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Abstract
To approximate sums of values in key-value data streams, sketches

are widely used in databases and networking systems. They offer

high-confidence approximations for any given key while ensuring

low time and space overhead. While existing sketches are proficient

in estimating individual keys, they struggle to maintain this high

confidence across all keys collectively, an objective that is critically

important in both algorithm theory and its practical applications.

We propose ReliableSketch, the first to control the error of all keys

to less than Λ with a small failure probability Δ, requiring only

𝑂 (1 + Δ ln ln( 𝑁Λ )) amortized time and 𝑂 ( 𝑁Λ + ln( 1Δ )) space. Fur-
thermore, its simplicity makes it hardware-friendly, and we imple-

ment it on CPU servers, FPGAs, and programmable switches. Our

experiments show that under the same small space, ReliableSketch

not only keeps all keys’ errors below Λ but also delivers competi-

tive throughput among accuracy-oriented baselines, outperforming
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competitors with thousands of uncontrolled estimations. We have

made our source code publicly available.
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1 Introduction
In data stream processing, stream summary [17] is a simple but

challenging problem: within a stream of key-value pairs, query a

key “𝑒” for its value sum 𝑓 (𝑒) — the sum of all values associated

with that key. The problem is typically addressed by “sketches”

[25, 29, 44], a kind of approximate algorithm that can answer an

estimated sum
ˆ𝑓 (𝑒) with small time and space consumption. In

terms of accuracy, existing sketches ensure that the absolute error

of
ˆ𝑓 (𝑒) is less than Λ with a high probability 1 − 𝛿 . This can be

formally expressed as:

For arbitrary key 𝑒, Pr

[��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

]
⩾ 1 − 𝛿,

https://doi.org/10.1145/3730567.3764459
https://doi.org/10.1145/3730567.3764459
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where there are two critical parameters: the error toleranceΛ, under

which the absolute error is considered controllable, and
ˆ𝑓 (𝑒) is

deemed sufficiently accurate; otherwise, the key 𝑒 is referred to as

an outlier. The individual Confidence Level (CL), 1 − 𝛿 , represents
the lower bound probability that

ˆ𝑓 (𝑒) is sufficiently accurate.

Existing sketches, effective for individual queries, struggle with

accurately answering multiple queries at once. When 𝑁 keys are

queried collectively, the overall CL, denoted as 1−Δ, that all answers
are sufficiently accurate equals (1 − 𝛿)𝑁 . The overall CL rapidly

decreases as 𝑁 increases: from (1 − 𝛿) = 95% for a single key to

90.25% for two keys, and further diminishes to just 1% for 90 keys.

Furthermore, when all keys are queried collectively, as in a million-

key scenario, a significant absolute number—about the 𝛿-fraction of

these keys—are expected to be outliers. These outliers, which users

cannot distinguish from other keys, undermine confidence in the

results’ reliability and pose real-world challenges. For example, in

network devices, sketches are used to identify if a key is frequent (if

its value is large enough). In a dataset with 1 million infrequent and

1,000 frequent keys, even with a 99% individual CL, approximately

10,000 infrequent keys might be wrongly labeled as frequent, lead-

ing to a high false positive rate of 90.9%. Such misidentification

can cause serious issues in network applications, such as placing

critical control signals into low-priority queues, which can result

in the loss of these signals during network congestion.

Our target problem is to accurately answer an unlimited number

of queries collectively, with a negligible failure probability Δ. This
can be formally stated as:

Pr

[
∀ key 𝑒,

��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

]
⩾ 1 − Δ,

As Table 1 illustrates, existing sketches, both counter-based and

heap-based, can hardly address our target problem with small time

and space consumption. Counter-based sketches [9, 14, 17, 29],

which only record counters, increase confidence by repeating ex-

periments and creating multiple sub-sketch copies. To achieve the

individual CL of 1 − 𝛿 , they create ln( 1
𝛿
) copies, which results in a

time and space cost multiplied by ln( 1
𝛿
). For keys that can poten-

tially reach a number up to 𝑁 (𝑁 :=
∑

𝑓 (𝑒)), accurately estimating

all keys requires setting 𝛿 to a very small fraction of
Δ
𝑁
. This results

in a significant increase in time and space costs. Counter-based

sketches are divided into two types based on complexity: those

using the L1 norm (e.g., CM [17], CU [19], Elastic [40]) and the L2

norm (e.g., Count [14], UnivMon [27], Nitro [26]). Given the chal-

lenge in assuming data characteristics, these types are generally

not directly comparable. Our research focuses on optimizing L1

norm-based sketches. Heap-based sketches, such as Space Saving

(SS) [30] and Frequent [18], are more adept at dealing with outliers

but suffer from slower data insertion due to their logarithmic time

complexity

(
𝑂 (ln( 𝑁Λ ))

)
heap structures. Additionally, they face

compatibility challenges with high-speed hardware like FPGAs.

To address the target problem, we propose the ReliableSketch

with versatile theoretical and practical advantages:

• Confidence: ReliableSketch guarantees that the error for all keys

is controllable with an overall CL of 1 − Δ, where Δ is a small

quantity that can be easily reduced to below 10
−10

. This ensures

that not a single outlier will occur even after many years of the

algorithm’s operation. Here, "controllable" refers to keeping the

error less than Λ.
• Speed: Our time complexity is lower than existing solutions. The

amortized time cost for inserting each key-value pair is only

𝑂 (1+𝛿 ln ln( 𝑁Λ )). In practice, ln ln( 𝑁Λ ) is generally much smaller

than
1

𝛿
, making the time complexity effectively O(1) most of the

time.

• Space: Our space complexity is 𝑂 ( 𝑁Λ + ln(
1

𝛿
)), which is efficient

because the result is additive and
𝑁
Λ is generally much greater

than ln( 1
𝛿
). We can easily set 𝛿 to be very small without worrying

about increased space and time overhead.

• Compatibility with High-Speed Hardware: Our design is friendly

to high-performance hardware architectures like FPGA, ASIC,

and Tofino, adhering to the programming constraints of pipeline

architecture. Our data structure does not require pointers, sorting,

or dynamic memory allocation.

Compared to counter-based sketches, we have improved in terms

of confidence, speed, and space complexity. We ensure high overall

confidence for all keys collectively, reducing the amortized insertion

complexity and transforming the space cost from a multiplicative

𝑂 ( 𝑁Λ × ln(
1

𝛿
)) to an additive one. Compared to heap-based sketches,

we have made significant improvements in speed, optimizing the

non-parallel 𝑂 (ln( 𝑁Λ )) time to amortized O(1), while achieving

nearly the same level of confidence and space efficiency.

Our main strategy is to sense errors in all keys in real-time,

controlling those with larger errors to prevent any from becoming

outliers. There are two key challenges involved: how to measure

errors and how to control them. In response, we address them by

two key techniques respectively: the Error-Sensible bucket and the

Double Exponential Control.

Challenge 1: Measure Errors. Existing sketches, like the count-
min sketch, do not know the error associated with a key because

they mix the values of different keys in the same counter upon hash

collisions. We harness an often-undervalued feature of the widely

adopted election technology [18, 36, 40], particularly emphasizing

the role of the negative vote. In elections, negative votes provide

an ideal way to observe the hash collision and sense the error for

each key during estimation. We replace the counter with an Error-

Sensible bucket that contains an election mechanism, enabling

real-time observation of each key’s error.

Challenge 2: Controlling Errors. Existing sketches control errors
by constructing 𝑑 identical sub-tables for repeated experiments.

This approach not only incurs significant overhead, as repeating

the experiment 𝑑 times requires 𝑑 times the resources in terms of

time and space, but it can only eliminate𝑂 (𝑒𝑑 ) outliers. Our Double
Exponential Control technique not only eliminates𝑂 (𝑒 (𝑒𝑑 ) ) outliers
(with d=8, 𝑒 (𝑒

𝑑 ) > 10
1294

) among all keys using 𝑑 sub-tables, but

also maintains a steady time and space cost, which does not increase

linearly with the growth of 𝑑 .

Our key contributions are as follows:

• We devise ReliableSketch to accurately answer the queries

for all keys collectively, with a negligible failure probability Δ.
• We theoretically prove that ReliableSketch outperforms state-

of-the-art in both space and time complexity.

• We implement ReliableSketch on multiple platforms including

CPU, FPGA, and Programmable Switch. Under the same small
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Counter-based
(L1-Norm)

Counter-based
(L2-Norm) Heap-based Reliable Sketch (Ours)

Overall Confidence

Moderate:

(1 − 𝛿)𝑁
Moderate:

(1 − 𝛿)𝑁
Optimal:

100%

Near Optimal:

1 − Δ

Speed

Moderate:

𝑂 (ln( 1
𝛿
))

Moderate:

𝑂 (ln( 1
𝛿
))

Low:

𝑂 (ln( 𝑁Λ ))
High:

𝑂 (1 + Δ ln ln( 𝑁Λ ))

Space

Low:

𝑂 ( 𝑁Λ × ln(
1

𝛿
))

Low:

𝑂 ( 𝑁
2

2

Λ2
× ln( 1

𝛿
))

Optimal:

𝑂 ( 𝑁Λ )
Near Optimal:

𝑂 ( 𝑁Λ + ln(
1

𝛿
))

Compatibility High High Low High

Table 1: Comparative Analysis of Counter-based, Heap-based, and Reliable Sketches: Here, 𝑁 =
∑

𝑓 (𝑒), 𝑁2 =
√︁∑(𝑓 (𝑒))2, and Λ is

the error tolerance. Additionally, 𝛿 and Δ represent the probabilities of failure for individual and all keys, respectively.

memory, ReliableSketch not only eliminates outliers, but also

achieves competitive throughput, while its competitors have

thousands of outliers.

2 Background and Motivation
In this section, we start with the problem definition and then discuss

the limitations of existing sketches, using the typical CM Sketch as

an example.

2.1 Problem Definition
Stream Summary Problem [17]. In a key-value data stream 𝑆 =

{⟨𝑒1, 𝑣1⟩, ⟨𝑒2, 𝑣2⟩, . . . }, the sketch algorithm processes each pair (or

data item) in real-time. At any moment, for a user query about a

specific key 𝑒 , the sketch can rapidly estimate the aggregate sum of

values for all pairs containing 𝑒 . The actual sum and the sketch’s

estimated sum for a key 𝑒 are denoted as 𝑓 (𝑒) and ˆ𝑓 (𝑒), respectively.
Within a predefined error tolerance Λ, a key 𝑒 whose estimation

error exceeds Λ, expressed as

��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� > Λ, is defined as an

outlier.

We aim to accurately answer all queries collectively and elimi-

nating outliers, under user-specified hyperparameters Λ (the error

tolerance) and Δ (upper limit of failure probability):

Pr

[
∀ key 𝑒,

��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

]
⩾ 1 − Δ.

2.2 Limitation of Existing Solutions
Here, for readers unfamiliar with sketches, we begin with the sim-

plest CM sketch to explain why existing sketches struggle to elim-

inate outliers. A detailed complexity analysis has already been

discussed in Section 1 and Table table 1, and will not be reiterated.

The CM sketch is a prime example of the design philosophy

behind most counter-based sketches. It comprises 𝑑 arrays, 𝐴𝑖 [.],
each containing 𝑤 counters. For a key 𝑒 , CM selects 𝑑 mapped

counters using independent hashing. The 𝑖-th mapped counter is

𝐴𝑖 [ℎ𝑖 (𝑒)], where ℎ𝑖 (·) is the hash function. When an item arrives

with key 𝑒 and a positive value 𝑣 , CM increments these mapped

counters by 𝑣 . To query the value sum of 𝑒 , CM reports the smallest

counter among 𝑒’s mapped counters as the estimate. However, when

other keys collide with the same counter as 𝑒 (a collision), they add

their value to the counter, causing an error. The key insight is that

the smallest mapped counter is the most accurate due to the fewest

collisions.

However, even theminimal counter, with the least error, can have

significant inaccuracies when every mapped counter experiences

severe hash collisions. Thus, CM and other counter-based sketches

can only maintain a high confidence level for a single query. When

querying a large number of keys, it’s not guaranteed that each key’s

error will be small. Similarly, other counter-based sketches, includ-

ing Count, CU, Univmon, and others, share this design limitation.

The complexity of counter-based sketches is based on the L1 norm

𝑁 =
∑

𝑓 (𝑒) and the L2 norm 𝑁2 =
√︁∑(𝑓 (𝑒))2. Since the relative

sizes of 𝑁 and 𝑁2 depend on dataset characteristics, the complexity

of these two types of sketches cannot be directly compared. Our

research focuses on optimizing L1 norm-based sketches, while so-

lutions based on the L2 norm’s complexity for our target problem

are left for future work..

Heap-based sketches, like Space Saving and Frequent, use heap

structures to maintain high-frequency elements but suffer from

slower data insertion due to their logarithmic time complexity (

ln( 𝑁Λ )). This complexity cannot be accelerated through paralleliza-

tion. Additionally, the pointer operations they require become an

obstacle in implementing them on high-speed hardware platforms

like FPGA programmable switches. Only when 𝑣 = 1 can these

heap structures be implemented with𝑂 (1) complexity using linked

lists, but we aim to address a broader range of stream summary

problems where 𝑣 is not equal to 1.

3 Reliable Sketch
In this section, we present ReliableSketch. We start from a new

alternative to the counter of counter-based sketches, termed an

’Error-Sensible bucket’. This allows every basic counting unit within

ReliableSketch to perceive the magnitude of its error, as discussed

in § 3.1. Then, we demonstrate how to organize these buckets and

set appropriate thresholds to control the error of every key within

the user-defined threshold, as discussed in § 3.2.

3.1 Basic Unit: the Error-Sensible Bucket
The basic unit is the smallest cell in a sketch that performs the

counting operation. In counter-based sketches, the basic unit is a

standard counter. In our ReliableSketch, the basic unit is the “Error-

Sensible Bucket” structure, which actively perceives the extent of

hash collisions and reports the Maximum Possible Error (MPE). We

demonstrate the workflow and a practical example in Figure 1 and

2, respectively.
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Y

N

Workflow of Error-Sensible Bucket 

Figure 1: The workflow of the Error-Sensible Bucket, includ-
ing insertion and querying processes.
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𝑀𝑀𝑀𝑀𝑀𝑀 = 5

Figure 2: An example of how an Error-Sensible Bucket works:
starting from empty, sequentially inserting three items fol-
lowed by two queries.

