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Abstract

To approximate sums of values in key-value data streams, sketches
are widely used in databases and networking systems. They offer
high-confidence approximations for any given key while ensuring
low time and space overhead. While existing sketches are proficient
in estimating individual keys, they struggle to maintain this high
confidence across all keys collectively, an objective that is critically
important in both algorithm theory and its practical applications.
We propose ReliableSketch, the first to control the error of all keys
to less than A with a small failure probability A, requiring only
O(1+Aln ln(%)) amortized time and O(% + ln(%)) space. Fur-
thermore, its simplicity makes it hardware-friendly, and we imple-
ment it on CPU servers, FPGAs, and programmable switches. Our
experiments show that under the same small space, ReliableSketch
not only keeps all keys’ errors below A but also delivers competi-
tive throughput among accuracy-oriented baselines, outperforming
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competitors with thousands of uncontrolled estimations. We have
made our source code publicly available.
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1 Introduction

In data stream processing, stream summary [17] is a simple but
challenging problem: within a stream of key-value pairs, query a
key “e” for its value sum f(e) — the sum of all values associated
with that key. The problem is typically addressed by “sketches”
[25, 29, 44], a kind of approximate algorithm that can answer an
estimated sum f (e) with small time and space consumption. In
terms of accuracy, existing sketches ensure that the absolute error
of f(e) is less than A with a high probability 1 — §. This can be
formally expressed as:

For arbitrary key e, Pr Hf(e) - f(e)‘ < A] >1-6,
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where there are two critical parameters: the error tolerance A, under
which the absolute error is considered controllable, and f (e) is
deemed sufficiently accurate; otherwise, the key e is referred to as
an outlier. The individual Confidence Level (CL), 1 — 8, represents
the lower bound probability that f (e) is sufficiently accurate.

Existing sketches, effective for individual queries, struggle with
accurately answering multiple queries at once. When N keys are
queried collectively, the overall CL, denoted as 1—A, that all answers
are sufficiently accurate equals (1 — §). The overall CL rapidly
decreases as N increases: from (1 — §) = 95% for a single key to
90.25% for two keys, and further diminishes to just 1% for 90 keys.
Furthermore, when all keys are queried collectively, as in a million-
key scenario, a significant absolute number—about the §-fraction of
these keys—are expected to be outliers. These outliers, which users
cannot distinguish from other keys, undermine confidence in the
results’ reliability and pose real-world challenges. For example, in
network devices, sketches are used to identify if a key is frequent (if
its value is large enough). In a dataset with 1 million infrequent and
1,000 frequent keys, even with a 99% individual CL, approximately
10,000 infrequent keys might be wrongly labeled as frequent, lead-
ing to a high false positive rate of 90.9%. Such misidentification
can cause serious issues in network applications, such as placing
critical control signals into low-priority queues, which can result
in the loss of these signals during network congestion.

Our target problem is to accurately answer an unlimited number
of queries collectively, with a negligible failure probability A. This
can be formally stated as:

Pr [V key e,

fler-fle|<a|=1-a

As Table 1 illustrates, existing sketches, both counter-based and
heap-based, can hardly address our target problem with small time
and space consumption. Counter-based sketches [9, 14, 17, 29],
which only record counters, increase confidence by repeating ex-
periments and creating multiple sub-sketch copies. To achieve the
individual CL of 1 — 6, they create In( (1—5) copies, which results in a
time and space cost multiplied by In( %) For keys that can poten-
tially reach a number up to N (N := } f(e)), accurately estimating
all keys requires setting § to a very small fraction of %. This results
in a significant increase in time and space costs. Counter-based
sketches are divided into two types based on complexity: those
using the L1 norm (e.g., CM [17], CU [19], Elastic [40]) and the L2
norm (e.g., Count [14], UnivMon [27], Nitro [26]). Given the chal-
lenge in assuming data characteristics, these types are generally
not directly comparable. Our research focuses on optimizing L1
norm-based sketches. Heap-based sketches, such as Space Saving
(SS) [30] and Frequent [18], are more adept at dealing with outliers
but suffer from slower data insertion due to their logarithmic time
complexity (O(In(¥))) heap structures. Additionally, they face
compatibility challenges with high-speed hardware like FPGAs.

To address the target problem, we propose the ReliableSketch
with versatile theoretical and practical advantages:

e Confidence: ReliableSketch guarantees that the error for all keys
is controllable with an overall CL of 1 — A, where A is a small
quantity that can be easily reduced to below 10~1°. This ensures
that not a single outlier will occur even after many years of the
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algorithm’s operation. Here, "controllable” refers to keeping the
error less than A.

e Speed: Our time complexity is lower than existing solutions. The
amortized time cost for inserting each key-value pair is only
O(1+6InIn( % )). In practice, In In( %) is generally much smaller
than (ls’ making the time complexity effectively O(1) most of the
time.

e Space: Our space complexity is O( % +1n(%)), which is efficient
because the result is additive and & is generally much greater
than In( %) We can easily set § to be very small without worrying
about increased space and time overhead.

o Compatibility with High-Speed Hardware: Our design is friendly
to high-performance hardware architectures like FPGA, ASIC,
and Tofino, adhering to the programming constraints of pipeline
architecture. Our data structure does not require pointers, sorting,
or dynamic memory allocation.

Compared to counter-based sketches, we have improved in terms
of confidence, speed, and space complexity. We ensure high overall
confidence for all keys collectively, reducing the amortized insertion
complexity and transforming the space cost from a multiplicative
o( % X ln(%)) to an additive one. Compared to heap-based sketches,
we have made significant improvements in speed, optimizing the
non-parallel O(ln(%)) time to amortized O(1), while achieving
nearly the same level of confidence and space efficiency.

Our main strategy is to sense errors in all keys in real-time,
controlling those with larger errors to prevent any from becoming
outliers. There are two key challenges involved: how to measure
errors and how to control them. In response, we address them by
two key techniques respectively: the Error-Sensible bucket and the
Double Exponential Control.

Challenge 1: Measure Errors. Existing sketches, like the count-
min sketch, do not know the error associated with a key because
they mix the values of different keys in the same counter upon hash
collisions. We harness an often-undervalued feature of the widely
adopted election technology [18, 36, 40], particularly emphasizing
the role of the negative vote. In elections, negative votes provide
an ideal way to observe the hash collision and sense the error for
each key during estimation. We replace the counter with an Error-
Sensible bucket that contains an election mechanism, enabling
real-time observation of each key’s error.

Challenge 2: Controlling Errors. Existing sketches control errors
by constructing d identical sub-tables for repeated experiments.
This approach not only incurs significant overhead, as repeating
the experiment d times requires d times the resources in terms of
time and space, but it can only eliminate O(e?) outliers. Our Double
Exponential Control technique not only eliminates O(e (ed)) outliers
(with d=38, e > 10'2°%) among all keys using d sub-tables, but
also maintains a steady time and space cost, which does not increase
linearly with the growth of d.

Our key contributions are as follows:

e We devise ReliableSketch to accurately answer the queries
for all keys collectively, with a negligible failure probability A.

e We theoretically prove that ReliableSketch outperforms state-
of-the-art in both space and time complexity.

e We implement ReliableSketch on multiple platforms including
CPU, FPGA, and Programmable Switch. Under the same small



Approaching 100% Confidence in Stream Summary through ReliableSketch

IMC ’25, October 28-31, 2025, Madison, W1, USA

((ioll_l;:;l;:;ased gj;l_l;:::;ased Heap-based | Reliable Sketch (Ours)
Overall Confidence I(\/;o_d;r)itre: I(\/io_dgr)itre: ?Olz)t;mal: Il\IialrA Optimal:
Speed Moderate: Moderate: Low: High:
O(In(%)) 0(In(%)) o(n()) O0(1+AlnIn(%))
Space Low: L0W12 Optimal: Near Optimal:
P o xIn($) | 0% xn(3) | o) o(¥ +In(}))
Compatibility High High Low High

Table 1: Comparative Analysis of Counter-based, Heap-based, and Reliable Sketches: Here, N = Y’ f(e), N, = /X, (f(e))?, and A is
the error tolerance. Additionally, § and A represent the probabilities of failure for individual and all keys, respectively.

memory, ReliableSketch not only eliminates outliers, but also
achieves competitive throughput, while its competitors have
thousands of outliers.

2 Background and Motivation

In this section, we start with the problem definition and then discuss
the limitations of existing sketches, using the typical CM Sketch as
an example.

2.1 Problem Definition

Stream Summary Problem [17]. In a key-value data stream S =
{(e1,0v1), (€2, v2), ... }, the sketch algorithm processes each pair (or
data item) in real-time. At any moment, for a user query about a
specific key e, the sketch can rapidly estimate the aggregate sum of
values for all pairs containing e. The actual sum and the sketch’s
estimated sum for a key e are denoted as f(e) and f (e), respectively.
Within a predefined error tolerance A, a key e whose estimation

f(e) —f(e)‘ > A, is defined as an

error exceeds A, expressed as

outlier.

