PipHeap: Approximate Heap in the Pipeline Empowering

Network Measurement

Yuhan Wu* Fenghao Dong’ Qizhi Chen*
Peking University Peking University Peking University
Beijing, China Beijing, China Beijing, China
yuhan.wu@pku.edu.cn dfh@pku.edu.cn hzyoi@pku.edu.cn
Aomufei Yuan Kaicheng Yang Hanglong Lv
Peking University Peking University Peking University
Beijing, China Beijing, China Beijing, China
yuanaomufei@gmail.com ykc@pku.edu.cnn lyuhanglong@stu.pku.edu.cn
Tong Yang" Wenrui Liu Gaogang Xie
Peking University Peking University Chinese Academy of Sciences
Beijing, China Beijing, China Computer Network Information
yangtongemail@gmail.com liuwenrui@pku.edu.cn Center

ABSTRACT

Network telemetry has seen an increasing trend of deploying
approximate measurement algorithms (e.g., sketches) on pro-
grammable switches due to their ability to provide line-rate speed,
high measurement accuracy, and low memory cost. Heap, a vi-
tal component of many of measurement algorithms, hinders their
deployment because of the difficulties in incorporating it into
pipelines. In this paper, we introduce PipHeap, a pipeline-friendly,
binary-tree-based min heap that can enhance existing sketches
without introducing additional errors. Through evaluation with
real-world datasets, we demonstrate that PipHeap can reduce the
error of these integrated algorithms by 33% to 97% (78% on average)
under the same memory allocation. We have successfully imple-
mented PipHeap and its combination with six different sketches
in our testbed, and successfully extended other approximate algo-
rithms (e.g. Space-Saving) onto programmable switch platforms.
We have made all code associated available as open-source.

*Co-first author.
1LCorresponding author: Tong Yang (yangtongemail@gmail.com)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’25, October 28—31, 2025, Madison, WI, USA.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1860-1/25/10

https://doi.org/10.1145/3730567.3764487

Beijing, China
University of Chinese Academy of
Sciences
Beijing, China
Xie@cnic.cn

CCS CONCEPTS

« Theory of computation — Sketching and sampling; « Infor-
mation systems — Heap (data structure); - Networks — Pro-
grammable networks.

KEYWORDS

data streams; heaps; sketches; programmable switches

ACM Reference Format:

Yuhan Wu, Fenghao Dong, Qizhi Chen, Aomufei Yuan, Kaicheng Yang,
Hanglong Lv, Tong Yang, Wenrui Liu, and Gaogang Xie. 2025. PipHeap:
Approximate Heap in the Pipeline Empowering Network Measurement. In
Proceedings of the 2025 ACM Internet Measurement Conference (IMC ’25),
October 28-31, 2025, Madison, WI, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3730567.3764487

1 INTRODUCTION

Network measurement, which estimates various traffic statistics,
serves as a crucial initial step for numerous network functions in-
cluding flow scheduling, congestion control, load balancing, traffic
engineering, and anomaly detection [8, 11, 12, 16, 26, 41, 42, 47, 60,
69, 75]. Many of these functions rely heavily on the detection of
heavy hitters. As such, many approximate measurement algorithms
have been developed for traffic statistics, including per-flow size,
heavy hitters, flow size distribution, and others [44, 51, 71]. These
algorithms specialize in providing high-fidelity measurement re-
sults while efficiently processing high-speed network traffic with
limited resources.

Existing algorithms can be broadly categorized into two types:
Heap-based and Sketch-based. In both categories, the heap plays a
vital role, either as an integral component of the algorithms or as a
tool to facilitate measurement tasks.

https://doi.org/10.1145/3730567.3764487
https://doi.org/10.1145/3730567.3764487

IMC ’25, October 28-31, 2025, Madison, WI, USA.

e Heap-based algorithms, renowned for their ability to accu-
rately report elephant flows, leverage a min-heap binary tree
structure and include examples such as Space Saving [46], Fre-
quent [22], Unbiased Space Saving [59], and others [48, 64, 67, 72].
These algorithms consist of a heap of ID-counter pairs that record
flow IDs and flow sizes of elephant flows. Upon a packet’s arrival,
it will either update the pair with the identical flow ID or replace
one ID-counter pair with a certain replacement strategy. Because
these algorithms record the flow ID of elephant flows, they usu-
ally have favorable algorithmic properties (e.g., high precision
rate in estimating elephant flow sizes). However, the heap struc-
ture is challenging to implement in modern high-throughput
network switches based on the pipeline architecture. We will
discuss this issue in detail later and attempt to overcome it.

Sketches have emerged as a promising solution for measure-
ments on switches, offering line-rate performance while utilizing
limited memory resources. Typical sketches include Count-Min
(CM) [21], CU [25], Count [17], UnivMon [44], Nitro [43], and
more [18, 31, 37, 45, 65, 68, 70, 74]. Sketches consist of multiple
arrays of counters and do not record flow ID (i.e., five-tuple) or
fingerprint. This structure is inherently suited for deployment on
pipelines. They support various measurements, including flow
size, cardinality, entropy, etc. However, for tasks that involve
reporting flow IDs, such as identifying heavy hitters, detecting
packet losses, and measuring jitters, sketches necessitate an ad-
ditional structure — ideally, a heap — to record those IDs. A
substantial body of literature [17, 21, 53, 66] suggests utilizing a
heap-sketch hybrid data structure comprising a heap (or a similar
structure) followed by a sketch, where elephant flows and their
flow IDs are stored in the heap, and smaller flows are inserted
into the sketch. Thanks to the efficient collaboration between
heap and sketch, this hybrid structure is capable of delivering
higher measurement accuracy and accommodating various tasks.

Recently, with their deployment on the high-throughput pipeline-
based programmable switches [13, 14, 51, 61], sketches can now
measure Tbps-level network traffic. However, the more accurate
heap-based algorithms and the heap-sketch hybrids cannot achieve
such a high speed due to the difficulties of implementing heaps
within the pipeline architecture. To be specific, the data plane of
the programmable switch is a pipeline that each stage has disjoint
memory space. Each packet can only pass through each stage se-
quentially and access a few memory address in each stage, e.g.,
up to 4 in a Tofino [2] switch. The pipeline is naturally suitable
for the implementation of sketches because they independently
update multiple counter arrays upon a packet’s arrival. However, it
is challenging to implement a binary-tree-based heap that requires
to exchange two nodes, because such exchange requires to write
the nodes in the latter stage back to the former stage, violating the
restriction of accessing stages in sequence. Our design goal is to
develop a pipeline-friendly heap on programmable switches for
tracking elephant flows, facilitating the deployment of heap-based
algorithms and heap-sketch hybrids to boost high-accuracy and
high-speed measurement.

To the best of our knowledge, no prior art can implement our
desired heap or achieve similar functions with reasonable cost.
Prior art bypasses the heap and tracks the elephant flows by other

Yuhan Wu et al.

data structures. These solutions have an unfavorable trade-off in
either degraded switch throughput, high error, or high network
overhead. For example, Qpipe [33] and Precision [9] (A practical
HashPipe [57]) rely on the recirculation, a technique that allows a
packet to traverse the pipeline multiple times, which in turn leads
to degraded throughput. We will discuss more about the limitations
of recirculation methods later in Section 2.4. The hardware version
of Elastic sketch [66] can track elephant flows in the data plane
without recirculation, but it comes with substantial errors, e.g.,
resetting the size of evicted flows to 1 and passing them to the
following stages. The others rely on either control plane CPU [34,
42, 44] or end hosts [32].

As the summary of above, for network data stream measurement
tasks, pure sketch and recirculation-based methods can be relatively
easily implemented on programmable switch pipelines. However,
they suffer from limitations such as limited functionality, low ac-
curacy, and suboptimal throughput and latency performance. In
contrast, other approaches, including heap-based and heap-sketch
hybrid methods, can address these performance issues, but must
confront another outstanding challenge: how to effectively imple-
ment a pipeline-friendly heap structure on the data plane.

In this paper, we present the first approximate heap (called
PipHeap) for tracking elephant flows entirely on the data plane
without requiring recirculation. We integrate PipHeap with six
sketches and our evaluation on the real-world dataset reveals that
errors can be reduced by 33% ~ 97% (78% on average) in the same
memory.

Overview l\

Stage 1 Stage 2 Stage 3
Merge \
=0 (23]

A 13

N
Exchange []
C1 C1
B, 10 . -
E0=) >
Skip
D= EZ—/

Heap 'Bottcp/

Figure 1: An overview of PipHeap. We show an example of
PipHeap. When inserting a new flow to one stage, there can
be three possible cases: (1) Merge. Flow A merges with the
stored A. (2) Exchange. Flow B kicks out the Flow C, and C
will go to the next stage. (3) Skip. Flow D skips the stage.

Heap Top

Overall Design: To approximate the min heap—a binary tree
where each node stores one flow and its size, and larger flows reside
closer to leaf nodes—we develop PipHeap as a binary tree structure
as shown in Figure 1. Similar to the min heap that starts insertion
from the bottom stage, insertion into PipHeap also begins from the
bottom. As a result, we map all heap leaf nodes to the first pipeline
stage, and nodes from each higher layer to the subsequent stage. To
insert a new flow packet, we sequentially traverse a path from the
leaf node (first pipeline stage) up to the root (final stage). In each
accessed node, if the new flow is the same as the old stored one, we
just merge their flow size and accomplish the insertion. Otherwise,

PipHeap: Approximate Heap in the Pipeline Empowering Network Measurement

we should decide whether to exchange the two flows. If so, we will
store the new flow in current node and try to insert the old one
along the path later. Otherwise, we just skip this node and insert
the new flow later.