Formally, the bucket supports two operations: (1) Insert a key-

value pair ⟨𝑒, 𝑣⟩; (2) Query the value sum of a key 𝑒 . Upon querying,

the bucket returns two results, the estimated frequency
ˆ𝑓 (𝑒) along

with its MPE, satisfying
ˆ𝑓 (𝑒) ∈ [𝑓 (𝑒), 𝑓 (𝑒) +𝑀𝑃𝐸].

Structure: The bucket has three fields: one ID field recording a

candidate key, and two counters recording the positive and negative

votes for the candidate, denoted as 𝐼𝐷 , 𝑌𝐸𝑆 , and 𝑁𝑂 , respectively.

Initially, 𝐼𝐷 is null and both counters are set to 0.

Insert. When inserting an item ⟨𝑒, 𝑣⟩, there are two phases: voting

and replacement. If the newly arrived 𝑒 is the same as 𝐼𝐷 , a positive

vote is cast, setting 𝑌𝐸𝑆 to 𝑌𝐸𝑆 + 𝑣 ; otherwise, a negative vote is
cast, making 𝑁𝑂 = 𝑁𝑂 + 𝑣 . If the positive votes are less than or

equal to the negative votes, a replacement occurs: 𝐼𝐷 is set to 𝑒 ,

and the values of 𝑌𝐸𝑆 and 𝑁𝑂 are swapped.

Query. When querying the value sum of 𝑒 , we first check if the

recorded 𝐼𝐷 matches 𝑒 . If it does, indicating 𝑒 is the current can-

didate, we use 𝑌𝐸𝑆 to estimate its value sum. It can be proven

inductively that 𝑌𝐸𝑆 is greater than or equal to 𝑓 (𝑒), with its MPE

being 𝑁𝑂 , i.e., 𝑓 (𝑒) ∈ [𝑌𝐸𝑆 −𝑁𝑂,𝑌𝐸𝑆]. On the other hand, if 𝐼𝐷 is

not equal to 𝑒 , we use 𝑁𝑂 as the estimate, which is always greater

than 𝑓 (𝑒). The MPE remains 𝑁𝑂 .

Discussion—Correctness. A full inductive proof follows from the

bucket’s update rules; here we provide a compact intuition.

Basic facts. (i) YES + NO always equals the total value ever in-

serted into the bucket; (ii) after each swap, NO contains no contri-

bution from the current ID.

b a c

d

Items:

𝐵𝐵𝑖𝑖 𝑗𝑗 .𝑦𝑦𝑦𝑦𝑦𝑦
𝐵𝐵𝑖𝑖 𝑗𝑗 . 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Zoom in

One collision-sensible bucket

𝑛𝑛𝑛𝑛𝑛𝑛

𝑦𝑦𝑦𝑦𝑦𝑦z

Layer-by-layer 
decrease in 
width/threshold

One Bucket

ID

YES

NO

One Bucket

a b a c d

Lock

ℎ𝑎𝑎𝑎𝑎𝑎

Overview

Figure 3: An Overview of ReliableSketch.

Fix a key 𝑒0 and let 𝑓 (𝑒0) be its true sum. Each arrival of 𝑒0 casts

one vote: it increases YES if ID = 𝑒0 and NO otherwise. Hence

YES + NO ≥ 𝑓 (𝑒0). We now consider two query-time cases.

Case ID = 𝑒0. Since NO records only collisions with keys ≠ 𝑒0,

YES upper-bounds 𝑓 (𝑒0). Moreover, the increase of YES − NO is

caused only by insertions of 𝑒0 (including the swap that moves past

negative votes of 𝑒0 into YES). Therefore,

𝑓 (𝑒0) ∈ [YES − NO, YES] .

Case ID ≠ 𝑒0. All occurrences of 𝑒0 must have contributed to NO

and never to YES, so

𝑓 (𝑒0) ∈ [0, NO] .

Why NO equals the collision mass. NO increases in exactly two

situations. (1)Without replacement: inserting ⟨𝑎, 𝑣⟩ while ID = 𝑏 ≠ 𝑎

adds 𝑣 to NO, recording a collision between distinct keys. (2) With

replacement: for a pre-swap bucket ⟨ID = 𝑏, YES = 𝑦0,NO = 𝑛0⟩,
inserting ⟨𝑎, 𝑣⟩ with 𝑎 ≠ 𝑏 raises NO and then triggers a swap; the

net increase equals 𝑦0 − 𝑛0. Each unit of value participates in at

most one such collision, so there is no double counting.

Complementary intuition (equivalent view). Only matching in-

serts can increase YES; non-matching inserts increase NO; and

YES + NO is conserved. If at query time ID = 𝑒 , then all historical

inserts of 𝑒 reside in YES and none in NO, giving YES−NO ≤ 𝑓 (𝑒) ≤
YES. If ID ≠ 𝑒 , then 0 ≤ 𝑓 (𝑒) ≤ NO. Hence the bucket returns

ˆ𝑓

together with the interval [ ˆ𝑓 −MPE, ˆ𝑓 ] where MPE = NO.

3.2 Formal ReliableSketch
In this part, we propose how to organize Error-Sensible buckets and

integrate them into a ReliableSketch that can control the error of all

keys. Our key idea is to lock the error of a bucket when it reaches a

critical threshold, diverting any further error-increasing insertions

to the next layer. We first introduce the “lock” mechanism, then

describe the data structure of ReliableSketch, as well as its insertion

and querying operations.

Lock Mechanism.When the Maximum Possible Error (MPE) of

a bucket reaches a threshold, i.e., 𝐵.𝑁𝑂 = 𝜆 & 𝐵.𝑌𝐸𝑆 > 𝐵.𝑁𝑂 ,

the bucket must be locked to halt the growth of MPE. Upon being

locked, only two types of insertions are permitted, neither of which

will increase the MPE (𝐵.𝑁𝑂):

• If 𝐵.𝐼𝐷 = 𝑒 , it only increments 𝐵.𝑌𝐸𝑆 .
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• If 𝐵.𝑌𝐸𝑆 = 𝐵.𝑁𝑂 , a replacement occurs, and this also only incre-

ments 𝐵.𝑌𝐸𝑆 .

In other scenarios, items cannot be inserted into the locked

bucket. These items, at a higher risk of losing control, are redirected

to other buckets for insertion.

Data structure.As depicted in Figure 3, ReliableSketch is composed

of 𝑑 layers, with each layer, indexed by 𝑖 , containing 𝑤𝑖 Error-

Sensible buckets, where the width 𝑤𝑖 diminishes progressively

with an increase in 𝑖 . In each layer, the 𝑗-th bucket is denoted as

𝐵𝑖 [ 𝑗]. Each layer is assigned a specific threshold, referred to as 𝜆𝑖 ,

used to determine when to lock a bucket in the 𝑖-th layer. The 𝜆𝑖
values also decrease with increasing 𝑖 , and their cumulative sum

does not surpass the user-defined error threshold, i.e.,

∑
𝑖 𝜆𝑖 ⩽

Λ. Furthermore, each layer utilizes an independent hash function

ℎ𝑖 (·), which uniformly maps each key to a single bucket within the

respective layer.

Parameter Configurations: ReliableSketch performs best when

both𝑤𝑖 and 𝜆𝑖 are set to decrease geometrically (i.e., exponen-

tially in 𝑖), which is our Key Technique II (Double Exponential Con-

trol). As established by our analysis in §4, with high probability the

number of keys that proceed to the next layer decays exponentially

(for both mice and elephant keys). Matching the parameter sched-

ules to this decay keeps the expected per-update work bounded

and makes the failure probability drop doubly exponentially across

layers, yielding the stated complexity. In contrast, changing either

sequence to an arithmetic progression would undermine these ef-

fects and deteriorate complexity. Practically, we set𝑤𝑖 =

⌈
𝑊 (𝑅𝑤−1)

𝑅𝑖𝑤

⌉
and 𝜆𝑖 =

⌊
Λ(𝑅𝜆−1)

𝑅𝑖
𝜆

⌋
, where𝑊 denote the total number of buckets.

In our proofs (Theorem 4), we set𝑊 =
4(𝑅𝑤𝑅𝜆 )6

(𝑅𝑤−1) (𝑅𝜆−1) ·
𝑁
Λ , which

is with large constant. But based on our experiment results, we

recommend to set𝑊 =
(𝑅𝑤𝑅𝜆 )2

(𝑅𝑤−1) (𝑅𝜆−1) ·
𝑁
Λ , 𝑅𝑤 ∈ [2, 10], 𝑅𝑙 ∈ [2, 10],

and 𝑑 ⩾ 7. When then memory size is given without given Λ, we

set Λ =
(𝑅𝑤𝑅𝜆 )2

(𝑅𝑤−1) (𝑅𝜆−1) ·
𝑁
𝑊
.

Insert Operation for Item ⟨𝑒, 𝑣⟩ (Algorithm 1). The insertion
into ReliableSketch is a layer-wise process, starting at the first layer

and continuing until the value 𝑣 is fully inserted. The operation,

which may not involve all layers, includes these four steps in each

layer:

(1) Locating a Bucket (Line 3): Utilizing the hash function

ℎ𝑖 () of the current layer 𝑖 , we locate the 𝑗-th bucket, 𝐵𝑖 [ 𝑗],
where 𝑗 = ℎ𝑖 (𝑒). We aim to insert ⟨𝑒, 𝑣⟩ specifically into this

bucket, without considering other buckets in the same layer.

(2) Handling Matching ID (Line 4-7): If 𝐵𝑖 [ 𝑗] .𝐼𝐷 equals 𝑒 , we

increment 𝑌𝐸𝑆 by 𝑣 and finish the insertion without moving

to further layers.

(3) Triggering Lock (Line 8-12): This step follows if the ID

doesn’t match. Before increasing 𝑁𝑂 , we check if adding

𝑣 triggers the layer threshold 𝜆𝑖 . The lock activates when

𝐵𝑖 [ 𝑗] .𝑁𝑂+𝑣 > 𝜆𝑖 (indicating certain lock activation without

replacement) and when 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 > 𝜆𝑖 (signifying lock acti-

vation upon replacement). On triggering the lock, only a por-

tion of ⟨𝑒, 𝑣⟩ can be accommodated in 𝐵𝑖 [ 𝑗], equal to the dif-
ference 𝜆𝑖 −𝐵𝑖 [ 𝑗] .𝑁𝑂 . The excess value, 𝑣 − (𝜆𝑖 −𝐵𝑖 [ 𝑗] .𝑁𝑂),

Algorithm 1: Insert Operation.
1 Procedure Insert(⟨𝑒, 𝑣⟩):
2 for Layer 𝑖 = 1, 2, . . . , 𝑑 do
3 𝑗 ← ℎ𝑖 (𝑒)
4 if 𝐵𝑖 [ 𝑗] .𝐼𝐷 = 𝑒 then
5 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 ← 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 + 𝑣
6 Return
7 end
8 if 𝐵𝑖 [ 𝑗] .𝑁𝑂 + 𝑣 > 𝜆𝑖 and 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 > 𝜆𝑖 then
9 ⊲ Lock triggered

10 𝐵𝑖 [ 𝑗] .𝑁𝑂 ← 𝜆𝑖
11 𝑣 ← 𝑣 − (𝜆𝑖 − 𝐵𝑖 [ 𝑗] .𝑁𝑂)
12 Continue ⊲ Continue to next layers

13 else
14 𝐵𝑖 [ 𝑗] .𝑁𝑂 ← 𝐵𝑖 [ 𝑗] .𝑁𝑂 + 𝑣
15 if 𝐵𝑖 [ 𝑗] .𝑁𝑂 ⩾ 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 then
16 𝐵𝑖 [ 𝑗] .𝐼𝐷 ← 𝑒

17 Swap(𝐵𝑖 [ 𝑗] .𝑁𝑂 , 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆)
18 end
19 Return
20 end
21 end

is reserved for insertion into subsequent layers (Line 12).

Consequently, 𝐵𝑖 [ 𝑗] .𝑁𝑂 is adjusted to 𝜆𝑖 .

(4) Adjusting NO and Checking for Replacement (Line 14-
19): If this step is reached, it means a negative vote is cast, and

the lock would not be activated. 𝐵𝑖 [ 𝑗] .𝑁𝑂 is incremented

by 𝑣 . Then, compare 𝐵𝑖 [ 𝑗] .𝑁𝑂 with 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 to determine

if a replacement occurs. If it does, perform the replacement.

The insertion is finished, and no further layers are visited.

If, by the end of the final layer, there remains value that has not

been inserted, we consider the insertion operation to have failed.

Once insertion failure occurs, we cannot guarantee zero outliers.

Fortunately, through our design and theoretical proofs, we have

shown that the probability of such an failure is extremely low. For

those still concerned about this scenario, refer to § 3.3 for emergency

solutions.

Query Operation for Item 𝑒 (Algorithm 2). In ReliableSketch,

each query reports
ˆ𝑓 (𝑒) along with its Maximum Possible Error

(MPE). The query operation is similar to insertion, requiring a layer-

wise process to gather results layer by layer, stopping as soon as

there’s sufficient reason to do so (which usually happens quickly).

Beginning from the first layer, we sequentially access the hashed

bucket 𝐵𝑖 [ 𝑗], 𝑗 = ℎ𝑖 (𝑒) in each layer. If 𝐵𝑖 [ 𝑗] .𝐼𝐷 equals 𝑒 , we add

𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 to
ˆ𝑓 (𝑒); otherwise, we add 𝐵𝑖 [ 𝑗] .𝑁𝑂 . For MPE, we al-

ways add 𝐵𝑖 [ 𝑗] .𝑁𝑂 . The query can be finished without accessing

subsequent layers if any of the following conditions are met, as

each indicates that 𝑒 has not been inserted into subsequent lay-

ers: (1) 𝐵𝑖 [ 𝑗] .𝑁𝑂 < 𝜆𝑖 indicates 𝐵𝑖 [ 𝑗] is not locked, and 𝑒 will

not visit subsequent layers; (2) 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 = 𝐵𝑖 [ 𝑗] .𝑁𝑂 indicates a

potential replacement, meaning 𝑒 will not visit subsequent layers;

(3) 𝐵𝑖 [ 𝑗] .𝐼𝐷 = 𝑒 indicates a match with 𝑒 , and even if the current

bucket is locked and cannot be replaced, 𝑒 will not visit subsequent

layers.
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Algorithm 2: Query Operation.