We aim to accurately answer all queries collectively and elimi-
nating outliers, under user-specified hyperparameters A (the error
tolerance) and A (upper limit of failure probability):

Pr [V keye, f(e) - f(e)

<A]>1—A

2.2 Limitation of Existing Solutions

Here, for readers unfamiliar with sketches, we begin with the sim-
plest CM sketch to explain why existing sketches struggle to elim-
inate outliers. A detailed complexity analysis has already been
discussed in Section 1 and Table table 1, and will not be reiterated.

The CM sketch is a prime example of the design philosophy
behind most counter-based sketches. It comprises d arrays, A;[.],
each containing w counters. For a key e, CM selects d mapped
counters using independent hashing. The i-th mapped counter is
A;[hi(e)], where h;(+) is the hash function. When an item arrives
with key e and a positive value v, CM increments these mapped
counters by v. To query the value sum of e, CM reports the smallest
counter among e’s mapped counters as the estimate. However, when
other keys collide with the same counter as e (a collision), they add
their value to the counter, causing an error. The key insight is that
the smallest mapped counter is the most accurate due to the fewest
collisions.

However, even the minimal counter, with the least error, can have
significant inaccuracies when every mapped counter experiences
severe hash collisions. Thus, CM and other counter-based sketches
can only maintain a high confidence level for a single query. When
querying a large number of keys, it’s not guaranteed that each key’s
error will be small. Similarly, other counter-based sketches, includ-
ing Count, CU, Univmon, and others, share this design limitation.
The complexity of counter-based sketches is based on the L1 norm
N =3 f(e) and the L2 norm N, = +/Y,(f(e))?. Since the relative
sizes of N and N, depend on dataset characteristics, the complexity
of these two types of sketches cannot be directly compared. Our
research focuses on optimizing L1 norm-based sketches, while so-
lutions based on the L2 norm’s complexity for our target problem
are left for future work..

Heap-based sketches, like Space Saving and Frequent, use heap
structures to maintain high-frequency elements but suffer from
slower data insertion due to their logarithmic time complexity (
In( %)). This complexity cannot be accelerated through paralleliza-
tion. Additionally, the pointer operations they require become an
obstacle in implementing them on high-speed hardware platforms
like FPGA programmable switches. Only when v = 1 can these
heap structures be implemented with O(1) complexity using linked
lists, but we aim to address a broader range of stream summary
problems where v is not equal to 1.

3 Reliable Sketch

In this section, we present ReliableSketch. We start from a new
alternative to the counter of counter-based sketches, termed an
’Error-Sensible bucket’. This allows every basic counting unit within
ReliableSketch to perceive the magnitude of its error, as discussed
in § 3.1. Then, we demonstrate how to organize these buckets and
set appropriate thresholds to control the error of every key within
the user-defined threshold, as discussed in § 3.2.

3.1 Basic Unit: the Error-Sensible Bucket

The basic unit is the smallest cell in a sketch that performs the
counting operation. In counter-based sketches, the basic unit is a
standard counter. In our ReliableSketch, the basic unit is the “Error-
Sensible Bucket” structure, which actively perceives the extent of
hash collisions and reports the Maximum Possible Error (MPE). We
demonstrate the workflow and a practical example in Figure 1 and
2, respectively.
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Workflow of Error-Sensible Bucket

Replacement:
SetIDtoe
Swap YES with NO

Y
m @ f(e)=YES:MPE=N0|
N f(e) = NO; MPE = NO |

Figure 1: The workflow of the Error-Sensible Bucket, includ-
ing insertion and querying processes.

Error-Sensible Insert Insert Insert
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Figure 2: An example of how an Error-Sensible Bucket works:
starting from empty, sequentially inserting three items fol-
lowed by two queries.

Formally, the bucket supports two operations: (1) Insert a key-
value pair (e, v); (2) Query the value sum of a key e. Upon querying,
the bucket returns two results, the estimated frequency f (e) along
with its MPE, satisfying f(e) € [f(e), f(e) + MPE].

Structure: The bucket has three fields: one ID field recording a
candidate key, and two counters recording the positive and negative
votes for the candidate, denoted as ID, YES, and NO, respectively.
Initially, ID is null and both counters are set to 0.

Insert. When inserting an item (e, v), there are two phases: voting
and replacement. If the newly arrived e is the same as ID, a positive
vote is cast, setting YES to YES + u; otherwise, a negative vote is
cast, making NO = NO + v. If the positive votes are less than or
equal to the negative votes, a replacement occurs: ID is set to e,
and the values of YES and NO are swapped.

Query. When querying the value sum of e, we first check if the
recorded ID matches e. If it does, indicating e is the current can-
didate, we use YES to estimate its value sum. It can be proven
inductively that YES is greater than or equal to f(e), with its MPE
being NO, ie., f(e) € [YES—NO, YES]. On the other hand, if ID is
not equal to e, we use NO as the estimate, which is always greater
than f(e). The MPE remains NO.

Discussion—Correctness. A full inductive proof follows from the
bucket’s update rules; here we provide a compact intuition.

Basic facts. (i) YES + NO always equals the total value ever in-
serted into the bucket; (ii) after each swap, NO contains no contri-
bution from the current ID.

Yuhan Wu et al.

Overview

Items: (@) (b) (@ (e (d)

. dd|
b|a ®

4 Lock One Bucket
d ’ =

Figure 3: An Overview of ReliableSketch.

Layer-by-layer
decrease in
width/threshold

Fix a key ey and let f(eg) be its true sum. Each arrival of e, casts
one vote: it increases YES if ID = ey and NO otherwise. Hence
YES + NO > f(ey). We now consider two query-time cases.

Case ID = ey. Since NO records only collisions with keys # e,
YES upper-bounds f(eg). Moreover, the increase of YES — NO is
caused only by insertions of ey (including the swap that moves past
negative votes of e into YES). Therefore,

f(eo) € [YES — NO, YES].

Case ID # ey. All occurrences of ey must have contributed to NO
and never to YES, so

f(ep) € [0, NOJ.

Why NO equals the collision mass. NO increases in exactly two
situations. (1) Without replacement: inserting (a,v) whileID = b # a
adds v to NO, recording a collision between distinct keys. (2) With
replacement: for a pre-swap bucket (ID = b, YES = yy, NO = ny),
inserting (a, v) with a # b raises NO and then triggers a swap; the
net increase equals yo — ng. Each unit of value participates in at
most one such collision, so there is no double counting.

Complementary intuition (equivalent view). Only matching in-
serts can increase YES; non-matching inserts increase NO; and
YES + NO is conserved. If at query time ID = e, then all historical
inserts of e reside in YES and none in NO, giving YES—NO < f(e) <
YES. If ID # e, then 0 < f(e) < NO. Hence the bucket returns f
together with the interval [ f — MPE, f] where MPE = NO.

3.2 Formal ReliableSketch

In this part, we propose how to organize Error-Sensible buckets and
integrate them into a ReliableSketch that can control the error of all
keys. Our key idea is to lock the error of a bucket when it reaches a
critical threshold, diverting any further error-increasing insertions
to the next layer. We first introduce the “lock” mechanism, then
describe the data structure of ReliableSketch, as well as its insertion
and querying operations.

Lock Mechanism. When the Maximum Possible Error (MPE) of
a bucket reaches a threshold, i.e., BNO = A & B.YES > B.NO,
the bucket must be locked to halt the growth of MPE. Upon being
locked, only two types of insertions are permitted, neither of which
will increase the MPE (B.NO):

e If B.ID =g, it only increments B.YES.
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o If B.YES = B.NO, a replacement occurs, and this also only incre-
ments B.YES.

In other scenarios, items cannot be inserted into the locked
bucket. These items, at a higher risk of losing control, are redirected
to other buckets for insertion.

Data structure. As depicted in Figure 3, ReliableSketch is composed
of d layers, with each layer, indexed by i, containing w; Error-
Sensible buckets, where the width w; diminishes progressively
with an increase in i. In each layer, the j-th bucket is denoted as
B;[j]. Each layer is assigned a specific threshold, referred to as A;,
used to determine when to lock a bucket in the i-th layer. The A;
values also decrease with increasing i, and their cumulative sum
does not surpass the user-defined error threshold, i.e., }; A; <
A. Furthermore, each layer utilizes an independent hash function
h;(-), which uniformly maps each key to a single bucket within the
respective layer.

