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ABSTRACT
Recently, the growing memory demands of embedding tables in

Deep Learning Recommendation Models (DLRMs) pose great chal-

lenges for model training and deployment. Existing embedding

compression solutions cannot simultaneously meet three key de-

sign requirements: memory efficiency, low latency, and adaptability

to dynamic data distribution. This paper presentsCAFE, aCompact,

Adaptive, and Fast Embedding compression framework that ad-

dresses the above requirements. The design philosophy of CAFE

is to dynamically allocate more memory resources to important

features (called hot features), and allocate less memory to unimpor-

tant ones. In CAFE, we propose a fast and lightweight sketch data

structure, named HotSketch, to capture feature importance and

report hot features in real time. For each reported hot feature, we

assign it a unique embedding. For the non-hot features, we allow

multiple features to share one embedding by using hash embedding

technique. Guided by our design philosophy, we further propose a

multi-level hash embedding framework to optimize the embedding

tables of non-hot features. We theoretically analyze the accuracy of

HotSketch, and analyze the model convergence against deviation.

Extensive experiments show that CAFE significantly outperforms

existing embedding compression methods, yielding 3.92% and 3.68%

superior testing AUC on Criteo Kaggle dataset and CriteoTB dataset

at a compression ratio of 10000×. The source codes of CAFE are

available at GitHub [1].
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1 INTRODUCTION
1.1 Background and Motivation
In recent years, embedding techniques are widely applied in various

fields in database community, such as cardinality estimation [2, 3],

query optimization [4, 5], language understanding [6], entity reso-

lution [7, 8], document retrieval [9], graph learning [10, 11], and

advertising recommendation [12], to learn the semantic represen-

tations of categorical features. Among these fields, Deep Learning

Recommendation Models (DLRMs) are one of the most important

applications of embedding techniques: they account for 35% of Ama-

zon’s revenue in 2018 [13–15], and consumemore than 50% training

and 80% inference cycles at Meta’s data centers in 2020 [16, 17].

As shown in Figure 1, a typical DLRM vectorizes categorical fea-

tures into learnable embeddings, and then feeds these embeddings

into downstream neural networks along with other numerical fea-

tures [18–23]. Recently, with the exponential increase of categorical

∗ Equal contribution.

features in DLRM, the memory requirements of embedding tables

have also skyrocketed, which creates formidable storage challenges

in various applications [24, 25]. Therefore, it is highly desired to

devise a framework that can effectively compress the embedding

tables into limited storage space without compromising model accu-

racy. In this paper, we focus on compressing the embedding tables

of extremely large-scale DLRMs.

Figure 1: Overview of DLRM.
DLRM has two training paradigms: offline training and online

training. (1) In offline training, the training data is collected in ad-

vance, and the model is deployed for use after the entire training

process. (2) In online training, the training data is generated in

real time, and the model simultaneously updates parameters and

serves requests. This paper mainly focuses on the scenario of online

training as it is more difficult. Generally, compression methods for

online training can be directly applied to offline training. Embed-

ding compression in online training has three important design

requirements, which are as follows:

• Memory efficiency. For extremely large-scale DLRMs, it is chal-

lenging to maintain model quality within memory constraints.

While distributed instances can help manage large-scale em-

bedding tables, they come with a significant communication

overhead [26, 27]. Furthermore, training and deployment of em-

bedding tables often occur on edge or end devices with smaller

storage capacities, making the memory issue even worse [28]. On

the other hand, since model quality directly impacts profits, even

a small change of 0.001 in DLRM’s AUC (area under the ROC

curve) is considerable [29]. Existing compression methods often

lead to severe model degradation when memory constraints are

small [30], emphasizing the need for memory-efficient compres-

sion methods that maintain model quality.

• Low latency. Low latency is a vital requirement in practical

applications, as latency is a key metric of service quality [31].

Embedding compression methods must be fast enough not to

introduce significant latency.
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• Adaptability to dynamic data distribution. In online training,
the data distribution is not fixed as in offline training. We calcu-

late the KL divergence (an asymmetric measure of the distance

between distributions) between the feature distributions on each

day within three common public datasets, and plot the heatmaps

in Figure 2. In each heatmap, the block in row 𝑖 , column 𝑗 shows

the KL divergence between the distributions on day 𝑖 and day

𝑗 . There is a significant difference between the feature distribu-

tions, and generally the greater the number of days between, the

greater the difference. Existing advanced compression methods

often exploit feature frequencies explicitly [32, 33] or capture

feature importance implicitly [34, 35], which are inspired by

the observation that feature popularity distributions are highly

skewed, fitting zipfian [24] or powerlaw distributions [36]. How-

ever, most of them rely on fixed data distributions and cannot be

applied to dynamic data distributions, demanding new adaptive

compression method suitable for online training.

Figure 2: KL divergence between distributions on each day.

1.2 Limitations of Prior Art
Existing embedding compression methods can be generally catego-

rized into two types: row compression and column compression.

As column compression primarily aims at enhancing model quality

rather than compressing to a specific memory limit, our focus is on

row compression, including hash-based and adaptive methods.

Hash-based methods. These methods utilize simple hash func-

tions to map features into embeddings with collisions [37–39]. They

restrict the number of embedding vectors to fit within the memory

budget, causing different features to potentially share an embed-

ding vector when a hash collision occurs. Despite their simplicity

and convenience, which have resulted in widespread industry use,

these methods are not very memory-efficient. Pre-determined hash

functions distort the semantic information of features, often leading

to a substantial decline in model accuracy. For each feature, the

gradients of other hash-collided features will be updated to the

same embedding, resulting in deviations from the original conver-

gence direction. Integrating feature frequency information [32] can

enhance hash-based methods’ model quality in offline training but

cannot be applied to online training.

Adaptive methods. To accommodate online training, adaptive

methods distinguish and track important features throughout the

training process. AdaEmbed [40] logs the importance scores of all

features, dynamically reallocates embedding vectors for critical fea-

tures, and discards embeddings of less important features. While it

can adapt to data distribution, its compression ratio is constrained

by the storage of importance scores, which increases linearly with

the total number of features. Thus, it cannot compress embedding

tables to a small memory budget and still needs distributed train-

ing for large models, resulting in low memory efficiency. It also

needs to sample and check data to determine whether to migrate

embeddings, which can increase overall latency.

In summary, existing methods fail to meet all three critical re-

quirements for DLRM: memory efficiency, low latency, and adapt-

ability. In this paper, we aim to propose an embedding compression

method that is memory-efficient, adaptive, and ensures low latency.

1.3 Our Proposed Method
We introduce CAFE, a Compact, Adaptive, and Fast Embedding

compression method, which, to our knowledge, is the first to satisfy

all three design requirements. (a) Memory efficiency: CAFE allo-

cates unique embedding vectors to important features and shared

embedding vectors to less important features, thereby preserv-

ing model quality. A light-weight sketch, HotSketch, distinguishes

these features, with its memory usage being linear to the number

of important features, enabling high compression ratios. Conse-

quently, CAFE manages to maintain good model quality within

tight memory constraints. (b) Low latency: CAFE entails only

several hash processes and potentially one additional embedding

lookup, incurring negligible time overhead beyond the standard

embedding layers and thus maintaining low latency during serving.

(c) Adaptability to dynamic data distribution: CAFE incorpo-

rates an embedding migration process that takes effect when a

feature’s importance score changes, ensuring that vital features

are always identified even when data distribution changes during

online training. On Criteo dataset, compared to existing methods,

CAFE improves the model AUC by 1.79% and reduces the training

loss by 2.31% on average.

To achieve a high compression ratio without compromising

model quality, we utilize a sketch structure to distinguish and

record important features from a highly skewed Zipf distribution.

Sketches are a class of probabilistic data structures for processing

large-scale data streams, and are naturally suitable for handling

streamed features in online training. Specifically, we extend Space-

Saving Sketch [41], an advanced sketch algorithm with small error,

to design HotSketch, a less memory-consuming structure to store

important DLRM features with a theoretically guaranteed error

bound. Being a light-weight data structure, HotSketch incurs negli-

gible time overhead, facilitating fast training and inference. Since

HotSketch’s memory usage is only linear to the number of impor-

tant features, CAFE can compress to any given memory constraints.

