default 128), the row of MinMaxSketch
(default 4), and the column of MinMaxSketch (default d

5).
Here, we vary their values and investigate the sensitivity
of our method. We run KDD12 dataset to train a linear
regression model on Cluster-2 and use the same setting as
Sect. 7.3.1.

Size of quantile sketch As shown in Fig. 15, a larger size
accelerates the training because the quantization error is
reduced. According to Table 6, the time consumed by each
epoch is not obviously affected.

Row of MinMaxSketch We next study the influence of the
row of MinMaxSketch, i.e., the number of hash tables. More
hash tables can reduce the possibility of hash collision, at the
expense of more communication cost. Therefore, the con-
vergence is slower when we increase the number of rows to
four.

Column of MinMaxSketch The default column is d
5 where

d is the number of nonzero gradient items. Increasing the
number of column from d

5 to d
2 brings less efficient, yet

more accurate, compression. Overall, the convergence per-
formance is significantly enhanced.

7.7 Evaluation on neural net model

The above-evaluated algorithms belong to generalized lin-
ear models. However, our Sketch mechanism can also be
applied on neural network models, such as multilayer per-
ceptron (MLP) and Convolutional Neural Networks (CNN)
by transferring gradients with our compression method.
In this section, we conduct a simulation experiment to
train a ResNet18 model on Cifar10 dataset [9], which con-
sists of 50,000 training images and 10,000 testing images.
Since it is much more computation-intensive to train a deep
learning model, the experiment is performed by PyTorch

on a server with 8 Titan RTX GPUs, rather than Spark
on CPU-cluster as in our previous experiments. Never-
theless, it is non-trivial to adapt SKCompress to GPUs.
First, the gradients in ResNet are generally dense, making
the compression of gradient keys meaningless. Second, the
encoding of MinMaxSketch requires the gradient values to
be inserted sequentially, which is inefficient for GPUs. As
a result, we (i) remove the compression of gradient keys in
SKCompress, (ii) implement quantile-bucket quantification
on GPU via Trust library, and (iii) implement MinMaxS-
ketch and Huffman coding on CPU. By doing so, there is
an extra IO overhead since we have to copy the gradients
from GPU to CPU for MinMaxSketch and Huffman cod-
ing.

We choose Adam as our optimizer, and set the batch
size to be 512, learning rate to be 0.003, and weight decay
(L2 regularization) to be 1e-4. For hyper-parameters in
SKCompress, we set the number of quantile buckets to be
16 and the size of MinMaxSketch to be 2 × d

5 , where d
is the size of each gradient tensor. Figure 16 shows the
convergence with and without SKCompress. We discuss
the convergence performance and compression performance
respectively:

– SKCompress has a good short-term convergence; how-
ever, it suffers from the error caused by gradient compres-
sion later. Consequently, there is a 1.7% drop of accuracy
in SKCompress (8.8% vs. 7.1%).

– SKCompress achieves around21.7× compression; there-
fore, the network transmission can be greatly reduced.
However, the time cost of compression and decompres-
sion is about 5× larger than that of communication in
Adam when the GPUs are located in the same server and
connected with high-speed NVLink lanes.

Limitation To summarize, SKCompress causes a small
accuracy drop but is able to convey a high compression rate. If
the communication of training neural networks is the bottle-
neck rather than the computation, SKCompress can still bring
performance improvement. Nevertheless, SKCompress is
not suitable for deep learning tasks for two reasons: (i)
the gradients in deep learning are usually dense while
SKCompress targets at sparse gradients; (ii) the encoding of
SKCompress is hard to be parallelized on GPUs, and hence

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

Fig. 15 Sensitivity evaluation (convergence rate, KDD12, linear). We change the size of quantile sketch, the number of MinMaxSketch rows, and
the number of MinMaxSketch columns

Table 6 Sensitivity evaluation (seconds per epoch, KDD12, linear)

Default Quantile size = 256 MinMaxSketch row = 4 MinMaxSketch column= d
2

Run time 88 82 112 99

We change the size of quantile sketch, the number of MinMaxSketch rows, and the number of MinMaxSketch columns

(a) testing error in terms of iteration

(b) testing error in terms of transmission size

Fig. 16 Evaluation on ResNet18 model and Cifar10 dataset

it might slow down the compression phase and deteriorate
the overall performance in practice.

Table 7 Assessment of different precisions (KDD12, LR)

Method Run time per epoch Loss in 2 h

SKCompress 89 0.6909

ZipML-8 bit 231 0.6932

ZipML-16 bit 278 0.6919

Adam-float 725 0.6911

Adam-double 1041 0.6914

7.8 Assessment of different precisions

In Sect. 7.3, we use 16 bits for ZipML and double type for
Adam. Here, we evaluate more precision choices and show
the result in Table 7. The experimental settings are the same
as Sect. 7.3.1.

ZipML runs 1.2× faster with 8 bits than 16 bits. However,
as stated in Sect. 7.1, ZipML converges badly even if we fine
tune the learning rate. Adam with float-type converges 1.4×
faster than the double-type counterpart. The performance
improvement is unsurprising since the communication cost
is reduced. SKCompress achieves the fastest speed—2.6×
and 8.1× faster than ZipML and Adam. Within the same
time, i.e., 2 h, SKCompress can converge to the smallest
loss compared with other four competitors, verifying the fast
convergence of SKCompress.