We confront two technical challenges: (1) Decision-making for
exchange. Due to the inability to perform reverse data movement
within the pipeline, a decision to swap has to be made immediately
after a new flow passes through a stage. The quality of this decision-
making will ultimately affect the heap’s ability to track elephant
flows. To address this, we devise the asymmetric majority algorithm
to effectively identify the most probable elephant flow. The core
of this algorithm is to assign different accumulative weight for
matched and not matched flows, which will be detailed in Section
3.2.1. (2) Constraints for single node deployment. On the Tofino
switch, each pipeline stage (or more precisely, SALU) can only
record two fields and read/output one field out at a time. Placing
the flow key and size within the same stage prevents us from reading
both fields when exchanging two flows. Conversely, placing them
in distinct stages creates a prohibited data dependency, i.e., the
update result of any one field relies upon the other. We address
the problem by incorporating a new field, Assist, in the first stage
with the key, and place the value (flow size) in the subsequent stage.
This arrangement ensures that only one field is read per stage while
avoiding data dependency. We have two types of nodes in total,
which will be detailed in Section 3.2 and Section 3.3, respectively.

We summarise our key contribution as follows: (1) We design the
first approximate heap, PipHeap, entirely on the data plane. (2) We
implement PipHeap combined with six sketch algorithms in real
programmable switches. (3) Our evaluation shows that PipHeap
can reduce the error of existing algorithms by 33% to 97% (78% on
average) under the same memory allocation.

2 BACKGROUND AND MOTIVATION

We aim at an approximate heap that can benefit many sketches and
solve many network measurement tasks. In this section, we first
introduce the measurement tasks we focus on, followed by their
solutions desiring for a heap. Then we discuss the challenges of
implementing a heap on programmable switch. Finally, we take
recirculation-based approaches as a counterpart of existing meth-
ods, to show the value and significance of implementing a heap on
the data plane.

2.1 Measurement Tasks

We focus on common measurement tasks on the switch and we
classify them into three types. (1) Single key query includes the
flow size estimation and heavy hitter detection. Given a flow key
(identified by the five-tuple or other fields), the flow size estimation
queries the corresponding flow size that can be counted by packets
or Bytes within a time window!. The heavy hitter detection is to
find all flows whose size exceeds a threshold and report their flow
keys. (2) Hierarchical key query refers to the Hierarchical heavy
hitter detection [10], which finds the set of flows with a common
IP address prefix that have a large total flow size (i.e., greater than

'When a measurement scheme works on a switch, the timeline is divided into multiple
fixed-sized time windows, and we measure the network traffic within each time
window.

IMC ’25, October 28-31, 2025, Madison, WI, USA.

a threshold). (3) Arbitrary partial key query [71]. Instead of
defining the flow key before network traffic arrives, this query
can define the flow key after the end of the traffic. The defined
flow key can be any sub-part of a pre-defined broad key range. For
example, when the pre-defined key range is the five-tuple, the user
can query the total flow size from one subnet/IP-prefix to another
subnet/IP-prefix.

2.2 Measurement Solutions and the Heap

At a high level, the measurement solutions using heaps are with
the best theoretical properties, but the heap cannot be implemented
on the data plane. The most recent example is that the CoCo [71]
in SIGCOMM 2021 tried to approximately implement the heap-
based Unbiased Space Saving [59] on the data plane, because USS
is the ideal solution for arbitrary partial key query regardless of im-
plementation challenges. Similar for single key query, heap-based
Frequent and SpaceSaving? have the best fidelity on the results,
but cannot be implemented on the data plane. For hierarchical key
query, the milestone solution Randomized Hierarchical Heavy Hit-
ters (RHHH) [10], which achieves constant update time first, relies
on the SpaceSaving and heap. In addition, there are many solutions
relying on heap have their own strengths, including Count-Min-
Heap [21], Augmented [53], Heavy Keeper [67], Active Keeper [63]
and more [56, 64].

In almost all the solutions previously discussed, a min-heap is
used tailored for tracking heavy hitters. The data structure of the
heap is an almost complete binary tree *, and each node stores one
key together with it value. In network measurement scenarios, the
key is the flow key (e.g., a five-tuple) and the value is the flow size.
The value of a node must be less than or equal to the values of its
children. The top of the heap (i.e., the root of the tree) is with the
smallest value. Basic insertion. When inserting a new element (i.e.,
a flow with its size) whose key does not appear in the heap, we add
the element and try to adjust the heap. Specifically, first, we add the
new element as a new node to the last layer of the heap/tree (add a
new layer if there is no space) as a leaf node. Then we compare the
value of the element with the value of its parent node. If the parent
node has a greater value, exchange the contents of the two nodes
including keys and values. The exchange operation is repeated
until the value of the parent is not larger than the new element.
Index-and-Modify. 1t is possible that the key to be inserted already
exists in the heap and we need to update its value. For example, a
packet arrives and its flow size should be updated. However, the
basic heap does not support indexing a key or modifying the value
of any node, called Index-and-Modify. The desired practical heap in
a network scenario requires Index-and-Modify. Find-min. Report
the top of the heap as an element with the minimal value.

2.3 Challenges of Heap Implementation

We introduce the challenges of implementing heap on pro-
grammable switch, including a brief summary of the restrictions

2When the flow size is counted by packets, SpaceSaving replace the heap by a linked
list, which cannot be implemented on the data plane and cannot count flow sizes in
Bytes.

3A tree where each node has at most two children, and except for the last/bottom layer
of the tree, it is full of nodes.

IMC ’25, October 28-31, 2025, Madison, WI, USA.

of tofino programmable switches and the discussion of implement-
ing one node of the heap. First, we introduce the restrictions of
tofino programmable switches, which are inspired by existing work
including Sketchlib [51], precision [9]. In a RMT programmable
switches [14], when a packet arrives at the data plane, it succes-
sively goes through a header parser, ingress pipeline stages, traffic
manager, egress pipeline stages, and a sparser finally. We only focus
on those pipeline stages. Each stage has its own SRAM memory
which does not intersect with other stages, and one stage can only
process one packet at any time. A packet must pass through each
stage one by one sequentially, and a packet can perform a few par-
allel and independent Actions in each stage. Take tofino switch as
an example, one action can access at most one bucket (including
two consecutive 32-bit fields) in the memory of the stage, do a few
simple arithmetic operations and if-else branches, and read one
32-bit result out from the bucket.

A case study—one node to store the minimum. It is quite chal-
lenging to implement a heap, even one of its nodes. A node of the
heap records one flow key along with its size. The node needs to
support at least two functions when taking a new flow key with
the size as input: (1) merge the sizes if the new flow key is the same
as the recorded one. (2) Otherwise, if the new flow has a larger
size, record the new flow in this node, read out the old recorded
flow, and try to insert it into other nodes. However, the above two
functions cannot be implemented simultaneously. We can either
put the two fields (i.e., the flow key and the size) of a node in one
stage or separate them in two stages, but both solutions cannot
work. If we put them in one stage, we can only put them together
in one bucket, because we need to make a decision based on both
(Condition A) whether the keys are the same and (Condition B) the
comparison results of flow sizes. But putting them in one bucket
hinders us from reading out the old recorded flow together with its
size. If we put the two fields in two stages, the result (i.e., Condition
A or B) related to the field on the later stage cannot be passed back
to the former stage, and the field in the former stage will not be
updated correctly.

2.4 Limitations of Recirculation

In the data plane, recirculation is the process of sending a packet
that has already been processed back to the ingress pipeline for
a second (or third, etc.) round of processing. As in the case study
in Section 2.3, this is an alternative solution when a single pass
through the pipeline is insufficient to perform a complex operation
that requires multistep state updates or conditional logic based
on previously computed results. For example, Precision [9] uses
probabilistic recirculation to find top flows on a programmable
switch; PSMM [29] adopts in-switch recirculation technique to
mitigate microbursts. However, recirculation-based methods have
their inherent limitations, including Scalability, Latency, Stability
and Resource Utilization, leading to a worse performance compared
to recirculation-free approaches.

Scalability. Packet recirculation effectively reduces the system’s
overall throughput, as each recirculated packet consumes at least
two packet processing cycles. For instance, if 10% of packets are
recirculated, the maximum throughput is reduced by at least 10%,
which is a significant penalty in high-speed networks (e.g., 100

Yuhan Wu et al.