With HotSketch, we allocate unique embeddings to a handful of

important features and shared embeddings to a vast majority of

long-tail features, achieving memory efficiency.

To adapt CAFE to online training, where important features can

change dynamically, we enable features to migrate between unique

and shared embedding tables. If a feature’s importance score ex-

ceeds a relative threshold in HotSketch, it is deemed important

and allocated a unique embedding. Conversely, if a feature’s impor-

tance score drops below a relative threshold, its unique embedding

migrates to the shared embedding table.

To further optimize CAFE, we divide features into more groups

by importance scores. While the most critical features are still al-

located unique embeddings, other features are assigned a varying

number of hashed embedding vectors. This multi-level design fur-

ther improves the model AUC by 0.08% on Criteo dataset.

1.4 Main Contribution
• We introduce CAFE, a compact, adaptive, and fast embedding

compression method.
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• We propose HotSketch, a light-weight sketch structure to discern

and record features’ importance scores.

• We provide a theoretical analysis of HotSketch’s effectiveness,

and elucidate how CAFE’s design contributes to the convergence

of compressed DLRMs.

• We evaluate CAFE on representative DLRM datasets, achieving

3.92%, 3.68%, 5.16% higher testing AUC and 4.61%, 3.24%, 11.21%

lower training loss at 10000× compression ratio compared to

existing method.

2 PRELIMINARY
In this section, we elaborate on the architecture of DLRMs in Sec-

tion 2.1 and provide a formal definition of the embedding compres-

sion problem in Section 2.2.

2.1 DLRM
Figure 1 illustrates the overall architecture of DLRM. Each dataset of

DLRM has several categorical feature fields and numerical feature

fields. For example, in Figure 1, gender, user ID and interest are cat-

egorical fields, while price and score are numerical fields. Each field

has a certain number or a certain range of possible values, called

features. Categorical and numerical features are transformed into

representations using embedding vectors and fully-connected lay-

ers, respectively. The representations are then fed into interaction

layers and fully-connected layers for final predictions. The predic-

tion may be a category for classification tasks such as click-through-

rate and conversion-rate prediction, or a score for regression tasks

such as score prediction. There are many variants of DLRM, such

as WDL [18], DCN [42], DIN [43]; while they all utilize the same

embedding layer, they explore different forms of interaction layers

and neural network layers to enhance model performance.

The size of a DLRM does not depend on the model structure,

but on the number of unique categorical features in the dataset.

The model parameters of DLRMs can be divided into two parts:

the embedding table and the neural network. The former contains

embeddings for all categorical features, i.e., one embedding per

feature if uncompressed. The latter is a network that interacts these

embeddings and outputs predictions. The number of parameters in

the embedding table depends on the dataset: if there are 𝑛 unique

categorical features in the dataset, and the dimension of embeddings

is 𝑑 , then the number of parameters is 𝑛 × 𝑑 . In DLRMs, the size of

the neural network part (just a few layers of matrix multiplication)

is negligible compared to large embedding tables. Based on previous

research works [25, 44–47], we consider DLRMs with more than

100 million parameters as large-scale, and DLRMs with more than

10 billion parameters as extremely large-scale.

In DLRMs, categorical features are viewed as one-hot vectors

where only the 𝑖-th position is set to 1 and the rest are set to 0,

facilitating the retrieval of the corresponding row vector from the

embedding table. Each input data, sampled from distribution D,

contains categorical features 𝑥𝑐𝑎𝑡 , numerical features 𝑥𝑛𝑢𝑚 , and a

label 𝑦. We denote 𝐸 as the embedding tables and 𝑓 as the other

neural network layers, then the process of minimizing the loss can

be formulated as follows:

min

𝐸,𝑓
E(𝑥𝑐𝑎𝑡 ,𝑥𝑛𝑢𝑚,𝑦)∼DL(𝑦, 𝑓 (𝐸 (𝑥𝑐𝑎𝑡 ), 𝑥𝑛𝑢𝑚)). (1)

After the forward pass, an optimizer such as Adam [48] is applied

to iteratively update the embedding table and other parameters.

Frequently used notations in this paper are detailed in Table 1.

Table 1: Symbols frequently used in this paper.

Symbols Meaning

D Distribution of input data

D𝑡 Shifting distribution of input data at time 𝑡

𝑛 Number of unique categorical features

𝑑 Embedding dimension

𝑥𝑐𝑎𝑡 Categorical feature

𝑥𝑛𝑢𝑚 Numerical feature

𝑦 Ground truth label

𝑦̂ Prediction

𝐸 Embedding table

𝐸∗
Compressed embedding table

𝑓 Neural network

𝜃 Learnable parameters

𝛼 Learning rate

𝑔 Standard gradient without compression

𝑔 Gradient in compressed DLRM

L Loss function

M Memory usage (of the embedding table)

𝑀 Memory budget

𝐶𝑅 Compression ratio

𝑤 Number of buckets in HotSketch

𝑐 Number of slots in each bucket in HotSketch

𝑘 Number of hot features

2.2 Embedding Compression
Embedding compression is mainly conducted within a memory

constraint. Denoting 𝑀 as the memory budget of the embedding

table, M as the memory function mapping an embedding table to

correspondingmemory usage, and 𝐸∗ as the compressed embedding

table, the optimization of DLRM within a memory constraint is

formulated as follows:

min

𝐸∗,𝑓
E(𝑥𝑐𝑎𝑡 ,𝑥𝑛𝑢𝑚,𝑦)∼DL(𝑦, 𝑓 (𝐸∗ (𝑥𝑐𝑎𝑡 ), 𝑥𝑛𝑢𝑚)),

s.t.M(𝐸∗) ≤ 𝑀.
(2)

The memory function excludes the memory usage of neural

networks since it is fixed and negligible compared to the memory

usage of embedding tables.

We define compression ratio as the multiple of the original mem-

ory to the compressed memory, to reflect the degree of compression:

𝐶𝑅 =
M(𝐸 )
M(𝐸∗ ) . In practical applications, using a compression ratio of

10× can reduce the cost of distributed deployment, 100× to 1000×
can allow for single-device deployment, and an extreme compres-

sion ratio of 10000× can enable DLRMs on edge devices.

For online training, the fixed data distribution D in the above

definition can be modified to a variable distribution D𝑡 , which is

continuously evolving over time 𝑡 .

(a) Criteo. (b) CriteoTB.

Figure 3: Comparing gradient norm and Zipf distributions.
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3 CAFE DESIGN
3.1 CAFE Overview
Rationale: We design CAFE, an efficient embedding framework

that is simultaneously compact, adaptive, and fast. The key idea

of CAFE is to dynamically distinguish important features (called

hot features) from unimportant ones (called non-hot features), and

allocate more resources to hot features. Specifically, we define the

importance score of a feature using the L2-norm of its gradient,

which is proven to have good theoretical properties in Section 3.5.2

and also in previous works [40, 49, 50]. We further experimentally

demonstrate the effectiveness of gradient norms in Section 5.3. We

observe that in most training data, the feature importance follows

a highly skewed distribution, where most features have small im-

portance scores and only a small fraction of hot features are very

important. For example, Figure 3 illustrates that the feature im-

portance distributions in Criteo dataset and CriteoTB dataset are

highly consistent with Zipf distributions of parameters 1.05 and

1.1, respectively. Therefore, if we can allocate more memory to

the embedding of hot features and less memory to that of non-hot

features, it is possible to significantly improve the model quality

under the same memory usage of embedding tables.

As shown in Figure 4, in CAFE, we propose a novel sketch algo-

rithm, called HotSketch, to capture feature importance and report

top-𝑘 hot features in real time (Section 3.2). In each training it-

eration, we first fetch data samples from the input training data,

and query each feature from these samples in HotSketch. For each

feature, HotSketch reports its current importance score, and if the

score exceeds a predefined hot feature threshold, we regard this

feature as a hot feature. We then lookup the embeddings for hot

features and non-hot features respectively. In CAFE, for each hot

feature, we allocate a unique embedding, and we store the pointer to

this embedding in HotSketch. For the non-hot features, we use hash

embedding tables where multiple features can share one embedding.