7.9 Summary

In summary, SKCompress outperforms the baselines on a
rangeofMLalgorithms anddatasets. SKCompress consumes

123

J. Jiang et al.

remarkably less time to execute a training epoch. Although it
needsmore epochs to get converged, the overall performance
still surpasses the other competitors. Besides, SKCompress
reveals a good ability of scalability. We also evaluate the
sensitivity of SKCompress against related hyper-parameters,
the performance of SKCompress on a neural network model,
and the effect of different precisions.

LimitationAs stated in the introduction, our scenario has two
properties—sparse gradients and communication-intensive
workloads.Therefore, there are a fewcaseswhere ourmethod
is not efficient. (1) For dense gradients, the value compression
still works, but the key compression is redundant. (2) For
computation-intensiveworkloads, the benefit of compression
is not so significant.

8 Related work

Distributed machine learning (ML) has attracted more and
more interests in recent years. Many machine learning algo-
rithms are trained with the first-order gradient optimization
methods, stochastic gradient descent (SGD) in most cases
[5]. To distribute SGD, a prevalent avenue is to partition the
training dataset across a set of workers and let each worker
calculate gradients independently. A coordinator then col-
lects gradients from all the workers and updates the trained
model. With the trend of increasing data size and model size,
the phase of aggregating gradients becomes the main bottle-
neck of the system. To address this problem, many previous
works have studied how to compress the gradients to save
the communication cost.

Lossless compression methods have been widely used to
compress integer data, such as digital images [16]. However,
these methods cannot be used for floating-point gradients. A
class of lossy methods was proposed to address this prob-
lem by transforming floating-point data to low-precision
representations. Some approaches choose a threshold to fil-
ter large gradients. This category is called the sparsification
compression method, including 1bit-SGD [47], DGC [35],
and Sparsified-SGD [48]. 1bit-SGD sends the gradient val-
ues larger than the threshold, and DGC sends the top-0.1%
gradient values according to the absolute value. However,
all of them have drawbacks. 1-bit SGD locally accumu-
lates the small gradients until the accumulation reaches
the threshold, but it induces a staleness problem that some
stale gradients might lead to unstable model convergence.
DGC completely abandons the small gradients, hence the
ML model might converge slower for skewed datasets.
Sparsified-SGD combines 1-bit SGD and DGC that sends
top-k gradients and accumulates small ones in memory.
Another type of lossy methods uses the quantification tech-
nique, such as ZipML, QSGD, TernGrad, DCD-PSGD, and

ECQ-SGD [1,50,54,55,62]. They use a quantification strat-
egy to transform a floating-point number to a small integer
according to the value range of original data. Then, they
transfer the encoded integers with fewer bits. ZipML lin-
early converts the original gradient values to integer numbers.
QSGD and TernGrad further introduce a stochastic rounding
strategy to assure unbiased gradients. DCD-PSGD intro-
duces communication compression into the decentralized
scenario. In decentralized training, each worker only accepts
the model updates from its neighbors rather than all other
workers. As stated in their paper, the proposedmethod DCD-
PSGD is suitable for slow network conditions, which is a
special case for distributed machine learning. Therefore, it is
significantly different from the centralized scenario to which
our work belongs. In fact, DCD-PSGD uses the QSGD-style
method to quantize the gradients, and we have compared
QSGD in the centralized scenario. ECQ-SGDcombines error
compensation with QSGD and proves its convergence. How-
ever, since ECQ-SGD accumulates the quantization errors
every time, it eventually incurs dense compensated gradients.
Therefore, it is not suitable for the sparse scenario studied
in our work. Although these methods can achieve a trade-
off between efficient compression and correct convergence,
they cannot fit the context of many large-scale ML cases.
First, it is a general phenomenon that the transferred gradients
are sparse. This is unsurprising since many trained datasets
are high dimensional and sparse. To save space, we often
store the nonzero elements in a gradient as key-value pairs
where the key refers to a gradient dimension and the value
refers to the corresponding dimension value. The existing
quantification methods only compress values; therefore, the
compression performance is limited. Second, due to the data
skew and complex slopes of the objective function, the dis-
tribution of gradient values is often nonuniform. Worse still,
most gradient values locate in a small range near zero. The
current quantification techniques assume that the processed
data are uniformly distributed. They equally divide the value
range into several intervals. Therefore, many small gradient
values are quantified to zero, inducing a large quantization
error. There is also a line of research that compresses the
gradients by matrix decomposition. For instance, ATOMO
[52] decomposes the gradients with singular value decom-
position (SVD) and drops small singular values to achieve
sparsification. However, since the gradients of linear models
are sparse vectors (one-dimensional tensors), applying SVD
on these gradients is infeasible. Thus, ATOMO is unfit for
our targeted scenario.