1 Function Query(𝑒):
2 ˆ𝑓 (𝑒) ← 0 ⊲ Estimator

3 𝑀𝑃𝐸 ← 0 ⊲ Maximum Possible Error

4 for Layer 𝑖 = 1, 2, . . . , 𝑑 do
5 𝑗 ← ℎ𝑖 (𝑒)
6 if 𝐵𝑖 [ 𝑗] .𝐼𝐷 = 𝑒 then
7 ˆ𝑓 (𝑒) ← ˆ𝑓 (𝑒) + 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆
8 else
9 ˆ𝑓 (𝑒) ← ˆ𝑓 (𝑒) + 𝐵𝑖 [ 𝑗] .𝑁𝑂

10 end
11 𝑀𝑃𝐸 ← 𝑀𝑃𝐸 + 𝐵𝑖 [ 𝑗] .𝑁𝑂

12 if ( 𝐵𝑖 [ 𝑗] .𝑁𝑂 < 𝜆𝑖 or 𝐵𝑖 [ 𝑗] .𝑌𝐸𝑆 = 𝐵𝑖 [ 𝑗] .𝑁𝑂 or
𝐵𝑖 [ 𝑗] .𝐼𝐷 = 𝑒) then

13 break ⊲ Stop collecting value.

14 end
15 end
16 return ⟨ ˆ𝑓 (𝑒), 𝑀𝑃𝐸⟩

Novelty of ReliableSketch. The fundamental novelty of ReliableS-

ketch lies in its key idea: identifying keys with significant errors

and effectively controlling these errors to completely eliminate out-

liers. This approach is supported by two innovative techniques we

have developed: the Error-Sensible Bucket for error measurement

and the Double Exponential Control for error management:

• Key Technique I (Error-Sensible Bucket). Although the vot-

ing technique itself is not novel, tracing back to the classic

majority vote [31] algorithm of 1981, our unique contribu-

tion lies in demonstrating that the 𝑁𝑂 value can effectively

limit the extent and impact of collisions. In integrating the

Error-Sensible Bucket as the fundamental unit of a sketch,

we developed a lock strategy that is directly informed by

the size of 𝑁𝑂 . This approach contrasts with existing works

like Majority, MV, Elastic [31, 36, 40], which primarily con-

centrate on identifying high-frequency keys but do not fully

exploit the capability of 𝑁𝑂 in guiding error control.

• Key Technique II (Double Exponential Control). To control

errors effectively for all keys, it’s critical to address the out-

liers resulting from insertion failures. A crucial strategy is

to limit the number of keys advancing to the next layer at

each layer. Typically, a layer might halt about half of the

keys, which significantly reduces the probability of outlier

occurrence, denoted as P, to 1

2
𝑑 . Our research indicates that

when both the width𝑤𝑖 and the layer threshold 𝜆𝑖 decrease

exponentially, for example,
1

2
2
𝑑 (with 𝑑 = 8, the probability

is approximately 8.6 × 0.178), the failure probability P di-

minishes at a double exponential rate. This marked decrease

in probability effectively reduces the number of keys that

can potentially become outliers, thereby eliminating outliers

with an extremely high probability.

3.3 Optimizations and Extensions
Exception Handling. For completeness, we provide an optional

fallback for insertion failures. When an update ⟨𝑒, 𝑣⟩ (or a residual

part ⟨𝑒, 𝑣 ′⟩) cannot be accommodated across the first 𝑑 layers, we

divert it to a small auxiliary structure—either a hash table or a

SpaceSaving instance—so that the uninserted portion is recorded

explicitly. This mechanism is straightforward to implement on CPU

servers. On FPGAs or network devices, maintaining the auxiliary

structure can be delegated to a CPU-based control plane. We have

implemented this exception-handling path, but we exclude it from

our accuracy evaluation (see § 6), in order to present the perfor-

mance of ReliableSketch on its own more clearly.

Accuracy Optimization. The first layer of ReliableSketch, which
occupies more than 50% of the entire structure, is its largest. How-

ever, this layer can be inefficient when the dataset contains a sig-

nificant proportion of mice keys (i.e., keys with a small value sum).

This is because mice keys sharply increase the NO counters, leading

to the locking of most buckets in the first layer, resulting in many

buckets being inefficiently used to record these mice keys. Given

that NO counters do not exceed 𝜆1, we propose replacing the first

layer with an existing sketch where each counter records up to 𝜆1.

This involves substituting each bucket with a counter representing

NO, updated with every insertion until reaching 𝜆1. We employed

a commonly used CU sketch [19] for this purpose. In practice, 8-bit

counters are adequate for the filter. Compared to a layer consisting

of 72-bit error-sensible buckets, this filter can reduce the space

requirement of the first layer by nearly 10 times, while introducing

only small, manageable errors.

4 Mathematical Analysis
In this section, we provide the key results and key proof steps.

We have placed the details of non-key steps in our open-source

repository, as they are exceedingly complex and we are certain they

cannot be fully included in the paper.

4.1 Key Results
We aim to prove the following two key claims.

Claim 1: The algorithm can achieve the following two goals by

using 𝑂
(
𝑁
Λ + ln(

1

Δ )
)
space:

Pr

[
∀ key 𝑒,

��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

]
⩾ 1 − Δ

and

∀ key 𝑒, Pr
[��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)

��� ⩽ Λ
]
⩾ 1 − Δ

Claim 2: The algorithm can achieve the above two goals with

𝑂
(
1 + Δ ln ln( 𝑁Λ )

)
amortized time.

4.2 Key Steps
Generally, the key steps seek to prove that as 𝑖 increases, the number

of items entering the 𝑖-th layer during insertion diminishes rapidly.

In the 𝑖-th layer, we categorize keys that enter the 𝑖-th layer based

on their value size, into elephant keys and mice keys. For elephant

keys, we show that their numbers decrease quickly. For mice keys,

we show a rapid reduction in their aggregate value. This analysis

forms the basis for determining the algorithm’s time and space

complexity.

Before explaining the proof sketch and key steps, we introduce

some basic terms and symbols for clarity. Generally, we assume all
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values are 1. This means each data item’s insertion adds a value

of “1” to the sketch. The sum 𝑓 (𝑒) equals how many times key 𝑒 is

inserted, its frequency. We first prove this for values of 1. Extending

the proof to other values is trivial.

When an item is inserted to the 𝑖-th layer and stops the loop, it

“enters” layers 1, 2 . . . 𝑖 and “leaves” layers 1, 2 . . . 𝑖 − 1. 𝑓𝑖 (𝑒) repre-
sents the times an item with key 𝑒 enters layer 𝑖 . We compare 𝑓𝑖 (𝑒)
with

𝜆𝑖
2
to categorize keys into two groups at layer 𝑖: Mice keys S0

𝑖

and Elephant keys S1

𝑖 . We aim to show that the total frequency of

mice keys 𝐹𝑖 and the number of distinct elephant keys 𝐶𝑖 decrease

quickly with increasing 𝑖 . These symbols are detailed in lines 1-5 of

Table 2. For detailed analysis within a bucket, these symbols (lines

2-5) are adapted for the 𝑗-th bucket at layer 𝑖 (lines 6-9).

Table 2: Common symbols

Symbol Description

(1) 𝑓𝑖 (𝑒) The number of times that key 𝑒 enters the 𝑖-th layer.

(2) S0

𝑖 {𝑒 | 𝑒 ∈ S𝑖 ∧ 𝑓𝑖 (𝑒) ⩽ 𝜆𝑖
2
}, the set of mice keys.

(3) S1

𝑖 {𝑒 | 𝑒 ∈ S𝑖 ∧ 𝑓𝑖 (𝑒) > 𝜆𝑖
2
}, the set of elephant keys.

(4) 𝐹𝑖
∑
{𝑒∈S0

𝑖
} 𝑓𝑖 (𝑒), the total frequency of mice keys in S0

𝑖 .

(5) 𝐶𝑖 |S1

𝑖 |, the number of elephant keys in S1

𝑖 .

(6) S0

𝑖, 𝑗 {𝑒 | 𝑒 ∈ S0

𝑖 ∧ ℎ(𝑒) = 𝑗}, the set of mice keys that are

mapped to the 𝑗-th bucket.

(7) S1

𝑖, 𝑗 {𝑒 | 𝑒 ∈ S1

𝑖 ∧ ℎ(𝑒) = 𝑗}, the set of elephant keys that
are mapped to the 𝑗-th bucket.

(8) 𝐹𝑖, 𝑗
∑
{𝑒∈S0

𝑖,𝑗
} 𝑓𝑖 (𝑒), the total frequency of mice keys in

S0

𝑖, 𝑗 .

(9) 𝐶𝑖, 𝑗 |S1

𝑖, 𝑗 |, the number of elephant keys in S1

𝑖, 𝑗 .

(10) P𝑖,𝑘 {𝑒1, · · · , 𝑒𝑘 }, a subset of S𝑖 composed of the first 𝑘

keys.

(11) 𝑓 𝑃
𝑖,𝑘

∑
{𝑒∈P𝑖,𝑘−1∩S0𝑖,ℎ (𝑒𝑘 )

} 𝑓𝑖 (𝑒), the total frequency of mice

keys with a smaller index that conflicts with key 𝑒𝑘 .

(12) 𝑐𝑃
𝑖,𝑘

���{𝑒 | 𝑒 ∈ P𝑖,𝑘−1 ∩ S1

𝑖,ℎ (𝑒𝑘 )
}
���, the number of elephant

keys with a smaller index that conflicts with key 𝑒𝑘 .

Proof sketch: The proof consists of the following four steps. The

first three steps focus on a single layer (the 𝑖-th layer), and analyze

the relationship between the 𝑖-th layer and the (𝑖 + 1)-th layer. The

fourth step traverses all layers to draw a final conclusion.

• Step 1 (Boundmice and elephant keys leaving the 𝑖-th layer
with Xi and Yi, respectively). Our analysis must be applicable

regardless of the order in which any item is inserted into the

sketch. We start by analyzing, among the items entering the 𝑖-th

layer, how many will proceed to the (𝑖 + 1)-th layer, thereby

leaving the 𝑖-th layer. We construct two time-order-independent

random variables 𝑋𝑖 and 𝑌𝑖 to bound mice keys and elephant

keys, respectively: 𝑋𝑖 bounds the total frequency of the mice

keys leaving the 𝑖-th layer, and 𝑌𝑖 bounds the number of distinct

elephant keys leaving the 𝑖-th layer (Theorem 1).

• Step 2 (Double exponential decrease of 𝑋𝑖 and 𝑌𝑖 ): We prove

that if the number of mice keys 𝐹𝑖 and elephant keys𝐶𝑖 in the 𝑖-th

layer decrease double exponentially, then the quantity of keys

leaving the 𝑖-th layer, i.e., 𝑋𝑖 and 𝑌𝑖 , will also decrease double

exponentially (Theorem 2).

• Step 3 (Double exponential decrease of 𝐹𝑖+1 and 𝐶𝑖+1): Al-
though the quantities of𝑋𝑖 and𝑌𝑖 leaving the 𝑖-th layer are within

limits, it does not directly imply that the number of mice keys

𝐹𝑖+1 and elephant keys 𝐶𝑖+1 in the (𝑖 + 1)-th layer are few. This

is because the criteria for categorizing an elephant key differ

across layers, and a mice key from the 𝑖-th layer may become an

elephant key upon entering the (𝑖 + 1)-th layer. Fortunately, by

using a Concentration inequality, we prove that this situation

is controllable. That is, if 𝐹𝑖 and 𝐶𝑖 decrease double exponen-

tially, 𝐹𝑖+1 and 𝐶𝑖+1 in the next layer will also decrease double

exponentially (Theorem 3).

• Step 4 (Combine all layers): Based on step 3, by using Boole’s

inequality, we combine the results from each layer and prove

that there is a high probability (1 − Δ) that the final conclusion
holds (Theorem 4).

The results of step 1.

Theorem 1. Let

𝑋𝑖,𝑘 =


0 𝐶𝑖,ℎ (𝑒𝑘 ) = 0 ∧ 𝑓 𝑃

𝑖,𝑘
⩽ 𝜆𝑖

2

𝑓𝑖 (𝑒𝑘 ) 𝐶𝑖,ℎ (𝑒𝑘 ) = 0 ∧ 𝑓 𝑃
𝑖,𝑘

>
𝜆𝑖
2

𝑓𝑖 (𝑒𝑘 ) 𝐶𝑖,ℎ (𝑒𝑘 ) > 0

, 𝑋𝑖 =
∑︁

{𝑒𝑘 ∈S0𝑖 }

𝑋𝑖,𝑘 .

The total frequency of the mice keys leaving the 𝑖-th layer does not

exceed 𝑋𝑖 , i.e.,

𝐹𝑖+1 ⩽
∑︁

{𝑒∈S0
𝑖
∩S𝑖+1 }

𝑓𝑖+1 (𝑒) ⩽ 𝑋𝑖 .

Let

𝑌𝑖,𝑘 =


0 𝑐𝑃

𝑖,𝑘
= 0 ∧ 𝐹𝑖,ℎ (𝑒𝑘 ) ⩽ 𝜆𝑖 ,

2 𝑐𝑃
𝑖,𝑘

= 0 ∧ 𝐹𝑖,ℎ (𝑒𝑘 ) > 𝜆𝑖

2 𝑐𝑃
𝑖,𝑘

> 0.

, 𝑌𝑖 =
∑︁

𝑒𝑘 ∈S1𝑖

𝑌𝑖,𝑘 .

The number of distinct elephant keys leaving the 𝑖-th layer does not

exceed 𝑌𝑖 , i.e., ��S1

𝑖 ∩ S1

𝑖+1
�� ⩽ 𝑌𝑖 .