We will discuss how to migrate embeddings between the tables of

hot features and non-hot features in Section 3.3. Guided by our

design philosophy, we further propose a multi-level hash embed-

ding framework to better embrace the skewed feature importance

distribution (Section 3.4). Afterwards, we feed the embeddings into

the downstream neural network for prediction and get the gradient

norm for each feature. Finally, we update the importance of these

features in HotSketch using their gradient norms.

Figure 4: Overview of CAFE.

3.2 The HotSketch Algorithm
Rationale:We design HotSketch to capture hot features with high

importance scores in a single pass, which is essentially a problem of

finding top-𝑘 frequent items (features) in streaming data. Currently,

Space-Saving [51] is the most recognized algorithm for solving top-

𝑘 problem. It maintains frequent items in sorted doubly linked list

and uses a hash table to index this list. However, this hash table not

only doubles the memory usage but also imposes time inefficiency

due to numerous memory accesses caused by pointer operations.

Based on the idea of Space-Saving, we propose HotSketch, which

removes the hash table while still maintaining the 𝑂 (1) time com-

plexity. We theoretically prove that our HotSketch well inherits the

theoretical results of Space-Saving (Section 3.5), and empirically

validate the performance of HotSketch (Section 5.6).

Data structure: As depicted in Figure 5, HotSketch consists of an

array of 𝑤 buckets B[1], · · · ,B[𝑤]. We use a hash function ℎ(·)
to map each feature into one bucket. Each bucket contains 𝑐 slots.

Each slot stores a feature ID and its importance score.

Insertion: For each incoming feature 𝑓𝑖 associated with an im-

portance score 𝑠𝑖 , we first calculate the hash function to locate a

bucket B[ℎ(𝑓𝑖 )], termed as the hashed bucket of 𝑓𝑖 . Then, we check

bucket B[ℎ(𝑓𝑖 )] and encounter three possible scenarios: (1) 𝑓𝑖 is

recorded in B[ℎ(𝑓𝑖 )]. We add 𝑠𝑖 to its importance score. (2) 𝑓𝑖 is not

recorded in B[ℎ(𝑓𝑖 )] and there exists an empty slot in B[ℎ(𝑓𝑖 )].
We insert 𝑓𝑖 into the empty slot by setting this slot to (𝑓𝑖 , 𝑠𝑖 ). (3)
𝑓𝑖 is not recorded in B[ℎ(𝑓𝑖 )] and B[ℎ(𝑓𝑖 )] is full. We locate the

feature with the smallest score (𝑓𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛), replace 𝑓𝑚𝑖𝑛 with 𝑓𝑖 ,

and add 𝑠𝑖 to 𝑠𝑚𝑖𝑛 . In other words, we set the slot (𝑓𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛) to
(𝑓𝑖 , 𝑠𝑚𝑖𝑛 + 𝑠𝑖 ). Figure 5 shows an example of insertion.

Discussion:HotSketch has the following advantages: (1) HotSketch
has fast insertion speed. It processes each feature in a one-pass

manner and has an 𝑂 (1) time complexity. In addition, HotSketch

avoids complicated pointer operations and has only one memory

access. (2) HotSketch is memory-efficient. It does not store pointers,

and there are no empty slots in HotSketch after a brief cold start. (3)

HotSketch is hardware-friendly and can be accelerated with multi-

threading and SIMD, thereby achieving superior data parallelism.

Figure 5: The HotSketch algorithm.

3.3 Migration Strategy
During the online training of DLRMs, the distribution of feature

importance fluctuates with data distribution changes, meaning that

the hot features are not constant throughout the training process.

Since HotSketch already records the feature importance during
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training, it can naturally support dynamic hot features by embed-

dings migration between uncompressed and hash embedding tables.

In HotSketch, we set a threshold to distinguish hot features, and

the entry and exit of hot features occur throughout the training

process. Almost every feature that reaches HotSketch for the first

time is considered a non-hot feature with a low importance score.

When a non-hot feature’s importance score surpasses the threshold,

it transitions into a hot feature, and its embedding migrates from

the shared table to the uncompressed table as initialization, ensur-

ing the feature’s representation remains smooth throughout the

training process. Conversely, when a hot feature’s importance score

drops below the threshold, it becomes a non-hot feature, and its

embedding is discarded from the uncompressed table. Considering

that the newly migrated non-hot feature is no longer important,

its original exclusive embedding is simply ignored and the shared

embedding is used instead. The threshold is meticulously set, al-

lowing HotSketch to always saturate with hot features and adapt

to distribution changes. If the importance scores alter rapidly, we

can also decay the scores periodically.

During training, it’s vital to maintain an appropriate migration

frequency. If the migration occurs too frequently, the learning pro-

cess may not be smooth enough due to the replacement of embed-

dings, and the migration will generate substantial delay. Conversely,

if the migration occurs too infrequently, HotSketch cannot capture

changes in the distribution, leading to a decline in model quality.

By setting a suitable threshold in HotSketch, a moderate migration

frequency can enable the model to adapt to changes in distribution

without negatively impacting convergence and latency.

3.4 Multi-level Hash Embedding
In HotSketch, features are categorized into hot and non-hot features,

with the latter outnumbering the former, considering typical com-

pression ratios ranging from 10× to 1000×. A substantial number

of non-hot features are treated identically in HotSketch, sharing

a hash embedding table with the same rate of collisions. Given

that these features’ importance scores also conform to a highly

skewed Zipf distribution, it’s logical to further segregate non-hot

features based on their importance scores and assign different hash

embedding tables to them. Therefore, we integrate multi-level hash

embedding, as shown in Figure 6.

Figure 6: Overview of multi-level hash embedding.
With multi-level hash embedding, we partition non-hot features

into more refined categories of different importance levels, and

assign to them different number of embeddings frommultiple tables.

For simplicity, we focus on 2-level hash embedding, where non-hot

features are divided into medium features and cold features. We

expand the functionality of HotSketch to identify medium features

by estimating their importance scores. Since medium features are

more significant, they reference 2 embedding vectors from 2 distinct

hash embedding tables, while cold features only look up a single

embedding vector. This design draws inspiration from prior hash-

based methods [32] that also adopt multiple embedding vectors to

enrich representations and boost model quality.

We illustrate the multi-level embedding process using an exam-

ple in Figure 6. (1) Input features 𝑓1, 𝑓2, 𝑓3 are fed into HotSketch.

Among them 𝑓1 has a score larger than the hot threshold, 𝑓2 has a

score above the medium threshold, and 𝑓3 has a score lower than

the thresholds, so they are classified as hot, medium, and cold fea-

tures respectively. (2) Hot and cold features look up the embedding

vectors as before. (3) Medium feature 𝑓2 looks up two embedding

vectors from two hash embedding tables, and obtains the final

embedding through a pooling process. To ensure that the train-

ing process remains smooth, the hash function is combined with

hash tables. When a feature is migrated between middle and cold

classes, it always retrieves the same embedding vector from the first

embedding table. For pooling operation, in practice, we find that

simple summation of embeddings performs well, since a feature’s

embedding vectors are always updated in the same direction.

The design of the multi-level hash embedding is based on the

observation that a unique embedding is a comprehensive repre-

sentation with no information loss, whereas, for hash embeddings,

the larger the number of embeddings involved, the fewer the col-

lisions and the more information a feature can retain. Through

experiments detailed in Section 5.4, we find that multi-level hash

embedding performs better, with a reduction of 0.25% in training

loss and an increase of 0.08% in testing AUC.

3.5 Theoretical Analysis
3.5.1 Accuracy of HotSketch.
In this section, we theoretically analyze the performance of HotS-

ketch in finding top-𝑘 important features. We derive the probability

that a feature with top-𝑘 importance score is recorded in HotSketch.

Theorem 3.1. Given a data stream with 𝑛 features, and suppose
their importance score vector is 𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where 𝑎1 ⩾
𝑎2 ⩾ · · · ⩾ 𝑎𝑛 . Suppose that our HotSketch has 𝑤 buckets, and
each bucket contains 𝑐 cells. Without distribution assumption, for an
important feature with a total score larger than 𝛾 ∥𝑎∥1, it can be held
in HotSketch with probability at least: Pr > 1 − 1−𝛾

(𝑐−1)𝛾𝑤 .

Proof. The expected score sum of the other features
ˆ𝑓 entering

the same bucket is: 𝐸

[
ˆ𝑓

]
=

(1−𝛾 ) ∥𝑎∥
𝑤 .