The data sketch algorithm is an orthogonal technique that
uses a small data structure to approximate the original data
distribution. Currently, there are two categories of sketch
algorithms, i.e., the quantile sketch and the frequency sketch.
The quantile sketch takes a stream of items and produces a
probabilistic data structure that depicts the value distribution

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

of items. Different from quantification methods, a quantile
sketch divides the value range into intervals such that each
interval contains the same number of items. In this way, it can
discover the pattern of a nonuniformdistribution.As themost
classical method, GK sketch and its variants are extensively
used to conduct big data analytics [8,14,63]. The frequency
sketch is designed to estimate the occurring frequency of
items [10]. Specifically, the count-min sketch builds a few
hash tables for the input items and addresses the hash col-
lision by an additive-and-minimum strategy. Although the
existing sketch techniques are powerful in their targeted sce-
narios, they cannot be directly applied to compress gradient
data. To the best of our knowledge, there is no work that uses
the sketch algorithms to compress floating-point gradients
to a low-precision representation and strengthen distributed
machine learning workloads.

There are also some works that study distributed machine
learning over large models. Rendle et al. [45] propose a dis-
tributed scalable coordinate descent algorithm. Coordinate
descent iteratively (1) selects one or several coordinates of
the model, (2) scans the dataset in a column-wisemanner and
computes necessary statistics, (3) aggregates statistics from
all workers, and finally (4) updates the chosen coordinates.
Rendle et al. accelerate the training by carefully partition-
ing the dataset into blocks and utilizing techniques such as
load balancing and caching. Parnell et al. [41,42] develop
TPA-SCD, an asynchronous variant of stochastic coordinate
descent on GPUs. They use the power of GPU to accelerate
computation and handle large-scale data by optimizing a sub-
set of dimensions alternatively. Nevertheless, theseworks are
orthogonal to ours. First, none of them propose to reduce the
communication cost by compression when they collect dis-
tributed statistics for model updates. Second, SKCompress
focuses on the family of stochastic gradient descent (SGD),
while the mentioned works are based on coordinate descent
(CD) methods. The comparison of SGD and CD is orthogo-
nal to our goal, andwe therefore only consider SGDbaselines
in this work.

9 Conclusion

In this paper, in order to accelerate distributed machine
learning, we proposed a sketch-based method, namely
SKCompress, to compress the communicated key-value gra-
dients. First, we introduced a method that uses a quantile
sketch and a bucket sort to represent the gradient values with
smaller binary encoded bucket indexes. Then, we designed
a MinMaxSketch algorithm to approximately compress the
bucket indexes. Further, we presented a delta-binary method
to encode the gradient keys. We also theoretically analyzed
the error bounds of the proposed methods. Empirical results
on a range of large-scale datasets and machine learning algo-

rithms demonstrated that SKCompress can be up to 10×
faster than the state-of-the-art methods.

Acknowledgements This work is supported by NSFC (No. 61832001,
61702016, 61702015, 61572039,U1936104), theNationalKeyResearch
and Development Program of China (No. 2018YFB1004403), Beijing
Academy ofArtificial Intelligence (BAAI), PKU-Tencent joint research
Lab, and the project PCLFuture “RegionalNetworkFacilities forLarge-
scale Experiments and Applications under Grant PCL2018KP001”.

A Mathematical analysis of SKCompress

In this section, we theoretically analyze the correctness and
the error bound of the three components of SKCompress.

A.1 Quantile-bucket quantification

A.1.1 Variance of stochastic gradients

A series of existing works has indicated that stochastic gra-
dient descent (SGD) suffers from a slower convergence rate
than gradient descent (GD) due to the inherent variance [39].
To be precise, we refer to Theorem 1.

Theorem 1 (Theorem 6.3 of [7]) Let f be convex and θ∗
the optimal point. Choosing step length appropriately, the
convergence rate of SGD is

E

[

f

(

1

T

T
∑

t=1

θt+1

)

− f (w∗)
]

� Θ

(

1

T
+ σ√

T

)

,

where σ is the upper bound of mean variance

σ 2 � 1

T

T
∑

t=1

E||gt − ∇ f (θt)||2.

A key property of a stochastic gradient is the variance.
Many methods are applied to reduce the variance, such as
mini-batch [33], weight sampling [37], and SVRG [24].

We refer g̃ = {g̃i }di=1 to the quantificated gradient. Here,
we abuse the notation that in Theorem 1 the subscript of
gt indicates the t th epoch to which it belongs, while in the
following analysis that of gi indicates the i th nonzero value
of gradient. The variance of g̃ can be decomposed into

E||g̃ − ∇ f (θ)||2 � E||g̃ − g||2 + E||g − ∇ f (θ)||2.

The second term comes from the stochastic gradient, which
can be reduced by the methods mentioned above. Our goal
is to find out a quantification method to make the first term
as small as possible.

123

J. Jiang et al.

A.1.2 Variance bound of quantile-bucket quantification

In our framework, we use the quantile-bucket quantification
method. For the sake of simplicity, we regard the maximum
value in the gradient vector as the (q+1)st quantile. The value
range of gradients, denoted by [φmin, φmax], is split into q

intervals by q + 1 quantiles v = {

v j
}q+1
j=1. Since we separate

positive and negative values and create one quantile sketch
for each of them, we assume there is always a quantile split
that equals to 0. Specifically, φmin = v1 < · · · < vbzero =
0 < · · · < vq+1 = φmax . Also, we assume [φmin, φmax] ⊂
[−1, 1], otherwise we can use M(g) = ||g|| as the scaling
factor.