The results of step 2.

Theorem 2. Let𝑊 =
4𝑁 (𝑅𝑤𝑅𝜆 )6

Λ(𝑅𝑤−1) (𝑅𝜆−1) , 𝛼𝑖 =
∥𝐹 ∥1

(𝑅𝑤𝑅𝜆 )𝑖−1
, 𝛽𝑖 =

𝛼𝑖
𝜆𝑖
2

,

𝛾𝑖 = (𝑅𝑤𝑅𝜆) (2
𝑖−1−1)

, and 𝑝𝑖 = (𝑅𝑤𝑅𝜆)−(2
𝑖−1+4)

. Under the conditions

of 𝐹𝑖 ⩽
𝛼𝑖
𝛾𝑖

and 𝐶𝑖 ⩽
𝛽𝑖
𝛾𝑖
, we have

Pr

(
𝑋𝑖 > (1 + Δ)

𝑝𝑖𝛼𝑖

𝛾𝑖

)
⩽ exp

(
−(Δ − (𝑒 − 2)) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
.

and

Pr

(
𝑌𝑖 > (1 + Δ)

3

2

𝑝𝑖𝛽𝑖

𝛾𝑖

)
⩽ exp

(
−(Δ − (𝑒 − 2)) 3𝑝𝑖𝛽𝑖

4𝛾𝑖

)
.

The results of step 3.

Theorem 3. Let 𝑅𝑤𝑅𝜆 ⩾ 2,𝑊 =
4𝑁 (𝑅𝑤𝑅𝜆 )6

Λ(𝑅𝑤−1) (𝑅𝜆−1) , 𝜆𝑖 =
Λ(𝑅𝜆−1)

𝑅𝑖
𝜆

,

𝛼𝑖 = 𝑁

(𝑅𝑤𝑅𝜆 )𝑖−1
, 𝛽𝑖 =

𝛼𝑖
𝜆𝑖
2

, 𝛾𝑖 = (𝑅𝑤𝑅𝜆) (2
𝑖−1−1)

, and 𝑝𝑖 =
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(𝑅𝑤𝑅𝜆)−(2
𝑖−1+4)

. We have

Pr

(
𝐹𝑖+1 >

𝛼𝑖+1
𝛾𝑖+1

| 𝐹𝑖 ⩽
𝛼𝑖

𝛾𝑖
∧𝐶𝑖 ⩽

𝛽𝑖

𝛾𝑖

)
⩽ exp

(
−(9 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
.

Pr

(
𝐶𝑖+1 >

𝛽𝑖+1
𝛾𝑖+1

| 𝐹𝑖 ⩽
𝛼𝑖

𝛾𝑖
∧𝐶𝑖 ⩽

𝛽𝑖

𝛾𝑖

)
⩽ exp

(
−(5 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
+ exp

(
−( 11

3

− 𝑒) 3𝑝𝑖𝛽𝑖
4𝛾𝑖

)
.

The results of step 4.

Theorem 4. Let 𝑅𝑤𝑅𝜆 ⩾ 2,𝑊 =
4𝑁 (𝑅𝑤𝑅𝜆 )6

Λ(𝑅𝑤−1) (𝑅𝜆−1) , 𝜆𝑖 =
Λ(𝑅𝜆−1)

𝑅𝑖
𝜆

,

𝛼𝑖 = 𝑁

(𝑅𝑤𝑅𝜆 )𝑖−1
, 𝛽𝑖 =

𝛼𝑖
𝜆𝑖
2

, 𝛾𝑖 = (𝑅𝑤𝑅𝜆) (2
𝑖−1−1)

, and 𝑝𝑖 =

(𝑅𝑤𝑅𝜆)−(2
𝑖−1+4)

. For given Λ and Δ < 1

4
, let 𝑑 be the root of the

following equation

𝑅𝑑
𝜆

(𝑅𝑤𝑅𝜆) (2𝑑+𝑑 )
= Δ1

Λ

𝑁
ln( 1

Δ
).

And use an SpaceSaving of size Δ2 ln( 1Δ ) (as the (𝑑 + 1)-layer), then

Pr

(
∀ key 𝑒,

��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

)
⩾ 1 − Δ,

where

Δ1 = 2𝑅2

𝑤𝑅
2

𝜆
(𝑅𝜆 − 1), Δ2 = 3

(
𝑅𝑤𝑅

2

𝜆

𝑅𝜆 − 1

)
Δ1 = 6𝑅3

𝑤𝑅
4

𝜆
.

Complexity of ReliableSketch.

Theorem 5. Using the same settings as Theorem 4, the space

complexity of the algorithm is𝑂 ( 𝑁Λ +ln(
1

Δ )), and the time complexity

of the algorithm is amortized 𝑂 (1 + Δ ln ln( 𝑁Λ )).

5 Implementations
We have implemented ReliableSketch on three platforms: CPU

server, FPGA, and Programmable Switch. Given the challenging na-

ture of implementations on the latter two platforms, due to various

hardware constraints, we provide a brief introduction here. Our

source code is available on GitHub [2].

5.1 FPGA
We implement the ReliableSketch on an FPGA network experi-

mental platform (Virtex-7 VC709). The FPGA integrated with the

platform is xc7vx690tffg1761-2 with 433200 Slice LUTs, 866400 Slice

Register, and 1470 Block RAM Tile. The implementation mainly

consists of three hardware modules: calculating hash values (hash),

Error-Sensible Buckets (ESbucket), and a stack for emergency so-

lution (Emergency). ReliableSketch is fully pipelined, which can

input one key in every clock, and complete the insertion after 41

clocks. According to the synthesis report (see Table 1), the clock

frequency of our implementation in FPGA is 340 MHz, meaning the

throughput of the system can be 340 million insertions per second.

5.2 Programmable Switch
To implement ReliableSketch on programmable switches (e.g.,

Tofino), we need to solve the following three challenges.

Table 3: FPGA Implementation Results.

Module
CLB
LUTs
(count)

CLB
Registers
(count)

Block
RAM
(tiles)

Frequency
(MHz)

Hash 85 130 0 339

ESbucket 2521 2592 258 339

Emergency 48 112 1 339

Total 2654 2834 259 339

Usage 0.61% 0.33% 17.62%

Challenge I: Circular Dependency. Programmable switches limit

SALU access to a pair of 32-bit data per stage, but each ReliableS-

ketch bucket contains three fields (ID, YES, NO), creating depen-

dencies that exceed this limit. To resolve this, we simplify the de-

pendencies by using the difference between YES and NO (DIFF) for
replacement decisions. This adjustment allows us to align DIFF
and ID in the first stage and NO in the second stage, breaking the

dependency cycle.

Challenge II: Backward Modification. When NO surpasses a

threshold, the bucket must be locked, preventing updates to ID.
However, due to pipeline constraints, a packet can’t modify the

LOCKED flag within its lifecycle. Our solution involves recirculating

the packet that first exceeds the threshold, allowing it to re-enter

the pipeline and update the flag.

Challenge III: Three Branches Update and Output Limitation.
Weighted updates to DIFF could result in three different values, but

switches can only support two variations. To accommodate this

limitation and the 32-bit output constraint per stage, we simplify

the update process. When not matching ID, DIFF is updated using

saturated subtraction. In replacement scenarios, DIFF is reduced

to zero, and ID is replaced upon the arrival of the next packet

identifying DIFF as zero.

Table 4: H/W Resources Used by ReliableSketch.

Resource Usage (unit) Percentage
Hash Bits (bits) 541 10.84%

SRAM (blocks) 138 14.37%

Map RAM (blocks) 119 20.66%

TCAM (blocks) 0 0%

Stateful ALU (count) 12 25.00%

VLIW Instr (count) 23 5.99%

Match Xbar (count) 109 7.10%

Hardware resource utilization: After solving the above three

challenges, we have fully implemented ReliableSketch on Edgecore

Wedge 100BF-32X switch (with Tofino ASIC). Table 4 lists the uti-

lization of various hardware resources on the switch. The two most

used resources of ReliableSketch are Map RAM and Stateful ALU,

which are used 20.66% and 25% of the total quota, respectively.

These two resources are mainly used by the multi-level bucket ar-

rays in ReliableSketch. For other kinds of resources, ReliableSketch

uses up to 14.37% of the total quota.
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6 Experiment Results
In this section, we present the experiment results for ReliableSketch.

We begin with the setup of the experiments (§ 6.1). Following this,

we perform a comparative analysis of ReliableSketch against exist-

ing solutions in terms of accuracy (§ 6.2) and speed (§ 6.3). Finally,

we evaluate ReliableSketch in detail, including the impact of its

parameters on performance (§ 6.4), its capability in error sensing

and control, and industrial deployment performance (§ 6.5). The

source code is available on GitHub [2].

6.1 Experiment Setup
6.1.1 Implementation. Our experiments are mostly based on C++

implementations of ReliableSketch and related algorithms. Here we

use fast 32-bit Murmur Hashing [1], and different hash functions

that affect accuracy little. Each bucket of ReliableSketch consists of

a 32-bit𝑌𝐸𝑆 counter, a 16-bit𝑁𝑂 counter, and a 32-bit 𝐼𝐷 field. Mice

filter occupies 20% of total memory, and bucket size of it is fixed to

2 bits unless otherwise noted. According to the study in § 6.4, we

set 𝑅𝑤 to 2 and 𝑅𝜆 to 2.5 by default. The memory size is 1MB and

the user-defined threshold Λ is 25 by default. All the experiments

are conducted on a server with 18-core CPU (36 threads, Intel CPU

i9-10980XE @3.00 GHz), which has 128GB memory. Programs are

compiled with O2 optimization.

6.1.2 Datasets. We use four large-scale real-world streaming

datasets and one synthetic dataset, with the first dataset being

the default.

• IP Trace (Default): An anonymized dataset collected from [4],

comprised of IP packets. We use the source and destination IP

addresses as the key. The first 10M packets of the whole trace

are used to conduct experiments, including about 0.4M distinct

keys.

• Web Stream: A dataset built from a spidered collection of web

HTML documents [3]. The first 10M items of the entire trace

are used to conduct experiments, including about 0.3M distinct

keys.

• University Data Center: An anonymized packet trace from

university data center [11]. We fetch 10M packets of the dataset,

containing about 1M distinct keys.

• Hadoop Stream: A dataset built from real-world traffic distri-

bution of HADOOP. The first 10M packets of the whole trace

are used to conduct experiments, including about 20K distinct

keys.

• Synthetic Datasets:We generate [33] several synthetic datasets

according to a Zipf distribution with different skewness for ex-

periments, each of them consists of 32M items.

By default, the value is set to 1 to allow for comparison with existing

methods, unless the unit of the value is explicitly mentioned.

6.1.3 Evaluation Metrics. We evaluate the performance of Reli-

ableSketch and its competitors using the following four metrics.

Given our objective to control all errors below the user-defined

threshold, our accuracy evaluation focuses more on the first metric,

# Outliers, rather than metrics like AAE.

• The Number of Outliers (# Outliers): The number of keys

whose absolute error of estimation is greater than the user-

defined threshold Λ.

• Average Absolute Error (AAE): 1

|𝑈 |
∑

𝑒𝑖 ∈𝑈
|𝑓 (𝑒𝑖 ) − ˆ𝑓 (𝑒𝑖 ) |, where

𝑈 is the set of keys, 𝑓 (𝑒𝑖 ) is the true value sun of key 𝑒𝑖 , and
ˆ𝑓 (𝑒𝑖 ) is the estimation.

• Average Relative Error (ARE): 1

|𝑈 |
∑

𝑒𝑖 ∈𝑈

| 𝑓 (𝑒𝑖 )− ˆ𝑓 (𝑒𝑖 ) |
𝑓 (𝑒𝑖 ) .

• Throughput: 𝑁
𝑇
, where 𝑁 is the number of operations and 𝑇 is

the elapsed time. Throughput describes the processing speed of

an algorithm, and we use Million of packets per second (Mpps)

to measure the throughput.

6.1.4 Implementation of Competitors. We conduct experiments

to compare the performance of ReliableSketch ("Ours" in figures)

with seven competitors, including CM [17], CU [19], SS [30], Elas-

tic [40], Coco [41], HashPipe [35], and PRECISION[10]. Together

they cover the categories in Table 1—counter-based (CM/CU), heap-

based (SS), modern counter-based with light/heavy or partial-key

components (Elastic/Coco), and switch-pipeline designs (Hash-

Pipe/PRECISION)—so the set is representative for our setting.

For CM and CU, we provide fast (CM_fast/CU_fast) and accurate

(CM_acc/CU_acc) two versions, implementing 3 and 16 arrays re-

spectively. For Elastic, its light/heavy memory ratio is 3 as rec-

ommended [40]. For Coco, we set the number of arrays 𝑑 to 2 as

recommended [41]. For HashPipe, we set the number of pipeline

stages 𝑑 to 6 as recommended [35]. And for PRECISION, we set the

number of pipeline stages 𝑑 to 3 for best performance [10].

6.2 Accuracy Comparison
ReliableSketch controls error efficiently as our expectation and

achieves the best accuracy compared with competitors. In evaluat-

ing accuracy, we considered three aspects: the number of outliers

in all keys, the number of outliers in frequent keys, and average

estimation error of values.

6.2.1 Number of Outliers in All Keys. Under various Λ values and

across different datasets, we consistently achieve zero outliers with

more than 2 times memory saving.
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Figure 4: # Outliers in Different Λ.

Impact of Threshold Λ (Figure 4a, 4b):We vary Λ and count the

number of outliers. As the figures show, ReliableSketch takes the

lead position regardless of Λ. When Λ=25, ReliableSketch achieves

zero outlier within 1MB memory, while the others still report over

5000 outliers.

Zero-Outlier Memory Consumption (Figure 5): We further

explore the precise minimum memory consumption to achieve
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Figure 5: Memory Consumption under Zero Outlier.

zero outlier for all algorithms, Λ is fixed to 25 and experiments are

conducted on different datasets. For the IP Trace dataset, memory

consumption of ReliableSketch is 0.91MB, about 6.07, 2.69, 2.01, 9.32

times less than CM (accurate), CU (accurate), Space-Saving, and

Elastic respectively. CM (fast), CU (fast) and Coco cannot achieve

zero outlier within 10MB memory. Besides, CM, CU and Elastic

usually require more memory than the minimum value, otherwise

they cannot achieve zero outlier stably.
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Figure 6: # Outliers on Different Datasets.