By following the properties of SpaceSaving algorithm, if the

score
ˆ𝑓 of the other features entering the bucket is no more than

(𝑐 − 1)𝛾 ∥𝑎∥1, then the feature must be held in the bucket. Us-

ing Markov inequality, we have Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1

)
⩽

1−𝛾
(𝑐−1)𝛾𝑤 ,

which means that Pr > 1 − 1−𝛾
(𝑐−1)𝛾𝑤 . □

Lemma 3.2. Given a data stream with score vector 𝑎 =

{𝑎1, 𝑎2, · · · , 𝑎𝑛}, where 𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 . Suppose that 𝑎 fol-
lows a Zipfian distribution with parameter 𝑧, meaning that 𝑎𝑖 =

𝑎1
𝑖𝑧 .

Suppose our HotSketch has𝑤 buckets, and each bucket contains 𝑐 cells.
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Then the mathematical expectation of the score sum of the features

entering each bucket is: 𝐸 [ ˆ𝑓 ] ⩽ ∥𝑎∥1 ·𝑘1−𝑧

𝑤 with probability at least

3
− 𝑘

𝑤 for 𝑧 > 1 and 𝑛 → +∞.

Proof. The probability that the𝑘 hottest features are not hashed

into this bucket is:

(
1 − 1

𝑤

)𝑘
=

((
1 − 1

𝑤

)𝑤 ) 𝑘
𝑤

> 3
− 𝑘

𝑤 .

When 𝑤 ⩾ 6,

(
1 − 1

𝑤

)𝑤
increases monotonically with 𝑤 . The

expected score sum of the non-hot features entering this bucket is:

𝐸 [ ˆ𝑓 ] =
∑𝑛
𝑖=𝑘+1 𝑎𝑖
𝑤

=

∑𝑛
𝑖=𝑘+1

𝑎1
𝑖𝑧

𝑤
=

∥𝑎∥1
𝑤

·
(

𝑛∑︁
𝑖=𝑘+1

𝑖−𝑧
)
· 1∑𝑛

𝑖=1 𝑖
−𝑧

⩽
∥𝑎∥1
𝑤

·
(∫ +∞

𝑘

𝑥−𝑧𝑑𝑥
)
·
(∫ +∞

1

𝑥−𝑧𝑑𝑥
)−1

⩽
∥𝑎∥1
𝑤

· 𝑘
1−𝑧

𝑧 − 1

· (𝑧 − 1) = ∥𝑎∥1𝑘1−𝑧
𝑤

for 𝑧 > 1 and 𝑛 → +∞. □

Theorem 3.3. Given a data stream with score vector 𝑎 =

{𝑎1, 𝑎2, · · · , 𝑎𝑛}, where 𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 . Suppose that 𝑎 follows
a Zipfian distribution with parameter 𝑧. Suppose that our HotSketch
has 𝑤 buckets, and each bucket contains 𝑐 cells. Then for a hot fea-
ture with a score larger than 𝛾 ∥𝑎∥1, it can be held in the sketch with

probability at least: Pr > 𝑠𝑢𝑝
𝜂>0

(
3
−𝜂 ·

(
1 − 𝜂

(𝑐−1)𝛾 (𝜂𝑤 )𝑧
))

for 𝑧 > 1

and 𝑛 → +∞.

Proof. The condition C that none of the 𝑘 hottest features col-

lide with this item holds with probability at least 3
− 𝑘

𝑤 .

By following the properties of SpaceSaving algorithm, if the

scores
ˆ𝑓 of the other features entering the bucket is no more than

(𝑐 − 1)𝛾 ∥𝑎∥1, then the feature must be held in the bucket.

Using Markov inequality, we have

Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1 | C

)
⩽

∥𝑎∥1 ·𝑘1−𝑧

𝑤

(𝑐 − 1)𝛾 ∥𝑎∥1
=

𝑘1−𝑧

(𝑐 − 1)𝛾𝑤 .

Then we have

Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1

)
⩽ Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1, C

)
+ Pr (¬C)

⩽3−
𝑘
𝑤 ·

(
𝑘1−𝑧

(𝑐 − 1)𝛾𝑤 − 1

)
+ 1.

Let 𝑘 = 𝜂𝑤 , we have

Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1

)
⩽ 3

−𝜂 ·
(

1

𝜂𝑧−1 (𝑐 − 1)𝛾𝑤𝑧
− 1

)
+ 1.

And we have the probability that this feature must be held greater

than

Pr > 𝑠𝑢𝑝
𝜂>0

(
3
−𝜂 ·

(
1 − 𝜂

(𝑐 − 1)𝛾 (𝜂𝑤)𝑧

))
.

□

Corollary 3.4. The larger the parameter 𝑐 ,𝑤 , 𝑧, and 𝛾 , the larger
the probability that the feature with score larger than 𝛾 ∥𝑎∥1 be held
in the sketch. The larger 𝑐 and𝑤 means the larger memory used by
sketch, the larger 𝑧 means the more skew the data stream is, and the
larger 𝛾 means the hotter the feature is.

Proof. The following formula monotonically decreases with

parameter 𝑐 ,𝑤 , 𝑧, and 𝛾 :
𝜂

(𝑐−1)𝛾 (𝜂𝑤 )𝑧 . □

Corollary 3.5. To let the feature with score larger than 𝛾 ∥𝑎∥1
be held with maximum probability in a fixed memory budget, the
more skew the data stream is, the less cells per bucket should be used.
Specifically, we recommend to use 𝑐 = 1 + 1

𝑧−1 .

Proof. With a fixed memory budget 𝑀 = 𝑐𝑤 , to minimize

𝜂

(𝑐−1)𝛾 (𝜂𝑤 )𝑧 , we should maximize (𝑐 − 1)𝑤𝑧 =

(
𝑀
𝑤 − 1

)
𝑤𝑧 .

As it has a derivative function[(
𝑀

𝑤
− 1

)
𝑤𝑧

] ′
= ((𝑧 − 1)𝑀 − 𝑧𝑤)𝑤𝑧−2,

the optimal𝑤 should be
𝑧−1
𝑧 𝑀 , and the optimal 𝑐∗ should be

𝑐∗ =
𝑧

𝑧 − 1

= 1 + 1

𝑧 − 1

.

□

Discussion: From Corollary 3.5, we can see that under fixed mem-

ory usage (𝑀 = 𝑐𝑤 ), the optimal 𝑐 is affected by data distribution.

Under non-skewed data distribution (small 𝑧), we should use larger

𝑐 and smaller 𝑤 to better approximate the results of basic Space-

Saving. Under highly skewed data distribution (large 𝑧), we should

use smaller 𝑐 and larger 𝑤 to lower the impact of hash collisions

between hot features. This might be because under highly skewed

data, using small 𝑐 can already guarantee us to find hot features with

high probability. In this scenario, the performance of HotSketch is

mainly affected by hash collisions between hot features. We surpris-

ingly find that this corollary is consistent with our experimental

results in Figure 18(a).

1e-05 2e-05 5e-05 1e-04 2e-04 5e-04 1e-03

γ (hotness)

1.1

1.4

1.7

2.0

z
(s

ke
w

ne
ss

)

0.5
0.6

0.7

0.8

0.9

1.0

Pr
ob
ab
ilit
y

Figure 7: Numerical analysis for the probability of HotSketch
identifying hot features, where the x-axis represents the
hotness of the feature and the y-axis represents the skewness
of the feature hotness distribution (Theorem 3.3).

Experimental analysis (Figure 7): Although we cannot directly

obtain the analytical solution of Pr from Theorem 3.3, we can give

the numerical solution of Pr under different 𝛾 and 𝑧 by numerical

simulation. In our simulation, we set 𝑤 = 10000 and 𝑐 = 4. We

can see that larger 𝑧 goes with higher Pr, showing that HotSketch

is more suitable for capturing top-𝑘 features on skewed data dis-

tribution. In addition, larger 𝛾 also goes with higher Pr, showing

that hotter features have larger probability of being captured by

HotSketch. The results are consistent with our design goal.
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3.5.2 Convergence Analysis against Deviation.
As mentioned in Section 1.2, in hash-based methods, there will be

deviations that can hinder the convergence of embeddings. CAFE

aims to minimize the deviation of embedding gradients, which

indeed reflects the deviation of embedding parameters. In this sec-

tion, we analyze how this deviation affects the convergence of

SGD algorithm. We study the following (non-convex) empirical risk

minimization problem:

min

𝜃 ∈R𝐷
𝑓 (𝜃 ) = 1

𝑁

𝑁∑︁
𝑖

𝑓𝑖 (𝜃 ), 𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑔𝑖𝑡

where 𝛼 is learning rate, 𝑔𝑖𝑡 = ∇𝑓𝑖 (𝜃𝑖𝑡 ) is the standard gradient

without compression, 𝑔𝑖𝑡 is the practical gradient with compression.