Gbps+). For example, Precision [9] points out that its expected
number of recirculations grows with the number of packets, which
scales with O(VNC), where N is the number of packets, and C
is the number of its internal counters. Under high load or with a
large number of tracked flows, the switch pipeline may become a
bottleneck, limiting the system’s ability to scale.
Latency. Recirculated packets experience at least twice the full
pipeline processing delay, including parsing, match-action stages,
and ingress queueing. Under high load, recirculated packets may be
queued behind new arrivals, further increasing latency. For example,
PSMM [29] reports an average latency of around 970ps even under
optimized settings. In addition, packet reordering introduced by
recirculation may cause packets to be recirculated multiple times
until their sequence number is matched, introducing both increased
latency and jitter, which is undesirable for real-time monitoring
and control.
Stability. Systems relying on recirculation face stability risks under
certain failure scenarios. For example, PSMM’s packet sequencer
can fail if a packet is dropped during recirculation, causing all
subsequent packets to be trapped in the recirculation queue. It
takes time for the timers to reset the counters, which will disable
the entire system for more than 1ms.
Resource Utilization. Each recirculated packet occupies pipeline
resources that could otherwise be used for new packets, reducing
the effective forwarding capacity. Precision notes that recirculation
"reduces the rate that incoming packets can access the pipeline".
Furthermore, implementing mechanisms such as packet sequencing
or threshold monitoring requires additional pipeline stages and
metadata (e.g., custom headers and state machines), which further
constrains switch resources available for other network functions.
By implementing a pipeline friendly heap on the data plane, we
could avoid all these issues caused by recirculation. This constitutes
a key component of the motivation for our introduction of PipHeap.

3 PIPHEAP DESIGN

We introduce the design of PipHeap in this section. First, we show
the overview of the whole data structure. Then we detail the design
of the heap nodes. Table 1 shows the symbols that will be frequently
used in the following.

Table 1: Symbols frequently used.

Symbol | Meaning
KEY An arbitrary flow key, e.g., the Source IP
L PipHeap consists of L node layers
W The number of activity scores increases when
two flows merge
mi Each layer consists of m; nodes
Nl.j The j-th node in the i-th node array
Nl.j key The field recording flow key in one node
Ni].value The flow size of Nij.key in this node
Nij .assist | The assistant counter
H() A hash function mapping the flow key to
{0,1,--,m; —1}

PipHeap: Approximate Heap in the Pipeline Empowering Network Measurement

3.1 Overview

Rationale. Towards a normal min heap, PipHeap tries to keep the
elephant flows with larger values as close to the bottom layer as
possible. As we insert flows starting from the bottom of the heap,
we position the bottom layer in the initial stage and subsequently
place the other heap layers—from the bottom to the top—into each
successive stage. To insert a flow key with its size, we start from
the bottom layer and pick a leaf node by hashing the flow key.
If the node is empty, we just put the flow in and accomplish the
insertion. And if the node records a same flow (i.e., the stored flow
key is the same as the new one), we merge them by adding the
new flow size to the stored one and then accomplish the insertion.
Otherwise, we meet the most challenging case that the stored flow
is a different one. Since we cannot access current node again, we
have to immediately make a decision between the following two
choices: 1. Kick. Store the new flow in current node and move the
old flow to the subsequent stages (i.e., the upper layer of the heap).
2. Skip. Insert the new flow into subsequent stages.

Data structure. PipHeap has L layers of nodes, which are divided
into two parts by their index (one has the first L; (L; < L) layers,
and the other has the remaining), containing two different types
of nodes, respectively. Regardless of the part, the i-th layer has
m; (m; = |mj—1/2]) nodes and the j-th node in the i-th layer is
denoted as Nij . The first layer has a hash function H(-) that maps
the flow key to one of the m; leaf nodes in the first layer randomly,
ie., NIH(KEY). The parent node of Nij is N’/ and the children of

i+1

Nl.j are Ni];xlz and Ni]:“l. Regardless of node type, each node has
three fields, including (1) Nij.key that records a flow, (2) Nij.value
that records the size of Nij .key, and (3) Nij .assist deciding whether
to kick Nij .key out. In the first L; layers, nodes are of the first type
called Aggregation Nodes, AggNodes for short. AggNode leverages
our asymmetric majority algorithm to aggregate the packets of
elephant flows. In the other layers, nodes are of the second type
called MaxNodes. MaxNode first realizes the basic functions of a
heap node: Among two flows, store the larger flow and kick out
the other.

Insert. The insert operation can insert a packet/flow (KEY, VAL)
into PipHeap, where KEY is the flow key and VAL is 1 or the flow
size. Starting from the first layer, we find the leaf node NiH (KEY) by
hashing and try to insert the flow into it. If the node is empty, we
just store (KEY, VAL) in the node. Otherwise, there is already an
old flow key with its size. We will choose one of the three possible
operation: (1) Merge. If the old key is the same as the new one,
we merge the sizes of both flows and finish the insertion without
accessing following layers. (2) Skip. If the old key is a different one,
we can skip the current node and try to insert the new flow to its
parent node. (3) Kick. If the old key is a different one, we can kick
out the old flow, store the new flow, and try to insert the old flow
into the followed parent node. We repeat above operations in each
layer until merge operation occurs or an empty node is encountered.
In the last layer, if skip or kick occurs, the flow not stored will be
discarded. How to choose between skip and kick depends on the
type of the node that will be detailed later in Algorithm 1 and 3
and their explanations. A simple example is shown in Figure 1.

IMC ’25, October 28-31, 2025, Madison, WI, USA.

Query. Given a flow KEY, PipHeap reports an estimated flow size.
Specifically, we access every layer, find the selected nodes, and
check whether the stored flow key N l] .key is the given KEY. For all
nodes storing KEY, we sum up their Nij.value field as our estimated
flow size. If no node stores KEY, we report 0.

3.2 The Aggregation Node

3.2.1 Overview. The bottom nodes of the heap are of the AggNode
type, which not only accumulates the size of packets with the same
flow ID but also selects the most probable elephant flow among
different flows for record, while transferring the remaining flows
to subsequent stages. To select the elephant flow, we designed the
asymmetric majority algorithm. Its key idea is the active score. Once
a new flow comes to the node, we check whether it is the same
as the old recorded flow. We will increase the active score by W if
matches, or decrease by 1 otherwise. Once the active score decreases
to zero or less, we think the recorded flow not active anymore, and
an replacement will occur, i.e., we will record the ID of the new flow
in the node and transferring the old flows to the subsequent stage.
Since W is adjustable variable, we examined the optimal value of W
in Section 5.2.1. If we define the density of a flow by the probability
of its occurrence in the incoming packet, and assume each packet
is IID (Independent and Identically Distributed), then we can see
that if we unfortunately record a mice flow whose density is less
than ﬁ in the AggNode, it will definitely be evicted sometime
later. From a high-level view, we can consider the AggNode as a
sieve with the size ﬁ of its holes. It can ultimately sift away mice
flows whose "size" smaller than that of its hole. Compared to the
traditional majority algorithm [15] (i.e., a special case where W = 1),
we avoid excessive exchanges and achieves higher accuracy.

Algorithm 1: PipHeap Insertion in the first L; layers.
Input: A flow (KEY, VAL)

1 j — H(KEY)

2 fori=1,2,---,L; do

5 | if N].key = KEY then

4 Nlt’.assist — Ni].assist +W

5 Nij.Ualue — Nij.Ualue + VAL

6 Break and Finish Insertion.

7 else)

8 if Nij.assist # 0 then

9 Nij.assist — Nij.assist -1

10 Insert (KEY, VAL) to next level.
1 else))
12 Insert (KEY,VAL) = (Nij.key, Ni],value) to next

layer.

1 N/ key « KEY

14 Nij.assist — W

15 Nij.value «— VAL
16 Jj—j/2

17 If the insertion is not finished, insert (KEY, VAL) to
next layers using Algorithm 3.

For a further remark, careful readers may find that the calcu-
lation of the activity score does not leverage the flow size. The
reason behind is that leveraging flow sizes for score calculation

IMC ’25, October 28-31, 2025, Madison, WI, USA.

will consume twice the number of stages, which hinders the stack-
ing technique that we will introduce in 3.2.3. One may worry that
a flow with a large size but inserted only once cannot be stored.
Fortunately it will be addressed in Section 3.3 using the MaxNode.

3.2.2 Design and Functionalities. Each AggNode contains three
fields {key, assist,value} in its record, to track the flow ID, active
score and value of the recorded flow respectively. It can support
both insertion and query operations.

Insertion in the AggNode. To insert (KEY, VAL) to an AggNode
Nij , we check the cases of merging, skipping, and kick one by one. If
Nl.j .key is KEY, we merge the new flow with the old flow including
adding W to Nij.assist and VAL to Nij.value, and then we finish
the insertion. Otherwise, we check whether Nij .assist is 0. If not,
we decrease the Nij .assist by one and skip this layer. Otherwise,
when Nij.assist is 0, we kick out the old flow (Nij.key, Nij.ualue),
insert it to the next layer, and put the new flow into the node by set-
ting (Nij.key, Nij.assist, Nij,value) to (KEY, W, VAL) respectively.
In Algorithm 1, we show the pseudo-code of PipHeap insertion.
Example. In Table 2, we show how a node changes with many
insertions. We sequentially insert the flows with keys: a, b, b,
For simplicity, their sizes (VAL) are 1. Each insertion can take one
action among K (Kick), S (Skip), and M (Merge). And we show the
contents of the node before and after each action. For example,
the node (Nl.j.key, Nij.assist, Nij.value> starts with (0, 0, 0), and the
insertion of flow a takes a kick operation setting the node to (a, 2, 1).
Note that after insertion of the third b, there will be duplicate "b"
nodes in the heap (previously Skipped "b"s may be stored in the
subsequent level). This is acceptable and is actually a part of the
heap implementation.

Table 2: An example of AggNode with W = 2.

Insertions a,b,b,b,a,c,b,b,a,c,b,b
Actions K,Ss,S,K,S,S,M,M,S,S,M,M
Ni’.key 0,a,a,a,b,b,b,b,b,b,b,b,b
Ni’.assist 0,2,1,0,2,1,0,2,4,3,2,4,6
N/ value |0,1,1,1,1,1,1,2,3,3,3,4,5

Algorithm 2: Basic PipHeap Query.