Impact of Dataset (Figure 6a,6b,6c,6d):WefixΛ to 25 and change

the dataset. The figures illustrate that ReliableSketch has the least

memory requirement regardless of the dataset. For synthetic dataset

with skewness=0.3, no algorithm achieves zero outlier within 4MB

memory, while the number of outliers of ReliableSketch is over 50

times less than others.

6.2.2 Average Error. Average error measures the average difference

between estimated and actual values. ReliableSketch is comparable

to the best solutions in this regard. However, optimizing average er-

ror is not our primary goal, because its correlation with confidence

is relatively low.
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Figure 7: AAE on Different Datasets.
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Figure 8: ARE on Different Datasets.

AAE vs. Memory Size (Figure 7a, 7b): It is shown that when

memory size is up to 4MB, ReliableSketch has a comparable AAE

with Elastic and CU in two datasets, is about 1.59 ∼ 2.01 times lower

than CM, 1.34 ∼ 1.69 times lower than Coco, and 9.10 ∼ 11.48 times

lower than Space-Saving.

ARE vs. Memory Size (Figure 8a, 8b): It is shown that when

memory size is up to 4MB, ReliableSketch achieves a comparable

ARE with Elastic in two datasets, and is 1.63 ∼ 2.75 times lower

than CU, 2.78 ∼ 5.23 times lower than CM, 2.76 ∼ 5.05 times lower

than Coco, and 18.07 ∼ 36.67 times lower than Space-Saving.

6.3 Speed Comparison.
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Figure 9: Throughput Evaluation. Ours(Raw) denotes Reli-
ableSketch without the mice filter.

We find that ReliableSketch is not only highly accurate but also

fast. In our tests involving 10 million insertions and queries, we

compare its throughput with that of other algorithms. An alterna-

tive version of ReliableSketch, without the mice filter (“Raw” in the
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figure), is also presented, sacrificing a tolerable level of accuracy

for a significant increase in speed.

Figure 9 shows that the insertion throughputs for ReliableSketch

and the Raw version are 25.40 Mpps and 51.29 Mpps, respectively;

for queries, they are 31.29 Mpps and 66.89 Mpps. Among baselines

that target higher accuracy (SS, Elastic, CM_acc, CU_acc), Reli-

ableSketch achieves comparable or higher throughput. Compared

with the fastest-throughput designs (e.g., CM_fast, Coco, HashPipe),

ReliableSketch trades some speed for the order-of-magnitude ac-

curacy gains reported in Figure 4 and Figure 6. The Raw ablation

further indicates the headroom of our underlying data structure

when prioritizing speed over accuracy; we include it as a tradeoff

reference rather than our default configuration.

6.4 Impact of Parameters
We explore the impact of various parameters on the accuracy of

ReliableSketch, including 𝑅𝑤 , 𝑅𝜆 , and the error threshold Λ, and
analyze the trends in ReliableSketch’s speed changes. At the same

time, we provide recommended parameter settings.

6.4.1 Impact of Parameter 𝑅𝑤 . When adjusting 𝑅𝑤 (i.e., the param-

eter of the decreasing speed of array size), we find ReliableSketch

performs best when 𝑅𝑤 = 2.
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Figure 10: Impact of 𝑅𝑤 under Zero Outlier.

Memory Usage under Zero Outlier (Figure 10a, 10b): We con-

duct experiments on IP Trace and Web Stream datasets. We set the

user-defined threshold Λ to 25, and compare the minimum memory

consumption achieving zero outlier under different 𝑅𝑤 . It is shown

that ReliableSketch with 𝑅𝑤 = 2 ∼ 2.5 requires less memory than

the ones with other 𝑅𝑤 . When 𝑅𝑤 is lower than 1.6 or higher than

3, the memory consumption increases rapidly.

Memory Usage under the Same Average Error (Figure 11a,
11b):We conduct experiments on IP Trace andWeb Stream datasets,

set the target estimation AAE to 5, and compare the memory con-

sumption when 𝑅𝑤 varies. The figures show that the higher 𝑅𝑤
goes with less memory usage. However, the memory consumption

is quite close to the minimum value when 𝑅𝑤 = 2 ∼ 6.

6.4.2 Impact of Parameter 𝑅𝜆 . When adjusting 𝑅𝜆 (i.e., the param-

eter of the decreasing speed of error threshold), we find ReliableS-

ketch performs best when we set 𝑅𝜆 = 2.5.

Memory Usage under Zero Outlier (Figure 12a, 12b): We con-

duct experiments and set the target Λ to 25. As the figures show,

memory consumption drops down rapidly when 𝑅𝜆 grows from

1.2 to 2 and finally achieve the minimum when 𝑅𝜆 = 2. There is
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Figure 11: Impact of 𝑅𝑤 under the Same Average Error.

2.5 5.0 7.5 10.0 12.5
Parameter R_lambda

0

2

4

6

M
em

or
y 

U
sa

ge
(M

B) R_w=1.4
R_w=2.0
R_w=4.0
R_w=9.0

(a) IP Trace

2.5 5.0 7.5 10.0 12.5
Parameter R_lambda

0

1

2

M
em

or
y 

U
sa

ge
(M

B) R_w=1.4
R_w=2.0
R_w=4.0
R_w=9.0

(b) Web Stream

Figure 12: Impact of 𝑅𝜆 under Zero Outlier.

no significant change when 𝑅𝜆 is higher than 2.5, only some jitters

due to the randomness of ReliableSketch.
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Figure 13: Impact of 𝑅𝜆 under the Same Average Error.

Memory Usage under the Same Average Error (Figure 13a,
13b): To explore the impact of parameter 𝑅𝜆 on average error, we

set the target estimation AAE to 5 and compare the memory con-

sumption when 𝑅𝜆 varies. It is shown that when 𝑅𝑤 is low, the

higher 𝑅𝜆 is, the less memory ReliableSketch uses. When 𝑅𝑤 is

greater than 4, 𝑅𝜆 affects little.

6.4.3 Error Threshold Λ. We find that the user-defined error

thresholdΛ, which denotes the maximum estimated error ReliableS-

ketch guaranteed, is almost inversely proportional to the memory

consumption.

Memory Usage under Zero Outlier (Figure 14a): In this exper-

iment, we fix the parameter 𝑅𝑤 to 2, 𝑅𝜆 to 2.5, and conduct it on

three different datasets. It is shown that memory usage monotoni-

cally decreases, which means the optimal Λ is exactly the maximum
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Figure 14: Memory Usage for Different Λ.

tolerable error. On the other hand, reducing Λ blindly will lead to

an extremely high memory cost.

Memory Usage under the Same Average Error (Figure 14b): In
this experiment, we fix the parameter 𝑅𝑤 to 2, 𝑅𝜆 to 2.5, and conduct

it on IP Trace dataset. The figure shows that optimal Λ increases as

target AAE increases, and optimal Λ is about 2 ∼ 3 times greater

than target AAE. For target AAE=5/10/15/20, the optimums are

15/25/35/50, requiring 1.43/1.05/0.85/0.75MB memory respectively.
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Figure 15: Average Number of Hash Function Calls.

6.4.4 Trend of speed changes. The number of hash function calls,

directly proportional to consumed time, fundamentally indicates the

trend of speed changes. In ReliableSketch, this number dynamically

varies during insertions and queries due to its multi-layer structure.

To explore the relationship between memory size and the average

number of hash function calls, we conducted experiments using

the IP Trace dataset.

Figures 15a and 15b reveal that the average hash function calls for

the raw version of ReliableSketch decrease rapidly with increasing

memory, eventually stabilizing at 1. ReliableSketch with a 2-array

mice filter eventually stabilizes at 3 due to 2 additional calls in

the filter. Smaller ReliableSketch instances record fewer keys in

the earlier layers, leading to more hash function calls and reduced

throughput. For this reason, unless memory is exceptionally scarce,

we recommend allocating more space to gain faster processing

speeds.

6.5 In-depth Observations of ReliableSketch
We show how ReliableSketch performs in SenseCtrlErr comprehen-

sively, and compare it with prior algorithms.

6.5.1 Error-Sensing Ability. ReliableSketch can confidently and

accurately sense the error, the MPE it reports, using the default

parameters.
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Figure 16: Illustration of Sensed Error and Intervals.

Sensed Interval (Figure 16a, 16b):We examine keys with both

large and small values to ensure their true values fall within the

range [estimated value - MPE, estimated value], thus corroborating

that the estimation error is well-controlled within MPE.
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Figure 17: Experiments on Sensed Error.

Actual Error vs. Sensed Error (Figure 17a): As we query the

values of all keys in ReliableSketch, we classify these keys by their

actual absolute error, and calculate the average sensed error re-

spectively. The result shows that the average sensed error keeps

close to the actual error no matter how it changes, which means

ReliableSketch can sense error accurately and stably.

Sensed Error vs.Memory Size (Figure 17b):We further vary the

memory size from 1000KB to 2500KB, and study how errors change.

The figure shows that sensed error decreased when memory grows.

6.5.2 Error-Controlling Ability. ReliableSketch controls error effi-

ciently as our expectation.

Layer Distribution (Figure 18a):When the latest-arriving item

of a key concludes its insertion in a particular layer, we categorize

the key as belonging to that layer. Through repeated experiments,

we calculate the distribution of keys across layers. The results, as

depicted in the figure, indicate that the number of keys associated

with each layer diminishes at a rate faster than exponential. This

suggests that ReliableSketch is capable of effectively controlling

errors with only a few layers, and the remaining layers contribute

to eliminating potential outliers.
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Figure 18: Illustration of Error-Controlling.

Error Distribution (Figure 18b):We count absolute errors of all

keys, and sort them in descending order. The figure shows that

errors of ReliableSketch are controlled within Λ completely, while

most traditional sketch algorithms cannot control the error of all

keys, such as CM.
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Figure 19: Accuracy on TestBed Deployment.

6.5.3 Deployment. Compared to the flexible CPU platforms, high-

performance devices impose more restrictions on algorithm imple-

mentation. The more complex the operations used by an algorithm,

the less likely it is to be feasibly deployed in reality. We evaluate

the accuracy of ReliableSketch implemented on a programmable

switch known as Tofino. We send 40 million packets selected from

the IP Trace and Hadoop datasets at a link speed of 40Gbps from an

end-host connected to the Tofino switch. The evaluation focuses

on AAE and the number of outliers for ReliableSketch using SRAM

of different sizes.

As depicted in Figure 19, for the IP Trace dataset, ReliableSketch

requires more than 368KB of SRAM to ensure zero outliers, main-

taining an AAE within 4Kbps. For the Hadoop dataset, more than

92KB of SRAM is necessary for ReliableSketch to guarantee no

outliers, with an AAE within 10Kbps.

7 Related Work
Sketches—probabilistic data structures—have been widely adopted

for the stream summary problem;when all values equal one, the task

reduces to frequency estimation. These approximate aggregations

also underpin network and big-data systems (e.g., parameter-server

load balancing and large-scale log anomaly detection), where con-

trolling error across all keys—not only per-key—is crucial [13, 23].

We group prior work into three families—counter-based sketches,

heap-based sketches, and other sketches—and complement the dis-

cussion above with additional references.

Counter-based Sketches are composed of counters, including CM

[17], CU [19], Count [14], Elastic [40], UnivMon [27], Coco [41],

SALSA [9], DHS [42], SSVS [29] and more [5, 21, 22, 32]. Among

them, the work most relevant to ReliableSketch is the Elastic [40],

which likewise employs election, with two counters resembling YES

and NO. But because Elastic’s purpose is to find frequent keys, it

resets the NO-like counter to 1 when a replacement occurs, making

it incapable of sensing errors. ReliableSketch and Elastic are similar

only in appearance, as they differ greatly in their target problems

and underlying ideas.

Heap-based Sketches include Frequent [18], Space Saving [30],
Unbiased Space Saving [37], SpaceSaving

±
[43] and more [12]. The

insertions of these solutions rely on a heap structure, resulting in

slower speeds. Compared to their logarithmic time complexity, Reli-

ableSketch achieves an amortized complexity of 𝑂 (1 + Δ ln ln( 𝑁Λ )).
Heap-based Sketches can only be optimized using a linked list in

the special case where the value equals 1, achieving an insertion

efficiency of O(1). However, even in the scenario where the value

is 1, ReliableSketch still retains its unique advantages, being more

suitable for high-performance hardware implementation, while

heaps or linked lists are too hard to be implemented [8].

Other Sketches. Besides stream summary, sketches can address

various tasks, including estimating cardinality [20, 39], quantiles

[24, 28, 34, 45], and join sizes [6, 7, 16, 38], among other tasks [15].

8 Conclusion
We focus on approximating sums of values in data streams for all

keys with a high degree of confidence, aiming to prevent the oc-

currence of outliers with excessive errors. To this end, we have

developed ReliableSketch, which provides high-confidence guaran-

tees for all keys. It features near-optimal amortized insertion time

of𝑂 (1+Δ ln ln( 𝑁Λ )), near-optimal space complexity𝑂 ( 𝑁Λ + ln(
1

Δ )),
and excellent hardware compatibility. Compared to counter-based

sketches, ReliableSketch optimizes confidence, speed, and space

usage; and against heap-based sketches, it offers superior speed

and, despite theoretically larger space requirements, demonstrates

more efficient space utilization in practice.

The key idea of ReliableSketch is to identify keys with significant

errors and effectively control these errors to completely eliminate

outliers. These two steps are facilitated by our key techniques,

“Error-Sensible Bucket” and “Double Exponential Control”. We

have implemented ReliableSketch on CPU servers, FPGAs, and

programmable switches. Our experiments indicate that under the

same limited space, ReliableSketch not only maintains errors for all

keys belowΛ but also achieves competitive throughput among accu-

rate baselines, surpassing competitors that struggle with thousands

of outliers.

Acknowledgments
This work was supported by the National Key Research and Devel-

opment Program of China under Grant No. 2024YFB2906601, and in

part by the National Natural Science Foundation of China (NSFC)

(No. 62372009, 624B2005).



