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Abstract—Sketches are probabilistic data structures designed for recording frequencies of items in a multi-set. They are widely used
in various fields, especially for gathering Internet statistics from distributed data streams in network measurements. In a distributed
streaming application with high data rates, a sketch in each monitoring node “fills up” very quickly and then its content is transferred to
a remote collector responsible for answering queries. Thus, the size of the contents transferred must be kept as small as possible while
meeting the desired accuracy requirement. To obtain significantly higher accuracy while keeping the same update and query speed as
the best prior sketches, in this paper, we propose a new sketch – the Slim-Fat (SF) sketch. The key idea behind the SF-sketch is to
maintain two separate sketches: a larger sketch, the Fat-subsketch, and a smaller sketch, the Slim-subsketch. The Fat-subsketch is
used for updating and periodically producing the Slim-subsketch, which is then transferred to the remote collector for answering
queries quickly and accurately. We also present the error bound as well as an accurate model of the correct rate of the SF-sketch, and
verify their correctness through experiments. We implemented and extensively evaluated the SF-sketch along with several prior
sketches. Our results show that when the size of our Slim-subsketch and of the widely used Count-Min (CM) sketch are kept the same,
our SF-sketch outperforms the CM-sketch by up to 33.1 times in terms of accuracy (when the ratio of the sizes of the Fat-subsketch
and the Slim-subsketch is 16:1). We have made all source codes publicly available at Github [1].

Index Terms—Network measurements, sketch, distributed monitoring, multiset, frequent items.
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1 INTRODUCTION

1.1 Background and Motivation

SKETCHES are probabilistic data structures designed for
recording frequencies of distinct items in a multi-set.

Due to their small memory footprints, high accuracy, and
fast speeds of queries, insertions, and deletions, sketches
are extensively used in data stream processing [3], [4],
[5], [6], [7], [8]. Especially in the distributed data stream
monitoring scenario [9], [10], [11], as the network statistics
used for query and analysis in the remote control center
are aggregated using local sketches maintained by the dis-
tributed nodes, not only the query accuracy must meet the
minimum constraints, but also the size of local information
transmitted in the network to the center must be kept as
small as possible so as not to harm the regular data streams’
transmission in it.

Towards measuring the size or frequencies of each data
stream in local nodes, most works [12], [13], [14], [15] focus
on how to improve accuracy for query and analysis in most
of these distributed data stream applications, such as sensor
database, network traffic, graph streams, web streams and
multi-media streams. Unfortunately, the impact of the size
of local sketches on the link capacity, when transmitted in
the network, is overlooked. As an effect, the sketch “fills
up” very quickly, especially when deployed in high speed
streaming scenarios. When transferring the local filled-up
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sketch to some remote collector, the transmission consumes
some portion of the link bandwidth. Thus, it is quite impor-
tant to keep the sizes of the sketches in each node as small
as possible so that the bandwidth-heavy and speed-critical
data streams can transfer uninterrupted. This paper focuses
on the design of a new scheme that significantly reduces the
size of the sketch transferred compared with the existing
sketches, and is also more accurate while maintaining the
same query and update speed as the best prior sketches.

1.2 Limitations of Prior Art

A data stream can be thought of as a sequence of m
discrete tuples (ei, fi) over a domain E × F , in which
E = {1, 2, . . . , n}, F ⊂ R, and i ∈ {1, 2, . . . ,m}. Monitored
data stream in various scenarios can be divided into two
different types according to F . The Cash register model is used
to model the situation where the item ei being monitored
arrives in some arbitrary order with a positive value fi,
whereas the Turnstile model models the situation where the
value of fi can be any real number. Examples for Cash
register model can be found in counting the number of
packets or estimating the size of each item transmitted in
a network. Bank depositors’ saving and withdrawal can be
interpreted as a financial Turnstile data stream, a synopsis of
which can facilitate real-time analysis and decision making.

Three typical sketches include the Count (C) sketch, the
Count-Min (CM) sketch, and the Conservative Update (CU)
sketch. Charikar et al. proposed the C-sketch [16]. As the
frequency of an item is estimated by taking the median of
various counters, it experiences two types of errors: overes-
timation, where the estimated query result is larger than the
real value, and underestimation, where the estimated query
result is smaller. Cormode and Muthukrishnan proposed
the CM-sketch [17], which uses the minimum of various
counters as an estimate of the frequency of a given item. The
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CM-sketch suffers only from overestimation. The authors
claimed that such one-sided error has many benefits, such
as an approximate query for heavy hitters in a data stream
with a sketch that never underestimates finds every heavy
hitter. Note that both sketches above are linear sketches
and can support Turnstile and Cash register models because
the sketch summary is a linear transformation of the input
stream. The CU-sketch [18], proposed by Cormode et al., im-
proves the query accuracy while sacrificing linearity, which
makes it incapable to support deletions, and only works for
Cash register model. Currently, the CM-sketch is the most
popular in practice because it supports deletions and has
no underestimation error. As mentioned above, given the
desired accuracy and transmission period, a smaller sketch
leads to lesser requirements for bandwidth and costly fast
memory, and to faster query speed in the collector.

1.3 Proposed Approach
In this paper, we present a novel two-stage sketch named
the Slim-Fat (SF) sketch. To better understand the key idea
of our SF-sketch, let us first look at the update procedure
of the CU-sketch: by using the auxiliary information of
the minimum of various counters for the incoming item
as a dynamic bar, only counters not bigger than the bar
are updated. Inspired by the conservative updating of the
CU-sketch, the SF-sketch updates the summary in a more
conservative way. To update the SF-sketch for an incoming
item, a subset of counters chosen from some right counter
set is used to generate the dynamic bar. Out of the other
subset of counters chosen from some left counter set, only
the counters that are not bigger than the auxiliary bar are
updated. Specifically, the SF-sketch maintains two separate
sketches (as shown in Figure 2): a large sketch called the Fat-
subsketch, composed of the right counter set for generating
dynamic bar, and a small sketch called the Slim-subsketch
composed of the left counter set. Given an incoming item, the
Fat-subsketch is first modified by updating the associated
right counters, from which auxiliary information is gener-
ated. This information is then used to guide the updating of
the Slim-subsketch. Further query operations are only ap-
plied to the Slim-subsketch. Both subsketches have similar
accuracy (see Section 4), and thus, we only need to send
the Slim-subsketch to the remote collector. Compared to the
state-of-the-art, the Slim-subsketch achieves significantly
higher accuracy and the same query speed when using the
same size of memory.

The Fat-subsketch is, in fact, a CM-sketch physically. As
shown in Figure 1, a CM-sketch consists of d arrays {Ai, 1 ≤
i ≤ d}. Each array consists of w counters. We represent the
counter in the jth position of the ith array as Ai[j]. Each
array Ai is associated with an independent hash function
hi(.) with range [1, w]. The initialization for the CM-sketch
is simply to set all the d×w counters to zero. Given an item
e, d right counters are chosen from those d arrays each at a
position calculated by one of the d hash functions. To update
a tuple (e, f), each of the d right counters is updated by f .
When querying the frequency of e, it returns the minimum
counter among the d right counters.

The Slim-subsketch is, in fact, a conservative CU-sketch
logically, and as the name suggests, has significantly fewer
counters compared to the Fat-subsketch. The number of
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Fig. 1: The Count-Min sketch architecture.

arrays and hash functions is the same as the Fat-subsketch.
Each counter in the ith array is linked to a set of counters
in the corresponding ith array of the Fat-subsketch. As all
the items that hashed to some specific counter of the Slim-
subsketch array also hashed to some set of counters of the
Fat-subsketch array, the left counter is linked to the right
set of counters. As a result, the Slim-subsketch is logically
linked to the Fat-subsketch. Given an input item, this link
gives us a way to apply some conservative updates to the
left counters by using information from the right counters.