We make the assumption below following [52].

Assumption. For ∀𝑖 ∈ {1, 2, ..., 𝑁 }, 𝜃, 𝜃 ′ ∈ R𝐷 , we make the fol-

lowing assumptions:

(1. L-Lipschitz) ∥∇𝑓𝑖 (𝜃 ) − ∇𝑓𝑖 (𝜃 ′)∥ < 𝐿∥𝜃 − 𝜃 ′∥ ;
(2. Bounded moment) E[∥∇𝑓𝑖 (𝜃 )∥] < 𝜎0, E[∥∇𝑓 (𝜃 )∥] < 𝜎0;

(3. Bounded variance) E[∥∇𝑓𝑖 (𝜃 ) − ∇𝑓 (𝜃 )∥] < 𝜎 ;

(4. Existence of global minimum) ∃𝑓 ∗𝑠 .𝑡 .𝑓 (𝜃 ) ≥ 𝑓 ∗ .

Theorem 3.6. Suppose we run SGD optimization with CAFE on
DLRMs satisfying the assumption above, with 𝜖𝑡 = ∥𝑔𝑖𝑡 − 𝑔𝑖𝑡 ∥ as
the deviation of embedding gradients. Assume the learning rate 𝛼
satisfy 𝛼 < 1

𝐿
. After 𝑇 steps, for 𝜃𝑇 which is randomly selected from

{𝜃0, 𝜃1, ..., 𝜃𝑇−1}, we have:

E[∥∇𝑓 (𝜃𝑇 )∥2] ≤
𝑓 (𝜃0) − 𝑓 ∗

𝑇𝛼 (1 − 𝛼𝐿) +
𝛼 (2𝐿𝜎2 + 𝜎2

0
)

2(1 − 𝛼𝐿) +
(1 + 𝛼2𝐿)∑𝑇−1

𝑡=0 E[𝜖2𝑡 ]
2𝑇𝛼 (1 − 𝛼𝐿)

The proof is in the supplementary file on our GitHub page [1].

As 𝑇 increases, with a proper learning rate 𝛼 = 𝑂 ( 1√
𝑇
), the first

two terms at the right hand side of above inequality tends to 0, and

the convergence of SGD is mainly influenced by the deviation 𝜖𝑡 .

In the scenario of compression, there is no bound for this deviation;

yet the design of CAFE is proposed to minimize the deviation.

Since we assign those importance features with exclusive embed-

ding parameters, their parameters have little deviation; for features

sharing embeddings with each other, the deviation is introduced by

the hash collisions. Generally, we cannot directly obtain the devia-

tion of gradients, but according to the L-Lipschitz assumption, the

deviation of gradients is bounded by the deviation of weights. As

non-hot features share embeddings with each other, the deviation

of weights comes from other features’ gradients, which may disturb

the learning direction. Based on this observation, CAFE choose to

use gradient norm as the importance of features. For less important

features, their gradient norms are relatively small, which limits the

deviation of weights to some extent.

4 IMPLEMENTATION
We implement CAFE as a plug-in embedding layer module based

on PyTorch. It can directly replace the original Embedding module

in any PyTorch-based recommendation models with minor changes.

Usage examples can be found on our GitHub page [1]. We consider

extending CAFE to other frameworks (Hetu [53], etc.) in the future.

CAFE Backend:We implement the HotSketch algorithm in C++

to reduce the overall latency, and implement the rest of CAFE using

PyTorch operators. For HotSketch, we set the number of bucket in

HotSketch to the pre-determined number of hot features, with 4

slots per bucket. We use one sketch structure for all feature fields

instead of one sketch per field, because the distribution of hot

features across fields is unclear, which is better handled directly

with importance scores.

Fault Tolerance: We register all HotSketch’s states as buffers

in CAFE’s PyTorch module, so that the states can be saved and

loaded alongside model parameters. This simple design requires

no additional modifications and enables DLRM with CAFE to use

checkpoints for training and inference.When training resumes with

checkpoints, parameters and states are reloaded simultaneously.

Memory Management: We place the whole HotSketch structure

on CPU, since it is not compute-intensive. Built upon PyTorch

operators, CAFE’s embedding module can run on any accelerators

(including CPU, GPU) where PyTorch is supported.

5 EXPERIMENTAL RESULTS
In this section, we conduct experiments on four widely used DLRM

datasets and compare our CAFE with existing embedding memory

compression methods. We experimentally show that CAFE satisfies

all three requirements. We also design experiments to reflect the

effectiveness of HotSketch.

5.1 Experimental Settings
5.1.1 Models and Datasets. We conduct the experiments on three

representative recommendation models DLRM [19]
1
, WDL [18],

and DCN [42]. These models are popular in both academia and in-

dustry. All models follow the architecture discussed in Section 2.1,

with slight differences in the neural network part. In DLRM, a cross

layer performs dot operations between embeddings, producing

cross terms for subsequent fully-connected (FC) layers; in WDL,

embeddings are fed into a wide network (1 FC layer) and a deep

network (several FC layers), and finally the results are summed

together for predictions; in DCN, cross layers multiply the embed-

dings with their projected vectors, producing element-level cross

terms for subsequent FC layers. Since our method is essentially an

embedding layer plugin, the conclusions can be generalized to other

recommendation models with little effort. We set the configurations

of the models as in the original paper.

We train on three large-scale datasets Avazu [54], Criteo [55],

KDD12 [56], and an extremely large-scale dataset CriteoTB [57].

Criteo Kaggle Display Advertising Challenge Dataset (Criteo) [55]

and Criteo Terabytes Click Logs (CriteoTB) [57] contain 7 and 24

days of ads click-through rate (CTR) prediction data respectively,

which are adopted in MLPerf [58]. Each data sample has 13 numer-

ical fields and 26 categorical fields. For CriteoTB, we set the field’s

maximum cardinality to 4𝑒7, the same as in the MLPerf configura-

tion. Avazu Click-Through Rate Prediction Dataset (Avazu) [54] and

KDD Cup 2012, Track 2 (KDD12) [56] are another two widely-used

CTR datasets. They have no numerical field. Avazu contains 10

days of CTR data with 22 categorical fields. KDD12 has no tem-

poral information, and has 11 categorical fields. For each dataset,

we use the appropriate embedding dimension based on the bench-

marks [19, 59] or our experiments on the uncompressed models.

The statistics of the datasets are listed in Table 2. Since the numeri-

cal field is not our focus, we omit it from the table. In Section 5.5,

1
In this section, we use the term "DLRM" to refer to this specific model, rather than

the abbreviation of general "Deep Learning Recommendation Model".
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we construct a new dataset with a more significant shift in data

distribution to further validate CAFE’s ability to adapt to changes

in data distribution.

Table 2: Overview of the datasets.

Dataset #Samples #Features #Fields Dim #Param

Avazu 40,428,967 9,449,445 22 16 150M

Criteo 45,840,617 33,762,577 26 16 540M

KDD12 149,639,105 54,689,798 11 64 3.5B

CriteoTB 4,373,472,329 204,184,588 26 128 26B

5.1.2 Baselines. We compare CAFE with Hash Embedding [37],

Q-R Trick [38], and AdaEmbed [40]. Hash embedding is a simple

baseline using only one hash function, providing a lower bound

for all compression methods. Q-R Trick is an improved hash-based

method, using multiple hash functions and complementary embed-

ding tables to reduce the overall collisions. AdaEmbed is an adaptive

method, recording all features’ importance scores and dynamically

allocates embedding vectors only for important features. We also

compare with uncompressed embedding tables. In Section 5.2.4, we

compare CAFE with a column compression method MDE [33]. If

not specified, the hyperparameters of the baselines are the same as

in the original paper or code.