Input: A flow KEY
TotalValue < 0

1

2 j « H(KEY)

3 fori=1,2---,Ldo

4 if N/ key = KEY then ‘

5 ‘ TotalValue < TotalValue + Nij .value
6 jejl2

7 Report TotalValue.

Query. In algorithm 2, we show how to estimate the flow size of a
given flow key.

3.2.3 Deployment and Implementation. Single AggNode deploy-
ment. One AggNode requires two stages. Nijlassist and Nij.key are
put in the first stage, and Nij.value is put in the second stage. In
the first stage, we check whether Nij.key =KEY and Nij.assist =0.

Yuhan Wu et al.

When Nij.assist = 0, we set Nij,key to KEY. When both Nij.key
not equals to KEY and Nij.assist is not 0, we decrease Nij,assist by
one. Otherwise, we add Nij.assist by W and read the Nij.key out
as Outkeyl. The above operations are performed in parallel and
the condition judgment is based on the variable content before the
assignment operation.

In the second stage, we can take the action according to Outkey1

from the first stage, which is one of {empty, KEY, Nij.key}. If
Outkeyl is empty, we know the skip happened (Nij.key # KEY
and Nij .assist # 0), do not take action in the second stage, and will
move the new flow (KEY, VAL) to the next layer. If Outkey1is KEY,
we know the merge happened, increase the Nij .value and accom-
plish the insertion. If Outkey1 is the old Nij .key, we know the kick
happened, replace the Nij.ualue by new VAL, read old Nij.oalue out
as Outval2, and finally move the old flow (Outkey1, Outval2) to
the next layer.
Node stacking technique (Figure 2). Our stacking design can
reduce the number of required stages. A straightforward imple-
mentation is to serialize each layer without overlapping each other.
Since one node/later requires two stages, L layers of AggNodes
requires 2 X L stages, and therefore the pipeline including 12 stages
can implement at most 6 layers. To efficiently utilize the limited
number of stages, we devise the stacking optimization that reduces
the required stages from 2 X L to L + 1. Consider two nodes A and
B in the first and the second layer respectively. As shown in the
Figure 3, we can parallelize the second stage of node A and the first
stage of node B. After getting Outkey1 from node A in stage 1, we
know which action (Skip, Kick or Merge) to perform, and therefore
we can determine whether the input KEY of the node B in stage 2
is the new key or the old key in stage 1. Similar for the input VAL
of node B, we can determine whether the input VAL of the node B
in stage 3 is the new value or the old one in stage 2. By the stacking
design, the 12-stage pipeline can implement at most 11 layers of
AggNodes.

7st-Layer Node A

Input: KEY
npu Skip Stage 1
assist
Kick
Output: Outkeyl —
Actions Input: VAL Input: KEY Stage 2
> Skip
> [value | |_key [score|
> Merge Output: Outval2 Output: Outkey1
Ski Ki
£ Input: VAL <J @ Stage 3

Output: Outval2
2rd-Layer Node B

Figure 2: The stacking implementation of AggNodes.

Query entirely on the data plane. Most state-of-the-art solu-
tions/sketches read the data structure from the data plane to the
control plane, and uses the CPU to query. This prevents other func-
tions deployed on the data plane (i.e., load balancing or congestion
control) from obtaining real-time measurement results. A practical
solution should not only support queries on the control plane, but
also be able to output the results directly on the data plane.

PipHeap: Approximate Heap in the Pipeline Empowering Network Measurement

On the data plane, our PipHeap can either query the flow size
of a given key (Query-Alone), or report the size of a flow while
inserting it (Query-with-Insert). For Query-Alone, we can add a
query action at each layer: compare whether the queried key is the
same as the stored one in the selected node, and if they are the same,
accumulate the value. For Query-with-Insert, we can add query
action after the merge action. After the merge action occurs, the
inert operation is completed. Then we can start the query action
that reads out the value of the inserted flow, and accumulate the
value in each following layers if the key matches.

3.3 The Max Node

The MaxNode aim at the basic function of a heap node: When
inserting a new flow to a node storing an old flow, store the larger
flow an kick out the smaller one to the next layer. A MaxNode
has three fields, including Nij.key, Nij.value and Nij.assist, where
Nl.j .assist is always equal to Nij .value for the deployment.
Insertion in the MaxNode. To insert (KEY, VAL) to a MaxNode
Nij , we check the cases of merging, skipping, and kick one by one.
Firstly, if N lj .key is KEY, we merge the new flow with the old flow
including adding VAL to both Nij.assist and Nij.value, and then
we finish the insertion. Secondly, otherwise, we check whether
Nij .assist is larger than VAL. If not, we skip this layer and try to in-
sert (KEY, VAL) into the parent node. Otherwise, when Nij .assist is
no larger than VAL, we kick out the old flow (Nj key, Nj value), in-
sert it to the next layer, and put the new flow into the node by setting
(N] key, N] assist, Nj .value) to (KEY, VAL, VAL) respectively. In
Algorithm 1 we show the pseudo-code of PipHeap insertion.

/_ KEY -VAL\ stege
-'

Condition | key assist Output1

> Skip / / /
)
> Kick KEY key
> Merge |/ assist+VAL
Output1
Condition value Stage 2
(Output1=null) |/
N
(Output1#KEY) | VAL
(Output1=KEY) | value+VAL|

Figure 3: The implementation of MaxNodes.

Single MaxNode deployment. One MaxNode requires two stages.
Nij.key and Nij .assist are put in the first stage, and Nij.Ualue isputin
the second stage. In the first stage, we check whether N; J .key = KEY
and N; J assist < VAL. For the Nj key field, only when the kick
happens, i.e., N] assist < VAL and N] key # KEY, we set N] key
to KEY. For the Nij .assist field, since the switch does not allow
three branches, we use a two branch logic to update its value. First,
when the merge happens (i.e., Nij.key = KEY), we set Nij.assist to
Nij .assist + VAL. Second, when the skip or kick happens, we set

IMC ’25, October 28-31, 2025, Madison, WI, USA.

Algorithm 3: PipHeap Insertion in layers L; + 1 ~ L.

Input: A flow (KEY, VAL), and j
1 fori=L;+1,---,Ldo

2 if NJ key = KEY then

3 N] assist «— Nj assist + VAL

4 Nj N/ value — Nij .value + VAL

5 Break and Finish Insertion.

6 else _

7 if N/ .assist > VAL then

8 | Insert (KEY,VAL) to next layer.
9 else))
10 Insert (KEY,VAL) = (Ni].key, Ni].oalue) to next

layer.

u N/ key « KEY

12 Nij.value «— VAL

13 Nij.assist «— VAL
1 Jj—j/2

15 Discard (KEY,VAL).

Nij .assist to MAX(Nij.assist, VAL). Here we use a MAX function to
avoid using the comparison unit to compare Nj assist and VAL. For
the output of the first stage, we set Output1 to Nj key only when
the kick or merge happens, i.e., NJ key = KEY or NJ assist < VAL.

In the second stage, we can take the action accordmg to Outkeyl
from the first stage, which is one of {empty, KEY, Nij.key}. If
Outkeyl is empty, we know the skip happened, do not take ac-
tion in the second stage, and will move the new flow (KEY, VAL)
to the next layer. If Outkey1 is KEY, we know the merge happened,
increase the Nij .value and accomplish the insertion. If Outkey1 is
the old Nij .key, we know the kick happened, replace the Nij .value
by new VAL, read old Nij.oalue out as Outval2, and finally move
the old flow (Outkey1, Outval2) to the next layer.

3.4 Summary of Design

The core challenge on a programmable switch pipeline is that data
cannot flow backwards. Once a packet leaves a pipeline stage, it
cannot go back to a previous stage. The traditional heap insertion’s
"bubble-up" process requires a node to be compared with its parent,
which would necessitate moving data from a later stage back to an
earlier one, which is prohibited.

PipHeap ingeniously reverses the process to work within the
pipeline constraints. Looking back to Section 3.1, we stated that
PipHeap tried to keep the elephant flows with larger values as
close to the bottom layer as possible. This is achieved by making
intelligent "Kick/Skip" decisions at the very first stage (and subse-
quent stages), where PipHeap actually acts as a filter. The bottom
layers preferentially retain the larger, more frequent flows by kick-
ing out smaller ones and skipping for larger ones. This filtering
process ensures that the elephant flows are "trapped” in the bottom
layers, achieving the stated goal. This is the fundamental approx-
imation that allows a heap-like structure to function within the
strict forward-only nature of a switch pipeline.

IMC ’25, October 28-31, 2025, Madison, WI, USA.

4 TASK APPLICATIONS
4.1 Single Key Query

4.1.1 Flow Size Query. Flow size estimation is to report the flow
size of a user-given flow key, where the size can be either the
number of packets or the Bytes. Our PipHeap can not only directly
estimate the flow size accurately, but also optimize existing schemes
(called collaborators) to obtain higher accuracy. The justification
for this combination with collaborators lies in the segregation of
elephant and mice flows, a strategy that has been proven effective
in various studies [39, 66]. Specifically, we put PipHeap in the front
and one collaborator in the following stages. When inserting flows,
we insert all discarded flows of PipHeap, which were formerly
discarded after the PipHeap insertion process, into the collaborator.
To estimate the flow size, we let PipHeap and the collaborator
estimate the flow size independently, and add up the results as the
answer. Experiment results show that this combination works very
well, and as a remarkable fact, PipHeap doesn’t introduce any extra
error at all to the collaborators, the overall error only depends on the
combined algorithm. As a result, the combination can completely
inherit the properties (such as one-side error, unbiased estimation,
etc.) from collaborators.