Different update strategies lead to different versions of
SF-sketch. Details of those strategies will be discussed in
Section 3. Here, we give an overview of the three SF-
sketches. Two intermediate versions are interactive, while
the final version is two-stage. By interactive, we mean
that for each item’s arrival, the update algorithm has to be
applied in both the Fat-subsketch and the Slim-subsketch
cooperatively. The two-stage version updates only the Fat-
subsketch for any arbitrary items’ arrival, and then trans-
forms the fat one into slim quickly once needed, such as
when transferring its content to a remote collector. Note
that the two intermediate versions can be viewed as two
variants that are of independent interests and can be applied
in different scenarios. Based on the slim-fat idea, to make
every memory space count, we first propose the SF1-sketch
in a cash-register model, which can’t support deletions.
To support deletions for stream in strict turnstile model,
we propose the SF2-sketch in which the size of the Fat-
subsketch must be an integer multiple of the slim one. To
boost updating speed, we propose the final two-stage SFF -
sketch that only updates the Fat-subsketch for each item’s
arrival. It then compresses the Fat-subsketch in a simple and
fast way using SIMD [19] to generate the Slim-subsketch.

1.4 Key Contributions

The previous version of this paper was presented in ICDE
2017 [2]. This journal version significantly extends the previ-
ous version by adding many technical details, mathematical
proofs, and experimental results.

1) We propose a new sketch, namely the SF-sketch, which
has higher accuracy compared to the prior art while
supporting deletions and keeping comparable update
and query speeds.

2) We theoretically analyzed several key aspects of the
proposed SF-sketch, and experimentally verified the
correctness of the derived “correct rate”.

3) We implemented the C-sketch, CM-sketch, A-sketch,
CU-sketch and SF-sketch on GPU and multi-core CPU
platforms and carried out extensive experiments on
these two platforms to evaluate and compare the per-
formance of all these sketches. Our results on real and
synthetic datasets show that the SF-sketch outperforms
the CM-sketch by up to 33.1 times in terms of average
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relative error when configuring the ratio of the size of
the Fat-subsketch and the Slim-subsketch to 16:1.

2 RELATED WORK

The C-sketch, the CM-sketch, and the CU-sketch are three
fundamental frequency based sketches used to maintain
the summary of the monitored data streams. As the C-
sketch [16] suffers from both overestimation and underesti-
mation, subsequently proposed improvements, e.g. the CM-
sketch [17] and CU-sketch [18], suffer from overestimation
only. Although the CU-sketch improves the query accuracy
significantly, its fundamental limitation is that it does not
support deletions, and consequently it has not received as
wide acceptance in practice as the CM-sketch. Thorough
statistical analyses of various sketches are provided in [20],
[21].

As a universal framework, the Augment (A) sketch [7]
can be applied to many existing sketches. The A-sketch first
uses a filter to catch heavy hitters (high-frequency items),
and then uses a classical sketch (such as a CM-sketch or
a C-sketch) to store and query the remaining items. How-
ever, always keeping the most frequent items in the filter
without incurring additional errors is a challenging issue.
Unavoidability of complex design and frequent interaction
between the two components makes the implementation
complicated. For improving update speed, the authors rec-
ommended using a filter with 32 items. The authors also
showed accuracy improvement by mainly querying very
frequent items. Without the details of the query sets, we
cannot reproduce their experimental results. To make our
experimental results reproducible, we query each distinct
item once, and find that when the A-sketch is applied
to a CM-sketch, the average relative error stays almost
unchanged.

A recent work presented the Diamond Sketch [22], which
dynamically assigns to each flow a proper number of atom
sketches in order to reduce memory footprint. Though it
greatly reduces the relative error, it is designed specifically
for flows with non-uniform distribution while our proposed
SF-sketch can be applied to flows with arbitrary distribu-
tion. We have, therefore, not included the Diamond Sketch
in our experiments for comparison.

Another class of data structures that can be used to store
frequencies of items are the enhanced Bloom filters [23],
such as Spectral Bloom Filters (SBF) [24], Dynamic Count
Filters (DCF) [25], the counting quotient filter [26] and more
[27]. The SBF replaces each bit in the conventional Bloom
filter by a counter [24]. To insert an item, the basic version
of the SBF simply increments all the counters that the item
maps to. When querying the frequency of an item, the SBF
returns the value of the smallest counter(s) among all the
counters to which the hash functions map the item to. The
SBF is not memory efficient enough, and is improved by
the DCF by using two separate filters [25]. The first filter is
comprised of fixed size counters while the size of counters
in the second filter is dynamically adjusted. The use of two
filters, unfortunately, increases the complexity of the DCF,
which degrades its query and update speeds. The counting
quotient filter (CQF) [26] is an enhanced version of quotient
filters [28], which is designed to replace Bloom filters. The

CQF is an excellent data structure because it can achieve
better accuracy than the standard Bloom filters [23]. To
achieve memory efficiency, the size of the CQF should be
set to 2n (n is an arbitrary integer) bits. Meanwhile, if the
number of items is not known a priori, dynamically resizing
to double is needed whenever its load factor is sufficiently
high (e.g., 95%). Consider the situation that the size of a CQF
reaches a maximum memory usage budget. The CQF may
not update well for incoming items if it is nearly full. The
size of the CQF is heavily related to the frequency vector
of items. Given the dynamically changing distributed data
streams and possible decrease in the bandwidth budget
available for transferring the summary of the local data
stream to a remote collector, the CQF may not be a better
option.

While most of the works assume that a sketch can been
stored on main memory, Goswami et al. [29] consider the
orthogonal situation that the CM-sketch may become too
large to maintain in memory and should be migrated to
external storage (e.g., Solid State Drive). They proposed the
buffered CM-sketch [29] that reduces the number of I/O
accesses to the CM-sketch hosted by external storage when
performing query/update operations.

3 THE SLIM-FAT SKETCH
In this section, we present the details of our SF-sketch. To
better explain the intuition at work behind the SF-sketch
and to justify the design choices we made in developing the
SF-sketch, we will start with a basic version and improve it
incrementally to arrive at the final design. For each interme-
diate version of the SF-sketch that we develop while work-
ing our way towards the final design, we will first describe
its insertion, query, and deletion operations. After that we
will discuss its limitations, which will guide us in making
our design choices for the next version. In this process, we
will present three different versions of the SF-sketch, which
we name the SF1-sketch, the SF2-sketch, and finally the SFF-
sketch, which is our final design. Each version is developed
by studying the limitations of its predecessor version and
addressing them.

Slim-subketch Fat-subsketch
1      2  1     2  

A1

A

B1

B

Sent to collector for fast Stored only in monitors

Fig. 2: The Slim-Fat sketch architecture.

Rationale: In our slim-fat architecture (shown in Figure 2),
there is a set of arrays with fewer counters per array called a
Slim-subsketch, and a set of arrays with comparatively more
counters per array called a Fat-subsketch. When inserting
or deleting an item, we first update the Fat-subsketch, and
then update the Slim-subsketch based on the observations
we make from the Fat-subsketch. The key insight at work
behind our proposed scheme is that, when inserting an item,
if the smallest one of the d hashed counters is already bigger
than its current true frequency, then incrementing any counter
only degrades the accuracy. As the true accuracy is not easy
to obtain using small memory, we use the Fat-subsketch
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to give a relatively accurate estimate of the current true
frequency. Next, we start with the first version of our Slim-
Fat sketch, i.e., the SF1-sketch, and discuss its operations and
limitations, which will pave the way towards the design of
its subsequent versions.