Parameter Configurations: ReliableSketch performs best when
both w; and A; are set to decrease geometrically (i.e., exponen-
tially in i), which is our Key Technique II (Double Exponential Con-
trol). As established by our analysis in §4, with high probability the
number of keys that proceed to the next layer decays exponentially
(for both mice and elephant keys). Matching the parameter sched-
ules to this decay keeps the expected per-update work bounded
and makes the failure probability drop doubly exponentially across
layers, yielding the stated complexity. In contrast, changing either
sequence to an arithmetic progression would undermine these ef-

W(Rv_v—l)“

fects and deteriorate complexity. Practically, we set w; = [ 7

and A; = {%J, where W denote the total number of buckets.
2

In our proofs (Theorem 4), we set W = % . % which

is with large constant. But based on our experiment results, we

RwRy)?
recommend to set W = W&;m . % R, € [2,10], R; € [2,10],
and d > 7. When then memory size is given without given A, we

set A = % . %

Insert Operation for Item (e, v) (Algorithm 1). The insertion
into ReliableSketch is a layer-wise process, starting at the first layer
and continuing until the value v is fully inserted. The operation,
which may not involve all layers, includes these four steps in each

layer:

(1) Locating a Bucket (Line 3): Utilizing the hash function
h;() of the current layer i, we locate the j-th bucket, B;[j],
where j = h;(e). We aim to insert (e, v) specifically into this
bucket, without considering other buckets in the same layer.

(2) Handling Matching ID (Line 4-7): If B;[ j].ID equals e, we
increment YES by v and finish the insertion without moving
to further layers.

(3) Triggering Lock (Line 8-12): This step follows if the ID
doesn’t match. Before increasing NO, we check if adding
v triggers the layer threshold A;. The lock activates when
Bi[j].NO+v > ; (indicating certain lock activation without
replacement) and when B;[j].YES > A; (signifying lock acti-
vation upon replacement). On triggering the lock, only a por-
tion of (e, v) can be accommodated in B;[j], equal to the dif-
ference A; — B;[j].NO. The excess value, v — (A; — B; [ j].NO),

IMC ’25, October 28-31, 2025, Madison, W1, USA

Algorithm 1: Insert Operation.

1 Procedure Insert({e,v)):

2 for Layeri=1,2,...,d do

3 j e hie)

4 if B;[j].ID = e then

5 Bi[j].YES « B:[j].YES + v

6 Return

7 end

8 if B;[j].NO + v > A; and B;[j].YES > A; then

9 > Lock triggered
10 Bi[jI.NO « A;

11 U‘—U—(Ai—Bi[j].NO)

12 Continue > Continue to next layers
13 else

14 B;i[j].NO « B;[j].NO +v

15 if B;[j].NO > B;[j].YES then

16 B;i[j].ID «— e

17 Swap(B;[j].NO, B;[j].YES)

18 end

19 Return

20 end

21 end

is reserved for insertion into subsequent layers (Line 12).
Consequently, B;[j].NO is adjusted to A;.

(4) Adjusting NO and Checking for Replacement (Line 14-
19): If this step is reached, it means a negative vote is cast, and
the lock would not be activated. B;[j].NO is incremented
by v. Then, compare B;[j].NO with B;[j].YES to determine
if a replacement occurs. If it does, perform the replacement.
The insertion is finished, and no further layers are visited.

If, by the end of the final layer, there remains value that has not

been inserted, we consider the insertion operation to have failed.
Once insertion failure occurs, we cannot guarantee zero outliers.
Fortunately, through our design and theoretical proofs, we have
shown that the probability of such an failure is extremely low. For
those still concerned about this scenario, refer to § 3.3 for emergency
solutions.
Query Operation for Item e (Algorithm 2). In ReliableSketch,
each query reports f (e) along with its Maximum Possible Error
(MPE). The query operation is similar to insertion, requiring a layer-
wise process to gather results layer by layer, stopping as soon as
there’s sufficient reason to do so (which usually happens quickly).
Beginning from the first layer, we sequentially access the hashed
bucket B;[j],j = hi(e) in each layer. If B;[j].ID equals e, we add
B;[j].YES to f(e); otherwise, we add B;[j].NO. For MPE, we al-
ways add B;[j].NO. The query can be finished without accessing
subsequent layers if any of the following conditions are met, as
each indicates that e has not been inserted into subsequent lay-
ers: (1) B;[j].NO < A; indicates B;[j] is not locked, and e will
not visit subsequent layers; (2) B;[j].YES = B;[j].NO indicates a
potential replacement, meaning e will not visit subsequent layers;
(3) B;[j].ID = e indicates a match with e, and even if the current
bucket is locked and cannot be replaced, e will not visit subsequent
layers.
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Algorithm 2: Query Operation.

1 Function Query(e):

2 f (e) <0 > Estimator

3 MPE « 0 > Maximum Possible Error

4 for Layeri=1,2,...,d do

5 Jj < hi(e)

6 if B;[j].ID = e then

7 f(e) « f(e) + Bi[j].YES

8 else

9 f(e) « f(e) + Bi[j].NO

10 end

1 MPE « MPE + B;[j].NO

12 if (B;[j].NO < A; or B;[j].YES = B;[j].NO or
B;[j].ID = e) then

13 break > Stop collecting value.

14 end

15 end

16 return (f(e), MPE)

Novelty of ReliableSketch. The fundamental novelty of ReliableS-
ketch lies in its key idea: identifying keys with significant errors
and effectively controlling these errors to completely eliminate out-
liers. This approach is supported by two innovative techniques we
have developed: the Error-Sensible Bucket for error measurement
and the Double Exponential Control for error management:

e Key Technique I (Error-Sensible Bucket). Although the vot-
ing technique itself is not novel, tracing back to the classic
majority vote [31] algorithm of 1981, our unique contribu-
tion lies in demonstrating that the NO value can effectively
limit the extent and impact of collisions. In integrating the
Error-Sensible Bucket as the fundamental unit of a sketch,
we developed a lock strategy that is directly informed by
the size of NO. This approach contrasts with existing works
like Majority, MV, Elastic [31, 36, 40], which primarily con-
centrate on identifying high-frequency keys but do not fully
exploit the capability of NO in guiding error control.

e Key Technique II (Double Exponential Control). To control
errors effectively for all keys, it’s critical to address the out-
liers resulting from insertion failures. A crucial strategy is
to limit the number of keys advancing to the next layer at
each layer. Typically, a layer might halt about half of the
keys, which significantly reduces the probability of outlier
occurrence, denoted as P, to zid' Our research indicates that
when both the width w; and the layer threshold A; decrease
exponentially, for example, 22%1 (with d = 8, the probability

is approximately 8.6 x 0.178), the failure probability # di-
minishes at a double exponential rate. This marked decrease
in probability effectively reduces the number of keys that
can potentially become outliers, thereby eliminating outliers
with an extremely high probability.

3.3 Optimizations and Extensions

Exception Handling. For completeness, we provide an optional
fallback for insertion failures. When an update (e, v) (or a residual

Yuhan Wu et al.

part (e,v’)) cannot be accommodated across the first d layers, we
divert it to a small auxiliary structure—either a hash table or a
SpaceSaving instance—so that the uninserted portion is recorded
explicitly. This mechanism is straightforward to implement on CPU
servers. On FPGAs or network devices, maintaining the auxiliary
structure can be delegated to a CPU-based control plane. We have
implemented this exception-handling path, but we exclude it from
our accuracy evaluation (see § 6), in order to present the perfor-
mance of ReliableSketch on its own more clearly.

Accuracy Optimization. The first layer of ReliableSketch, which
occupies more than 50% of the entire structure, is its largest. How-
ever, this layer can be inefficient when the dataset contains a sig-
nificant proportion of mice keys (i.e., keys with a small value sum).
This is because mice keys sharply increase the NO counters, leading
to the locking of most buckets in the first layer, resulting in many
buckets being inefficiently used to record these mice keys. Given
that NO counters do not exceed Ay, we propose replacing the first
layer with an existing sketch where each counter records up to 4;.
This involves substituting each bucket with a counter representing
NO, updated with every insertion until reaching 1,. We employed
a commonly used CU sketch [19] for this purpose. In practice, 8-bit
counters are adequate for the filter. Compared to a layer consisting
of 72-bit error-sensible buckets, this filter can reduce the space
requirement of the first layer by nearly 10 times, while introducing
only small, manageable errors.

4 Mathematical Analysis

In this section, we provide the key results and key proof steps.
We have placed the details of non-key steps in our open-source
repository, as they are exceedingly complex and we are certain they
cannot be fully included in the paper.

4.1 Key Results

We aim to prove the following two key claims.
Claim 1: The algorithm can achieve the following two goals by
using O (X +1In(%)) space:

Pr [V keye,)f(e)—f(e)‘ <A] >1-A
and

V key e, Pr [

f(e)—f(e)‘ <A] >1-A

Claim 2: The algorithm can achieve the above two goals with
O(1+Aln ln(%)) amortized time.