5.1.3 Hardware Environment. We conduct all experiments on

NVIDIA RTX TITAN 24 GB GPU cards. Since we focus on em-

bedding compression with large compression ratios, we do not

incur distributed training or inference.

5.1.4 Metrics. We employ training loss and testing AUC (area

under the ROC curve) to measure model quality. Specifically, we

use the data samples except the last day as the training set, and the

data samples of the last day as the testing set. We use the testing

AUC on the last day as the metric for offline training, and the

average loss during training as the metric for online training. We

train one epoch on the training set in chronological order, which is

common in industry. Since KDD12 has no temporal information,

we randomly shuffle the data and select 90% for training and the

rest for testing. For memory usage, besides embedding tables, we

also consider the memory of additional structures to achieve a fair

judgment on memory efficiency. We use throughput to measure

the speed of each method.

5.2 End-to-end Comparison
In this section, we compare CAFE with baseline methods in an end-

to-end manner. For large-scale datasets, we train with compression

ratios ranging from 2× to 10000×, while for the CriteoTB dataset, we

train with compression ratios ranging from 10× to 10000×, ensuring
the model fits in the memory.

5.2.1 Metrics v.s. compression ratios. We conduct the main experi-

ments onDLRM. The testingAUC and the training loss of Criteo and

CriteoTB under different compression ratios are plotted in Figure 8,

representing the performance of offline and online training respec-

tively. For KDD12, we only plot the testing AUC in Figure 10(a)

since it does not contain temporal information for online training.

For Avazu, given the significant changes in distributions between

days as shown in Figure 2, we focus on the online training per-

formance and plot the training loss in Figure 10(b). Only CAFE

and Hash can compress the embedding tables to extreme 10000×
compression ratio, while Q-R Trick can only compress to around

500× due to its complementary index design, and AdaEmbed can

only compress to 5× in Avazu and Criteo with dimension 16, 20×
in KDD12 with dimension 64, and 50× in CriteoTB with dimension

128. Compared to Hash and Q-R Trick, CAFE is always closer to

ideal result that uses uncompressed embedding tables, showing

excellent memory efficiency. When varying the compression ratio,

on Criteo dataset CAFE improves the testing AUC by 1.79% and

0.55% compared to Hash and Q-R Trick respectively on average; on

CriteoTB dataset the improvement is 1.304% and 0.427%; on KDD12

dataset the improvement is 1.86% and 3.80%. CAFE also reduces

the training loss by 2.31%, 0.72% on Criteo dataset, 1.35%, 0.59% on

CriteoTB dataset, and 3.34%, 0.76% on Avazu dataset compared to

Hash and Q-R Trick, exhibiting better performance for both offline

and online training. The training loss of Hash fluctuates with the

increase of CR on KDD12, which may be due to the instability of

the Hash method and a certain degree of randomness in its embed-

ding sharing. The improvement of CAFE over Hash is greater with

larger compression ratio. Compared to Hash, at 10000× compres-

sion ratio, CAFE improves 3.92%, 3.68%, and 5.16% testing AUC on

Criteo, CriteoTB, KDD12; CAFE reduces 4.61%, 3.24%, and 11.21%

training loss on Criteo, CriteoTB, Avazu. Compared to AdaEmbed,

CAFE reaches nearly the same testing AUC and training loss on

Criteo dataset, achieves an increase of 0.04% testing AUC and a

decrease of 0.12% training loss on CriteoTB dataset, achieves an

increase of 0.82% testing AUC on KDD12 dataset and a decrease of

0.83% training loss on Avazu dataset. AdaEmbed can distinguish

hot features with no errors, but it uses much memory for storing

importance information of all features, with less memory for em-

bedding vectors compared to CAFE, leading to comparable results

at small compression ratios.

5.2.2 Metrics v.s. iterations. We check the convergence process

of different methods. Figure 9 shows the metrics on Criteo and

CriteoTB throughout iterations during training. Figure 10(c) shows

the training loss on Avazu throughout iterations. We do not plot

uncompressed embeddings trained on CriteoTB because the model

cannot be held in our limited memory space. In Figure 9(a)-9(d),

the testing AUC curves tend to increase because the model con-

tinues to learn during training and the data distribution gradually

approaches the distribution of the last day testing data. CAFE has

consistently better AUC during training compared to Hash and

Q-R Trick. However, CAFE does not show better performance at

the beginning of training compared to AdaEmbed, mainly because

CAFE has a cold-start process to populate HotSketch, where all

features are initially non-hot features. As training progresses, CAFE

gradually achieves an AUC comparable to or better than AdaEmbed.

In Figure 9(e)-9(h), and 10(c), the training loss curves fluctuate due

to changes in data distributions. CAFE always has a closer training

loss to ideal result than Hash and Q-R Trick on Criteo and Avazu

datasets, showing better online training ability. The training curves

of CAFE and AdaEmbed roughly coincide, since they are both de-

signed for online training. The CriteoTB dataset is large enough to

adequately train various methods, resulting in the loss curves of

different methods being indistinguishable.
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(a) Test AUC v.s. CR on Criteo. (b) Test AUC v.s. CR on CriteoTB. (c) Train loss v.s. CR on Criteo. (d) Train loss v.s. CR on CriteoTB.

Figure 8: Metrics v.s. compression ratios.

(a) AUC v.s. iterations on Criteo (100×). (b) AUC v.s. iterations on CriteoTB (100×). (c) AUC v.s. iterations on Criteo (5×). (d) AUC v.s. iterations on CriteoTB (50×).

(e) Train loss v.s. iterations on Criteo (100×). (f) Train loss v.s. iterations on CriteoTB (100×).

(g) Train loss v.s. iterations on Criteo (5×). (h) Train loss v.s. iterations on CriteoTB (50×).
Figure 9: Metrics v.s. iterations.

(a) Test AUC v.s. CR on KDD12. (b) Train loss v.s. CR on Avazu. (c) Train loss v.s. iterations on Avazu (5×).
Figure 10: Performance on KDD12 and Avazu.

5.2.3 Experiments on WDL and DCN. We use another two models,

WDL [18] and DCN [42], to experiment on the extremely large-

scale dataset CriteoTB. The results are shown in Figure 11. Similar

to DLRM, CAFE consistently outperforms Hash and Q-R Trick at

different compression ratios in both testing AUC and training loss.

AdaEmbed is the most advanced compression method for small

compression ratios, and CAFE achieves comparable performance to

AdaEmbed. The training loss of Hash is not stable in WDL, possibly

due to the instability of the Hash method itself and a certain degree

of randomness in its embedding sharing.
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(a) WDL, Test AUC v.s. CR. (b) WDL, Train loss v.s. CR. (c) DCN, Test AUC v.s. CR. (d) DCN, Train loss v.s. CR.

Figure 11: WDL and DCN performance on CriteoTB.

(a) Test AUC v.s. CR on Criteo. (b) Test AUC v.s. CR on CriteoTB. (c) Train loss v.s. CR on Criteo. (d) Train loss v.s. CR on CriteoTB.

Figure 12: Comparison with MDE.

Figure 13: End-to-end throughput on CriteoTB (10×).
5.2.4 Comparison with Column Compression. We also compare

CAFE with MDE [33], a method that compresses columns of em-

bedding tables instead of rows as in CAFE and other baselines. It

introduces frequency information to allocate different embedding

dimensions for different features, and then uses a trainable matrix

to project the raw embeddings to the same final dimension. Since

MDE does not compress the rows, and each feature needs to be

assigned at least one dimension, the overall compression ratio is

limited by the original embedding dimension. We plot the results

in Figure 12. We also include a simple row compression baseline

Hash for comparison. MDE’s performance is comparable to Hash

on Criteo, but it drops dramatically on CriteoTB. To reduce the

number of projection matrices, MDE simply uses the feature cardi-

nality of the field to derive the frequency instead of using the actual

frequency, which does not effectively utilize important features.

It also significantly reduces the rank of the embedding matrix at

large compression ratios, causing the embedding to lose semantic

information. According to the experimental results, CAFE always

outperforms MDE.