3.1 SF1: Optimizing Accuracy Using a Fat-Subsketch

As shown in Figure 2, the SF1-sketch consists of d arrays
in both the Slim-subsketch and the Fat-subsketch. The Fat-
subsketch is exactly a standard CM-sketch with many more
counters than the Slim-subsketch. We represent the ith array in
the Slim-subsketch with Ai and in the Fat-subsketch with Bi.
Each array in the Slim-subsketch consists of w buckets while
each array in the Fat-subsketch consists of w′ buckets, where
w′ > w. Furthermore, each bucket in both the Slim- and Fat-
subsketches contains one counter. We represent the counter
in the jth bucket of the ith array in the Slim-subsketch with
Ai[j], where 1 � i � d and 1 � j � w. Similarly, we
represent the counter in the kth bucket of the ith array in the
Fat-subsketch with Bi[k], where 1 � i � d and 1 � k � w′.
Each array Ai is associated with a uniformly distributed
independent hash function hi(.), where the output of hi(.)
lies in the range [1, w]. Similarly, each array Bi is associated
with a uniformly distributed independent hash function
gi(.), where the output of gi(.) lies in the range [1, w′]. The
initialization operation for the SF1-sketch is simply setting
all counters Ai[j] and Bi[k] to zero.
Insertion: When inserting an item, the SF1-sketch first
inserts it into the Fat-subsketch, and based on the observa-
tions made from the Fat-subsketch, increments appropriate
counters in the Slim-subsketch. The insertion operation in the
Fat-subsketch is exactly the same as the conventional CM-sketch.
To insert an item e into the Fat-subsketch, we first compute
the d hash functions g1(e), g2(e), . . . , gd(e) and increment
the d hashed counters B1[g1(e)], B2[g2(e)], . . . , Bd[gd(e)] by
1. For ease of explanation, we assume that the increment is
1 instead of any arbitrary positive integer. After inserting
the item, we estimate the current frequency of e by finding
the minimum value among the d hashed counters we just
incremented and represent it with Bmin

e . To insert the item
e into the Slim-subsketch, we compute the d hash functions
and identify the smallest counter(s) among the d hashed
counters A1[h1(e)], A2[h2(e)], . . . , Ad[hd(e)]. If the value of
the smallest counter(s) are not smaller than Bmin

e , inser-
tion operation ends. Otherwise, we increment the smallest
counter(s) by 1. Note that the CU-sketch always increments
the smallest counter(s). Thus the SF1-sketch is more accurate
than the CU-sketch. In other words, ∀l ∈ [1, d], the SF1-
sketch increments all counters Al[hl(e)] by one that satisfy
the following two conditions: Al[hl(e)] = mindi=1 Ai[hi(e)],
and Al[hl(e)] < Bmin

e .
Query: When querying the frequency of item
e, the SF1-sketch computes the d hash functions
h1(e), h2(e), . . . , hd(e), and returns the value of the
smallest counter among A1[h1(e)], A2[h2(e)], . . . , Ad[hd(e)]
as the result of the query. Note that the query is answered
only from the Slim-subsketch.
Deletion: The SF1-sketch does not support deletions.
Advantages and Limitations: The key advantage of the
SF1-sketch is that to answer a query it only accesses the

Slim-subsketch, which keeps the query speed of this sketch
as fast as the conventional CM-sketch. Furthermore, note
that during the insertion operation, we either increment no
counters or increment only the smallest counter(s) in the
Slim-subsketch. The smallest counter in the Fat-subsketch
gives the upper bound on the number of times that a given
item has already been inserted. This strategy reduces the
number of increments in the Slim-subsketch, which has
two advantages. First, it reduces the memory footprint of
the Slim-subsketch on the expensive and limited memory.
Second, due to the fewer increments, the overestimation
is reduced. Unfortunately, the biggest limitation of the
SF1-sketch is that it does not support deletions from the
Slim-subsketch. While the Fat-subsketch assists the Slim-
subsketch during insertion operation, it cannot assist in the
deletion operation because the numbers of counters per
array in the Fat- and Slim-subsketches are not the same.
This inability to support deletions from the Slim-subsketch
limits the practical usability of the SF1-sketch. In the next
version of our SF-sketch, i.e., the SF2-sketch, we address this
limitation while keeping the advantages of the SF1-sketch.

3.2 SF2: Make Fat-Subsketch Support Deletions

A1

A2

1   2
insert insert A1

A2

A1

A2

1   2 1   2

Fig. 3: An example of the deletion problem.

Difficulties for deletions: It is challenging to achieve ac-
curate deletions in the SF1-sketch because to delete items
from the Slim-subsketch of the SF1-sketch, one has to keep
track of exactly which counters were incremented when
inserting each item. Such tracking is difficult and requires
large memory and processing overhead. We explain this
with the help of an example. As shown in Figure 3, consider
a Slim-subsketch that has two arrays and two counters per
array, where all counters are initialized to 0. Let us first
insert two items e1 and e2 and then delete the item e1.
Furthermore, let e1 maps to A1[1] and A2[1] and e2 maps
to A1[1] and A2[2]. In inserting e1, we increment A1[1] and
A2[1] both to 1. After that, in inserting e2, as the current
value of A1[1] is 1 and A2[2] is 0, we only increment the
smaller of the two, i.e., A2[2] to 1. At this point, A1[1] = 1,
A1[2] = 0, A2[1] = 1, and A2[2] = 1. In deleting e1, as e1
maps to both A1[1] and A2[1] and as both were incremented
at the time of inserting e1, if we decrease them both, the
query result of e2 will be 0, i.e., an underestimation occurs,
which we want to avoid in our SF-sketch.
Support Deletion: Given i and j, the counter Ai[j] is linked
to several counters in Bi implicitly. For the SF1-sketch, this
link can be calculated by enumerating each item e for which
hi(e) = j, and applying gi(e) to get corresponding set of
counters Sj in Bi. Let us look at the insertion procedure
of the SF1-sketch. An increase in any counter in set Sj will
affect Ai[j] only, given d = 1. So, to support deletion, we
should take into consideration all counters in Sj to decide
whether or not to decrease Ai[j]. Assuming that we know
this link a priori, it is easy to devise a deletion algorithm for
d = 1, i.e. Ai[j] can be set to the value of the maximum
counter Bi[k] in Sj if and only if Ai[j] > Bi[k]. This
assumption is, in fact, impractical, as the number of distinct
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items is generally unknown and huge. But we can make
that link fixed if we redesign those two set of hash functions
hi(.) and gi(.). This leads to the SF2-sketch.