4.2 Key Steps

Generally, the key steps seek to prove that as i increases, the number
of items entering the i-th layer during insertion diminishes rapidly.
In the i-th layer, we categorize keys that enter the i-th layer based
on their value size, into elephant keys and mice keys. For elephant
keys, we show that their numbers decrease quickly. For mice keys,
we show a rapid reduction in their aggregate value. This analysis
forms the basis for determining the algorithm’s time and space
complexity.

Before explaining the proof sketch and key steps, we introduce
some basic terms and symbols for clarity. Generally, we assume all
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values are 1. This means each data item’s insertion adds a value
of “1” to the sketch. The sum f(e) equals how many times key e is
inserted, its frequency. We first prove this for values of 1. Extending
the proof to other values is trivial.
When an item is inserted to the i-th layer and stops the loop, it
“enters” layers 1,2...i and “leaves” layers 1,2...i — 1. f;(e) repre-
sents the times an item with key e enters layer i. We compare f;(e)
w1th L to categorize keys into two groups at layer i: Mice keys SO
and Elephant keys S}. We aim to show that the total frequency of
mice keys F; and the number of distinct elephant keys C; decrease
quickly with increasing i. These symbols are detailed in lines 1-5 of
Table 2. For detailed analysis within a bucket, these symbols (lines
2-5) are adapted for the j-th bucket at layer i (lines 6-9).

Table 2: Common symbols

Symbol
(1) fi(e)
(2)S" | {eleeSiAfi(e) < X}, the set of mice keys.

(3) Sl.l {e|eeS;A fi(e) > %} the set of elephant keys.
(

(

(

Description
The number of times that key e enters the i-th layer.

4) F; Z{eeS?} fi(e), the total frequency of mice keys in Slp,
5) C; |Si1 |, the number of elephant keys in Sil.
6) SBJ. {e| e €S8? Ah(e) = j}, the set of mice keys that are
mapped to the j-th bucket.
(7) Si{j {e| e €S} Ah(e) = j}, the set of elephant keys that
are mapped to the j-th bucket.
(8) Fij Z{ees?j} fi(e), the total frequency of mice keys in
S0

ij*
9) Cij |Si{ |, the number of elephant keys in Sl.l’ i
(10) Py | {er,- -
keys.

, ek}, a subset of S; composed of the first k

(11)fl.f;<

Z{ee?»k 10820y} fi(e), the total frequency of mice
LKk= ih(ep

keys with a smaller index that conflicts with key ey.

(12) cfk |{e le € Pix-1N S;h(Ek)} , the number of elephant

keys with a smaller index that conflicts with key e.

Proof sketch: The proof consists of the following four steps. The
first three steps focus on a single layer (the i-th layer), and analyze
the relationship between the i-th layer and the (i + 1)-th layer. The
fourth step traverses all layers to draw a final conclusion.

o Step 1 (Bound mice and elephant keys leaving the i-th layer
with Xi and Yi, respectively). Our analysis must be applicable
regardless of the order in which any item is inserted into the
sketch. We start by analyzing, among the items entering the i-th
layer, how many will proceed to the (i + 1)-th layer, thereby
leaving the i-th layer. We construct two time-order-independent
random variables X; and Y; to bound mice keys and elephant
keys, respectively: X; bounds the total frequency of the mice
keys leaving the i-th layer, and Y; bounds the number of distinct
elephant keys leaving the i-th layer (Theorem 1).

o Step 2 (Double exponential decrease of X; and Y;): We prove
that if the number of mice keys F; and elephant keys C; in the i-th
layer decrease double exponentially, then the quantity of keys
leaving the i-th layer, i.e., X; and Y;, will also decrease double
exponentially (Theorem 2).

e Step 3 (Double exponential decrease of F;;; and Ciy): Al-
though the quantities of X; and Y; leaving the i-th layer are within
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limits, it does not directly imply that the number of mice keys
Fi+1 and elephant keys Cj4; in the (i + 1)-th layer are few. This
is because the criteria for categorizing an elephant key differ
across layers, and a mice key from the i-th layer may become an
elephant key upon entering the (i + 1)-th layer. Fortunately, by
using a Concentration inequality, we prove that this situation
is controllable. That is, if F; and C; decrease double exponen-
tially, Fi+1 and Ciy4 in the next layer will also decrease double
exponentially (Theorem 3).

o Step 4 (Combine all layers): Based on step 3, by using Boole’s
inequality, we combine the results from each layer and prove
that there is a high probability (1 — A) that the final conclusion
holds (Theorem 4).

The results of step 1.

THEOREM 1. Let
0 Cin(e) =0 A fli <

Xik =1filer) Cinte) =0Af >
filex)  Ciner) >0

NI

> Xk

{exeS))

The total frequency of the mice keys leaving the i-th layer does not

exceed X;, i.e.,
> fme <X
{e€SINS;t1}

Fi1 <

Let
0 ka =0AFipe) < A,
Yik =92 C,-P:k =0AFipee) > Ai Y, = Z Yik-
2 cPk > 0. exeS]

The number of distinct elephant keys leaving the i-th layer does not
exceed Y, ie.,

ISi NSl <Y
The results of step 2.

4N (RwRy)® @ IEL g, =
A(Rw=-1)(Ry-1)” (R Ry)i-1° M1 )Ll

= (RwRy)~@™'*9)_ Under the condltlons
, we have

THEOREM 2. Let W =

= (Ry R )(ZH’I) andpi
of F; < andC

l 1

Pr(X >(1+A)p’ ) gexp( (A= (e—2)) pl“’)
and

Pr(Y >(1+A)= pﬂ’)

exp( (A= (e-2)) pﬁ,)‘

The results of step 3.

4N (R\Ry)® A = _ AR-D)
ARy-1)(Ry-1)” RL

cvo= (RWR)E D

THEOREM 3. Let R,R) > 2, W =

a; =

Tk P and pi =

|
o2&
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(RWRA)’(Zi_lJ"*). We have

Pr (Fi” > il | F; < 4 AC;i < &) < exp (—(9—e) pla’).
Yi+1 Vi Yi Aiyi
H@H>WWE<EAQ<&)
Yi+1 Yi Yi
2pia,- 11 SPiﬁi
<exp|-(5-¢) )+ex (—(——e)— .
p( Aiyi P 3 4y
The results of step 4.
6
THEOREM 4. Let RyR; > 2, W = — 2 RuRa)” 5 MR-
wi A(Rw—n(RA_—_ll) i RE
a = g b= ? vi = (RWR)® 7Y, and p; =

(RWRA)‘(zi_1+4). For given A and A < %1, let d be the root of the
following equation
Re A1
— A A= In(5).
(RyRy)24+d) N A
And use an SpaceSaving of size A, ln(%) (as the (d + 1)-layer), then

Pr (V keye, |f(e) — f(e)

<®>h&

where

R, R?
Ay =2RLRE(Ry - 1), Ay=3 ( A ) Ay = 6RR].

Ry -1
Complexity of ReliableSketch.

THEOREM 5. Using the same settings as Theorem 4, the space
complexity of the algorithm is O( % +In(%)), and the time complexity
of the algorithm is amortized O(1 + Aln In(%)).

5 Implementations

We have implemented ReliableSketch on three platforms: CPU
server, FPGA, and Programmable Switch. Given the challenging na-
ture of implementations on the latter two platforms, due to various
hardware constraints, we provide a brief introduction here. Our
source code is available on GitHub [2].

5.1 FPGA

We implement the ReliableSketch on an FPGA network experi-
mental platform (Virtex-7 VC709). The FPGA integrated with the
platform is xc7vx690tffg1761-2 with 433200 Slice LUTs, 866400 Slice
Register, and 1470 Block RAM Tile. The implementation mainly
consists of three hardware modules: calculating hash values (hash),
Error-Sensible Buckets (ESbucket), and a stack for emergency so-
lution (Emergency). ReliableSketch is fully pipelined, which can
input one key in every clock, and complete the insertion after 41
clocks. According to the synthesis report (see Table 1), the clock
frequency of our implementation in FPGA is 340 MHz, meaning the
throughput of the system can be 340 million insertions per second.

5.2 Programmable Switch

To implement ReliableSketch on programmable switches (e.g.,
Tofino), we need to solve the following three challenges.
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Table 3: FPGA Implementation Results.

CLB CLB | Block
Module LUTs | Registers | pam Fr?&‘;;cy
(count) | (count) | (o)
Hash 85 130 0 339
ESbucket 2521 2592 258 339
Emergency 48 112 1 339
Total 2654 2834 259 339
Usage 0.61% 0.33% 17.62%

Challenge I: Circular Dependency. Programmable switches limit
SALU access to a pair of 32-bit data per stage, but each ReliableS-
ketch bucket contains three fields (ID, YES, NO), creating depen-
dencies that exceed this limit. To resolve this, we simplify the de-
pendencies by using the difference between YES and NO (DIFF) for
replacement decisions. This adjustment allows us to align DIFF
and ID in the first stage and NO in the second stage, breaking the
dependency cycle.