Theorem 2 The varianceE||g̃−g||2 introduced by quantile-
bucket quantification is bounded by

d

4q
(φ2

min + φ2
max),

where φmin and φmax are the minimum and maximum values
in the gradient vector: φmin = min {gi } , φmax = max {gi }.

Proof Using the quantiles as split values, the expected num-
ber of values that fall into the same interval should be d

q , and
for each gi ,

(g̃i − gi)
2 =

(

1

2
(vb(i) + vb(i+1)) − gi

)2

� 1

4
(vb(i+1) − vb(i))

2,

where b(i) is the index of bucket into which gi falls. Thus,
we have

E||g̃ − g||2 = E

⎡

⎣

d
∑

i=1

(g̃i − gi)
2

⎤

⎦ � d

4q

q
∑

j=1

(v j+1 − v j)
2

= d

4q

⎛

⎝

bzero−1
∑

j=1

(v j+1 − v j)
2 +

q
∑

j=bzero

(v j+1 − v j)
2

⎞

⎠

� d

4q

⎛

⎜

⎝

⎛

⎝

bzero−1
∑

j=1

(v j+1−v j)

⎞

⎠

2

+
⎛

⎝

q
∑

j=bzero

(v j+1−v j)

⎞

⎠

2
⎞

⎟

⎠

= d

4q
(φ2

min + φ2
max).

(1)

	

Corollary 1 When the distribution of gradients is not biased,

i.e., there exists δ > 1 such that ||v||2
v21+v2q+1

� δ, Eq. (1) is

bounded by 1
4(δ−1) ||g||2.

Proof Obviously φ2
min+φ2

max = v21+v2q+1 � 1
δ−1

∑q
j=2 v2j .

Thus, we have

d

4q
(φ2

min + φ2
max) � 1

4(δ − 1)

q
∑

j=2

d

q
v2j � 1

4(δ − 1)
||g||2.

Considering the most widely used uniform quantification
method, Alistarh et al. proved the bound of its variance is

min(d
q2

,
√
d
q)||g||2 [1]. Therefore, quantile-bucket quantifi-

cation generates a better bound when d goes to infinite. 	

A.2 MinMaxSketch

A.2.1 Error bound of the MinMaxSketch

Let α represent the average number of counters in any given
array of the MinMaxSketch that are incremented per inser-
tion. Note that for the standard CM-sketch, the value of α

is equal to 1 because in the standard CM-sketch, exactly
one counter is incremented in each array when inserting an
item. For the MinMaxSketch, α is less than or equal to 1.
For any given item e, let f(e) represent its actual frequency
and let f̂(e) represent the estimate of its frequency returned
by the MinMaxSketch. Let N represent the total number of
insertions of all items into the MinMaxSketch. Let hi (.) rep-
resent the hash function associated with the i th array of the
MinMaxSketch, where 1 � i � d. Let Xi,(e)[j] be the ran-
domvariable that represents the difference between the actual
frequency f(e) of the item e and the value of the j th counter in
the i th array, i.e., Xi,(e)[j] = Ai [j]− f(e), where j = hi (e).
Due to hash collisions, multiple items will be mapped by
the hash function hi (.) to the counter j , which increases
the value of Ai [j] beyond fe and results in over-estimation
error.As all hash functions have uniformly distributed output,
Pr [hi (e1) = hi (e2)] = 1/w. Therefore, the expected value
of any counter Ai [j], where 1 � i � d and 1 � j � w, is
αN/w. Let ε and δ be two numbers that are related to d andw

as follows: d = �ln(1/δ)� and w = �exp /ε�. The expected
value of Xi,(e)[j] is given by the following expression.

E(Xi,(e)[j])=E(Ai [j]− f(e)) � E(Ai [j])=αN

w
� εα

exp
N .

Finally, we derive the probabilistic bound on the over-
estimation error of the MinMaxSketch.

Pr [ˆf(e) � f(e)+εαN] = Pr [∀i, Ai [j] � f(e)+εαN]
= (Pr [Ai [j]− f(e) � εαN])d
= (Pr [Xi,(e)[j] � εαN])d
� (Pr [Xi,(e)[j]� exp E(Xi,(e)[j]))d
� exp−d � δ.

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

A.2.2 The correctness rate of the MinMaxSketch

Next, we theoretically derive the correctness rate of the
MinMaxSketch, which is defined as the expected percent-
age of elements in the multiset for which the query response
contains no error. In deriving the correctness rate, we make
one assumption: all hash functions are pairwisely indepen-
dent. Before deriving this correctness rate, we first prove
following theorem.

Theorem 3 In the MinMaxSketch, the value of any given
counter is equal to the frequency of the least frequent ele-
ment that maps to it.

Proof We prove this theorem using mathematical induction
on number of insertions, represented by k.

Base case k = 0 The theorem clearly holds for the base case,
because before the insertions, the frequency of the least fre-
quent element is 0, which is also the value of all counters.

Induction hypothesis k = n: Suppose the statement of the
theorem holds true after n insertions.