Slim-subsketch Fat-subsketch
1      2  

A1

A

B1

B

Sent to collector for fast Stored only in monitors

1             2  

Fig. 4: The SF2- and SFF-sketch architecture.
As shown in Figure 4, the Fat-subsketch in the SF2-

sketch is physically the same as the Fat-subsketch in the
SF1-sketch except that the number of counters in each array
of the Fat-subsketch is restricted to be an integer multiple
of the counters in the Slim-subsketch. In other words, the
Fat-subsketch consumes z times as much memory as the
Slim-subsketch. Meanwhile, the hash functions hi(.), where
1 � i � d, associated with the Slim-subsketch are now
derived from the hash functions gi(.), where the output of
gi(.) lies in the range [1, z × w]. With fairness, we should
link exactly z counters exclusively in the Fat-subsketch to
each counter in the Slim-subsketch. While performing a
deletion operation, we must find all those z counters in
the Fat-subsketch to get the maximum counter. To make
memory access efficient for those z counters, we put them
in a continuous memory space – a bucket, so that with only
one memory access, z counters can be enumerated from that
bucket. More specifically,

hi(.) = �(gi(.) + z − 1)/z� (1)
Consequently, the value of the hash function hi(.) always
lies in the range [1, w], where w is the number of buckets
per array in the Slim-subsketch. Note that calculating the
hash function hi(.) from the hash function gi(.) using the
equation above essentially associates each counter Ai[j] in
the Slim-subsketch with z counters Bi[(j−1)×z+1], Bi[(j−
1) × z + 2], Bi[(j − 1) × z + 3], . . . , Bi[j × z] in the Fat-
subsketch. Every time a counter in the Slim-subsketch is
incremented, it is certain that one of its associated z counters
in the Fat-subsketch is also incremented. This further means
that the value of a counter in the Slim-subsketch will always
be less than or equal to the value of the maximum counter
of all its associated z counters in the Fat-subsketch.
Insertion & Query: The insertion and query operation
of the SF2-sketches is exactly the same as that of the SF1-
sketches, except that the set of hash functions {hi(.)} is
defined by Equation 1.
Deletion: To delete an item from the SF2-sketch, we
first delete it from the Fat-subsketch and then from
the Slim-subsketch. To delete the item e from the
Fat-subsketch, we first calculate the d hash functions
g1(e), g2(e), . . . , gd(e) and then decrement the d counters
B1[g1(e)], B2[g2(e)], . . . , Bd[gd(e)] by 1. To delete e from
the Slim-subsketch, we leverage the fact stated earlier that
before deleting the item from the Fat-subsketch, the value of
a counter in the Slim-subsketch is always less than or equal to
the sum of the values of all its associated counters in the Fat-
subsketch, because when inserting an item, even if a counter
in the Slim-subsketch is not incremented, one of the asso-
ciated counters in the Fat-subsketch is always incremented.

To delete the item e from the Slim-subsketch, after deleting
it from the Fat-subsketch, for each i ∈ [1, d], we compare
Ai[hi(e)] with Bmax

i = maxzm=1 Bi[(hi(e)−1)× z+m] and
decrease Ai[hi(e)] by 1 if and only if Ai[hi(e)] > Bmax

i .
Advantages and Limitations: Compared to the SF1-sketch,
the SF2-sketch can be applied in scenarios with turnstile
data stream since it supports deletions. For each array’s
updating, it is relatively faster than the SF1-sketch, as it
saves one hash computation. The design of hash function
hi(.) also boosts deletion operation as the z corresponding
counters in the Fat-subsketch can be emulated with only one
memory access. To update an item, we need 2d memory ac-
cesses and d hash computations to maintain the SF2-sketch
up to date, while the CM-sketch only needs d memory
accesses and hash computations. Many applications that use
sketches should process rapidly evolving data stream. In
order to get closer to the update speed of the CM-sketch,
a design improvement is needed to reduce the d memory
accesses.

3.3 SFF: The Final Version

In real data stream applications, the incoming data is con-
tinuous, and thus the sketch will “fill up” soon. Therefore,
the sketch is often periodically sent to a remote collector
for answering queries [30], [31], [32]. The sketch to be sent
should be as small and accurate as possible. Towards this
goal, we propose a new strategy including three steps: 1)
performing insertion and deletion operations only on the
Fat-subsketch for successive incoming items; 2) periodically
producing the Slim-subsketch and sending it to the remote
collector; and 3) performing query operations only on the
Slim-subsketch.
Insertion & Deletion for Fat-subsketch: The insertion and
deletion operations of the Fat-subsketch are exactly the same
as those of the Fat-subsketch of the SF2-sketch.
Producing Slim-subsketch: For each i, j, calculate Bmax

i =
maxzm=1 Bi[(i − 1) × z + m], and set the value of the
corresponding counter Ai[j] in the Slim-subsketch to Bmax

i .
In this way, we produce the Slim-subsketch for answering
queries. One may wonder about the speed complexity of
this process of generating a Slim-subsketch from a Fat-
subsketch. Fortunately, this process can be made very fast
when using SIMD (Single Instruction Multiple Data). More
details on this will be provided in Section 5.2.
Query: The query operation of the Slim-subsketch is exactly
the same as the previous versions of the SF-sketch.
Advantages and Limitations: The SFF-sketch achieves faster
update speed at the cost of slightly lower accuracy com-
pared to the SF2-sketch, because the process of producing
the Slim-subsketch is equivalent to that setting the counter
in the Slim-subsketch equal to the maximum value not only
for deletion but also for insertion. If the frequency of re-
questing a new Slim-subsketch is higher than the reciprocal
of the time needed for producing a Slim-subsketch, the SF2-
sketch is preferred. This is also the reason why we devise an
SIMD version to speed up the Slim-subsketch’s generation
process. In Section 4.4, we will prove that the SFF-sketch
does not suffer from underestimation.
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4 THEORETICAL ANALYSIS

4.1 Bound on Overestimation
As a query is entirely answered from the Slim-subsketch, the
overestimation of the SFF-sketch is actually that of the Slim-
subsketch. Therefore, next, we calculate the overestimation
of the Slim-subsketch of the SFF-sketch. Let α represent
the average number of counters in any given array of the
Slim-subsketch that are incremented per insertion. Note that
for the standard CM-sketch, the value of α is equal to 1
because in the standard CM-sketch, exactly one counter is
incremented in each array when inserting an item. For the
Slim-subsketch in the SFF-sketch, α is less than or equal to
1 because the Fat-subsketch helps in reducing the number
of counters that are incremented in the Slim-subsketch
per insertion. For any given item e, let f(e) represent its
actual frequency and let f̂(e) represent the estimate of its
frequency returned by the Slim-subsketch of the SFF-sketch.
Let N represent the total number of insertions of all items
into the SFF-sketch. Let hi(.) represent the hash function
associated with the ith array of the Slim-subsketch, where
1 � i � d. Let Xi,(e)[j] be the random variable that
represents the difference between the actual frequency f(e)
of the item e and the value of the jth counter in the ith

array, i.e., Xi,(e)[j] = Ai[j] − f(e), where j = hi(e). Due
to hash collisions, multiple items will be mapped by the
hash function hi(.) to the counter j, which increases the
value of Ai[j] beyond fe and results in overestimation.
As all hash function have uniformly distributed output,
Pr[hi(e1) = hi(e2)] = 1/w. Therefore, the expected value
of any counter Ai[j], where 1 � i � d and 1 � j � w, is
αN/w. Let ε and δ be two numbers that are related to d and
w as follows: d = �ln(1/δ)	 and w = �exp /ε	. The expected
value of Xi,(e)[j] is given by the following expression.

E(Xi,(e)[j]) = E(Ai[j]− f(e))

� E(Ai[j])

=
αN

w
� εα

exp
N

(2)

Finally, we derive the probabilistic bound on the overesti-
mation of the Silm-subsketch of the SFF-sketch.

Pr[ ˆf(e) � f(e) + εαN ] =Pr[∀i, Ai[j] � f(e) + εαN ]

=(Pr[Ai[j]− f(e) � εαN ])d

=(Pr[Xi,(e)[j] � εαN ])d
(3)

Substituting the value of εαN from Equation (2) into the
right side of the equation above, we get

Pr[ ˆf(e) � f(e) + εαN ] � (Pr[Xi,(e)[j] � expE(Xi,(e)[j]))
d

(4)
Applying Markov’s Inequality, we get

Pr[ ˆf(e) � f(e) + εαN ] � exp−d

� δ
(5)

4.2 Derivation of Correct Rate
The Correct Rate of a sketch is defined as the expected
percentage of items in the given multi-set for which the
query response of the sketch contains no error.