Challenge II: Backward Modification. When NO surpasses a
threshold, the bucket must be locked, preventing updates to ID.
However, due to pipeline constraints, a packet can’t modify the
LOCKED flag within its lifecycle. Our solution involves recirculating
the packet that first exceeds the threshold, allowing it to re-enter
the pipeline and update the flag.

Challenge III: Three Branches Update and Output Limitation.
Weighted updates to DIFF could result in three different values, but
switches can only support two variations. To accommodate this
limitation and the 32-bit output constraint per stage, we simplify
the update process. When not matching ID, DIFF is updated using
saturated subtraction. In replacement scenarios, DIFF is reduced
to zero, and ID is replaced upon the arrival of the next packet
identifying DIFF as zero.

Table 4: H/W Resources Used by ReliableSketch.

Resource Usage (unit) Percentage
Hash Bits (bits) 541 10.84%
SRAM (blocks) 138 14.37%
Map RAM (blocks) 119 20.66%
TCAM (blocks) 0 0%
Stateful ALU (count) 12 25.00%
VLIW Instr (count) 23 5.99%
Match Xbar (count) 109 7.10%

Hardware resource utilization: After solving the above three
challenges, we have fully implemented ReliableSketch on Edgecore
Wedge 100BF-32X switch (with Tofino ASIC). Table 4 lists the uti-
lization of various hardware resources on the switch. The two most
used resources of ReliableSketch are Map RAM and Stateful ALU,
which are used 20.66% and 25% of the total quota, respectively.
These two resources are mainly used by the multi-level bucket ar-
rays in ReliableSketch. For other kinds of resources, ReliableSketch
uses up to 14.37% of the total quota.
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6 Experiment Results

In this section, we present the experiment results for ReliableSketch.
We begin with the setup of the experiments (§ 6.1). Following this,
we perform a comparative analysis of ReliableSketch against exist-
ing solutions in terms of accuracy (§ 6.2) and speed (§ 6.3). Finally,
we evaluate ReliableSketch in detail, including the impact of its
parameters on performance (§ 6.4), its capability in error sensing
and control, and industrial deployment performance (§ 6.5). The
source code is available on GitHub [2].

6.1 Experiment Setup

6.1.1 Implementation. Our experiments are mostly based on C++
implementations of ReliableSketch and related algorithms. Here we
use fast 32-bit Murmur Hashing [1], and different hash functions
that affect accuracy little. Each bucket of ReliableSketch consists of
a32-bit YES counter, a 16-bit NO counter, and a 32-bit ID field. Mice
filter occupies 20% of total memory, and bucket size of it is fixed to
2 bits unless otherwise noted. According to the study in § 6.4, we
set R, to 2 and R; to 2.5 by default. The memory size is 1IMB and
the user-defined threshold A is 25 by default. All the experiments
are conducted on a server with 18-core CPU (36 threads, Intel CPU
19-10980XE @3.00 GHz), which has 128GB memory. Programs are
compiled with O2 optimization.

6.1.2 Datasets. We use four large-scale real-world streaming
datasets and one synthetic dataset, with the first dataset being
the default.

o IP Trace (Default): An anonymized dataset collected from [4],
comprised of IP packets. We use the source and destination IP
addresses as the key. The first 10M packets of the whole trace
are used to conduct experiments, including about 0.4M distinct
keys.

e Web Stream: A dataset built from a spidered collection of web
HTML documents [3]. The first 10M items of the entire trace
are used to conduct experiments, including about 0.3M distinct
keys.

e University Data Center: An anonymized packet trace from
university data center [11]. We fetch 10M packets of the dataset,
containing about 1M distinct keys.

e Hadoop Stream: A dataset built from real-world traffic distri-
bution of HADOOP. The first 10M packets of the whole trace
are used to conduct experiments, including about 20K distinct
keys.

e Synthetic Datasets: We generate [33] several synthetic datasets
according to a Zipf distribution with different skewness for ex-
periments, each of them consists of 32M items.

By default, the value is set to 1 to allow for comparison with existing
methods, unless the unit of the value is explicitly mentioned.

6.1.3  Evaluation Metrics. We evaluate the performance of Reli-

ableSketch and its competitors using the following four metrics.

Given our objective to control all errors below the user-defined

threshold, our accuracy evaluation focuses more on the first metric,

# Outliers, rather than metrics like AAE.

e The Number of Outliers (# Outliers): The number of keys
whose absolute error of estimation is greater than the user-
defined threshold A.
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o Average Absolute Error (AAE): ﬁ ZU |f(e:) —f(ei) |, where
e;€

U is the set of keys, f(e;) is the true value sun of key e;, and

f(e;) is the estimation.

e Average Relative Error (ARE): ﬁ > %

e;eU
e Throughput: &, where N is the number of operations and T is
the elapsed time. Throughput describes the processing speed of
an algorithm, and we use Million of packets per second (Mpps)
to measure the throughput.

6.1.4 Implementation of Competitors. We conduct experiments
to compare the performance of ReliableSketch ("Ours" in figures)
with seven competitors, including CM [17], CU [19], SS [30], Elas-
tic [40], Coco [41], HashPipe [35], and PRECISION[10]. Together
they cover the categories in Table 1—counter-based (CM/CU), heap-
based (SS), modern counter-based with light/heavy or partial-key
components (Elastic/Coco), and switch-pipeline designs (Hash-
Pipe/PRECISION)—so the set is representative for our setting.
For CM and CU, we provide fast (CM_fast/CU_fast) and accurate
(CM_acc/CU_acc) two versions, implementing 3 and 16 arrays re-
spectively. For Elastic, its light/heavy memory ratio is 3 as rec-
ommended [40]. For Coco, we set the number of arrays d to 2 as
recommended [41]. For HashPipe, we set the number of pipeline
stages d to 6 as recommended [35]. And for PRECISION, we set the
number of pipeline stages d to 3 for best performance [10].

6.2 Accuracy Comparison

ReliableSketch controls error efficiently as our expectation and
achieves the best accuracy compared with competitors. In evaluat-
ing accuracy, we considered three aspects: the number of outliers
in all keys, the number of outliers in frequent keys, and average
estimation error of values.

6.2.1  Number of Outliers in All Keys. Under various A values and
across different datasets, we consistently achieve zero outliers with
more than 2 times memory saving.

10 10
10" | s Ours — CM_fast = SS 10" {4 Ours - CM_fast = SS
108 CM_acc - CU_fast -« Coco 108 CM_acc -»- CU_fast -« Coco
-4 CU_acc — Elastic -+ CU_acc - Elastic

0 1 2 3 4 0 1 2 3 4
Memory Size(MB) Memory Size(MB)

106
104
102

0
108

# Outliers
# Outliers
=
o
2

(a) A=5 (b) A=25

Figure 4: # Outliers in Different A.

Impact of Threshold A (Figure 4a, 4b): We vary A and count the
number of outliers. As the figures show, ReliableSketch takes the
lead position regardless of A. When A=25, ReliableSketch achieves
zero outlier within 1MB memory, while the others still report over
5000 outliers.

Zero-Outlier Memory Consumption (Figure 5): We further
explore the precise minimum memory consumption to achieve
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Figure 5: Memory Consumption under Zero Outlier.

zero outlier for all algorithms, A is fixed to 25 and experiments are
conducted on different datasets. For the IP Trace dataset, memory
consumption of ReliableSketch is 0.91MB, about 6.07, 2.69, 2.01, 9.32
times less than CM (accurate), CU (accurate), Space-Saving, and
Elastic respectively. CM (fast), CU (fast) and Coco cannot achieve
zero outlier within 10MB memory. Besides, CM, CU and Elastic
usually require more memory than the minimum value, otherwise
they cannot achieve zero outlier stably.
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Figure 6: # Outliers on Different Datasets.

Impact of Dataset (Figure 6a,6b,6¢,6d): We fix A to 25 and change
the dataset. The figures illustrate that ReliableSketch has the least
memory requirement regardless of the dataset. For synthetic dataset
with skewness=0.3, no algorithm achieves zero outlier within 4MB
memory, while the number of outliers of ReliableSketch is over 50
times less than others.

6.2.2  Average Error. Average error measures the average difference
between estimated and actual values. ReliableSketch is comparable
to the best solutions in this regard. However, optimizing average er-
ror is not our primary goal, because its correlation with confidence
is relatively low.
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Figure 7: AAE on Different Datasets.
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Figure 8: ARE on Different Datasets.

AAE vs. Memory Size (Figure 7a, 7b): It is shown that when
memory size is up to 4MB, ReliableSketch has a comparable AAE
with Elastic and CU in two datasets, is about 1.59 ~ 2.01 times lower
than CM, 1.34 ~ 1.69 times lower than Coco, and 9.10 ~ 11.48 times
lower than Space-Saving.