5.2.5 Throughput. We test the throughput of each method in Fig-

ure 13. The experiments is conducted on CriteoTB dataset with a

compression ratio of 10×. We use 2048 batch size for training and

16384 batch size for inference, which is common in real applica-

tions. As the data loading time and the DNN computing time is the

same across different methods, the difference lies in the operations

of the embedding layer. Hash requires only an additional modulo

operation compared to uncompressed embedding operations, and

is therefore the fastest method in both training and inference. Q-R

Trick also has large throughput, because it only additionally intro-

duces hash processes and the aggregation of embedding vectors.

Although MDE introduces matrix multiplication, it requires fewer

memory accesses to obtain the embedding parameters, resulting

in high throughput. AdaEmbed and CAFE incur reallocation or

migration of embeddings, which are inevitable for dynamic adjust-

ments, leading to lower throughputs. AdaEmbed regularly samples

thousands of data to determine whether to reallocate, which in-

troduces a large time overhead. In contrast, CAFE determines the

migraion in HotSketch with negligible time overhead. Compared to

AdaEmbed, CAFE has 33.97% higher training throughput and 1.20%

higher inference throughput. Through the further experimental

results in Section 5.6, we can see that HotSketch’s 𝑂 (1) operation
time only accounts for a small fraction of the overall time.

5.2.6 Comparison with offline separation. We also compare CAFE

with an offline feature separation version on Criteo dataset. The

offline separation version collects all data and makes statistics, sep-

arates hot and non-hot features according to frequency instead

of gradient norms, and assigns embedding tables respectively. It

uses the same embedding memory as in CAFE for hot and non-hot

features. As shown in Figure 14(a), two versions achieve nearly

the same testing AUC under several compression ratios. Compared

to CAFE, the offline version has no errors in distinguishing hot

features, but it can only use frequency, resulting in comparable

performance. Figure 14(b) and Figure 14(c) show the testing AUC

and the training loss throughout the training process at 1000× com-

pression ratio. At the beginning of training, the offline version has

better testing AUC and training loss, because CAFE has a cold-start

process to fill in the slots. When the training process becomes sta-

ble, the two training loss curves almost completely coincide. The

offline version, however, cannot be used in practical applications.

First, it cannot adapt to online training, where the frequency infor-

mation is unknown without recording. Second, in offline training,

memory storage and additional data traversal process are required

for statistics, causing much overhead. In contrast, CAFE naturally
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(a) Test AUC v.s. CR. (b) Test AUC v.s. iterations (1000×). (c) Train loss v.s. iterations (1000×).
Figure 14: CAFE v.s. offline feature separation on Criteo dataset.

(a) Memory for hot features. (b) Threshold of hot features. (c) Decay of scores. (d) Design details.

Figure 15: Experiments of configuration sensitivity on Criteo dataset (1000×).
supports online and offline training without storing all importance

information, so it can be directly applied in the industry.

5.3 Configuration Sensitivity
In this section, we study the impact of configurations in CAFE.

We test different configurations on the Criteo dataset with a fixed

compression ratio of 1000×, as shown in Figure 15.

Memory for hot features. Given a limited memory constraint,

we need to split the memory into three parts: sketch structure, hot

features, and non-hot features. We define the term "hot percentage"

as the percentage of memory occupied by sketch structure and hot

features, while the rest is used for non-hot features. Since HotSketch

stores 4 times the slots of the number of hot features, with each

slot 3 attributes, the ratio of memory usage between HotSketch and

𝑑 dimension exclusive embeddings is 12 : 𝑑 . In the Criteo dataset,

the dimension is set to 16, so HotSketch occupies 3/7 of memory in

hot percentage. Figure 15(a) shows the testing AUC under different

hot percentages, where “loo” means “leave-one-out”, leaving only

one embedding for non-hot features. A small hot percentage has

low memory overhead of HotSketch, and allocate more memory for

non-hot features, while a large hot percentage allocate more mem-

ory for hot features. As hot percentage gradually increases from 0.4

to 1, the testing AUC first rises then drops. When the hot percent-

age is small, enlarging hot percentage enables more hot features,

contributing to model quality; when the hot percentage reaches

0.7, CAFE reaches the best testing AUC; when the hot percentage

exceeds 0.7, HotSketch brings much overhead, and collisions of

non-hot features increase dramatically, making the testing AUC

drop. At the extreme case "leave-one-out", all the non-hot features

share only one embedding, leading to very bad model performance.

In practice, we find that setting hot percentage to around 0.7 is

good enough for nearly all compression ratios.

Threshold of hot features. Hot features are distinguished in

HotSketch if their importance scores exceed the threshold. We test

different thresholds, and the experimental results are shown in

Figure 15(b). The testing AUC is bad when the threshold is set too

high or too low. If the threshold is set too high, the memory space

allocated for hot features cannot be saturated, resulting in waste of

memory and more non-hot features sharing hash embeddings. If

the threshold is set too low, the entry and exit of features will be

too frequent, leading to unstable training process. When threshold

is set to 500, CAFE reaches the best model AUC.

Decay of scores. The decay coefficient in HotSketch determines

the exit of features. All the importance scores in HotSketch, after a

certain number of iterations, will be multiplied the decay coefficient

to adapt to temporal variation of data distribution. We test different

decay coefficients in Figure 15(c). In general, smaller the coefficient,

easier the hot features to dropped out as non-hot features. In ex-

periments, we find that 0.98 is a proper value for decay coefficient

in Criteo dataset, while smaller or larger decay coefficient both

have poor performance. When the decay coefficient is too small,

hot features cannot stay long in HotSketch, makes HotSketch not

saturated and hot features mis-classified to non-hot features. When

the decay coefficient is too large, features continuously occupy slots

in HotSketch, even if they are no longer hot features.

Other design details.We experiment on other design details of

HotSketch. Currently we maintain only one exclusive embedding

table for all fields, instead of maintaining one embedding table

per field. This design makes hot features more flexible, distributed

among fields only according to importance scores rather than car-

dinality. Figure 15(d) shows that maintaining only one exclusive

embedding table leads to a substantial increase in model AUC. We

also check the effect of using frequency information as importance

score, with a worse testing AUC than gradient norm. Although fre-

quency is a good indicator of feature importance, it has been proved

theoretically and experimentally that gradient norm is better.

5.4 Multi-level Hash Embedding
In this section, we study the effect of multi-level hash embedding.

The experimental results are shown in Figure 16, where CAFE-ML

means CAFE combined with multi-level hash embedding. Under

different compression ratios, CAFE-ML always performs better
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than CAFE, achieving 0.08% better testing AUC and reducing 0.25%

training loss. CAFE-ML performs especially well with smaller com-

pression ratios, causing nearly no degradation at 100× compression

ratio. This is because CAFE-ML allocates more memory for multi-

level hash embedding tables at small compression ratios, making

the representation of medium features more precise.

(a) Test AUC v.s. CR. (b) Train loss v.s. CR.

Figure 16: Multi-level hash embedding on Criteo dataset.

5.5 Performance on Processed Dataset
In this section, we construct a new dataset with a more significant

shift in data distribution to further validate CAFE’s ability to adapt

to changes in data distribution. Keeping the testing data unchanged,

we select the training data of days 1,4,7,...,22 from CriteoTB to form

CriteoTB-1/3 dataset. As shown in Figure 2, generally the greater

the number of days between, the greater the difference between

feature distributions. Therefore, CriteoTB-1/3 has a more signifi-

cant shift in data distribution. The results are shown in Figure 17.

Although all methods exhibit slight performance degradation com-

pared to CriteoTB, CAFE and AdaEmbed can adapt to changing

data distributions and achieve relatively good results. Figure 17(c)

shows that CAFE and AdaEmbed have almost the same training loss

throughout the training process. However, Figure 17(a) and 17(b)

indicate that CAFE actually outperforms AdaEmbed with a slight

improvement, demonstrating stronger online training capabilities.