In deriving the correct rate of the SFF-sketch, we make
two assumptions: 1) all hash functions are independent; 2)

the Fat-subsketch is large enough to have negligible error.
Before deriving the correct rate, we first prove the following
theorem.

Theorem 1. In the Slim-subsketch, the value of any given
counter is equal to the frequency of the most frequent item that
maps to it.

Proof: We prove this theorem using mathematical
induction on the number of insertions, represented by k.
Base Case, k = 0: The theorem clearly holds for the base
case because with no insertions, the frequency of the most
frequent item is currently 0, which is also the value of all
counters.
Induction Hypothesis, k = n: Suppose the statement of the
theorem holds true after n insertions.
Induction Step, k = n + 1: Let n + 1st insertion be of
any item e that has previously been inserted a times. Let
αi(k) represent the values of the counter Ai[hi(e)] after k
insertions, where 0 � i � d − 1. There are two cases to
consider: 1) e was the most frequent item when k = n; 2) e
was not the most frequent item when k = n.
Case 1: If e was the most frequent item when k = n, then
according to our induction hypotheses, αi(n) = a. After
inserting e, it will still be the most frequent item and its
frequency increases to a + 1. The counter Ai[hi(e)] will be
incremented once. Consequently, we get αi(n+ 1) = a+ 1.
Thus for this case, the theorem statement holds because the
value of the counter Ai[hi(e)] after insertion is still equal to
the frequency of the most frequent item, which is e.
Case 2: If e was not the most frequent item when k = n,
then according to our induction hypotheses, αi(n) > a.
After inserting e, it may or may not become the most
frequent item. If it becomes the most frequent item, it
means that αi(n) = a + 1 and as per our SFF scheme,
the counter Ai[hi(e)] will stay unchanged. Consequently,
we get αi(n + 1) = αi(n) = a + 1. Thus for this case,
the theorem statement again holds because the value of the
counter Ai[hi(e)] after insertion is equal to the frequency of
the new most frequent item, which is e.

After inserting e, if it does not become the most frequent
item, then it means αi(n) > a + 1 and as per our SFF-
sketch scheme, the counter Ai[hi(e)] will stay unchanged.
Consequently, αi(n+1) = αi(n) > a+1. Thus, the theorem
again holds because the value of the counter Ai[hi(e)] after
insertion is still equal to the frequency of the item that was
the most frequent after n insertions.

Next, we derive the correct rate of the SFF-sketch. Let
v be the number of distinct items inserted into the Slim-
subsketch and are represented by e1, e2, . . . , ev . Without
loss of generality, let the item el+1 be more frequent than
el, where 1 � l � v − 1. Let X be the random variable
representing the number of items hashing into the counter
Ai[hi(el)] given the item el, where 0 � i � d − 1 and
1 � l � v. Clearly, X ∼ Binomial(v − 1, 1/w).

From Theorem 1, we conclude that if el has the highest
frequency among all items that map to the given counter
Ai[hi(el)], then the query result for el will contain no error.
Let E be the event that el has the maximum frequency
among x items that map to Ai[hi(el)]. The probability P{E}
is given by the following equation:
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P{E} =

(
l − 1
x− 1

)
/

(
v − 1
x− 1

)
(where x � l)

Let P ′ represent the probability that the query result for el
from any given counter contains no error. It is given by:

P ′ =
l∑

x=1

P{E} × P{X = x}

=
l∑

x=1

( l−1
x−1

)
(v−1
x−1

)
(
v − 1

x− 1

)( 1

w

)x−1(
1− 1

w

)v−x

=
(
1− 1

w

)v−l

As there are d counters, the overall probability that the
query result of el is correct is given by the following equa-
tion.

PCR{el} = 1−
(
1−

(
1− 1

w

)v−l
)d

The equality above holds when all v items have different
frequencies. If two or more items have equal frequencies, the
correct rate increases slightly. Consequently, the expected
correct rate Cr of the Slim-subsketch is bound by:

Cr �
∑v

l=1 PCR{el}
v

=

∑v
l=1

(
1− (

1− (1− 1
w )v−l

)d)
v

(6)
Note that in most cases, “=” holds.

4.3 Correct Rate Verification

Fig. 5: The Correct Rate

We carried out exten-
sive experiments to com-
pare the theoretical bound
on the correct rate de-
rived using Equation 6
with practical one calcu-
lated from our simula-
tions. Here, we set d =
4, v = 100, 000, z = 1024
with width w ranging from 10,000 to 100,000. v represents
the number of distinct items. To perform simulation, we
update the SFF-sketch with skewed dataset composed of
25M items (i.e. 100K distinct items, 1K = 103, 1M = 103K).
This skewed dataset obeys Zipf distribution with skewness
of 0.99. The skewness for this dataset is set to 0.99, a
default value used in YCSB [33]. As it can be com-
puted very quickly and for multi-byte keys, we randomly
choose a family of pairwise independent d Bob Jenkins hash
functions for the SF-sketch in this simulation and all the
next experiments. Note that we set z to an extremely huge
number to make the Fat-subsketch large enough. Figure 5
plots the values of the corresponding correct rate of the
two different methods for a varying number of counters per
array of the Slim-subsketch. We observe from this figure that
the two curves are very close to each other. The values of the
calculated practical correct rate are slightly larger than those
derived theoretically as the theoretical ones give the lower
bound on the correct rate.

4.4 Proof of No Underestimation
Here, we use mathematical induction to prove that the SFF-
sketch does not incur any underestimation. Before delving
into the proof, we first define some notations. Let An

i [j]
represent the value of the counter in the jth bucket of
the ith array in the Slim-subsketch after n updates, where

1 � i � d, 1 � j � w, and n ∈ N
0. Similarly, let

Bn
i [(j − 1) × z + k] represent the value of the kth counter

in the jth bucket of the ith array in the Fat-subsketch after
n updates, where 1 � i � d, 1 � j � w, 1 � k � z, and
n ∈ N

0. Furthermore, let SQn(e) represent estimate of the
frequency of an arbitrary item e calculated from the Slim-
subsketch after n updates. Similarly, let FQn(e) represent
estimate of the frequency of item e calculated from the Fat-
subsketch after n updates. As the Fat-subsketch of the SFF-
sketch behaves exactly like a CM-sketch for any given item,
we directly use the conclusion from [17] that the CM-sketch
does not suffer from underestimation, i.e., for any arbitrary
item e and ∀n ∈ N

0, FQn(e) � fn
(e), where fn

(e) represents
the actual frequency of item e after n updates. As querying
does not change any counter in either the Fat-subsketch or
the Slim-subsketch, we only consider insertion and deletion
operations (collectively called updates) in this proof.

Theorem 2. For updates consisting of insertions and deletions,
the SFF-sketch does not incur underestimation. Formally, for any
arbitrary item e and ∀n ∈ N

0

SQn(e) � fn
(e) (7)

Proof: We prove this theorem by induction on n, i.e.,
the number of updates (insertions and deletions).
Base case: The base case occurs when n = 0, i.e., no update
has yet been done and all counters in both sub-sketches
are currently 0. Thus, for any item, the frequency returned
by the Slim-subsketch at this point will be 0, i.e. for any
arbitrary item e, SQ0(e) = 0. As no items have yet been
inserted, f0

(e) = 0. Therefore, SQ0(e) = f0
(e). Thus, the base

case of k = 0 satisfies Equation (7).
Induction hypothesis: Let for n = x, Equation (7) holds
true, i.e., for any arbitrary item e, SQx(e) � fx

(e). Our
inductive hypothesis is that if Equation (7) holds true for
any arbitrary item e when n � x, then it also holds true for
that item when n = x+1, i.e., for item e, SQx+1(e) � fx+1

(e) .
Induction step: We use n = x+1 in the inductive step. The
value of SQx(e) is given as below.