ARE vs. Memory Size (Figure 8a, 8b): It is shown that when
memory size is up to 4MB, ReliableSketch achieves a comparable
ARE with Elastic in two datasets, and is 1.63 ~ 2.75 times lower
than CU, 2.78 ~ 5.23 times lower than CM, 2.76 ~ 5.05 times lower
than Coco, and 18.07 ~ 36.67 times lower than Space-Saving.

6.3 Speed Comparison.

125
B Ours BN CU_fast SS B HashPipe
100{ ™= Ours(Raw) W CM_acc BB Elastic PRECISION
Bmm CM_fast B CU_acc Coco
75

w
o

N
wv

Throughput(Mpps)

o
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Figure 9: Throughput Evaluation. Ours(Raw) denotes Reli-
ableSketch without the mice filter.

We find that ReliableSketch is not only highly accurate but also
fast. In our tests involving 10 million insertions and queries, we
compare its throughput with that of other algorithms. An alterna-
tive version of ReliableSketch, without the mice filter (“Raw” in the
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figure), is also presented, sacrificing a tolerable level of accuracy
for a significant increase in speed.

Figure 9 shows that the insertion throughputs for ReliableSketch
and the Raw version are 25.40 Mpps and 51.29 Mpps, respectively;
for queries, they are 31.29 Mpps and 66.89 Mpps. Among baselines
that target higher accuracy (SS, Elastic, CM_acc, CU_acc), Reli-
ableSketch achieves comparable or higher throughput. Compared
with the fastest-throughput designs (e.g., CM_fast, Coco, HashPipe),
ReliableSketch trades some speed for the order-of-magnitude ac-
curacy gains reported in Figure 4 and Figure 6. The Raw ablation
further indicates the headroom of our underlying data structure
when prioritizing speed over accuracy; we include it as a tradeoff
reference rather than our default configuration.

6.4 Impact of Parameters

We explore the impact of various parameters on the accuracy of
ReliableSketch, including R,,, R;, and the error threshold A, and
analyze the trends in ReliableSketch’s speed changes. At the same
time, we provide recommended parameter settings.

6.4.1 Impact of Parameter R,,. When adjusting R,, (i.e., the param-
eter of the decreasing speed of array size), we find ReliableSketch
performs best when R,, = 2.
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Figure 10: Impact of R,, under Zero Outlier.

Memory Usage under Zero Outlier (Figure 10a, 10b): We con-
duct experiments on IP Trace and Web Stream datasets. We set the
user-defined threshold A to 25, and compare the minimum memory
consumption achieving zero outlier under different R,,. It is shown
that ReliableSketch with R,, = 2 ~ 2.5 requires less memory than
the ones with other R,,. When R,, is lower than 1.6 or higher than
3, the memory consumption increases rapidly.

Memory Usage under the Same Average Error (Figure 11a,
11b): We conduct experiments on IP Trace and Web Stream datasets,
set the target estimation AAE to 5, and compare the memory con-
sumption when R,, varies. The figures show that the higher R,,
goes with less memory usage. However, the memory consumption
is quite close to the minimum value when R,, =2 ~ 6.

6.4.2 Impact of Parameter R). When adjusting R) (i.e., the param-
eter of the decreasing speed of error threshold), we find ReliableS-
ketch performs best when we set Ry = 2.5.

Memory Usage under Zero Outlier (Figure 12a, 12b): We con-
duct experiments and set the target A to 25. As the figures show,
memory consumption drops down rapidly when R; grows from
1.2 to 2 and finally achieve the minimum when R; = 2. There is
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Figure 11: Impact of R,, under the Same Average Error.
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Figure 12: Impact of R, under Zero Outlier.

no significant change when R, is higher than 2.5, only some jitters
due to the randomness of ReliableSketch.
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Figure 13: Impact of R) under the Same Average Error.

Memory Usage under the Same Average Error (Figure 13a,
13b): To explore the impact of parameter R, on average error, we
set the target estimation AAE to 5 and compare the memory con-
sumption when R, varies. It is shown that when R,, is low, the
higher R, is, the less memory ReliableSketch uses. When R,, is
greater than 4, R) affects little.

6.4.3 Error Threshold A. We find that the user-defined error
threshold A, which denotes the maximum estimated error ReliableS-
ketch guaranteed, is almost inversely proportional to the memory
consumption.

Memory Usage under Zero Outlier (Figure 14a): In this exper-
iment, we fix the parameter R,, to 2, R to 2.5, and conduct it on
three different datasets. It is shown that memory usage monotoni-
cally decreases, which means the optimal A is exactly the maximum
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Figure 14: Memory Usage for Different A.

tolerable error. On the other hand, reducing A blindly will lead to
an extremely high memory cost.

Memory Usage under the Same Average Error (Figure 14b): In
this experiment, we fix the parameter R,, to 2, R) to 2.5, and conduct
it on IP Trace dataset. The figure shows that optimal A increases as
target AAE increases, and optimal A is about 2 ~ 3 times greater
than target AAE. For target AAE=5/10/15/20, the optimums are
15/25/35/50, requiring 1.43/1.05/0.85/0.75MB memory respectively.
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Figure 15: Average Number of Hash Function Calls.

6.4.4 Trend of speed changes. The number of hash function calls,
directly proportional to consumed time, fundamentally indicates the
trend of speed changes. In ReliableSketch, this number dynamically
varies during insertions and queries due to its multi-layer structure.
To explore the relationship between memory size and the average
number of hash function calls, we conducted experiments using
the IP Trace dataset.

Figures 15a and 15b reveal that the average hash function calls for
the raw version of ReliableSketch decrease rapidly with increasing
memory, eventually stabilizing at 1. ReliableSketch with a 2-array
mice filter eventually stabilizes at 3 due to 2 additional calls in
the filter. Smaller ReliableSketch instances record fewer keys in
the earlier layers, leading to more hash function calls and reduced
throughput. For this reason, unless memory is exceptionally scarce,
we recommend allocating more space to gain faster processing
speeds.

6.5 In-depth Observations of ReliableSketch

We show how ReliableSketch performs in SenseCtrlErr comprehen-
sively, and compare it with prior algorithms.

Yuhan Wu et al.

6.5.1 Error-Sensing Ability. ReliableSketch can confidently and
accurately sense the error, the MPE it reports, using the default
parameters.
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Figure 16: Illustration of Sensed Error and Intervals.

Sensed Interval (Figure 16a, 16b): We examine keys with both
large and small values to ensure their true values fall within the
range [estimated value - MPE, estimated value], thus corroborating
that the estimation error is well-controlled within MPE.
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Figure 17: Experiments on Sensed Error.

Actual Error vs. Sensed Error (Figure 17a): As we query the
values of all keys in ReliableSketch, we classify these keys by their
actual absolute error, and calculate the average sensed error re-
spectively. The result shows that the average sensed error keeps
close to the actual error no matter how it changes, which means
ReliableSketch can sense error accurately and stably.

Sensed Error vs. Memory Size (Figure 17b): We further vary the
memory size from 1000KB to 2500KB, and study how errors change.
The figure shows that sensed error decreased when memory grows.

6.5.2  Error-Controlling Ability. ReliableSketch controls error effi-
ciently as our expectation.

Layer Distribution (Figure 18a): When the latest-arriving item
of a key concludes its insertion in a particular layer, we categorize
the key as belonging to that layer. Through repeated experiments,
we calculate the distribution of keys across layers. The results, as
depicted in the figure, indicate that the number of keys associated
with each layer diminishes at a rate faster than exponential. This
suggests that ReliableSketch is capable of effectively controlling
errors with only a few layers, and the remaining layers contribute
to eliminating potential outliers.



Approaching 100% Confidence in Stream Summary through ReliableSketch

5
10 -=- 1000KB 3 -= Ours(Sensed)
104 1100KB £ Ours(Actual)
» 103 -4~ 1250KB w 100 4 CM
Fy -e- 2000KB o
¥ 102 =
H* 1 = 50
10 8 Target=25
10° 2
0 < 0
5 10 15 20 1073 1072 107! 10
Layer Logarithmic Ratio
(a) Layer Distribution (b) Error Distribution

Figure 18: Illustration of Error-Controlling.

Error Distribution (Figure 18b): We count absolute errors of all
keys, and sort them in descending order. The figure shows that
errors of ReliableSketch are controlled within A completely, while
most traditional sketch algorithms cannot control the error of all
keys, such as CM.
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Figure 19: Accuracy on TestBed Deployment.

6.5.3 Deployment. Compared to the flexible CPU platforms, high-
performance devices impose more restrictions on algorithm imple-
mentation. The more complex the operations used by an algorithm,
the less likely it is to be feasibly deployed in reality. We evaluate
the accuracy of ReliableSketch implemented on a programmable
switch known as Tofino. We send 40 million packets selected from
the IP Trace and Hadoop datasets at a link speed of 40Gbps from an
end-host connected to the Tofino switch. The evaluation focuses
on AAE and the number of outliers for ReliableSketch using SRAM
of different sizes.