5.6 HotSketch Performance
Impact of the number of slots per bucket (Figure 18(a), 18(b)):
We record the recall and the throughput of HotSketch with different

number of slots per bucket. The experiments use the number of

hot features on Criteo dataset (1000×) as 𝑘 . In Figure 18(a), recall

generally increases as memory becomes larger. According to Corol-

lary 3.5, the best number of slots per bucket locates at 11 to 21 given

a Zipf distribution of parameter 1.05 to 1.1. Therefore, 𝑐 = 8 and

𝑐 = 16 exhibit a better recall than 𝑐 = 4 and 𝑐 = 32. The throughput

of serialized Insert (write) and Query (read) shown in Figure 18(b)

is on the order of 1𝑒7, greater than that of DLRM. Considering that

we can parallelize operations in practice, the sketch time is only

a small fraction in training and inference. Throughput drops as

the number of slots increases, because more time is spent doing

comparisons within buckets. Trading-off recall and throughput, we

adopt 4 slots per bucket in our implementation, as we find it to be

good enough for model quality.

Finding real-time top-𝑘 features (Figure 18(c),18(d)): We con-

duct experiments to evaluate the performance of HotSketch on

finding two types of real-time hot features in online training: the

up-to-date top-𝑘 features, and the top-𝑘 features in previous time

window. These two types of top-𝑘 features change with data distri-

bution during the online training process, and thus can effectively

reflect HotSketch’s capability to adapt dynamic workloads. The ex-

periments are conducted on Criteo using 6 days of online training

data, with a sliding window size of 0.5 day. Figure 18(c) and 18(d)

show the real-time Recall Rate of HotSketch during online train-

ing under different compression ratios. HotSketch always achieves

>90% Recall Rate on finding these two types of top-𝑘 features, mean-

ing that it can well catch up with the changing data distribution.

6 RELATEDWORK
6.1 Embedding Compression
Numerous compression techniques have been proposed for embed-

ding tables, which can be broadly divided into two categories: row

compression and column compression [60]. Row compression meth-

ods, including hash-based methods, adaptive methods, and CAFE,

reduce the number of rows in embedding tables. Column com-

pression methods, including quantization, pruning, and dimension

reduction, compress each unique feature’s representation, thereby

reducing the number of columns (or the number of bits) in embed-

ding tables. Since two categories are primarily orthogonal, methods

of different categories can be further combined in DLRMs.

Row compression methods: These methods aim to reduce the

number of rows in embedding tables. Initial attempts to accommo-

date large numbers of embeddings within a limited memory space

came from hash-based methods [37–39], which are widely used in

real-world applications. They use simple hash functions to map cat-

egorical features onto a limited number of embeddings, resulting in

different features sharing the same embedding vector in the event

of hash collisions. However, hash-based methods do not provide

theoretical bounds, which can lead to significant degradation in

model quality. AdaEmbed [40] is an adaptive method that identifies

and records important features. It dynamically reallocates embed-

dings for important features during online training, and achieves

good model accuracy over time. However, its compression ratio is

constrained by the storage of importance information, which scales

linearly with the number of features. AdaEmbed’s sampling and

migration strategy also incurs much latency in online training.

Column compression methods:Methods of this category aim

to compress the representation for each unique feature, thereby

reducing the number of columns (or the number of bits) in embed-

ding tables. They borrow techniques from traditional deep learning

compression , such as quantization [61, 62], pruning [35, 63], and di-

mension reduction [33, 34, 64]. Except for simple quantization and

rule-based dimension reduction, most of these methods incorporate

learnable structures to implicitly capture the importance of features,

achieving similar or even better model accuracy compared to an

uncompressed model. Nevertheless, they are unable to compress

the embedding tables to small memory constraints during training.

Specifically, quantization has a fixed compression ratio according

to the data type; for example, if INT4 is used for compression, the

compression ratio is fixed at 8× compared to FLOAT32. Generally,

pruning and dimension reduction compress the embedding tables

only at inference time, requiring additional memory to store extra

structures during training. They are seldom used in industry, as the

memory bottleneck during training is more severe due to activa-

tions and optimizer states. Most of these methods can only support

offline training because they require collected data for multi-stage

training, including pre-training, finetuning, and re-training.
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(a) Test AUC v.s. CR on CriteoTB-1/3. (b) Train loss v.s. CR on CriteoTB-1/3. (c) Train loss v.s. iterations on CriteoTB-1/3 (50×).
Figure 17: Experiments on CriteoTB-1/3.

(a) Recall. (b) Throughput. (c) Recall v.s. days under 100× CR. (d) Recall v.s. days under 1000× CR.

Figure 18: Experiments on HotSketch.
6.2 Sketching Algorithm
Sketch is an excellent probabilistic data structure that can approxi-

mately record the statistics of data streams by maintaining a sum-

mary. Thanks to their small memory overhead and fast process-

ing speed, sketches are widely applied in the realm of streaming

data mining [65], database [66–68], and network measurement and

management [69, 70] to perform various tasks, such as frequency

estimation [65, 71, 72], finding top-𝑘 frequent items [51, 73–75], and

mining special patterns in streaming data [76]. Existing sketches

can be classified into two categories: counter-based sketches and

KV-based sketches.

Counter-based sketches: Typical counter-based sketches include

CM [65], CU [71], Count [77], ASketch [78], and more [72, 79–81].

The data structures of these sketches usually consist of multiple

arrays, each containing many counters. Each array is associated

with one hash function that maps items into a specific counter in it.

For example, the most popular CM sketch [65] comprises 𝑑 counter

arrays 𝐶1, · · · ,𝐶𝑑 . For each incoming item 𝑒 , it is hashed into 𝑑

counters in the CM sketch 𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)] with each of

the 𝑑 counters incremented by one. To query item 𝑒 , CM sketch

returns the minimum counter among 𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)].
However, the CM sketch has overestimated errors due to hash col-

lisions. Other sketches propose various strategies to reduce this

error. For instance, CU sketch [71] only increments the minimum

counter among 𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)], and Count sketch [77]

adds 𝑠 (𝑒) ∈ {+1,−1} to each mapped counter to achieve unbiased

estimation. Despite these improvements, existing counter-based

sketches are not memory efficient for finding top-𝑘 items. They do

not distinguish between frequent and infrequent items, where in-

frequent items are useless for reporting top-𝑘 items, and recording

infrequent items only increases the error of frequent items. More-

over, they need multiple memory accesses per insertion, resulting

in unsatisfactory insertion speed.

KV-based sketches: Common key-value-based sketches include

Space-Saving [51], Unbaised Space-Saving [41], Lossy Count-

ing [82], HeavyGuardian [74], and more [69, 70, 73]. These sketches

maintain the KV pairs of frequent items in their data structures. For

instance, Space-Saving [51] and Unbiased Space-Saving [41] use

a data structure called Stream-Summary to record frequent items,

which is essentially a doubly-linked list of fixed size, indexed by

a hash table. When Stream-Summary is full and an unrecorded

item arrives, Space-Saving replaces the least frequent item with the

incoming one. Based on Space-Saving, Unbiased Space-Saving [41]

replaces the least frequent item with a certain probability, so as to

achieve unbiased estimation. Unfortunately, Space-Saving and Un-

biased Space-Saving are not memory and time efficient because of

the extra hash table and complex pointer operations. Another type

of KV-based sketches, such as HeavyGuardian [74] and WavingS-

ketch [73], uses a bucket array data structure, where each bucket

stores multiple KV pairs. These sketches provide satisfactory accu-

racy for reporting top-𝑘 items and only require one memory access

per insertion, ensuring fast insertion speed.

7 CONCLUSION
In this paper, we propose CAFE, a compact, adaptive, and fast em-

bedding compression method that fulfills three essential design

requirements: memory efficiency, low latency, and adaptability to

dynamic data distribution.We introduce a light-weight sketch struc-

ture, HotSketch, to identify and record the importance scores of

features. It incurs negligible time overhead, and its memory con-

sumption is significantly lower than the original embedding tables.

By assigning exclusive embeddings to a small set of important fea-

tures and shared embeddings to other less important features, we

achieve superior model quality within a limited memory constraint.

To adapt to dynamic data distribution during online training, we in-

corporate an embeddingmigration strategy based onHotSketch.We

further optimize CAFE with multi-level hash embedding, creating

finer-grained importance groups. Experimental results demonstrate

that CAFE outperforms existing methods, with 3.92%, 3.68% higher

testing AUC and 4.61%, 3.24% lower training loss at 10000× com-

pression ratio on Criteo Kaggle and CriteoTB datasets, exhibiting

superior performance in both offline training and online training.

The source codes of CAFE are available at GitHub [1].
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