SQx(e) = Ax
i′ [hi′(e)] (8)

where i′ ∈ [1, d] such that Ax
i′ [hi′(e)] = mindi=1 A

x
i [hi(e)].

Suppose the item that we are going to insert/delete in the
x+ 1st update is e′, where e′ can also be any arbitrary item.
We choose to use e′ in the induction step instead of e to
make the inductive step generic. Note that the inductive
step holds when e′ = e as well as when e′ �= e. Next, we
apply the inductive step separately to the two cases: 1) item
e′ is inserted; 2) item e′ is deleted.
Insertion: When inserting the item e′, there are two cases.
The first case occurs when hi′(e) = hi′(e

′) regardless of
whether e = e′ or e �= e′. The second case occurs when
hi′(e) �= hi′(e

′). Note that this second case occurs only when
e �= e′.

For the first case, where hi′(e) = hi′(e
′), the

counter Ai′ [hi′(e)] may be incremented if Ax
i′ [hi′(e)] <

mindi=1 B
x+1
i [gi(e

′)] (gi(.) is defined as in Equation 1). In
this case,

Ax+1
i′ [hi′(e)] = Ax

i′ [hi′(e)] + 1

= SQx(e) + 1

� fx
(e) + 1
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If e �= e′, then fx
(e) + 1 > fx+1

(e) , otherwise fx
(e) + 1 = fx+1

(e) .
Combining these two, we get fx

(e) + 1 � fx+1
(e) . Substituting

this inequality in the equation above, we get

Ax+1
i′ [hi′(e)] � fx

(e) + 1 � fx+1
(e)

As Ax+1
i′ [hi′(e)] = SQx+1(e), we get

SQx+1(e) � fx+1
(e)

Thus, the inductive hypothesis holds true for the first case.
For the second case, where hi′(e) �= hi′(e

′), the counter
Ai′ [hi′(e)] stays unchanged, i.e., Ax+1

i′ [hi′(e)] = Ax
i′ [hi′(e)],

which means that SQx+1(e) = SQx(e). This further implies
that SQx+1(e) � fx

(e). As for this case, e �= e′, fx
(e) = fx+1

(e) ,
we get SQx+1(e) � fx+1

(e) . Thus, the inductive hypothesis
holds true for the second case as well.
Deletion: According to the deletion operation of the SFF-
sketch, a deletion after x updates may cause a counter Ai[j]
in the Slim-subsketch to either stay unchanged or be set to
maxzk=1 B

x+1
i [(hi(e) − 1) × z + k]. For each i ∈ [1, d], if

hi(e) = hi(e
′) and Ax

i [hi(e)] > maxzk=1 B
x+1
i [(hi(e)− 1)×

z + k], we have

Ax+1
i [hi(e)] =

z
max
k=1

Bx+1
i [(hi(e)− 1)× z + k]

� Bx+1
i [gi(e)]

�
d

min
i′=1

Bx+1
i′ [gi′(e)]

= FQx+1(e)

� fx+1
(e)

(9)

Otherwise, we have:

Ax+1
i [hi(e)] = Ax

i [hi(e)] �
d

min
i′=1

Ax
i′ [hi′(e)]

= SQx(e) � fx
(e) � fx+1

(e)

(10)

Thus, each counter to which e maps stays larger than the
actual frequency of e on deletion after x updates, which
in turn implies that SQx+1(e) � fx+1

(e) and the inductive
hypothesis holds true.

5 IMPLEMENTATION
In this section, we describe our implementation of the
sketches on two different computing platforms namely CPU
and GPU. We extensively tested and evaluated the SF-sketch
and compared its performance with prior sketches on these
two platforms. Next, we first describe our implementation
on the CPU platform and then describe our implementation
on the GPU platform.

5.1 CPU Implementation
Our CPU platform comprised a machine with dual 6-core
CPUs (24 threads, Intel Xeon CPU E5-2620 @2 GHz) and
62 GB total system memory. Each CPU has three levels of
cache memory: L1, L2, and L3. L1 cache is comprised of
two 32KB caches, where one cache acts as the data cache
and the other acts as the instruction cache. L2 cache is a
single 256KB cache and L3 cache is a single 15MB cache.
To evaluate the schemes in different types of settings, our
implementations on the CPU platform include both single-
thread implementation as well as multi-thread implementa-
tion. We used C++ as the programming language. In single-
thread implementation, for each sketch, we implemented

the entire insertion, deletion, and query process within a
single thread. In multi-thread implementation, we run each
query in a dedicated thread and process it completely inside
that thread, observing near-linear growth in query speed
with the increase in the number of threads. We will present
the experimental results on query speed with multiple
threads in more detail in Section 6.3.3.

5.2 SIMD Implementation
In the SFF-sketch, the key operation of producing the Slim-
subsketch is to select the maximum counter in each bucket.
As such selections in different buckets of the Fat-subsketch
do not affect each other, we can use SIMD (Single Instruc-
tion Multiple Data) [19] operations to concurrently process
different buckets, so as to significantly boost the speed. As
shown in Figure 6, the ith counters of different buckets
can be organized into the same vector register for SIMD
operation. All the counters in the ith bucket are loaded in the
ith cells of vector registers. For example, Ai(1 � i � 16) are
loaded in the first cells of vector registers, while Bi(1 � i �
16) are loaded in the second cells. Parallel comparisons are
performed on multiple counters using the vector registers.
The number of parallel comparisons is determined by the
vector size and counter size. The vector size can be 64 bits
(register MMX), 128 bits (XMM), 256 bits (YMM), or 512 bits
(ZMM). We choose XMM registers and SSE4.1 (CPUID Flag)
instruction set as an example, to illustrate how the produc-
ing speed can be accelerated. Given 128-bit vectors of XMM,
if 32-bit counters are chosen, we can fit 4 counters into each
vector and perform 4 comparisons in parallel, achieving 4×
speedup. For example, in Figure 6, A,B,C,D stands for 4
buckets in the Fat-subsketch stored in memory sequentially,
and each contains 16 counters. Using instructions “pmaxud,
xmm, xmm”, the bigger counters are loaded in Mi. In
this figure, only 3 XMM registers are used, knowing that
more registers can be harnessed to preload the remaining
16− 2 = 14 counters for further speedup.

5.3 GPU Implementation
As GPUs have seen wide acceptance for high-speed data
processing, we implemented our sketches on GPUs as well.
For these implementations, we employ the basic architecture
of GAMT [34]. More specifically, we evaluated the sketches
on GPU platform using CUDA 5.0 architecture. We per-
formed our experiments on the same server and an NVIDIA
GPU (Tesla C2075, 1147 MHz, 5376 MB device memory,
448 CUDA cores). We implemented our sketches on GPU
using two prevalent techniques: batch processing and multi-
stream pipelining. Next, we describe our implementations
for these two techniques.

5.3.1 Batch Processing
Our system architecture is based on CUDA [35], the well-
known parallel computing platform created by NVIDIA. In
our implementation, a typical query cycle proceeds in the
following three steps: (1) copy the incoming queries from
the CPU to the GPU, (2) execute the query kernel, and (3)
copy the result from the GPU back to the CPU. A kernel in
CUDA is a function that is called on CPU but executed on
GPU. A query kernel is configured with a series of thread
blocks, where each block is comprised of a group of working
threads. As GPU chips have hundreds and even thousands
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Fig. 6: SIMD speedup implementation.

of cores, batch processing is needed to accelerate GPU-based
implementations. Each batch is first filled with a group of
independent queries, and then transferred to and executed
on the GPU, i.e., as soon as a query arrives, it is buffered
until there are enough queries to fill the current batch of
queries before transferring the batch to GPU for processing
by the query kernels.