As depicted in Figure 19, for the IP Trace dataset, ReliableSketch
requires more than 368KB of SRAM to ensure zero outliers, main-
taining an AAE within 4Kbps. For the Hadoop dataset, more than
92KB of SRAM is necessary for ReliableSketch to guarantee no
outliers, with an AAE within 10Kbps.

7 Related Work

Sketches—probabilistic data structures—have been widely adopted
for the stream summary problem; when all values equal one, the task
reduces to frequency estimation. These approximate aggregations
also underpin network and big-data systems (e.g., parameter-server
load balancing and large-scale log anomaly detection), where con-
trolling error across all keys—not only per-key—is crucial [13, 23].
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We group prior work into three families—counter-based sketches,
heap-based sketches, and other sketches—and complement the dis-
cussion above with additional references.

Counter-based Sketches are composed of counters, including CM
[17], CU [19], Count [14], Elastic [40], UnivMon [27], Coco [41],
SALSA [9], DHS [42], SSVS [29] and more [5, 21, 22, 32]. Among
them, the work most relevant to ReliableSketch is the Elastic [40],
which likewise employs election, with two counters resembling YES
and NO. But because Elastic’s purpose is to find frequent keys, it
resets the NO-like counter to 1 when a replacement occurs, making
it incapable of sensing errors. ReliableSketch and Elastic are similar
only in appearance, as they differ greatly in their target problems
and underlying ideas.

Heap-based Sketches include Frequent [18], Space Saving [30],
Unbiased Space Saving [37], SpaceSaving® [43] and more [12]. The
insertions of these solutions rely on a heap structure, resulting in
slower speeds. Compared to their logarithmic time complexity, Reli-
ableSketch achieves an amortized complexity of O(1 + A lnIn( %))
Heap-based Sketches can only be optimized using a linked list in
the special case where the value equals 1, achieving an insertion
efficiency of O(1). However, even in the scenario where the value
is 1, ReliableSketch still retains its unique advantages, being more
suitable for high-performance hardware implementation, while
heaps or linked lists are too hard to be implemented [8].

Other Sketches. Besides stream summary, sketches can address
various tasks, including estimating cardinality [20, 39], quantiles
[24, 28, 34, 45], and join sizes [6, 7, 16, 38], among other tasks [15].

8 Conclusion

We focus on approximating sums of values in data streams for all
keys with a high degree of confidence, aiming to prevent the oc-
currence of outliers with excessive errors. To this end, we have
developed ReliableSketch, which provides high-confidence guaran-
tees for all keys. It features near-optimal amortized insertion time
of O(1+Alnln( %)), near-optimal space complexity O( % +In( %)),
and excellent hardware compatibility. Compared to counter-based
sketches, ReliableSketch optimizes confidence, speed, and space
usage; and against heap-based sketches, it offers superior speed
and, despite theoretically larger space requirements, demonstrates
more efficient space utilization in practice.

The key idea of ReliableSketch is to identify keys with significant
errors and effectively control these errors to completely eliminate
outliers. These two steps are facilitated by our key techniques,
“Error-Sensible Bucket” and “Double Exponential Control”. We
have implemented ReliableSketch on CPU servers, FPGAs, and
programmable switches. Our experiments indicate that under the
same limited space, ReliableSketch not only maintains errors for all
keys below A but also achieves competitive throughput among accu-
rate baselines, surpassing competitors that struggle with thousands
of outliers.
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APPENDIX
A Mathematical Proofs

A.1 Preliminaries

We derive a lemma to bound the sum of n random variables. This
lemma is similar to the Hoeffding bound but cannot be replaced by
Hoeffding.

LEMMA 1. Let X,...,X, ben random variables such that
X; € {0,s;}, Pr(X; =si | X1,---,Xi—1) < p,
where0 <'s; < 1. Let X = Y7, X;, and p = Y1) ps; = nmp.
Pr(X > (1+A)p) < e (A-(e=2)nmp
Proor. For any t > 0, by using the Markov inequality we have

E(eX)

_ X (+A)py <
Pr(X > (1+A)p) =Pr(e” > e ) < e+

According to the conditions, we have
E(e¥) = E (B X1, X,m0))

XX Pr(X, = 0] Xy, Xno1)

+esn+2?:711 Xt Pr(X =Sn | X1, aXn—l)

n
<E (eZ?:?Xf) aaplen-1)) << [ [aep e )
i=1
Because of 1 + x < e*, we have
n
E(eX) < l_[e"(esi‘l).
i=1
Since for s; < 1, there is e’ — 1 < (e — 1)s;, so there is
E(eX) < ezi":lp(e—l)si — e(e—l)mnp.
That is

e(e—l)nmp

— o~ (A=(e=2))nmp
PrX>(1+A)p) < ey e

A.2 Definition of Symbols

(1) Si: {e1,- - ,en;}, the set of keys entering the i-th layer, where
N; =Sl

(2) fi(e): the number of times that key e enters the i-th layer.
(3) S%:{e|eeSiAVi <i fr(e) < Ai}, the set of mice keys.
i 2 y
(4) Sl:{eleeSiAT <ifr(e) > %}, the set of elephant keys.
(5) Fi: Y (.cq0y fi(e), the total frequency of mice keys in S?.
{ecS?) q y y i
(6) Ci: |S}|, the number of elephant keys in S}.
i P Y i

(7) ng: {e|e € S? A h(e) = j}, the set of mice keys that are
mapped to the j-th bucket.

(8) Si{j: {e| e € 8] Ah(e) = j}, the set of elephant keys that are
mapped to the j-th bucket.
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09) Fi;: Z{eesgj} fi(e), the total frequency of mice keys in ng.
(10) C;j: |Si1)j|, the number of elephant keys in Si{j.
(11) Pik: {e1,- -+, ex}, a subset of S; composed of the first k keys.
(12) fii: Z{eepi,k—lnsgh(ew} fi(e), the total frequency of mice keys

with a smaller index that conflicts with key ey.

i,h(e
with a smaller index that conflicts with key ej.

(13) cfk: ’{e le€Pix-1NS! k)} , the number of elephant keys

A.3 Properties in One Layer
This section aims to prove that only a small proportion of the keys
inserted into the i-th layer will be inserted into the (i+1)-th layer.
THEOREM A.1. (Theorem 1) Let
0 Cin(er) =0 A fly <
Xik =1 filex) Cine) =0 /\fiﬁc >
filex) Cinge) >0

The total frequency of the mice keys in the i-th layer leaving it does
not exceed X;, i.e.,

Fi1 < Z

{e€SINS;t1}

SN

, Xi= Z Xik-

{ereS?}

fir1(e) < Xi.

Proor. For the mice keys in the j-th bucket of the i-th layer,
let the number of times they leave be F] ; = Z{eesgjnS?H} Siv1(e).
Since a bucket can hold at least A; packets of the key, we have:
C,"j =0A Fi,j <A

F.’,.SFL]-—/L- Csi,jZO/\Fi,j>)'i-
Fi’,ngi,j Ci,j>0
When C;j =0 A F;j > A;, exists k' satisfies

Z filer) < % < Z

{ekesngk<k'} {ekesgj/\kgk'}

fier) < A

Then for and only for any e; € ng Ak <K', there is X = 0, and

o< D A+ )

{ekesngkgk/} {ekesngk>k'}

<0+ Z fi(ex)

{ekeSEjAk>k’}

< Z Xik + Z Xik-

{exeSY A<k} {exeSY A=k}

filew) [ Ai

Then we have F{; < 3., cs0 } Xk, and
s ij

Wi Wi
firt(e) = > F/; < Xik = Xi.
)y g
{eeSINSi1} = 7 (e e S}

Similarly, we have the following lemma.
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THEOREM A.2. Let
0 ka =0 A Fin(e) < Ais

Yik =42 CPk =0A Fip(e) > Ai » Y = Z Yik-
2 ol >o. ereS!

The number of distinct elephant keys in the i-th layer leaving it does
not exceed Y;, i.e.,

ISi NSkl < Y
Proor. For the elephant keys in the j-th bucket of the i-th layer,
Z{ekES} 3 Yi,k < Ci’j if and Ol’lly if Ci’j =1A Fi’j < A;. In this
L]

case, the number of collisions in the bucket does not exceed A;, and
no key enters the (i + 1)-th layer. Thus we have |S1 NSL,| <

L(epest,y Yijrand

> % v

Jj=1 {ekESI

st n sl —Zis NSl <
j=1

]

4N (RywRy)® _ __IFls Bi
1

THEOREM A.3. Let W = ARw-D R -D’ % T Rk T

ai
_A_!