Query (one-side error). To estimate the flow size with one-side
error, ie., the reported answer is higher than or equal to the true
flow size, we can select the collaborator from any solution with
the one-side error, such as CM, CU, FCM and SuMax [73]. We
recommend to select SuMax that is the state-of-the art solution,
and answer the query in the way mentioned above.

Query (unbiased estimation). To given an unbiased estimation
of the flow size, i.e., the expect value of reported answer is exactly
the true flow size, similarly, we can select the collaborator from any
solution with the unbiased error, including Count, Univmon, Nitro
and more [23].

4.1.2 Heavy Hitter Query. Query heavy flows. The heavy flows
are flows whose sizes are greater than a threshold A. The query
is to find all flow keys of heavy flows and their corresponding
sizes. Similar to the query of flow sizes, PipHeap can either find
heavy flows by itself, but also optimize existing schemes (called
collaborators). When PipHeap works alone, we read it into the
control plane and query the size of all keys stored in PipHeap
through the standard query method. For all keys with an estimated
size greater than A, we report them together with their estimated
sizes. When PipHeap works with a collaborator, for all keys stored
in PipHeap, we estimate the flow size by adding up the results from
both PipHeap and the collaborator, and then report those keys with
a size exceeds A.

Query top-k flows. The top-k flows are k flows with the largest
sizes, which is similar to the heavy flows. When finding top-k flows,
based the above scheme of finding heavy flows, we sort the heavy
flows according to the estimated size and report the largest k flows.
Query super-spreaders, DDoS victims and port scans. The
super-spreader is a source IP sending packets to many (more than
A) destination IP addresses in the measurement time interval. A
common solution is to use an additional Bloom filter (BF) remove
duplicate packets, and then count the destination IP for each source
address: when a packet arrives, insert (SrcIP, DestIP) (possibly

Yuhan Wu et al.

with a hash to fit in 32-bit limit) to BF and query whether the pair
appears for the first time, If so, we insert (SrcIP, 1) to PipHeap,
which means that SrcIP has contacted a new DestIP. Otherwise,
we ignore the packet. When a SrcIP has a size greater than A, we
report it as a super-spreader. In a similar way, we can find the DDoS
victim (i.e., a destination IP contacted by many sources) and port
scans (i.e., a source IP that accesses many destination IP addresses
and ports).

4.1.3 Other tasks based on single key queries. Based on the results
of single key queries, we can solve many tasks.

Flow size distribution estimation. To estimate the distribution
of flow sizes, we combine PipHeap with a CM sketch. We use the
MRAC [35] algorithm whose input is a CM sketch to calculate a
distribution. Then, for all flow keys in PipHeap, we query their sizes
in the CM sketch, remove the size from the distribution, and add the
total size of each flow in both PipHeap and CM to the distribution.
Entropy estimation. We can compute the traffic entropy — > n; -
ln(#) based on the flow size distribution, where m is the total
number of distinct flows and there are n; flows with size i.
Cardinality estimation. To estimate the cardinality, i.e., the num-
ber of distinct flows, we combine PipHeap with a Linear Counting
(LC) algorithm [62]. After inserting all packets, we insert all keys
in PipHeap into the LC structure, and estimate the cardinality by
the LC algorithm.

R = ARE AAE
0.5 1500
g 0.3 900 E
< <
01 5= 1300
1 2 4 8 16
A
(a) ARE and AAE

— = PR RR
= 1.0
2
[1'4
2081
S
@
o
Q
& 0.6

1 2 4 8 16

A

(b) Precision and Recall

Figure 4: Impact of Parameter W on the Accuracy.

PipHeap: Approximate Heap in the Pipeline Empowering Network Measurement

IMC 25, October 28-31, 2025, Madison, W1, USA.

-
o

Precision Rate (PR)
o
oo

o
(%]
2 0.2 = PipHeap oSS e 02 = PipHeap - SS 06 = PipHeap oSS
0.0 - Elastic = Coco 0.0 - Elastic = Coco - Elastic = Coco
40 60 80 100 120 40 60 80 100 120 40 60 80 100 120
Memory (KB) Memory (KB) Memory (KB)
(a) Precision on CAIDA (b) Recall on CAIDA (c) Precision on WebPage
10 6000 = PipHeap ss 1.5 = PipH(.eap SS
o - Elastic - Coco - Elastic —— Coco
14
> 4000 1.0
w038 w E
"_‘ ! <
g 2000 0.5
€ 0.6 = PipHeap oSS G\‘S\“
- Elastic - Coco 0 S P - 0.0 e = &
40 60 80 100 120 40 60 80 100 120 40 60 80 100 120
Memory (KB) Memory (KB) Memory (KB)
(d) Recall on WebPage (e) Top-k AAE on CAIDA (f) Top-k ARE on CAIDA
—= PipHeap SS 1.00 -5~ PipHeap SS
-o- Elastic =~ Coco -o- Elastic — Coco
4000 0.75
y y
0.50
<
2000+
G*\u o %\
01 =0t 0.00 M
40 60 80 100 120 40 60 80 100 120
Memory (KB) Memory (KB)

(g) Top-k AAE on WebPage

(h) Top-k ARE on WebPage

Figure 5: Accuracy Comparison between PipHeap, the Ideal SS, and other Competing Methods.

4.2 Hierarchical Key Query

Query Hierarchical Heavy Hitters (HHH) is to find the set of flows
with a common IP address prefix that have a large total flow size (i.e.,
greater than a threshold). The milestone solution is Randomized
Hierarchical Heavy Hitters (RHHH) that achieves constant update
time using multiple SpaceSaving. We replace each SpaceSaving
by our PipHeap in RHHH. After inserting all packets, we query
each PipHeap to find HHH, which is the same as RHHH. Since
SpaceSaving cannot be implemented on the programmable switch,
our PipHeap will make RHHH practical in high speed traffic.

4.3 Arbitrary Partial Key Query

Given a full key range (e.g., five-tuple) with N bits, the user can
query the size of any flow key that is a part of the full range (i.e.,
any number of bits in N bits). The Coco sketch is the first practical
solution for arbitrary partial key query on the switch, and we can
combine PipHeap with it by inserting all PipHeap’s discarded flow

into a Coco sketch. The combination will improve the accuracy of
the Coco sketch.

5 EXPERIMENTAL RESULTS

This section presents the experimental results of PipHeap. Firstly,
we describe the experimental settings in section 5.1. Then, in sec-
tion 5.2, we conduct experiments on various parameter settings to
demonstrate how different parameters affect accuracy and to deter-
mine the best parameter to choose. Subsequently, in section 5.3, we
carry out experiments on the combination of PipHeap with various
types of sketching algorithms, demonstrating that the combination
can yield a significant improvement in performance.

5.1 Experimental Setup

Implementation: We implement PipHeap and all other sketching
algorithms in P4 and C++. Our source code is available at [5]. In
order to evaluate the accuracy of PipHeap, we conduct experiments

IMC ’25, October 28-31, 2025, Madison, WI, USA.

on CPU platform, using a server with a 36-core CPU (Intel i9-
10980XE), 128GB DDR4 memory and 25.4MB L3 cache. We set
the CPU frequency to 4.2GHz, and set the memory frequency to
3200MHz. Our accuracy results are robust to the hash functions
used in the implementation, achieving nearly identical results on
common CRC, Murmur [3], and Farm [1] hashes.

== Original Algorithm
== Combined with PipHeap

10
3
g 100 .
2
10
1
10 Count FCM Univmon NitroCM Elastic
Sketching Algorithm
(a) CAIDA 120KB
10* — -
=== Original Algorithm
=== Combined with PipHeap
100 e
w
0] B B e
1 | | | |
10 CM Count FCM Univmon NitroCM Elastic
Sketching Algorithm
(b) CAIDA 240KB
10 — -
=== Original Algorithm
5 === Combined with PipHeap
107 Bl
< 10°
10’
o
Count FCM Univmon NitroCM Elastic
Sketching Algorithm
(c) CAIDA 360KB
104 ,,,,,,, === Original Algorithm
=== Combined with PipHeap
C I — |
g 10
10°
1 | | | | |
10 CM Count FCM Univmon NitroCM _ Elastic
Sketching Algorithm
(d) WebPage 120KB
10 — -
=== Original Algorithm
N === Combined with PipHeap
107 B -
w
CEUERE R R
10’
0 | | | | | |
10 CM Count FCM Univmon NitroCM _ Elastic

Sketching Algorithm
(e) WebPage 240KB

Figure 6: Accuracy Improvement Brought by PipHeap for Six
Algorithms in Flow Size Estimation.

Yuhan Wu et al.

Datasets: We evaluate sketching algorithms using the following
datasets: (1) CAIDA: The CAIDA is the IP trace containing anony-
mous network traces collected from high-speed monitors on back-
bone links in 2018 by CAIDA [6]. Due to the hardware constraint
of the programming switch, we only use the source IP address (4
bytes) of each packet as its ID. We use one-minute trace of the
dataset, containing approximately 27M packets belonging to 0.25M
flows. (2) WebPage: The WebPage dataset is built from a collection
of web pages [4]. Each item (4 bytes) represents the number of
distinct items in a web page. We use a part of it, which contains
approximately 64M items belonging to 0.94M distinct items.