5.3.2 Multi-Stream Pipeline
As discussed earlier, batch processing is required to take
advantage of the massive parallelization that GPU enables.
However, waiting for enough queries to fill a batch before
sending the batch to GPU results in unnecessary delays.
Furthermore, while a large batch does boost the throughput
of the GPU, it increases the waiting time before a batch
fills and is transferred to GPU for processing. This means
that the query that arrived at the start of the current batch
will experience significant latency before it is processed.
To resolve this throughput-latency dilemma, we utilize the
multi-stream technique featured in NVIDIA Fermi GPU
architecture [34], [36].

6 EXPERIMENTAL RESULTS

We conducted extensive experiments to evaluate the per-
formance of our SFF-sketch in terms of accuracy and speed.
Onwards, we will refer to the SFF-sketch as simply the SF-
sketch. For comparison, we also implemented and evaluated
the performance of four well known sketches, namely the
C-sketch [16], the CM-sketch [17], the CU-sketch [18], and
the A-sketch [7]. As mentioned in Section 2, when the
A-sketch is applied to the CM-sketch, the accuracy stays
almost unchanged using 32 items in the filter as the authors
recommended, which is verified by our subsequent experi-
mental figures. Therefore, we do not discuss more about the
A-sketch in this section. In addition, note that the CU-sketch
does NOT support deletions and that the C-sketch suffers from
both overestimation and underestimation.

6.1 Experimental Setup
Datasets: We use three types of datasets: real world traf-
fic, uniform dataset, and skewed dataset. The real world
network traffic trace is captured by the main gateway of
our campus, while the uniform and the skewed datasets
are generated by the well known YCSB [33]. Throughout
the experiments, we use skewed datasets that obey Zipf
distribution. We keep the skewness of our skewed dataset
equal to 0.99, which is the default value used in YCSB.
We use Memcached [37] to record the real frequency of each
item to establish the ground truth.
CPU and GPU Setup: Our CPU platform comprised a
machine with dual 6-core CPUs (24 threads, Intel Xeon CPU

E5-2620 @2 GHz) and 62 GB total system memory. Each CPU
has three levels of cache memory: L1, L2, and L3. L1 cache
is comprised of two 32KB caches, where one cache acts as
the data cache and the other acts as the instruction cache.
L2 cache is a single 256KB cache and L3 cache is a single
15MB cache. We performed our experiments on a NVIDIA
GPU (Tesla C2075, 1147 MHz, 5376 MB device memory, 448
CUDA cores).
Experimental Comparison: As the memory of the monitor
is cheap and large enough, we assign the same size of mem-
ory for the Slim-subsketch and the state-of-the-art sketches
both of which will be transmitted to the collector. The Fat-
subsketch uses 16 counters in each bucket, and thus is 16
times larger than the Slim-subsketch and the state-of-the-
art sketches. For update experiments, we compare them by
varying item frequencies and operation size, i.e., the number
of insertion and deletion operations.

6.2 Experiments on Accuracy

We use absolute error (AE) and relative error (RE) to quantify
the accuracy of sketches. Let fe be the actual frequency
of an item e and f̂e be the estimate of the frequency
returned by the sketch, the Absolute Error is defined
as |f̂e − fe|, while the Relative Error is defined as
the ratio |f̂e − fe|/fe. To evaluate accuracy, we inserted
10M items (100K distinct items for uniform datasets, 100K
distinct items for skewed datasets and approximately 233K
for real datasets, 1K = 103) and fixed parameter setting (d
= 4, w = 40000, z = 24 = 16). We calculated absolute error
and relative errors of sketches by querying each distinct item
once. We also conducted experiments to quantify the effect
of system parameters on the performance of the sketches.

6.2.1 Uniform Workload
Relative Error CDF: Our experimental results show that the
percentage of items for which the relative error of our SF-sketch
is less than 1% is 71.36%, which is 5.16, 2.45 and 2.27 times
higher than the corresponding percentages for the C-, CM- and
CU-sketches, respectively. Figure 7 reports the empirical cu-
mulative distribution function (CDF) of relative error for
the 100K distinct items after a total of 10M (= 10 × 106)
insertions. Specifically, we first inserted the 100K distinct
items for a total of 10M times such that the probability of
occurrence for each item was uniformly distributed, and
then calculated the relative errors in the estimates of the
frequencies of those 100K distinct items. In this way, we got
100K values of relative error for each of the five sketches
(the C-, CM-, A-, CU- and SF-sketches). We plotted a CDF
using the 100K relative error values for each sketch. Figure 7
shows that the CDF of the SF-sketch is not only higher than
that of the other four sketches but also ascends sharply near
the relative error of 0. This indicates that the relative error
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Fig. 7: CDF of Uniform RE. Fig. 8: CDF of Uniform AE. Fig. 9: CDF of Zipf RE. Fig. 10: CDF of Zipf AE.

in the estimate of the frequencies of most items, calculated
from the SF-sketch, is very close to 0.
Absolute Error CDF: Our experimental results show that the
percentage of items for which the absolute error of our SF-
sketch is equal to 0 is 70.47%, which is 5.37, 2.32 and 2.42
times higher than the corresponding percentages for the C-, CM-
and CU-sketches, respectively. Figure 8 reports the empirical
cumulative distribution function (CDF) of absolute error for
the 100K distinct items after a total of 10M (= 10 × 106)
insertions.

6.2.2 Skewed Workload
For skewed workloads, we performed exactly the same ex-
periments as for the uniform workloads. The experimental
results are shown in Figures 9 and 10. The trends in these
figures for the skewed distribution are similar to what we
observed for the uniform distribution. Therefore, for the
sake of brevity, next, we concisely report the results without
describing again how the experiments were conducted.
Relative Error CDF: Our experimental results, reported in
Figure 9, show that in the case of skewed workload, the percentage
of items for which the relative error of our SF-sketch is less
than 1% is 70.23%, which is 5.4, 2.4 and 1.9 times higher than
the corresponding percentages for the C-, CM- and CU-sketches,
respectively.
Absolute Error CDF: Our experimental results, reported in
Figure 9, show that in the case of skewed workload, the percentage
of items for which the absolute error of our SF-sketch is equal
to 0 is 70.23%, which is 5.5, 2.4 and 2.0 times higher than
the corresponding percentages for the C-, CM- and CU-sketches,
respectively.