Induction step k = n + 1: Let (n + 1)st insertion be of
any element e that has previously been inserted a times. Let
αi (k) represent the values of the counter Fi [hi (e)%w] after
k insertions, where 0 � i � d − 1. There are two cases to
consider: (1) e was the least frequent element when k = n;
(2) e was not the least frequent element when k = n.

Case 1 If e was the least frequent element when k = n, then
according to our induction hypotheses, αi (n) = a. After
inserting e, it will still be the least frequent element and its
frequency increases to a + 1. As per our MinMaxSketch
scheme, the counter Fi [hi (e)%w] will be incremented once.
Consequently, we get αi (n + 1) = a + 1. Thus for this case,
the theorem statement holds because the value of the counter
Fi [hi (e)%w] after insertion is still equal to the frequency of
the least frequent element, which is e.

Case 2 If e was not the least frequent element when k = n,
then according to our induction hypotheses, αi (n) > a. After
inserting e, it may or may not become the least frequent
element. If it becomes the least frequent element, it means
that αi (n) = a + 1 and as per our MinMaxSketch scheme,
the counter Fi [hi (e)%w]will stay unchanged.Consequently,
we get αi (n + 1) = αi (n) = a + 1. Thus for this case,
the theorem statement again holds because the value of the
counter Fi [hi (e)%w] after insertion is equal to the frequency
of the new least frequent element, which is e.

After inserting e, if it does not become the least frequent
element, then it means αi (n) > a + 1 and as per our the
MinMaxSketch scheme, the counter Fi [hi (e)%w] will stay
unchanged. Consequently, αi (n + 1) = αi (n) > a + 1.
Thus, the theorem again holds because the value of the

counter Fi [hi (e)%w] after insertion is still equal to the fre-
quency of the element that was the least frequent after n
insertions. 	

Next,we derive the correctness rate of theMinMaxSketch.
Let v be the number of distinct elements inserted into the
MinMaxSketch and are represented by e1, e2, . . . , ev . With-
out loss of generality, let the element el+1 be more frequent
than el , where 1 � l � v − 1. Let X be the random variable
representing the number of elements hashing into the counter
Fi [hi (el)%w] given the element el , where 0 � i � d − 1
and 1 � l � v. Clearly, X ∼ Binomial(v − 1, 1/w).

From Theorem 1, we conclude that if el has the highest
frequency among all elements that map to the given counter
Fi [hi (el)%w], then the query result for el will contain no
error. Let A be the event that el has the maximum frequency
among x elements thatmap to Fi [hi (el)%w]. The probability
P{A} is given by the following equation:

P{A} =
(

l − 1
x − 1

)

/

(

v − 1
x − 1.

)

(where x � l)

Let P ′ represent the probability that the query result for
el from any given counter contains no error. It is given by:

P ′ =
l

∑

x=1

P{A} × P{X = x}

=
l

∑

x=1

(l−1
x−1

)

(

v−1
x−1

)

(

v − 1

x − 1

)

(1

w

)x−1(

1− 1

w

)v−x=
(

1− 1

w

)v−l
.

As there are d counters, the overall probability that the query
result of el is correct is given by the following equation.

PCR{el} = 1 −
(

1 −
(

1 − 1

w

)v−l
)d

.

The equality above holds when all v elements have different
frequencies. If two or more elements have equal frequen-
cies, the correctness rate increases slightly. Consequently,
the expected correctness rate Cr of the MinMaxSketch is
bound by:

Cr �
∑v

l=1 PCR{el}
v

=
∑v

l=1

(

1 − (

1 − (1 − 1
w

)v−l
)d

)

v
.

(2)

A.3 Delta-binary encoding

Delta-binary encoding is a lossless compression method, but
its average space cost cannot be calculated exactly. Here,
we focus on the expected size for one key. As aforemen-
tioned, we divide all the quantile buckets into r groups.

123

J. Jiang et al.

(a) Convergence (LR, KDD12 dataset) (b)Convergence (LR, CTR dataset) (c) Run time per epoch

Fig. 17 Assessment of compression size for QSGD

Therefore, the number of nonzero keys that fall into the
same group is expected to be d

r . Assuming the arrangement
of dimensions in dataset is random, the expected differ-
ence between two keys should be r D

d . As a result, the
expected bytes for each key is

⌈

log256
r D
d

⌉ = ⌈ 1
8 log2

r D
d

⌉

.
For instance, with r = 8, we can compress each key into
1 byte if we choose a large batch size such that d

D �
1
32 .

Fortunately, the arrangement of dimensions in dataset is
usually not random, i.e., dimensions with strong relationship
happen to appear in consecutive keys, which makes the dif-
ference between two nonzero keys smaller. In practice, we
find that the average size for one key (including two flag bits)
is around 1.5 bytes.

Considering bitmap, another useful data structure for stor-
ing keys with compression rate up to 8. Nonetheless, in our
framework, bitmap is not so useful as it should be. In order
to indicate the keys for different groups, we have to create
one bitmap for each of them, which comes out with

⌈ r D
8

⌉

bytes in total. As a result, delta-binary encoding is a better
choice.