IMC ’25, October 28–31, 2025, Madison, WI, USA Yuhan Wu et al.

References
[1] [n. d.]. Murmur Hashing source codes.

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp.

[2] [n. d.]. Source code related to ReliableSketch.

https://github.com/ReliableSketch/ReliableSketch.

[3] [n. d.]. Frequent itemset mining dataset repository.

http://fimi.ua.ac.be/data/.

[4] [n. d.]. The CAIDA Anonymized Internet Traces.

http://www.caida.org/data/overview/.

[5] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. 2022. {HeteroSketch}:
Coordinating network-wide monitoring in heterogeneous and dynamic networks.

In 19th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22). 719–741.

[6] Noga Alon, Phillip B Gibbons, Yossi Matias, and Mario Szegedy. 1999. Tracking

join and self-join sizes in limited storage. In Proceedings of the eighteenth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 10–20.

[7] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The space complexity of

approximating the frequencymoments. In Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing. 20–29.

[8] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2020. Design-

ing heavy-hitter detection algorithms for programmable switches. IEEE/ACM

Transactions on Networking 28, 3 (2020), 1172–1185.

[9] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021.

SALSA: self-adjusting lean streaming analytics. In 2021 IEEE 37th International

Conference on Data Engineering (ICDE). IEEE, 864–875.

[10] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient

measurement on programmable switches using probabilistic recirculation. In 2018

IEEE 26th International Conference on Network Protocols (ICNP). IEEE, 313–323.

[11] Theophilus Benson, Aditya Akella, and David AMaltz. 2010. Network traffic char-

acteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement. 267–280.

[12] Robert S Boyer and J StrotherMoore. 1991. MJRTY—a fast majority vote algorithm.

In Automated Reasoning. Springer, 105–117.

[13] Weibo Cai, Shulin Yang, Gang Sun, Qiming Zhang, and Hongfang Yu. 2023.

Adaptive load balancing for parameter servers in distributed machine learning

over heterogeneous networks. ZTE Communications 21, 1 (March 2023), 72–80.

doi:10.12142/ZTECOM.202301009

[14] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent

items in data streams. In Automata, Languages and Programming. Springer.

[15] Graham Cormode. 2011. Sketch techniques for approximate query processing.

Foundations and Trends in Databases. NOW publishers (2011).

[16] Graham Cormode and Minos Garofalakis. 2005. Sketching streams through the

net: Distributed approximate query tracking. In Proceedings of the 31st interna-

tional conference on Very large data bases. 13–24.

[17] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms 55, 1

(2005).

[18] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. 2002. Frequency

estimation of internet packet streams with limited space. In European Symposium

on Algorithms. Springer.

[19] Cristian Estan and George Varghese. 2002. New directions in traffic measurement

and accounting. In Proceedings of the 2002 conference on Applications, technologies,

architectures, and protocols for computer communications. 323–336.

[20] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perloglog: the analysis of a near-optimal cardinality estimation algorithm.

[21] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and Gong

Zhang. 2017. Sketchvisor: Robust network measurement for software packet

processing. In Proceedings of the Conference of the ACM Special Interest Group on

Data Communication. 113–126.

[22] Qun Huang, Siyuan Sheng, Po-HanWang, Xiang Chen, Chi Zhang, Isaac Pedisich,

Yungang Bao, Zhaoyang Han, Dinesh Bharadia, Rui Zhang, et al. 2021. Toward

nearly-zero-error sketching via compressive sensing. In 18th {USENIX} Sympo-

sium on Networked Systems Design and Implementation ({NSDI} 21). 1027–1044.
[23] Yuhe Ji, Jing Han, Yongxin Zhao, Shenglin Zhang, and Zican Gong. 2023. Log

anomaly detection through GPT-2 for large scale systems. ZTE Communications

21, 3 (Sept. 2023), 70–76. doi:10.12142/ZTECOM.202303010

[24] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approximation

in streams. In 2016 ieee 57th annual symposium on foundations of computer science

(focs). IEEE, 71–78.

[25] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. 2022. Stingy sketch:

a sketch framework for accurate and fast frequency estimation. Proceedings of

the VLDB Endowment 15, 7 (2022), 1426–1438.

[26] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and general sketch-

based monitoring in software switches. In Proceedings of the ACM Special Interest

Group on Data Communication. 334–350.

[27] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One sketch to rule them all: Rethinking network flow monitor-

ing with univmon. In SIGCOMM.

[28] Charles Masson, Jee E Rim, and Homin K Lee. [n. d.]. DDSketch: A Fast and

Fully-Mergeable Quantile Sketch with Relative-Error Guarantees. Proceedings of

the VLDB Endowment 12, 12 ([n. d.]).

[29] Dimitrios Melissourgos, Haibo Wang, Shigang Chen, Chaoyi Ma, and Shiping

Chen. 2024. Single Update Sketch with Variable Counter Structure. Proceedings

of the VLDB Endowment 16, 13 (2024).

[30] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient compu-

tation of frequent and top-k elements in data streams. In International Conference

on Database Theory. Springer.

[31] J Strother Moore. 1981. A fast majority vote algorithm. Automated Reasoning:

Essays in Honor of Woody Bledsoe (1981).

[32] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, Peter Steenkiste, Guyue

Liu, Ao Li, Christopher Canel, Adithya Abraham Philip, Ranysha Ware, et al.

2022. Sketchlib: Enabling efficient sketch-based monitoring on programmable

switches. NSDI.

[33] Alex Rousskov and Duane Wessels. 2004. High-performance benchmarking with

Web Polygraph. Software: Practice and Experience (2004).

[34] Rana Shahout, Roy Friedman, and Ran Ben Basat. 2023. Together is Better: Heavy

Hitters Quantile Estimation. Proceedings of the ACM on Management of Data 1, 1

(2023), 1–25.

[35] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S Muthukrish-

nan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data plane.

In SOSR. ACM.

[36] Lu Tang, Qun Huang, and Patrick PC Lee. 2019. Mv-sketch: A fast and compact

invertible sketch for heavy flow detection in network data streams. In IEEE

INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2026–2034.

[37] Daniel Ting. 2018. Data Sketches for Disaggregated Subset Sum and Frequent

Item Estimation. In SIGMOD Conference.

[38] Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin

Cui. 2023. JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-

Product Estimation. Proceedings of the ACM on Management of Data 1, 1 (2023),

1–26.

[39] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A

linear-time probabilistic counting algorithm for database applications. ACM

Transactions on Database Systems (TODS) 15, 2 (1990).

[40] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-

wide measurements. In SIGCOMM. 561–575.

[41] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng

Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: high-performance

sketch-based measurement over arbitrary partial key query. In Proceedings of the

2021 ACM SIGCOMM 2021 Conference. 207–222.

[42] Bohan Zhao, Xiang Li, Boyu Tian, ZhiyuMei, andWenfeiWu. 2021. Dhs: Adaptive

memory layout organization of sketch slots for fast and accurate data stream

processing. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining. 2285–2293.

[43] Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. 2021.

SpaceSaving
±
: An Optimal Algorithm for Frequency Estimation and Frequent

items in the Bounded Deletion Model. arXiv preprint arXiv:2112.03462 (2021).

[44] Fuheng Zhao, Punnal Ismail Khan, Divyakant Agrawal, Amr El Abbadi, Arpit

Gupta, and Zaoxing Liu. 2023. Panakos: Chasing the Tails for Multidimensional

Data Streams. Proceedings of the VLDB Endowment 16, 6 (2023), 1291–1304.

[45] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El Ab-

badi. 2021. Kll±approximate quantile sketches over dynamic datasets. Proceedings

of the VLDB Endowment 14, 7 (2021), 1215–1227.

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
 https://github.com/ReliableSketch/ReliableSketch
http://fimi.ua.ac.be/data/
http://www.caida.org/data/overview/
https://doi.org/10.12142/ZTECOM.202301009
https://doi.org/10.12142/ZTECOM.202303010


Approaching 100% Confidence in Stream Summary through ReliableSketch IMC ’25, October 28–31, 2025, Madison, WI, USA

APPENDIX
A Mathematical Proofs
A.1 Preliminaries
We derive a lemma to bound the sum of 𝑛 random variables. This

lemma is similar to the Hoeffding bound but cannot be replaced by

Hoeffding.

Lemma 1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 random variables such that

𝑋𝑖 ∈ {0, 𝑠𝑖 }, Pr(𝑋𝑖 = 𝑠𝑖 | 𝑋1, · · · , 𝑋𝑖−1) ⩽ 𝑝,

where 0 ⩽ 𝑠𝑖 ⩽ 1. Let 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖 , and 𝜇 =
∑𝑛

𝑖=1 𝑝𝑠𝑖 = 𝑛𝑚𝑝 .

𝑃𝑟 (𝑋 > (1 + Δ)𝜇) ⩽ 𝑒−(Δ−(𝑒−2) )𝑛𝑚𝑝

Proof. For any 𝑡 > 0, by using the Markov inequality we have

Pr(𝑋 > (1 + Δ)𝜇) = Pr(𝑒𝑋 > 𝑒 (1+Δ)𝜇) ⩽ 𝐸 (𝑒𝑋 )
𝑒 (1+Δ)𝜇

.

According to the conditions, we have

𝐸 (𝑒𝑋 ) = 𝐸

(
𝐸 (𝑒

∑𝑛
𝑖=1

𝑋𝑖 | 𝑋1, · · · , 𝑋𝑛−1)
)

=𝐸
©­«

𝑒
∑𝑛−1
𝑖=1

𝑋𝑖 · Pr(𝑋𝑛 = 0 | 𝑋1, · · · , 𝑋𝑛−1)

+𝑒𝑠𝑛+
∑𝑛−1
𝑖=1

𝑋𝑖 · Pr(𝑋𝑛 = 𝑠𝑛 | 𝑋1, · · · , 𝑋𝑛−1)
ª®¬

⩽𝐸

(
𝑒
∑𝑛−1
𝑖=1

𝑋𝑖

)
· (1 + 𝑝 (𝑒𝑠𝑛 − 1)) ⩽ · · · ⩽

𝑛∏
𝑖=1

(1 + 𝑝 (𝑒𝑠𝑖 − 1))

Because of 1 + 𝑥 < 𝑒𝑥 , we have

𝐸 (𝑒𝑋 ) ⩽
𝑛∏
𝑖=1

𝑒𝑝 (𝑒
𝑠𝑖 −1) .

Since for 𝑠𝑖 ⩽ 1, there is 𝑒𝑠𝑖 − 1 ⩽ (𝑒 − 1)𝑠𝑖 , so there is

𝐸 (𝑒𝑋 ) ⩽ 𝑒
∑𝑛
𝑖=1

𝑝 (𝑒−1)𝑠𝑖 = 𝑒 (𝑒−1)𝑚𝑛𝑝 .

That is

𝑃𝑟 (𝑋 > (1 + Δ)𝜇) ⩽ 𝑒 (𝑒−1)𝑛𝑚𝑝

𝑒 (1+Δ)𝑛𝑚𝑝
= 𝑒−(Δ−(𝑒−2) )𝑛𝑚𝑝

□

A.2 Definition of Symbols
(1) S𝑖 : {𝑒1, · · · , 𝑒𝑁𝑖

}, the set of keys entering the 𝑖-th layer, where

𝑁𝑖 = |S𝑖 |.

(2) 𝑓𝑖 (𝑒): the number of times that key 𝑒 enters the 𝑖-th layer.

(3) S0

𝑖 : {𝑒 | 𝑒 ∈ S𝑖 ∧ ∀𝑖′ ⩽ 𝑖, 𝑓𝑖′ (𝑒) ⩽ 𝜆𝑖′
2
}, the set of mice keys.

(4) S1

𝑖 : {𝑒 | 𝑒 ∈ S𝑖 ∧ ∃𝑖′ ⩽ 𝑖, 𝑓𝑖′ (𝑒) > 𝜆𝑖′
2
}, the set of elephant keys.

(5) 𝐹𝑖 :
∑
{𝑒∈S0

𝑖
} 𝑓𝑖 (𝑒), the total frequency of mice keys in S0

𝑖 .

(6) 𝐶𝑖 : |S1

𝑖 |, the number of elephant keys in S1

𝑖 .

(7) S0

𝑖, 𝑗 : {𝑒 | 𝑒 ∈ S0

𝑖 ∧ ℎ(𝑒) = 𝑗}, the set of mice keys that are

mapped to the 𝑗-th bucket.

(8) S1

𝑖, 𝑗 : {𝑒 | 𝑒 ∈ S1

𝑖 ∧ ℎ(𝑒) = 𝑗}, the set of elephant keys that are
mapped to the 𝑗-th bucket.

(9) 𝐹𝑖, 𝑗 :
∑
{𝑒∈S0

𝑖,𝑗
} 𝑓𝑖 (𝑒), the total frequency of mice keys in S0

𝑖, 𝑗 .

(10) 𝐶𝑖, 𝑗 : |S1

𝑖, 𝑗 |, the number of elephant keys in S1

𝑖, 𝑗 .

(11) P𝑖,𝑘 : {𝑒1, · · · , 𝑒𝑘 }, a subset of S𝑖 composed of the first 𝑘 keys.

(12) 𝑓 𝑃
𝑖,𝑘
:

∑
{𝑒∈P𝑖,𝑘−1∩S0𝑖,ℎ (𝑒𝑘 )

} 𝑓𝑖 (𝑒), the total frequency of mice keys

with a smaller index that conflicts with key 𝑒𝑘 .

(13) 𝑐𝑃
𝑖,𝑘
:

���{𝑒 | 𝑒 ∈ P𝑖,𝑘−1 ∩ S1

𝑖,ℎ (𝑒𝑘 )
}
���, the number of elephant keys

with a smaller index that conflicts with key 𝑒𝑘 .

A.3 Properties in One Layer
This section aims to prove that only a small proportion of the keys

inserted into the 𝑖-th layer will be inserted into the (i+1)-th layer.