Metrics: We evaluate the accuracy of sketching algorithms on the

most frequent k flows using the following metrics:

e Average Relative Error (ARE): ﬁ 2feSe I""n_i |
is the real frequency of flow f;, 7i; is the estimated frequency of
flow f;, and Sy is the set containing the most frequent k flows.

e Average Absolute Error (AAE): @ Yfes, Ini — fil, where
Sk, fi» ni, n; are the same as those defined above.

e Precision Rate (PR): |3k N Sk|/|$k|, where Sy is the set con-
taining the most frequent k flows, Sy is the set containing the
the reported most frequent k flows by the sketching algorithm.

e Recall Rate (RR): |Sx N 3|/|Sk|, where Sy is the same as that
defined above, S is the set contains all the flows reside in the
data structure of the sketching algorithm.

, where n;

5.2 Experiments on PipHeap

In this section, we first conduct experiment on PipHeap to show the
influence of parameter W on the accuracy, which can help to decide
the best choice of W. Then we compare PipHeap with Space Saving
[46] and Elastic Sketch [66]. Through this comparison, we show
that PipHeap exhibits traits similar to an ideal heap, performing
favorably in tasks such as flow size estimation and identifying heavy
hitters.

Rationale: Since Space Saving is an ideal heap algorithm which
can be only implemented on CPU, the experimental result that
PipHeap is close to Space Saving on accuracy indicates PipHeap is
a pretty accurate heap implementation. Besides, for the P, version
of Elastic Sketch is so far the only sketching algorithm that can
be implemented on the data plane without recirculation, the result
that PipHeap reaches much better accuracy than Elastic implies
PipHeap is a fairly accurate sketching algorithm implemented on
programming switch.

5.2.1 Impact of Parameters. We conduct experiments on PipHeap
with W ranges from 1 to 16, and test accuracy on the most frequent
3000 flows. The result is shown in figure 4. We find that when W =1,
PipHeap doesn’t perform well. As the W gets bigger, PipHeap gains
better accuracy since the heavy flows become more difficult to be
kicked out, which makes PipHeap easier to retain the heavy hitters.
However, when W is greater than 8, the accuracy of PipHeap begins
to deteriorate, since it is difficult to kick out the small flows reside
in its aggregation nodes. Our experiments show that W = 8 is an
optimal choice.

5.2.2 Accuracy Comparison.
Parameter Settings: We conduct experiments on PipHeap, Space
Saving and Elastic Sketch on IP Trace and WebPage datasets with

PipHeap: Approximate Heap in the Pipeline Empowering Network Measurement

1.00
©
$0.75
s 0.
1Y
o
5 0.501
= 5/ -+ Combined-recall
© | Combined-precision
E 0.25 —— Elastic-recall
-g Elastic-precision
0.00 ‘ ‘ ‘ ‘ :
20 40 60 80 100
Memory (KB)
(a) CAIDA
1.00+

©
~
()]

%/ —+ Combined-recall
Combined-precision
-2~ Elastic-recall
-g Elastic-precision
20 40 60 80 100
Memory (KB)
(b) WebPage
Figure 7: Accuracy Improvement Brought by PipHeap for
Elastic in Heavy Hitter Detection.

Precision or Recall
o o
N a
[6)] o

©
o
S

memory ranging from 30KB to 120KB. For PipHeap we take W = 8,
for Elastic Sketch we use the P; version with 4 layers and take
A = 32 (as recommended in [66]). We test AAE, ARE, CR and PR
on the most frequent 3000 flows.

Experimental Results (Figure 5): We find that PipHeap performs
much better than Elastic Sketch, and it can reach almost the same
accuracy as the ideal goal of Space Saving (SS). We calculated the
accuracy of PipHeap, Elastic and Space Saving on CAIDA and
WebPage datasets with memory ranging from 30 KB to 120 KB.
From 5(a) and 5(b), we find that PipHeap is always better than
Elastic clearly. PipHeap is only slightly worse than the ideal Space
Saving on CAIDA dataset. As for the WebPage dataset in Figure
5(c) and 5(d) show that although the gap narrows, PipHeap still
maintains its superiority. When calculating the flow sizes of top-k
flows (Figure 5(e)-5(h)), we also find that PipHeap is dominant, and
has always been more accurate than Elastic. When the memory is
small, Space Saving does not perform well, although it gets better
immediately, after more than 60KB, PipHeap and Space Saving are
close again.

5.3 Experiments on PipHeap-based Solutions

In this subsection, we show the optimization of PipHeap for some
existing problems, including heavy hitter detection, flow size esti-
mation, hierarchical heavy hitter and arbitrary partial key query.
These problems have been solved by many excellent algorithms.
But because of the simplicity and generality of PipHeap, our exper-
iments show that combining PipHeap with these algorithms can

IMC ’25, October 28-31, 2025, Madison, WI, USA.

RN
o
o

———

©
oy
o

—7~— RHHH-recall
0251 PipHeap-recall

’ —A- RHHH-precision
-g PipHeap-precision
0 100 200 300 400 500
Memory (KB)

(a) CAIDA

Precision or Recall
o
()]
o

N
o
o

o
~
o

—~— RHHH-recall
PipHeap-recall
-4 RHHH-precision
-g PipHeap-precision
0 100 200 300 400 500
Memory (KB)

o
[N
3

Precision and Recall
o
&)
o

o
o
S

(b) WebPage
Figure 8: PipHeap makes the implementation of RHHH in the
data plane possible without any significant loss in accuracy.

achieve better performance. Specifically, the combined algorithm
we implemented uses half of the original memory for PipHeap,
and the other half is reserved for other algorithms. For algorithms
that can be implemented on programmable switches, we have the
corresponding P4 version [5] .

Key results. We combine PipHeap with eight sketches. For CAIDA
dataset and the 240 KB memory, PipHeap reduces the error of seven
sketches including CM, Count, FCM, Univmon, NitroCM, Elastic,
and CoCo by 33%, 92%, 85%, 97%, 72%, 80%, and 87%, respectively.
On average, PipHeap reduces the error by 78%. PipHeap make the
implementation of RHHH possible on the data plane while only
incurring 2% accuracy loss.

5.3.1 Single Key Heavy Hitter Detection. We conduct experiments
on P, version of Elastic Sketch and the combination of PipHeap and
Elastic Sketch to evaluate the precision rate and recall rate of heavy
hitter (defined by most frequent 3000 flows) detection. The result is
shown in figure 7. We find that in the memory ranges from 10KB to
100KB, the precision and recall of the combined algorithm in Heavy
hitter detection are always better than Elastic. When the memory
is 40KB, the combined algorithm can achieve a high accuracy rate
of over 80% for both precision and recall. However, Elastic can not
achieve the same performance until 100KB.

5.3.2 Single Key Flow Size Estimation. From the experiment results
6, we can find that after combining PipHeap, most algorithms can
be significantly improved in the task of flow size estimation. For
example, for CAIDA dataset and the same 240KB memory (Figure

IMC ’25, October 28-31, 2025, Madison, WI, USA.

Yuhan Wu et al.

Table 3: Resource used by PipHeap and Combined algorithms

Resource PipHeap +CM +SuMax +Coco +Elastic +Space Saving +RHHH
SRAM 103(16.1%) 130(18.1%) 130(14.8%) 139(14.5%) 153(17.4%) 136(18.9%) 103(12.9%)
Map RAM 103(26.8%) 130(30.1%) 130(24.6%) 139(24.1%) 153(29.0%) 136(31.5%) 103(21.5%)
Hash Bits 255(7.7%) 303(8.1%) 303(6.6%) 319(6.4%) 313(6.8%) 271(7.2%) 255(6.1%)
TCAM 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)
Stateful ALU 1031.3%) 13(36.1%) 13(29.6%) 13(27.1%) 12(27.3%) 11(30.6%) 10(25.0%)
Exact Match Xbar | 16(12.5%) 19(13.2%) 19(10.8%) 19(9.9%) 19(10.8%) 17(11.8%) 17(10.6%)
VLIW Instr 12(47%) 13(45%) 15(4.3%) 15(4.4%) 17(43%) 13(4.5%) 15(4.7%)
—g- Original-ARE = 1.00/
1.501 —o— Combined-ARE 6000 3
125 g — Original-AAE 15009 & 0.75
W 1.001 - Combined-AAE | 4000w o
F < co050
0.75 13000 15 _w Combined-RR
0.50 12000 g 0.25. Original-RR
0.251 11000 g -o— Combined-PR
0.001 lo o 0.00 -z Original-PR
0 50 100 150 200 0 50 100 150 200
Memory (KB) Memory (KB)
(a) CAIDA (b) CAIDA
-2 Original-ARE _ 1.00;
1.50 —-o— Combined-ARE 6000 Tg
1251 & Origin_aI-AAE 5000 & 0.751
w 1.00{ {\ ¥ COMPINed-AAE L hoow 5
Lo75] \R, 13000 § 090
: By = -7 Combined-RR
0.50 12000 'g 025 Original-RR
0.251 1000 s —o— Combined-PR
-~ Original-PR
0.001 : ; i 7 +0 0.00 : ; ‘ ‘
0 50 100 150 200 0 50 100 150 200
Memory (KB) Memory (KB)
(c) WebPage (d) WebPage

Figure 9: Accuracy Improvement Brought by PipHeap for Coco in Arbitrary Partial Key Query.