B Tuning QSGD

To choose an appropriate compression size for QSGD,
we conduct an experiment to compare different choices.
Taking LR as a representative, we compare 4bits-QSGD,
8bits-QSGD, andAdamonKDD12andCTRdatasets. (2bits-
QSGD is equal to TernGrad so we do not consider it) As
shown in Fig. 17a, b, 8bits-QSGD achieves almost the same
convergence rate (loss in terms of epoch) as Adam. Intu-
itively, the number of quantization buckets of QSGD is 256
when using 8 bits, which is able to provide enough precision
for desirable convergence. When using 4 bits for QSGD,
however, the convergence rate is slower than 8bits-QSGD
and Adam. This is reasonable because the number of quanti-

zation buckets is only 16 for 4bits-QSGD, which inevitably
incurs higher quantization error and harms the convergence.

We then assess the run time of QSGDwith different num-
bers of bits. Both QSGD variants run faster than Adam, as
shown in Fig. 17c, due to the reduction in communication
cost. However, the run time does not significantly decrease
along with the number of bits as expected. This is not a sur-
prising phenomenon for two reasons: (i) since QSGD only
compresses gradient values and stores gradient keys in 4-byte
integers, the communication overhead only decreases from
5d bytes to 4.5d bytes, where d is the number of nonzero
values in gradient; (ii) if the compression size is less than
one byte, there is an extra overhead of bit manipulation dur-
ing encoding and decoding, while we can use the primitive
byte type to store the compressed value in 8bits-QSGD.

Owing to the experimental results, we determine to choose
the compression size of QSGD as 8 bits in our end-to-end
comparison in Sect. 7.

C Effectiveness of adaptive learning rate

As introduced in Sect. 4.2, we introduce to solve the problem
of vanishing gradient via an adaptive learning ratemethod. To
choose an appropriate technique for adaptive learning rate,
we compare Adam and AMSGrad by training LR on KDD10
dataset, which is described in Table 1. As shown in Fig. 18,
the convergence rates of Adam and AMSGrad are almost the
same without compression. AMSGrad achieves lower test-
ing loss eventually but the performance gap is small, which
is consistent with the results on LR in [44]. After apply-
ing SKCompress, their convergence rates are still matching.
Although the convergence rate with SKCompress is slower
than the counterpart in the first few epochs due to the property
of under-estimation of MinMaxSketch, it eventually con-
verges to a comparable testing loss with the help of adaptive
learning rate.

123

SKCompress: compressing sparse and nonuniform gradient in distributed machine learning

Fig. 18 The comparison of Adam and AMSGrad. The evaluated metric
is the testing loss in terms of epochs. We plot convergence without
SKCompress in solid lines and plot convergence with SKCompress in
dashed lines

Since Adam and AMSGrad have similar convergence
performance, we choose Adam as our optimizer since it
achieves the state-of-the-art performance and is one of the
most widely-used adaptive methods.

References

1. Alistarh, D., Li, J., Tomioka, R., Vojnovic, M.: Qsgd: random-
ized quantization for communication-optimal stochastic gradient
descent. arXiv preprint. arXiv:1610.02132 (2016)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Kon-
winski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A
view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

3. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication
on cuda. Tech. rep., Nvidia Corporation (2008)

4. Bonner, S., Kureshi, I., Brennan, J., Theodoropoulos, G.,
McGough,A.S.,Obara,B.: Exploring the semantic content of unsu-
pervised graph embeddings: an empirical study. Data Sci. Eng.
4(3), 269–289 (2019)

5. Bottou, L.: Large-scale machine learning with stochastic gradient
descent. In: Proceedings ofCOMPSTAT’2010, pp. 177–186 (2010)

6. Bottou, L.: Stochastic gradient descent tricks. In: Neural Networks:
Tricks of the Trade, pp. 421–436 (2012)

7. Bubeck, S., et al.: Convex optimization: algorithms and complexity.
Found. Trends® Mach. Learn. 8(3–4), 231–357 (2015)

8. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In:
Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

9. Cifar: Cifar dataset. https://www.cs.toronto.edu/~kriz/cifar.html
10. Cormode, G., Muthukrishnan, S.: An improved data stream sum-

mary: the count-min sketch and its applications. J. Algorithms
55(1), 58–75 (2005)

11. Dean, J., Corrado,G.,Monga,R., et al.: Large scale distributed deep
networks. In: Advances inNeural Information Processing Systems,
pp. 1223–1231 (2012)

12. Deutsch, P.: Deflate compressed data format specification version
1.3. Tech. rep. (1996)

13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for
online learning and stochastic optimization. J. Mach. Learn. Res.
12(Jul), 2121–2159 (2011)

14. Greenwald, M., Khanna, S.: Space-efficient online computation of
quantile summaries. ACM SIGMOD Record 30, 58–66 (2001)

15. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of
things (iot): a vision, architectural elements, and future directions.
Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

16. Hinds, S.C., Fisher, J.L., D’Amato, D.P.: A document skew detec-
tionmethodusing run-length encoding and the hough transform. In:

Pattern Recognition, 1990. Proceedings., 10th International Con-
ference on, Vol. 1, pp. 464–468. IEEE (1990)

17. Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J.K., Gibbons, P.B., Gibson,
G.A., Ganger, G., Xing, E.P.: More effective distributed ml via a
stale synchronous parallel parameter server. In:Advances inNeural
Information Processing Systems, pp. 1223–1231 (2013)

18. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logis-
tic Regression, vol. 398. Wiley, New York (2013)

19. Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y.: Tencentrec: real-
time stream recommendation in practice. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management
of Data, pp. 227–238. ACM (2015)

20. Jiang, J., Cui, B., Zhang, C., Yu, L.: Heterogeneity-aware dis-
tributed parameter servers. In: Proceedings of the 2017 ACM
International Conference on Management of Data, pp. 463–478.
ACM (2017)

21. Jiang, J., Huang, M., Jiang, J., Cui, B.: Teslaml: steering machine
learning automatically in tencent. In: Asia-Pacific Web (APWeb)
andWeb-Age InformationManagement (WAIM) Joint Conference
on Web and Big Data, pp. 313–318. Springer (2017)

22. Jiang, J., Jiang, J., Cui, B., Zhang, C.: Tencentboost: a gradient
boosting tree system with parameter server. In: 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pp. 281–
284 (2017)

23. Jiang, J., Tong, Y., Lu, H., Cui, B., Lei, K., Yu, L.: Gvos: a gen-
eral system for near-duplicate video-related applications on storm.
ACM Trans. Inf. Syst. (TOIS) 36(1), 3 (2017)

24. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent
using predictive variance reduction. In: Advances in Neural Infor-
mation Processing Systems, pp. 315–323 (2013)

25. KDD: Kdd cup 2010 (2010). http://www.kdd.org/kdd-cup/
26. KDD: Kdd cup 2012 (2012). https://www.kaggle.com/c/

kddcup2012-track1
27. Kingma, D., Ba, J.: Adam: a method for stochastic optimization.

arXiv preprint. arXiv:1412.6980 (2014)
28. Kipf, T.N., Welling, M.: Semi-supervised classification with graph

convolutional networks. arXiv preprint. arXiv:1609.02907 (2016)
29. Knuth, D.E.: Dynamic Huffman coding. J. Algorithms 6(2), 163–

180 (1985)
30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification

with deep convolutional neural networks. In: Advances In Neural
Information Processing Systems, pp. 1097–1105 (2012)

31. Li, B., Drozd, A., Guo, Y., Liu, T., Matsuoka, S., Du, X.: Scaling
word2vec on big corpus. Data Sci. Eng. 1–19 (2019)

32. Li,M., Liu, Z., Smola,A.J.,Wang,Y.X.:Difacto: distributed factor-
ization machines. In: Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, pp. 377–386. ACM
(2016)

33. Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch train-
ing for stochastic optimization. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 661–670. ACM (2014)

34. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., Wierstra, D.: Continuous control with deep reinforce-
ment learning. arXiv preprint. arXiv:1509.02971 (2015)

35. Lin,Y.,Han, S.,Mao,H.,Wang,Y.,Dally,W.J.:Deep gradient com-
pression: reducing the communication bandwidth for distributed
training. arXiv preprint. arXiv:1712.01887 (2017)

36. McMahan, B., Streeter, M.: Delay-tolerant algorithms for asyn-
chronous distributed online learning. In: Advances in Neural
Information Processing Systems, pp. 2915–2923 (2014)

37. Needell, D., Ward, R., Srebro, N.: Stochastic gradient descent,
weighted sampling, and the randomized kaczmarz algorithm. In:
Advances in Neural Information Processing Systems, pp. 1017–
1025 (2014)

123

http://arxiv.org/abs/1610.02132
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.kdd.org/kdd-cup/
https://www.kaggle.com/c/kddcup2012-track1
https://www.kaggle.com/c/kddcup2012-track1
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1712.01887

J. Jiang et al.

38. Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, I., Kaiser, L.,
Kurach, K., Martens, J.: Adding gradient noise improves learning
for very deep networks. arXiv preprint. arXiv:1511.06807 (2015)

39. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochas-
tic approximation approach to stochastic programming. SIAM J.
Optim. 19(4), 1574–1609 (2009)

40. Nesterov, Y.: A method for unconstrained convex minimization
problem with the rate of convergence o (1/k∧ 2). Doklady AN
USSR 269, 543–547 (1983)

41. Parnell, T., Dünner, C., Atasu, K., Sifalakis, M., Pozidis, H.:
Large-scale stochastic learning using gpus. In: 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 419–428 (2017)

42. Parnell, T., Dünner, C., Atasu, K., Sifalakis, M., Pozidis, H.: Tera-
scale coordinate descent on gpus. Future Gener. Comput. Syst.
(2018)

43. Qian, N.: On the momentum term in gradient descent learning
algorithms. Neural Netw. 12(1), 145–151 (1999)

44. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and
beyond. arXiv preprint. arXiv:1904.09237 (2019)

45. Rendle, S., Fetterly, D., Shekita, E.J., Su, B.y.: Robust large-scale
machine learning in the cloud. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1125–1134 (2016)

46. Seber,G.A., Lee,A.J.: LinearRegressionAnalysis, vol. 936.Wiley,
Hoboken (2012)

47. Seide, F., Fu, H., Droppo, J., Li, G., Yu, D.: 1-bit stochastic gradient
descent and its application to data-parallel distributed training of
speech dnns. In: INTERSPEECH, pp. 1058–1062 (2014)