= (R, R )@=, andp, = (RwRy) =@+ Under the condltzons

ofF andC , we have:
Pr( ik > 0] Xi,l"" Xik-1) < pi, Yer € S?.
3
Pr(Yie > 0 Yy, Yign) < 0 Ve € S;.

Proor. By using Markov’s inequality, we have
Pr(Xix > 0| Xi1,-» Xik—-1)

P i
(Qh(ek) =0Afix> 5) | Xit - Xigs
i,1> s ALK—
V' Cin(ep) >0
Pr (C,-,h(ek) >0 X1,

=Pr

 Xik-1)
Ai
+  Pr(Fipe,) — filer) > > | Xins > Xik-1

E(Cinep) | Xito -+ s Xik-1)

1
< E(Finer) — filer) | Xins -+ Xik-1)
+ e
2
C; 2F
<_ =t

Aiw;
Pr(Yix >0 Y, -+, Yips)
=Pr((cfk =0AFipe) > li) \ ka >0 Y, sYi,k—l)
Pr(Cingep) =1> 0 Yig,- -+, Yig-1)
+ Pr (Fi,h(ek) > A | Y, ’Yi,k—l)

E(Cinep) =11 Vi1, Yig—1)
1
<
. E(Fin(ep) | Yio -5 Yig-1)
Ai
Ci Fl
<Ly L
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Recall that w; = [M] and A; = % , under the conditions
Ru 2

of F; < % and C; < ﬂ’ , we have

Pr(Xix >0 | Xit, - Xik-1)
ﬁl 20{,’ 4&',‘ 1

+ = < ; = pi-
y,w, Yidiwi  Yidiwi  (R,Ry)2 '+ b
Pr(Yie >0 Yy, -, Yieo1)

ﬁ, a; 30!,' < 3 gpl

+ = S iy S
Yzwl vikiwi - vidiwi T 4(R,R)F T+ 4

O

THEOREM A.J4. (Theorem 2) Let W = A(ﬁﬁﬁ—%, ai =

Gt = 4,y = (RuR) ), and py = (RyRy) =7+,

Under the conditions of F; < a—L’ and C; < ﬂ— we have

l l

Pr(X >(1+A)p’ l) eXp( (A-(e-2)) plal)
and

Pr(Y > (1+A)= pﬁ’)

((A—(e—2)>3pﬁ’)

Proor. According to Theorem A.3,

Xik  filer)  Xia Xik-1
Pf(z- LT | S

2 2 2 2

Y; Y; Y- 3
L R

2 2 2 4

According to Lemma 1,

Pr(X > (14 0)P2% ’) gPr(Xi>(1+A)piFi|F,-=ﬁ)
Yi

i

Xik f(ek) _
=Pr s (1+A i —
IR D YR AT
{eresS?) 2 {eres?) %
[44] 2pia;
<exp(—<A—(e—z>)—Aipi)=exp( (A= (e-2)T" )
LA

Pr(Y > (1+A)= pﬁ’) gPr(n>(1+A)§p,—ci|c,.:ﬁ)
Yi

Bi

Yi

| Ci =

NN

=Pr Z %>(1+A)2pi Z

{exeS!} {exeS!}

<exp (—(A —(e- 2))%2;7,) = exp (—(A (e—-2)) Ptﬁz)
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4N (RwR))S
THEOREM A.5. (Theorem 3) Let R,,R) > 2, W = ARu-D BT

F _
a = (R”R,Ll;'l:ﬁt = ? vi = RWRD®TY, and p; =

(RWRA)_(Zl 44 We have
Xi+1 [44] ﬂz)

|F; < —AG < —

i+1 i Yi

Pr (Fi+1 >

<exp( (9-e)

b | b, < Acigfﬁ)

Yi+1 i Yi

2pia; iDi
< exp (—(S—e) fa ) + exp (—(% —e)gIZ—ﬁ),
iYi Yi

2pzal)

l l

Pr (CH-l >

PRrRoOF. According to settings, we have
A _ IF1l1 Lt
Vi (RyRy)®+i42) = 8y
P ai <1 din 1 fint
ly- koS8 /11+1_8}/~ ’
i Yimg Yi+1 2 i+1
Recall that Ciy; = |SL, N SO| +|8L. N S.1| and

i

i+1 i+1

Z{eeS NSis1} f(e) X;

Aix1 /11+1
2 2

0
[Sivi NS} <

LetI; = (Fi < % AC; < b ) according to Theorem A.1 and Theo-

rem 2,

Pr(Fay > 2| Ty) < Pr (X > 8p; |r)
i+1
2
<exp( (9-¢) plal).
z}’z
According to Theorem A.2 and Theorem 2,
Pr(Cint > D1 | )
Yi+1
=Pr(|S}, N S| +|SL, NS} > = ﬁ’” | ;)
<Pr(|S,+1ﬂS?|> ﬂ’“ v|Sl+lmS | > 2L ﬁ’“ | T;)
+1
<Pr( ﬁ’“ |F)+Pr(Y > =L ﬁ’“ | T;)
AH—I
<P ﬁ’
r(X; > 4p,— | T;) + Pr(Y; > 4pl | T;)
Dicti 3Piﬁi)
<Lexp|—-(5-e +exp|—(— —e)——|.
< p(( )Am) p( (3 )4yi
m]
A.4 Space and Time Complexity
THEOREM A.6. (Theorem 4) Let R,,R)} > 2, W = jwﬁi(i—%,
F _
% = (R,ER!;z . fi = § vi = RWRDE Y, and p; =

(RywR)~ @9 For given A and A < 3, let d be the root of the
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following equation
Rd
(R, RA)(zd+d)
And use an SpaceSaving of size Ay In( l) (as the (d + 1)-layer), then

1—ln( )

Pr(‘v’ zteme‘f(e) f(e)| ) 1-A,
where
R,,R?
Ay =2RLRA(Ry-1), A, :3(R‘” Al)Al = 6R,R;.
-

PrOOF. Recall that T, = (F,- SEAGK
tions I} (including I;,) are true, we have
Bait 2NRd*!

VYar (RwRy) @ +d-1) (R, — 1)A -

2 R,R?
L P e A eSS
Yd+1 2 Yin Ry -

%) When all condi-

Cas1 <

ZRWR/z1 1
AiIn(-).
RA—l) ln(A)

Since we use an SpaceSaving of size A, ln(%) > Cg41, it can record
all elephant keys without error, and the estimation error for mice
keys does not exceed

Fas1 fan (R )Alln< »
Aaln(h) ~Cam 1) )_(ZRWR )Alln( )

Therefore, for any item e,

d [ee]
’f(e) —f(e)‘ = ZAi < Z A(RA'— 1) _
i=1 i=1

=R

= Ad+1

Next, we deduce the probability that at least one condition I} is
false. Note that

11 3p;Bi
( oy 0ibi pﬁ
2 ,rx, i
(9 — ) Pi% 1% P
1)/1 /11)/1
2pia;
5_
(5-e) pom

Then According to Theorem A.5, we have

(el (o)

i=1 i=1

Pr

d d
<D Pr(G A=) < ) Pr(-Ti | T)

i=1 i=1
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Note that
d
Adya (RyRy) @M +d+2) A(R; — 1)

1 Al ( l)
=eX —_—— n(—
PlrerR® - "4

(R2 RZIR Al)
=AW ) 2 A,

Since A < 1, and the monotonicty of exp (—%), we have

exp (_Iﬁ) = exp (_Pi+10!i+1 'R$i+l)R/(12i))
Ai)/i /1i+1)/i+1

RwR 2
( Pi+1ai+l) g ( Pi+10!i+1)
<exp|(—-—— <exp|—-———
Aiv1Yis Air1Yis1
Ol
<AZ exp (_p1+1 i+1 )
Ais1Yis

Therefore, we have
d d
piai 2i 3A
3 -——1]<3 A< |—— | A <A
Z eXp( ﬂm) Z; (1—A2

In other words,
Pr (\7’ item e, ‘f(e) —f(e)‘ < A) >1-A,

which leads to a weaker conclusion,

Y item e, Pr (f(e) - f(e)

<A)>1—A.
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THEOREM A.7. Using the same settings as Theorem A.6, the space
complexity of the algorithm is O(% +In(3)). and the time complexity
of the algorithm is amortized O(1 + Aln ln(%)).

ProoF. Recall that d is the root of the equation
R} A1
AT In(),
(RyRy) 2+ N

A
which means d = O (InIn( %)) Therefore, total space used by the
data structure is

d d
;wl— +Ain( ) :;rw%‘w +0(n(1))
4N(R.,R;)®

1
SA®, -y - R

=0 +In()

Next, we analyze the time complexity. When all condition I; are
true, for a new item e ¢ Sy, the probability that it enters the (i + 1)-
T;+Ci
v

thlayer from the i-th layer is o < pi- Thus the time complexity

of insert item e does noes exceed
d N
(1-A)-(1+ Zp,») +A-d=0(1+Alnln()).

i=1
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