6(b)), PipHeap reduces the error of CM, Count, FCM, Univmon, Ni-
troCM, and Elastic by 33%, 92%, 85%, 97%, 72% and 80%, respectively.
On average, PipHeap reduces the error by 76%. Here, we aim at
estimating the size of all flows, not just heavy hitters. To do this, we
combine some algorithms for flow size estimation with PipHeap.
Specifically, when each item arrives, it is inserted into PipHeap
first, and the item kicked out from the last node of PipHeap will
be inserted into the subsequent algorithm. Note that PipHeap is
an algorithm that simulates a heap, so the item kicked out from
the last node is an approximate heap minimum. Therefore, the
advantage of combining PipHeap with these flow size estimation
algorithms is that the flows that will be inserted into the subsequent
algorithms in this way are small flows with high probability, and
most of the large flows will remain in PipHeap. This can bring new
properties to the combined flow size algorithm. The distribution
of the data flow becomes smooth. For example, CM sketches can
rely on this property to reduce the number of bits per counter
and reduce the total memory. Some algorithms do not work well

because they are too simple or rely on the skewness of the flow
distribution. And PipHeap can be implemented on programmable
switches, which brings more possibilities for full-flow measurement
on programmable switches.

5.3.3 Hierarchical Heavy Hitter Query. To find Hierarchical Heavy
Hitters, we try to implement RHHH on the data plane by replacing
its Space Saving structures by PipHeaps. In Figure 8, we show that
PipHeap’s accuracy is very close to the ideal RHHH in the CPU
platform. As an approximation of the heap, PipHeap did not seri-
ously affect the accuracy of RHHH. In the CAIDA dataset, we query
the 16-bit prefix and the 24-bit prefix. PipHeap is consistently close
to RHHH. In the WebPage dataset, we query the 24-bit prefix. Due
to the format of the data, there are few types of prefixes, resulting
in poor performance of PipHeap when the memory is small, but
when there is enough memory, PipHeap can still get a good enough
estimate. The experimental results prove that PipHeap makes find-
ing hierarchical heavy hitters possible on programmable switches.
When the total memory is 240KB with CAIDA dataset, PipHeap

PipHeap: Approximate Heap in the Pipeline Empowering Network Measurement

only incurs additional 2% more AAE when querying the 24-bit
prefix.

5.3.4 Arbitrary Partial Key Query. As shown in Figure 9, for ar-
bitrary partial key query, we combine PipHeap with Coco and
improve its accuracy significantly. We test them on the datasets of
CAIDA and WebPage, and query the 16-bit prefix. PipHeap always
improves the accuracy of CoCo in both AAE, ARE, Precision and
Recall. For example, when the total memory is 240KB with CAIDA
dataset, PipHeap reduces the error of CoCo by 87%.

5.4 Resources Usage on Programmable Switch
Testbed

In the Tofino programmble switch, we implement a PipHeap with
131071 nodes (capable of tracking over 100K heavy flows) and its
combination with six sketches inlcuding CM, SuMax, Coco, Elastic,
Space Saving and RHHH. The measurement model we focus on
is the classic fixed window, which divides the timeline into con-
secutive equal-sized fixed windows. Once each window ends, the
sketch data from the data plane is sent to the control plane and reset
to empty. We show the resource usage in Table 3. The two most
used resources by PipHeap are Stateful ALU and Map RAM, which
take up 31.25% and 26.82% of the total quota, respectively. These
two are mainly used for the counter of heap node of PipHeap. The
remaining resources of other items do not exceed 20%. After com-
bining with other algorithms, these properties are still maintained,
the highest Stateful ALU and Map RAM occupies reach 36.11% and
31.48%, and the others do not exceed 20%.

6 RELATED WORK

Heavy hitter detection schemes. Many work aim at finding
heavy hitters on the data plane of programmable switches. Hash-
pipe [57] can track heavy flows using multiple tables of slots where
each slot stores a flow ID and its size. However, it is based on the
programming behavioral model and cannot be implemented [9] on
real programmable switch product. By similar multiple tables, Elas-
tic [66] can be implemented, but it incurs serious errors, i.e., after
moving a flow, its size will be reset to 1. Qpipe [33] and Precision
[9] rely on the recirculation to update the desired position, but such
recirculation will consume available bandwidth of the switch. Some
solutions rely on the control plane CPU and the upload bandwidth,
including Beaucoup [19], Netcache [34] and more [42, 44, 51]. The
OmniMon [32] relys on the end hosts.

Sampling schemes. By sampling a portion of packets, the measure-
ment scheme can monitor the network traffic with low overhead.
The representative solutions include NetFlow [20], sFlow [52], Ever-
flow [76], OpenSample [58], Nitro [43], and more [24, 36, 54, 55, 70].
However, the sampling solutions are not accurate enough because
they cannot measure all packet and provide certain error bounds.

Sketch-based Solutions. The sketch [7, 28, 30, 37, 38, 49,50, 71] isa
series of approximate algorithms for stream data. Existing sketches
can be classified into two types: counter-based sketches and heap-
based sketches. Counter-based sketches consist of multiple arrays of
counters and do not record flow ID (e.g., five-tuple) or fingerprint.
Typical sketches include Count-Min (CM) [21], CU [25], Count
[17], UnivMon [44], Nitro [43], NZE [31], Tower [65] and more
[68, 70, 74]. They are memory efficient for estimating per-flow size

IMC ’25, October 28-31, 2025, Madison, WI, USA.

but do not record flow IDs, which is required in finding heavy
hitters, packet loss, latency and more tasks. To record IDs, existing
solutions either occupy the upload bandwidth to control plane, rely
on the end hosts, or have low accuracy [32, 51]. The heap-based
sketches, including Space Saving [46], Frequent [22], Unbiased
Space Saving [59] and more [53, 64, 67], consist of many ID-counter
pairs recording flow IDs and flow sizes, and these pairs are in a
heap structure that can keep tracking pairs with large flow sizes.
With recorded flow IDs, the heap-based sketches can provide more
statistics such as heavy hitters and heavy changes. Some sketches
(e.g., Elastic [66] and Augment [53]) are the hybrid of the above
two types: a heap followed by a counter-based sketch.

Decoding Schemes. Such schemes can achieve high accuracy
when the resources are sufficient. However, they cannot provide
measurement results at line rate, because they need recovery and
aggregation using CPU. Typical schemes are CounterBraids [45],
Omnimon [32], FlowRadar [39] and more [27, 40].

7 CONCLUSION

In this paper, we propose the first approximate heap (called
PipHeap) for switch data plane, which firstly track heavy flows
on the data plane without recirculation or incurring error on com-
bined sketches. We combine PipHeap with eight sketches and our
evaluation on the real-world dataset shows that their error can be
reduced by 33% ~ 97% (78% on average) in the same memory. In
our testbed, we implement PipHeap and its combination with six
sketches. Our source code is available at [5].

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Devel-
opment Program of China under Grant No. 2024YFB2906602, and in
part by the National Natural Science Foundation of China (NSFC)
(No. 62372009, 624B2005).

A ETHICS

This work does not raise any ethical issues.

IMC ’25, October 28-31, 2025, Madison, WI, USA.

REFERENCES

[1
[2

[9

=

[10

[11

[13]

[14

[15

[16]

(17

(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26

[27

[n.d.]. FarmHash. https://github.com/google/farmhash.

[n.d.]. Intel tofino. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino- series.html.

[n.d.]. Murmur Hashing.
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp.
[n.d.]. Real-Life Transactional Dataset. http://fimi.ua.ac.be/data/.

[n.d.]. Source code of PipHeap. https://github.com/PipHeap/PipHeap.

[n.d.]. The CAIDA Anonymized Internet Traces. http://www.caida.org/data/
overview/.

Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. 2022. {HeteroSketch}: Co-
ordinating Network-wide Monitoring in Heterogeneous and Dynamic Networks.
In 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22). 719-741.

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM. 503-514.

Ran Ben Basat, Xiaogi Chen, Gil Einziger, and Ori Rottenstreich. 2020. Design-
ing heavy-hitter detection algorithms for programmable switches. IEEE/ACM
Transactions on Networking 28, 3 (2020), 1172-1185.

Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and Erez Waisbard.
2017. Constant time updates in hierarchical heavy hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. ACM,
127-140.

Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 267-280.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: Fine grained traffic engineering for data centers. In Proceedings of the
Seventh COnference on emerging Networking EXperiments and Technologies. 1-12.
Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99-110.

Robert S Boyer and J Strother Moore. 1991. MJRTY: A Fast Majority Vote Algo-
rithm. Automated reasoning: essays in honor of Woody Bledsoe 1 (1991), 105-117.
Weibo CAI Shulin YANG, Gang SUN, Qiming ZHANG, and Hongfang YU. 2023.
Adaptive Load Balancing for Parameter Servers in Distributed Machine Learning
over Heterogeneous Networks. ZTE Communications 21, 1, Article 72 (2023),
72-80 pages. https://doi.org/10.12142/ZTECOM.202301009

Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent
items in data streams. Automata, languages and programming (2002).

Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang. 2021. Out
of many we are one: Measuring item batch with clock-sketch. In Proceedings of
the 2021 International Conference on Management of Data. 261-273.