Theorem A.1. (Theorem 1) Let

𝑋𝑖,𝑘 =


0 𝐶𝑖,ℎ (𝑒𝑘 ) = 0 ∧ 𝑓 𝑃

𝑖,𝑘
⩽ 𝜆𝑖

2

𝑓𝑖 (𝑒𝑘 ) 𝐶𝑖,ℎ (𝑒𝑘 ) = 0 ∧ 𝑓 𝑃
𝑖,𝑘

>
𝜆𝑖
2

𝑓𝑖 (𝑒𝑘 ) 𝐶𝑖,ℎ (𝑒𝑘 ) > 0

, 𝑋𝑖 =
∑︁

{𝑒𝑘 ∈S0𝑖 }

𝑋𝑖,𝑘 .

The total frequency of the mice keys in the 𝑖-th layer leaving it does

not exceed 𝑋𝑖 , i.e.,

𝐹𝑖+1 ⩽
∑︁

{𝑒∈S0
𝑖
∩S𝑖+1 }

𝑓𝑖+1 (𝑒) ⩽ 𝑋𝑖 .

Proof. For the mice keys in the 𝑗-th bucket of the 𝑖-th layer,

let the number of times they leave be 𝐹 ′𝑖, 𝑗 =
∑
{𝑒∈S0

𝑖,𝑗
∩S0

𝑖+1 }
𝑓𝑖+1 (𝑒).

Since a bucket can hold at least 𝜆𝑖 packets of the key, we have:
𝐹 ′𝑖, 𝑗 = 0 𝐶𝑖, 𝑗 = 0 ∧ 𝐹𝑖, 𝑗 ⩽ 𝜆𝑖

𝐹 ′𝑖, 𝑗 ⩽ 𝐹𝑖, 𝑗 − 𝜆𝑖 𝐶𝑠𝑖, 𝑗 = 0 ∧ 𝐹𝑖, 𝑗 > 𝜆𝑖

𝐹 ′𝑖, 𝑗 ⩽ 𝐹𝑖, 𝑗 𝐶𝑖, 𝑗 > 0

.

When 𝐶𝑖, 𝑗 = 0 ∧ 𝐹𝑖, 𝑗 > 𝜆𝑖 , exists 𝑘
′
satisfies∑︁

{𝑒𝑘 ∈S0𝑖,𝑗∧𝑘<𝑘′ }

𝑓𝑖 (𝑒𝑘 ) ⩽
𝜆𝑖

2

⩽
∑︁

{𝑒𝑘 ∈S0𝑖,𝑗∧𝑘⩽𝑘′ }

𝑓𝑖 (𝑒𝑘 ) ⩽ 𝜆𝑖 .

Then for and only for any 𝑒𝑘 ∈ S0

𝑖, 𝑗 ∧ 𝑘 ⩽ 𝑘 ′, there is 𝑋𝑖,𝑘 = 0, and

𝐹 ′𝑖, 𝑗 ⩽
©­­«

∑︁
{𝑒𝑘 ∈S0𝑖,𝑗∧𝑘⩽𝑘′ }

𝑓𝑖 (𝑒𝑘 ) +
∑︁

{𝑒𝑘 ∈S0𝑖,𝑗∧𝑘>𝑘′ }

𝑓𝑖 (𝑒𝑘 )
ª®®¬ − 𝜆𝑖

⩽ 0 +
∑︁

{𝑒𝑘 ∈S0𝑖,𝑗∧𝑘>𝑘′ }

𝑓𝑖 (𝑒𝑘 )

⩽
∑︁

{𝑒𝑘 ∈S0𝑖,𝑗∧𝑘⩽𝑘′ }

𝑋𝑖,𝑘 +
∑︁

{𝑒𝑘 ∈S0𝑖,𝑗∧𝑘>𝑘′ }

𝑋𝑖,𝑘 .

Then we have 𝐹 ′𝑖, 𝑗 ⩽
∑
{𝑒𝑘 ∈S0𝑖,𝑗 }

𝑋𝑖,𝑘 , and∑︁
{𝑒∈S0

𝑖
∩S𝑖+1 }

𝑓𝑖+1 (𝑒) =
𝑤𝑖∑︁
𝑗=1

𝐹 ′𝑖, 𝑗 ⩽
𝑤𝑖∑︁
𝑗=1

∑︁
{𝑒𝑘 ∈S0𝑖,𝑗 }

𝑋𝑖,𝑘 = 𝑋𝑖 .

□

Similarly, we have the following lemma.



IMC ’25, October 28–31, 2025, Madison, WI, USA Yuhan Wu et al.

Theorem A.2. Let

𝑌𝑖,𝑘 =


0 𝑐𝑃

𝑖,𝑘
= 0 ∧ 𝐹𝑖,ℎ (𝑒𝑘 ) ⩽ 𝜆𝑖 ,

2 𝑐𝑃
𝑖,𝑘

= 0 ∧ 𝐹𝑖,ℎ (𝑒𝑘 ) > 𝜆𝑖

2 𝑐𝑃
𝑖,𝑘

> 0.

, 𝑌𝑖 =
∑︁

𝑒𝑘 ∈S1𝑖

𝑌𝑖,𝑘 .

The number of distinct elephant keys in the 𝑖-th layer leaving it does

not exceed 𝑌𝑖 , i.e., ��S1

𝑖 ∩ S1

𝑖+1
�� ⩽ 𝑌𝑖 .

Proof. For the elephant keys in the 𝑗-th bucket of the 𝑖-th layer,∑
{𝑒𝑘 ∈S1𝑖,𝑗 }

𝑌𝑖,𝑘 < 𝐶𝑖, 𝑗 if and only if 𝐶𝑖, 𝑗 = 1 ∧ 𝐹𝑖, 𝑗 ⩽ 𝜆𝑖 . In this

case, the number of collisions in the bucket does not exceed 𝜆𝑖 , and

no key enters the (𝑖 + 1)-th layer. Thus we have |S1

𝑖, 𝑗 ∩ S1

𝑖+1 | ⩽∑
{𝑒𝑘 ∈S1𝑖,𝑗 }

𝑌𝑖, 𝑗 , and��S1

𝑖 ∩ S1

𝑖+1
�� = 𝑤𝑖∑︁

𝑗=1

|S1

𝑖, 𝑗 ∩ S1

𝑖+1 | ⩽
𝑤𝑖∑︁
𝑗=1

∑︁
{𝑒𝑘 ∈S1𝑖,𝑗 }

𝑌𝑖, 𝑗 = 𝑌𝑖 .

□

Theorem A.3. Let𝑊 =
4𝑁 (𝑅𝑤𝑅𝜆 )6

Λ(𝑅𝑤−1) (𝑅𝜆−1) , 𝛼𝑖 =
∥𝐹 ∥1

(𝑅𝑤𝑅𝜆 )𝑖−1
, 𝛽𝑖 =

𝛼𝑖
𝜆𝑖
2

,

𝛾𝑖 = (𝑅𝑤𝑅𝜆) (2
𝑖−1−1)

, and 𝑝𝑖 = (𝑅𝑤𝑅𝜆)−(2
𝑖−1+4)

. Under the conditions

of 𝐹𝑖 ⩽
𝛼𝑖
𝛾𝑖

and 𝐶𝑖 ⩽
𝛽𝑖
𝛾𝑖
, we have:

Pr

(
𝑋𝑖,𝑘 > 0 | 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1

)
⩽ 𝑝𝑖 , ∀𝑒𝑘 ∈ S0

𝑖 .

Pr

(
𝑌𝑖,𝑘 > 0 | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1

)
⩽

3

4

𝑝𝑖 , ∀𝑒𝑘 ∈ S1

𝑖 .

Proof. By using Markov’s inequality, we have

Pr

(
𝑋𝑖,𝑘 > 0 | 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1

)
=Pr

©­­«
(
𝐶𝑖,ℎ (𝑒𝑘 ) = 0 ∧ 𝑓 𝑃

𝑖,𝑘
>

𝜆𝑖

2

)
∨ 𝐶𝑖,ℎ (𝑒𝑘 ) > 0

| 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1
ª®®¬

⩽

Pr

(
𝐶𝑖,ℎ (𝑒𝑘 ) > 0 | 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1

)
+ Pr

(
𝐹𝑖,ℎ (𝑒𝑘 ) − 𝑓𝑖 (𝑒𝑘 ) >

𝜆𝑖

2

| 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1

)

⩽

𝐸 (𝐶𝑖,ℎ (𝑒𝑘 ) | 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1)
1

+
𝐸 (𝐹𝑖,ℎ (𝑒𝑘 ) − 𝑓𝑖 (𝑒𝑘 ) | 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1)

𝜆𝑖
2

⩽
𝐶𝑖

𝑤𝑖

+ 2𝐹𝑖

𝜆𝑖𝑤𝑖

Pr

(
𝑌𝑖,𝑘 > 0 | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1

)
=Pr

((
𝑐𝑃
𝑖,𝑘

= 0 ∧ 𝐹𝑖,ℎ (𝑒𝑘 ) > 𝜆𝑖

)
∨ 𝑐𝑃

𝑖,𝑘
> 0 | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1

)
⩽

Pr

(
𝐶𝑖,ℎ (𝑒𝑘 ) − 1 > 0 | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1

)
+ Pr

(
𝐹𝑖,ℎ (𝑒𝑘 ) > 𝜆𝑖 | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1

)
⩽

𝐸 (𝐶𝑖,ℎ (𝑒𝑘 ) − 1 | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1)
1

+
𝐸 (𝐹𝑖,ℎ (𝑒𝑘 ) | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1)

𝜆𝑖

⩽
𝐶𝑖

𝑤𝑖

+ 𝐹𝑖

𝜆𝑖𝑤𝑖

.

Recall that𝑤𝑖 = ⌈𝑊 (𝑅𝑤−1)𝑅𝑖𝑤
⌉ and 𝜆𝑖 = Λ(𝑅𝜆−1)

𝑅𝑖
𝜆

, under the conditions

of 𝐹𝑖 ⩽
𝛼𝑖
𝛾𝑖

and 𝐶𝑖 ⩽
𝛽𝑖
𝛾𝑖
, we have

Pr

(
𝑋𝑖,𝑘 > 0 | 𝑋𝑖,1, · · · , 𝑋𝑖,𝑘−1

)
⩽

𝛽𝑖

𝛾𝑖𝑤𝑖

+ 2𝛼𝑖

𝛾𝑖𝜆𝑖𝑤𝑖

=
4𝛼𝑖

𝛾𝑖𝜆𝑖𝑤𝑖

⩽
1

(𝑅𝑤𝑅𝜆)2𝑖−1+4
= 𝑝𝑖 .

Pr

(
𝑌𝑖,𝑘 > 0 | 𝑌𝑖,1, · · · , 𝑌𝑖,𝑘−1

)
⩽

𝛽𝑖

𝛾𝑖𝑤𝑖

+ 𝛼𝑖

𝛾𝑖𝜆𝑖𝑤𝑖

=
3𝛼𝑖

𝛾𝑖𝜆𝑖𝑤𝑖

⩽
3

4(𝑅𝑤𝑅𝜆)2𝑖−1+4
⩽

3

4

𝑝𝑖 .

□

Theorem A.4. (Theorem 2) Let 𝑊 =
4𝑁 (𝑅𝑤𝑅𝜆 )6

Λ(𝑅𝑤−1) (𝑅𝜆−1) , 𝛼𝑖 =

∥𝐹 ∥1
(𝑅𝑤𝑅𝜆 )𝑖−1

, 𝛽𝑖 =
𝛼𝑖
𝜆𝑖
2

, 𝛾𝑖 = (𝑅𝑤𝑅𝜆) (2
𝑖−1−1)

, and 𝑝𝑖 = (𝑅𝑤𝑅𝜆)−(2
𝑖−1+4)

.

Under the conditions of 𝐹𝑖 ⩽
𝛼𝑖
𝛾𝑖

and 𝐶𝑖 ⩽
𝛽𝑖
𝛾𝑖
, we have

Pr

(
𝑋𝑖 > (1 + Δ)

𝑝𝑖𝛼𝑖

𝛾𝑖

)
⩽ exp

(
−(Δ − (𝑒 − 2)) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
.

and

Pr

(
𝑌𝑖 > (1 + Δ)

3

2

𝑝𝑖𝛽𝑖

𝛾𝑖

)
⩽ exp

(
−(Δ − (𝑒 − 2)) 3𝑝𝑖𝛽𝑖

4𝛾𝑖

)
.

Proof. According to Theorem A.3,

Pr

(
𝑋𝑖,𝑘

𝜆𝑖
2

=
𝑓𝑖 (𝑒𝑘 )

𝜆𝑖
2

| 𝑋𝑖,1

𝜆𝑖
2

, · · · ,
𝑋𝑖,𝑘−1

𝜆𝑖
2

)
⩽ 𝑝𝑖 .

Pr

(
𝑌𝑖,𝑘

2

= 1 | 𝑌𝑖,1
2

, · · · ,
𝑌𝑖,𝑘−1
2

)
⩽

3

4

𝑝𝑖 .

According to Lemma 1,

Pr

(
𝑋𝑖 > (1 + Δ)

𝑝𝑖𝛼𝑖

𝛾𝑖

)
⩽ Pr

(
𝑋𝑖 > (1 + Δ)𝑝𝑖𝐹𝑖 | 𝐹𝑖 =

𝛼𝑖

𝛾𝑖

)
=Pr

©­­«
∑︁

{𝑒𝑘 ∈S0𝑖 }

𝑋𝑖,𝑘

𝜆𝑖
2

> (1 + Δ)𝑝𝑖
∑︁

{𝑒𝑘 ∈S0𝑖 }

𝑓𝑖 (𝑒𝑘 )
𝜆𝑖
2

| 𝐹𝑖 =
𝛼𝑖

𝛾𝑖

ª®®¬
⩽ exp

(
−(Δ − (𝑒 − 2)) 𝛼𝑖

𝛾𝑖
𝜆𝑖
2

𝑝𝑖

)
= exp

(
−(Δ − (𝑒 − 2)) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
.