48. Stich, S.U., Cordonnier, J.B., Jaggi, M.: Sparsified sgd with mem-
ory. In: Advances in Neural Information Processing Systems, pp.
4447–4458 (2018)

49. Suykens, J.A., Vandewalle, J.: Least squares support vector
machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

50. Tang, H., Gan, S., Zhang, C., Zhang, T., Liu, J.: Communication
compression for decentralized training. In: Advances in Neural
Information Processing Systems, pp. 7652–7662 (2018)

51. Tewarson, R.P.: Sparse Matrices. Academic Press, New York
(1973)

52. Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos, D.,
Wright, S.: Atomo: communication-efficient learning via atomic
sparsification. In: Advances in Neural Information Processing Sys-
tems, pp. 9850–9861 (2018)

53. Wang, Y., Lin, P., Hong, Y.: Distributed regression estimation with
incomplete data inmulti-agent networks. Sci. China Inf. Sci. 61(9),
092202 (2018)

54. Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., Li, H.: Tern-
grad: ternary gradients to reduce communication in distributed deep
learning. In: Advances in Neural Information Processing Systems,
pp. 1509–1519 (2017)

55. Wu, J., Huang, W., Huang, J., Zhang, T.: Error compensated
quantized sgd and its applications to large-scale distributed opti-
mization. arXiv preprint. arXiv:1806.08054 (2018)

56. Yahoo: Data sketches (2004). https://datasketches.github.io/
57. Yang, T., Jiang, J., Liu, P., Huang, Q., Gong, J., Zhou, Y., Miao, R.,

Li, X., Uhlig, S.: Elastic sketch: adaptive and fast network-wide
measurements. In: ACM SIGCOMM, pp. 561–575 (2018)

58. Yang, T., Liu, A.X., Shahzad, M., Zhong, Y., Fu, Q., Li, Z., Xie,
G., Li, X.: A shifting bloom filter framework for set queries. Proc.
VLDB Endow. 9(5), 408–419 (2016)

59. Yu, L., Zhang, C., Shao, Y., Cui, B.: Lda*: a robust and large-scale
topic modeling system. Proc. VLDB Endow. 10(11), 1406–1417
(2017)

60. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv
preprint. arXiv:1212.5701 (2012)

61. Zhang, C., Ré, C.: Dimmwitted: a study ofmain-memory statistical
analytics. Proc. VLDB Endow. 7(12), 1283–1294 (2014)

62. Zhang,H.,Kara,K., Li, J.,Alistarh,D., Liu, J., Zhang,C.: Zipml: an
end-to-end bitwise framework for dense generalized linear models.
arXiv:1611.05402 (2016)

63. Zhang, Q., Wang, W.: A fast algorithm for approximate quantiles
in high speed data streams. In: Scientific and Statistical Database
Management, 2007. 19th International Conference on SSBDM’07,
pp. 29–29. IEEE (2007)

64. Zheng, T., Chen, G., Wang, X., Chen, C., Wang, X., Luo, S.:
Real-time intelligent big data processing: technology, platform, and
applications. Sci. China Inf. Sci. 62(8), 82101 (2019)

65. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting loca-
tions and travel sequences from gps trajectories. In: Proceedings of
the 18th International Conference on World Wide Web, pp. 791–
800. ACM (2009)

66. Zinkevich, M., Weimer, M., Li, L., Smola, A.J.: Parallelized
stochastic gradient descent. In: Advances in Neural Information
Processing Systems, pp. 2595–2603 (2010)

67. Ziv, J., Lempel, A.: A universal algorithm for sequential data com-
pression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1511.06807
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1806.08054
https://datasketches.github.io/
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1611.05402

	SKCompress: compressing sparse and nonuniform gradient in distributed machine learning
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Overview of technical contributions
	2 Preliminaries
	2.1 Definition of notations
	2.2 Data model
	2.3 Quantile sketch
	2.4 Frequency sketch

	3 The overview of SKCompress

	4 Compression of gradient values
	4.1 Quantile-bucket quantification
	4.2 MinMaxSketch
	4.3 Huffman coding for MinMaxSketch

	5 Compression of gradient keys
	5.1 Delta-binary encoding
	5.2 Adaptive prefix for delta keys

	6 Analysis of space cost
	7 Experiments
	7.1 Experiment setting
	7.2 Efficiency of proposed methods
	7.3 End-to-end performance
	7.3.1 Results on KDD12 dataset
	7.3.2 Results on CTR dataset
	7.3.3 Comparison with a single node system

	7.4 Model accuracy
	7.5 Scalability evaluation
	7.6 Sensitivity evaluation
	7.7 Evaluation on neural net model
	7.8 Assessment of different precisions
	7.9 Summary

	8 Related work

	9 Conclusion
	Acknowledgements
	A Mathematical analysis of SKCompress
	A.1 Quantile-bucket quantification
	A.1.1 Variance of stochastic gradients
	A.1.2 Variance bound of quantile-bucket quantification

	A.2 MinMaxSketch
	A.2.1 Error bound of the MinMaxSketch
	A.2.2 The correctness rate of the MinMaxSketch

	A.3 Delta-binary encoding
	B Tuning QSGD
	C Effectiveness of adaptive learning rate
	References