6.2.3 Real Traffic
We also used real traffic to evaluate the accuracy of sketches.
We have 10M real traffic instances and regard the traffic with
the same destination IP address to belong to the same flow.
Using this definition of a flow, there are about 233K flows
in our datasets, and the size distribution of flows is biased
with an expected value of 42.87 and a variance of 1457342.
Relative Error CDF: Our experimental results, reported in
Figure 11, show that in the case of real world traffic, after a total of
10M insertions of the 233K distinct items, 36.51% items with our
SF-sketch have relative error less than 1%, while the percentages
of items with the C-, CM- and CU-sketches are 6.87%, 2.56%
and 11.73%, respectively. The relative error seems larger
than anticipated because about 43.86% of flows have only
1 packet in the real traffic, while 147 flows have no less than
10,000 packets. If a flow with only 1 packet is estimated to
101, the relative error will be 10000% ((101− 1)/1).
Absolute Error CDF: Our experimental results, reported in
Figure 12, show that in the case of real world traffic, after a total

of 10M insertions of the 233K distinct items, 36.47% items with
our SF-sketch have no error, while the percentages of items with
the C-, CM- and CU-sketches are 5.88%, 1.69% and 11.54%,
respectively.
6.2.4 Sketch Parameters
Next, we evaluate the effect of changing the system pa-
rameters d (the number of arrays) and w (the number of
buckets per array) on the accuracy of the sketches. In each
experiment to evaluate the effect of system parameters, we
insert the 100K distinct items 10M times.
Accuracy vs. w: Our experimental results show that the CU-
sketch requires 1.5 times more memory compared to the SF-sketch
to achieve close to 1% average relative error. Figure 13 plots
the average relative error by varying the number of buckets
per array with d fixed at 5. We observe from this figure
that increasing the number of buckets per array reduces the
average relative error for each sketch. However, we observe
that at 30K buckets per array, the average relative error of
our SF-sketch reduces to a very small value of just 0.047. On
the contrary, the CU-sketch requires 50K buckets per array
to achieve an average relative error of 0.049, but note that
it does not support deletions. The C-, CM- and A-sketches
did not achieve close to 0 average relative errors in our
experiments.
Accuracy vs. d: Our experimental results show that our SF-
sketch achieves an average relative error of 5.6% using only 3
arrays whereas the CU-sketch takes 6 arrays to come close to the
error of the SF-sketch and achieves the average relative error of
7.1%. This shows that compared to the CU-sketch, at this
error rate, the SF-sketch takes only half as much memory.
Figure 14 plots the average relative error by varying d with
w fixed at 40K . We observe from this figure that using 6
arrays, the SF-sketch achieves an average relative error of
1.9%. We also observe that increasing the number of arrays
reduces the average relative error for all the sketches.
6.3 Experiments on Speed
Next, we evaluate the production speed, update speed and
query speed of the sketches. For GPU platform, the query
speed is the throughput, and we also need to evaluate the
latency, which is measured in microseconds and quantifies
the time duration between submitting a query and receiv-
ing the response. We observed from our experiments that
the query speeds of the CM-, CU- and SF-sketches have
little differences. This observation was expected because the
query operations of these sketches are almost the same. For
this reason, we only present the experimental results of the
query speed of the SF-sketch on both multi-core CPU and
GPU platforms.

6.3.1 Production Speed with/without SIMD
Our experimental results show that the production speed of the
SF-sketch using SIMD is 6.5 ∼ 8.5 times faster than that
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Fig. 11: CDF of Real RE. Fig. 12: CDF of Real AE. Fig. 13: Accuracy vs. w. Fig. 14: Accuracy vs. d.

without SIMD. As shown in Figure 15, the x-axis is d × w,
where d is the number of arrays and w is the number of
buckets in each array. Each bucket includes 16 counters,
and each counter is 32-bit long to achieve word alignment,
while each counter in the corresponding Slim-subsketch
and prior sketches has 24 bits. The y-axis is the production
speed, which indicates how many Gigabytes (GB) in the Fat-
subsketch are processed in one second. As the memory size
of the Fat-subsketch increases, the production speed drops
gradually. Specifically, when d×w is 40K×4, the production
time is only 2 milliseconds when using SIMD and only one
CPU core, which is small enough to be ignored in most
applications.

Fig. 15: The production speed of the Slim-subsketch from
the Fat-subsketch.

6.3.2 Update Speed and Query Speed
Our experimental results show that the insertion and deletion
speeds of the SF-sketch are 12.7% and 11.9% slower than those
of the CM-sketch, respectively, the query speeds of the SF-, CM-
and CU-sketches are almost the same, and 1.74 times faster than
the C-sketch. Our experimental results show that the CM-
sketch achieves the fastest insertion and deletion speeds.
Thus, we mainly compare our SF-sketch with the CM-
sketch in terms of update/query speed (measured in Mops,
million operations per second). Figure 16 plots the update
and query speeds of the SF-, CM-, CU- and C-sketches. We
conducted experiments using many datasets and observed
similar results. Figure 16 shows plots for 10 randomly
chosen datasets, based on each of which we generate 10M
inserts, 10M deletes (except the C-sketch), and 10M queries
for each sketch. We use the same sketch parameters as used
in Figure 11. Our results also show that the update speed of
the SF-sketch is a little slower than the CM-sketch, because
the sketch used for update is the Fat-subsketch, which is
16 times larger than the Slim-subsketch and the CM-sketch.
The query speeds of the SF-, CM- and CU-sketches are the
same because their query operations are the same; the query
speed of the C-sketch is slower as it needs twice the number
of hash computations and getting the median of d counters

is time consuming than getting the minimum of them. In
this experiment, we only use one CPU core to perform
updates and queries. One can achieve much faster update
speed using multiple cores or GPU.

Fig. 16: The update and query speed of sketches.

6.3.3 Multi-core CPU Platform
As CPUs are multi-core in today’s control centers. Thus, the
query algorithm for the SF-sketch can be run in parallel.
Next, we examine the query throughput with increasing
number of threads, which will help us understand how
the number of cores can affect the performance of query
throughput. Since a single-core experiment for comparison
between sketches can be found in Section 6.3.2, we’ve
omitted the comparison between the SF-, CM-, CU- and C-
sketches here as well as in the next Section 6.3.4.

Fig. 17: Query throughput vs. # of threads.

Our experimental results show that the SF-sketch experienced
a throughput gain of about 650K queries per second per thread up
to 24 threads. Figure 17 plots the throughput vs. the number
of threads for the SF-sketch. We observe from this figure
that the SF-sketch achieves a throughput of about 1.34M
queries per second with a single thread. For this experiment,
we performed 10M queries. Using 24 threads, it achieves a
throughput of about 16.3M queries per second. We further
observed that increasing the number of threads beyond 24
brought little improvement because our CPU has 6×2 cores,
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Fig. 18: Query throughput
vs. batch size.
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Fig. 19: GPU query latency
vs. batch size.

which support 6 × 2 × 2 = 24 threads. This suggests that
the query speed of our SF-sketch increases linearly with the
number of CPU cores.

6.3.4 GPU Platform
Our experimental results for three different datasets show that the
query speed in GPU increases with the increase in the batch size.
As shown in Figure 18, for the batch size of 20K queries,
the query speed is around 50 million queries per second
(Mqps). With increase in the batch size, such as 64K queries
per batch, the SF-sketch reaches a query speed greater than
110 Mqps.

Our experimental results for three different datasets show that
for the SF-sketch, to reduce latency, the batch size of 28K is the
most optimal for our experimental setup. Figure 19 shows that
the average query latency of the SF-sketch is below 410 μs
for batch sizes � 28K . For batch sizes � 32k, the latency
increases to 511 ∼ 584 μs.

7 CONCLUSION
In this paper, we proposed a new sketch for data streams,
namely the SF-sketch, which achieves up to 33.1 times
higher accuracy compared to the CM-sketch while keeping
the update and query speeds comparable with the CM-
sketch. The key idea behind our proposed SF-sketch is to use
two separate sketches, one is called the Fat-subsketch and
the other is called the Slim-subsketch. The Fat-subsketch is
used to perform updates and to periodically produce the
Slim-subsketch within a few milliseconds, which is peri-
odically transferred to the remote collector for answering
queries quickly and accurately. To evaluate and compare
the performance of our proposed SF-sketch, we conducted
extensive experiments on multi-core CPU and GPU plat-
forms. Our experimental results show that our SF-sketch
significantly outperforms the state-of-the-art in terms of
accuracy.
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