Pr

(
𝑌𝑖 > (1 + Δ)

3

2

𝑝𝑖𝛽𝑖

𝛾𝑖

)
⩽ Pr

(
𝑌𝑖 > (1 + Δ)

3

2

𝑝𝑖𝐶𝑖 | 𝐶𝑖 =
𝛽𝑖

𝛾𝑖

)
=Pr

©­­«
∑︁

{𝑒𝑘 ∈S1𝑖 }

𝑌𝑖,𝑘

2

> (1 + Δ) 3
4

𝑝𝑖

∑︁
{𝑒𝑘 ∈S1𝑖 }

2

2

| 𝐶𝑖 =
𝛽𝑖

𝛾𝑖

ª®®¬
⩽ exp

(
−(Δ − (𝑒 − 2)) 𝛽𝑖

𝛾𝑖

3

4

𝑝𝑖

)
= exp

(
−(Δ − (𝑒 − 2)) 3𝑝𝑖𝛽𝑖

4𝛾𝑖

)
.

□
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Theorem A.5. (Theorem 3) Let 𝑅𝑤𝑅𝜆 ⩾ 2,𝑊 =
4𝑁 (𝑅𝑤𝑅𝜆 )6

Λ(𝑅𝑤−1) (𝑅𝜆−1) ,

𝛼𝑖 =
∥𝐹 ∥1

(𝑅𝑤𝑅𝜆 )𝑖−1
, 𝛽𝑖 =

𝛼𝑖
𝜆𝑖
2

, 𝛾𝑖 = (𝑅𝑤𝑅𝜆) (2
𝑖−1−1)

, and 𝑝𝑖 =

(𝑅𝑤𝑅𝜆)−(2
𝑖−1+4)

. We have

Pr

(
𝐹𝑖+1 >

𝛼𝑖+1
𝛾𝑖+1

| 𝐹𝑖 ⩽
𝛼𝑖

𝛾𝑖
∧𝐶𝑖 ⩽

𝛽𝑖

𝛾𝑖

)
⩽ exp

(
−(9 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
.

Pr

(
𝐶𝑖+1 >

𝛽𝑖+1
𝛾𝑖+1

| 𝐹𝑖 ⩽
𝛼𝑖

𝛾𝑖
∧𝐶𝑖 ⩽

𝛽𝑖

𝛾𝑖

)
⩽ exp

(
−(5 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
+ exp

(
−( 11

3

− 𝑒) 3𝑝𝑖𝛽𝑖
4𝛾𝑖

)
.

Proof. According to settings, we have

𝑝𝑖
𝛼𝑖

𝛾𝑖
=

∥𝐹 ∥1
(𝑅𝑤𝑅𝜆) (2𝑖+𝑖+2)

⩽
1

8

𝛼𝑖+1
𝛾𝑖+1

𝑝𝑖
𝛽𝑖

𝛾𝑖
= 𝑝𝑖

𝛼𝑖

𝛾𝑖
𝜆𝑖
2

⩽
1

8

𝛼𝑖+1

𝛾𝑖+1
𝜆𝑖+1
2

=
1

8

𝛽𝑖+1
𝛾𝑖+1

.

Recall that 𝐶𝑖+1 = |S1

𝑖+1 ∩ S0

𝑖 | + |S1

𝑖+1 ∩ S1

𝑖 |, and

|S1

𝑖+1 ∩ S0

𝑖 | ⩽
∑
{𝑒∈S0

𝑖
∩S𝑖+1 } 𝑓𝑖 (𝑒)
𝜆𝑖+1
2

⩽
𝑋𝑖

𝜆𝑖+1
2

Let Γ𝑖 =
(
𝐹𝑖 ⩽

𝛼𝑖
𝛾𝑖
∧𝐶𝑖 ⩽

𝛽𝑖
𝛾𝑖

)
, according to Theorem A.1 and Theo-

rem 2,

Pr(𝐹𝑖+1 >
𝛼𝑖+1
𝛾𝑖+1

| Γ𝑖 ) ⩽ Pr

(
𝑋𝑖 > 8𝑝𝑖

𝛼𝑖

𝛾𝑖
| Γ𝑖

)
⩽ exp

(
−(9 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
.

According to Theorem A.2 and Theorem 2,

Pr(𝐶𝑖+1 >
𝛽𝑖+1
𝛾𝑖+1

| Γ𝑖 )

=Pr( |S1

𝑖+1 ∩ S0

𝑖 | + |S1

𝑖+1 ∩ S1

𝑖 | >
𝛽𝑖+1
𝛾𝑖+1

| Γ𝑖 )

⩽ Pr( |S1

𝑖+1 ∩ S0

𝑖 | >
𝛽𝑖+1
2𝛾𝑖+1

∨ |S1

𝑖+1 ∩ S1

𝑖 | >
𝛽𝑖+1
2𝛾𝑖+1

| Γ𝑖 )

⩽ Pr( 𝑋𝑖

𝜆𝑖+1
2

>
𝛽𝑖+1
2𝛾𝑖+1

| Γ𝑖 ) + Pr(𝑌𝑖 >
𝛽𝑖+1
2𝛾𝑖+1

| Γ𝑖 )

⩽ Pr(𝑋𝑖 > 4𝑝𝑖
𝛼𝑖

𝛾𝑖
| Γ𝑖 ) + Pr(𝑌𝑖 > 4𝑝𝑖

𝛽𝑖

𝛾𝑖
| Γ𝑖 )

⩽ exp

(
−(5 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
+ exp

(
−( 11

3

− 𝑒) 3𝑝𝑖𝛽𝑖
4𝛾𝑖

)
.

□

A.4 Space and Time Complexity
Theorem A.6. (Theorem 4) Let 𝑅𝑤𝑅𝜆 ⩾ 2,𝑊 =

4𝑁 (𝑅𝑤𝑅𝜆 )6
Λ(𝑅𝑤−1) (𝑅𝜆−1) ,

𝛼𝑖 =
∥𝐹 ∥1

(𝑅𝑤𝑅𝜆 )𝑖−1
, 𝛽𝑖 =

𝛼𝑖
𝜆𝑖
2

, 𝛾𝑖 = (𝑅𝑤𝑅𝜆) (2
𝑖−1−1)

, and 𝑝𝑖 =

(𝑅𝑤𝑅𝜆)−(2
𝑖−1+4)

. For given Λ and Δ < 1

4
, let 𝑑 be the root of the

following equation

𝑅𝑑
𝜆

(𝑅𝑤𝑅𝜆) (2𝑑+𝑑 )
= Δ1

Λ

𝑁
ln( 1

Δ
) .

And use an SpaceSaving of size Δ2 ln( 1Δ ) (as the (𝑑 + 1)-layer), then

Pr

(
∀ item 𝑒,

��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

)
⩾ 1 − Δ,

where

Δ1 = 2𝑅2

𝑤𝑅
2

𝜆
(𝑅𝜆 − 1), Δ2 = 3

(
𝑅𝑤𝑅

2

𝜆

𝑅𝜆 − 1

)
Δ1 = 6𝑅3

𝑤𝑅
4

𝜆
.

Proof. Recall that Γ𝑖 =

(
𝐹𝑖 ⩽

𝛼𝑖
𝛾𝑖
∧𝐶𝑖 ⩽

𝛽𝑖
𝛾𝑖

)
, When all condi-

tions Γ𝑖 (including Γ𝑑+1) are true, we have

𝐶𝑑+1 ⩽
𝛽𝑑+1
𝛾𝑑+1

=
2𝑁𝑅𝑑+1

𝜆

(𝑅𝑤𝑅𝜆) (2𝑑+𝑑−1) (𝑅𝜆 − 1)Λ
=

(
2𝑅𝑤𝑅

2

𝜆

𝑅𝜆 − 1

)
Δ1 ln(

1

Δ
).

𝐹𝑑+1 ⩽
𝛼𝑑+1
𝛾𝑑+1

=
𝜆𝑑+1
2

𝛽𝑑+1
𝛾𝑑+1

= 𝜆𝑑+1

(
𝑅𝑤𝑅

2

𝜆

𝑅𝜆 − 1

)
Δ1 ln(

1

Δ
).

Since we use an SpaceSaving of size Δ2 ln( 1Δ ) > 𝐶𝑑+1, it can record

all elephant keys without error, and the estimation error for mice

keys does not exceed

𝐹𝑑+1

Δ2 ln( 1Δ ) −𝐶𝑑+1
⩽

𝜆𝑑+1

(
𝑅𝑤𝑅2

𝜆

𝑅𝜆−1

)
Δ1 ln( 1Δ )

Δ2 ln( 1Δ ) −
(
2𝑅𝑤𝑅2

𝜆

𝑅𝜆−1

)
Δ1 ln( 1Δ )

= 𝜆𝑑+1

Therefore, for any item 𝑒 ,��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� = 𝑑∑︁

𝑖=1

𝜆𝑖 ⩽
∞∑︁
𝑖=1

Λ(𝑅𝜆 − 1)
𝑅𝑖
𝜆

= Λ

Next, we deduce the probability that at least one condition Γ𝑖 is
false. Note that

( 11
3

− 𝑒) 3𝑝𝑖𝛽𝑖
4𝛾𝑖

(9 − 𝑒) 2𝑝𝑖𝛼𝑖
𝜆𝑖𝛾𝑖

(5 − 𝑒) 2𝑝𝑖𝛼𝑖
𝜆𝑖𝛾𝑖


⩾

𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖
.

Then According to Theorem A.5, we have

Pr

(
¬

(
𝑑∧
𝑖=1

Γ𝑖+1

))
= Pr

(
𝑑∨
𝑖=1

¬Γ𝑖+1

)
= Pr

(
𝑑∨
𝑖=1

(
𝑖∧
𝑗=1

Γ𝑗 ∧ ¬Γ𝑖+1

))
⩽

𝑑∑︁
𝑖=1

Pr (Γ𝑖 ∧ ¬Γ𝑖+1) ⩽
𝑑∑︁
𝑖=1

Pr (¬Γ𝑖+1 | Γ𝑖 )

⩽
𝑑∑︁
𝑖=1

©­­­­«
exp

(
−( 11

3

− 𝑒) 3𝑝𝑖𝛽𝑖
4𝛾𝑖

)
+ exp

(
−(9 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)
+ exp

(
−(5 − 𝑒) 2𝑝𝑖𝛼𝑖

𝜆𝑖𝛾𝑖

)ª®®®®¬
⩽

𝑑∑︁
𝑖=1

3 exp

(
−𝑝𝑖𝛼𝑖
𝜆𝑖𝛾𝑖

)
.
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Note that

exp

(
−𝑝𝑑𝛼𝑑
𝜆𝑑𝛾𝑑

)
=exp

(
−

𝑁𝑅𝑑
𝜆

(𝑅𝑤𝑅𝜆) (2𝑑+𝑑+2)Λ(𝑅𝜆 − 1)

)
=exp

(
− 1

𝑅2

𝑤𝑅
2

𝜆
(𝑅𝜆 − 1)

Δ1 ln(
1

Δ
)
)

=Δ

(
1

𝑅2𝑤𝑅2
𝜆
(𝑅𝜆−1)

Δ1

)
= Δ2 .

Since Δ ⩽ 1, and the monotonicty of exp

(
− 𝑝𝑑𝛼𝑑

𝜆𝑑𝛾𝑑

)
, we have

exp

(
−𝑝𝑖𝛼𝑖
𝜆𝑖𝛾𝑖

)
=exp

(
−𝑝𝑖+1𝛼𝑖+1
𝜆𝑖+1𝛾𝑖+1

· 𝑅 (2
𝑖+1)

𝑤 𝑅
(2𝑖 )
𝜆

)
⩽ exp

(
−𝑝𝑖+1𝛼𝑖+1
𝜆𝑖+1𝛾𝑖+1

)𝑅𝑤𝑅𝜆

⩽ exp

(
−𝑝𝑖+1𝛼𝑖+1
𝜆𝑖+1𝛾𝑖+1

)
2

⩽Δ2
exp

(
−𝑝𝑖+1𝛼𝑖+1
𝜆𝑖+1𝛾𝑖+1

)
Therefore, we have

𝑑∑︁
𝑖=1

3 exp

(
−𝑝𝑖𝛼𝑖
𝜆𝑖𝛾𝑖

)
⩽ 3

𝑑∑︁
𝑖=1

Δ2𝑖 ⩽

(
3Δ

1 − Δ2

)
Δ ⩽ Δ.

In other words,

Pr

(
∀ item 𝑒,

��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

)
⩾ 1 − Δ,

which leads to a weaker conclusion,

∀ item 𝑒, Pr

(��� ˆ𝑓 (𝑒) − 𝑓 (𝑒)
��� ⩽ Λ

)
⩾ 1 − Δ.

□

Theorem A.7. Using the same settings as Theorem A.6, the space

complexity of the algorithm is𝑂 ( 𝑁Λ +ln(
1

Δ )), and the time complexity

of the algorithm is amortized 𝑂 (1 + Δ ln ln( 𝑁Λ )).

Proof. Recall that 𝑑 is the root of the equation

𝑅𝑑
𝜆

(𝑅𝑤𝑅𝜆) (2𝑑+𝑑 )
= Δ1

Λ

𝑁
ln( 1

Δ
),

which means 𝑑 =𝑂
(
ln ln( 𝑁Λ )

)
. Therefore, total space used by the

data structure is

𝑑∑︁
𝑖=1

𝑤𝑖 + Δ1 ln(
1

Δ
) =

𝑑∑︁
𝑖=1

⌈𝑊 (𝑅𝑤 − 1)
𝑅𝑖𝑤

⌉ +𝑂 (ln( 1
Δ
))

⩽
4𝑁 (𝑅𝑤𝑅𝜆)6

Λ(𝑅𝑤 − 1) (𝑅𝜆 − 1)
+ 𝑑 +𝑂 (ln( 1

Δ
))

=𝑂 (𝑁
Λ
+ ln( 1

Δ
))

Next, we analyze the time complexity. When all condition Γ𝑖 are
true, for a new item 𝑒 ∉ S1, the probability that it enters the (𝑖 + 1)-

th layer from the 𝑖-th layer is

𝐹𝑖
𝜆
2

2

+𝐶𝑖

𝑤𝑖
⩽ 𝑝𝑖 . Thus the time complexity

of insert item 𝑒 does noes exceed

(1 − Δ) · (1 +
𝑑∑︁
𝑖=1

𝑝𝑖 ) + Δ · 𝑑 =𝑂 (1 + Δ ln ln(𝑁
Λ
)).

□
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