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. 2020.
BeauCoup: Answering Many Network Traffic Queries, One Memory Update at a
Time. In Proceedings of the Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures, and protocols
for computer communication. 226-239.

Benoit Claise. 2004. Cisco systems netflow version 9. Technical Report.

Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005).

Erik Demaine, Alejandro Lopez-Ortiz, and] Munro. 2002. Frequency estimation
of internet packet streams with limited space. Algorithms—ESA 2002 (2002).
Fan Deng and Davood Rafiei. 2007. New estimation algorithms for streaming
data: Count-min can do more. Webdocs. Cs. Ualberta. Ca (2007).

Nick G Duffield and Matthias Grossglauser. 2001. Trajectory sampling for direct
traffic observation. IEEE/ACM transactions on networking 9, 3 (2001), 280-292.
Cristian Estan and George Varghese. 2003. New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice. ACM Transactions
on Computer Systems (TOCS) 21, 3 (2003).

Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2019. {SIMON}: A Simple and Scalable Method for Sensing,
Inference and Measurement in Data Center Networks. In 16th { USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 19). 549-564.
Michael T Goodrich and Michael Mitzenmacher. 2011. Invertible bloom lookup
tables. In Communication, Control, and Computing (Allerton), 2011 49th Annual
Allerton Conference on. IEEE.

[28

[29]

(30]

(32]

[33

[35

[36

[37

[38

%
20,

[40

[41

[42

[43

[44

[45

(48]

[49

Yuhan Wu et al.

Hui Han, Zheng Yan, Xuyang Jing, and Witold Pedrycz. 2022. Applications of
sketches in network traffic measurement: A survey. Information Fusion 82 (2022),
58-85.

Ping-Hsien Huang, Michael I.-C. Wang, Chi-Hsiang Hung, and Charles H.-P.
Wen. 2024. Mitigating Microbursts by Packet Recirculation in Programmable
Switch. IEEE Access 12 (2024), 183089-183102. https://doi.org/10.1109/ACCESS.
2024.3510784

Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and Gong
Zhang. 2017. Sketchvisor: Robust network measurement for software packet
processing. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 113-126.

Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei Xu,
and Gong Zhang. 2021. Toward Nearly-Zero-Error Sketching via Compressive
Sensing. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association. https://www.usenix.org/conference/
nsdi21/presentation/huang

Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and Yungang Bao.
2020. Omnimon: Re-architecting network telemetry with resource efficiency and
full accuracy. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication. 404-421.

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. Qpipe: Quan-
tiles sketch fully in the data plane. In Proceedings of the 15th International Confer-
ence on Emerging Networking Experiments And Technologies. 285-291.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of the 26th Symposium on Operating
Systems Principles. 121-136.

Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. 2004. Data streaming
algorithms for efficient and accurate estimation of flow size distribution. ACM
SIGMETRICS Performance Evaluation Review 32, 1 (2004), 177-188.

Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and Alan Mislove.
2019. A large-scale analysis of deployed traffic differentiation practices. In
Proceedings of the ACM Special Interest Group on Data Communication. 130-144.
Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong
Zhang. 2020. WavingSketch: An Unbiased and Generic Sketch for Finding Top-k
Items in Data Streams. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1574-1584.

Shangsen Li, Lailong Luo, Deke Guo, Qianzhen Zhang, and Pengtao Fu. 2020. A
survey of sketches in traffic measurement: Design, Optimization, Application
and Implementation. arXiv preprint arXiv:2012.07214 (2020).

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better
NetFlow for Data Centers.. In NSDIL

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. Lossradar: Fast
detection of lost packets in data center networks. In Proceedings of the 12th
International on Conference on emerging Networking EXperiments and Technologies.
481-495.

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In Proceedings of the ACM Special Interest
Group on Data Communication. ACM New York, NY, USA, 44-58.

Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. Distcache: Provable load balancing for
large-scale storage systems with distributed caching. In 17th { USENIX} Confer-
ence on File and Storage Technologies ({FAST} 19). 143-157.

Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and general sketch-
based monitoring in software switches. In Proceedings of the ACM Special Interest
Group on Data Communication. 334-350.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow monitor-
ing with univmon. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference. ACM.

Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-
dul Kabbani. 2008. Counter braids: a novel counter architecture for per-flow
measurement. ACM SIGMETRICS Performance Evaluation Review 36, 1 (2008),
121-132.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient com-
putation of frequent and top-k elements in data streams. In Proc. Springer ICDT.
Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. 15-28.

Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of
computer programming 2, 2 (1982), 143-152.

Michael Mitzenmacher. 2001. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001),
1094-1104.

https://github.com/google/farmhash
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
http://fimi.ua.ac.be/data/
https://github.com/PipHeap/PipHeap
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
https://doi.org/10.12142/ZTECOM.202301009
https://doi.org/10.1109/ACCESS.2024.3510784
https://doi.org/10.1109/ACCESS.2024.3510784
https://www.usenix.org/conference/nsdi21/presentation/huang
https://www.usenix.org/conference/nsdi21/presentation/huang

PipHeap: Approximate Heap in the Pipeline Empowering Network Measurement

[50]

[51]

[52]

[53

[54]

[55

[56

[57

[58]

[59]

[60]

[61

[62

[63]

(64

Michael Mitzenmacher. 2002. Compressed bloom filters. IEEE/ACM transactions
on networking 10, 5 (2002), 604-612.

Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste.
2022. {SketchLib}: Enabling Efficient Sketch-based Monitoring on Programmable
Switches. In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22). 743-759.

Peter Phaal, Sonia Panchen, and Neil McKee. 2001. InMon corporation’s sFlow: A
method for monitoring traffic in switched and routed networks. Technical Report.
Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster
and more accurate stream processing. In Proceedings of the 2016 International
Conference on Management of Data. 1449-1463.

Vyas Sekar, Michael K Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kompella,
and David G Andersen. 2008. cSamp: A system for network-wide flow monitoring.
(2008).

Vyas Sekar, Michael K Reiter, and Hui Zhang. 2010. Revisiting the case for a
minimalist approach for network flow monitoring. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement. 328-341.

Devavrat Shah, Sundar Iyer, B Prahhakar, and Nick McKeown. 2002. Maintaining
statistics counters in router line cards. IEEE Micro 22, 1 (2002), 76-81.
Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data plane.
In Proceedings of the Symposium on SDN Research. ACM.

Junho Suh, Ted Taekyoung Kwon, Colin Dixon, Wes Felter, and John Carter. 2014.
Opensample: A low-latency, sampling-based measurement platform for com-
modity sdn. In 2014 IEEE 34th International Conference on Distributed Computing
Systems. IEEE, 228-237.

Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on Management of
Data. 1129-1140.

Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let it flow: Resilient asymmetric load balancing with flowlet switching. In
14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17). 407-420.

Qianglin WANG, Xiaoning ZHANG, Yi YANG, Chenyu FAN, Yangyang YUE,
Wei WU, and Wei DUAN. 2025. VFabric: A Digital Twin Emulator for Core
Switching Equipment. ZTE Communications 23, 1, Article 90 (2025), 90-100 pages.
https://doi.org/10.12142/ZTECOM.202501012

Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A
linear-time probabilistic counting algorithm for database applications. ACM
Transactions on Database Systems (TODS) 15, 2 (1990), 208-229.

Mengkun Wu, He Huang, Yu-E Sun, Yang Du, Shigang Chen, and Guoju Gao. 2021.
Activekeeper: An accurate and efficient algorithm for finding top-k elephant
flows. IEEE Communications Letters 25, 8 (2021), 2545-2549.

Qingjun Xiao, Zhiying Tang, and Shigang Chen. 2020. Universal online sketch
for tracking heavy hitters and estimating moments of data streams. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 974-983.

IMC 25, October 28-31, 2025, Madison, W1, USA.

[65] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao He, Tong

Zhao, Zhengyi Jia, Yongqiang Yang, et al. 2021. SketchINT: Empowering INT
with TowerSketch for Per-flow Per-switch Measurement. In 2021 IEEE 29th Inter-
national Conference on Network Protocols (ICNP). IEEE, 1-12.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM SIGCOMM.
ACM, 561-575.

Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shigang Chen,
and Xiaoming Li. 2019. HeavyKeeper: An Accurate Algorithm for Finding Top-k
Elephant Flows. IEEE/ACM Transactions on Networking 27, 5 (2019), 1845-1858.
Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. 2017. Pyramid
sketch: A sketch framework for frequency estimation of data streams. Proceedings
of the VLDB Endowment 10, 11 (2017), 1442-1453.

Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng,
and Lihua Yuan. 2019. dShark: A general, easy to program and scalable frame-
work for analyzing in-network packet traces. In 16th { USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19). 207-220.

Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch.. In NSDI, Vol. 13.

Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: high-performance
sketch-based measurement over arbitrary partial key query. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference. 207-222.

Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. 2021.
SpaceSaving: An Optimal Algorithm for Frequency Estimation and Frequent
items in the Bounded Deletion Model. arXiv preprint arXiv:2112.03462 (2021).
Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naigian
Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, et al. 2021. {LightGuardian}: A
{Full-Visibility }, Lightweight, In-band Telemetry System Using Sketchlets. In
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). 991-1010.

Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang Liu, Zhaochen Zhang,
Wanchun Dou, and Guihai Chen. 2022. FlyMon: enabling on-the-fly task recon-
figuration for network measurement. In Proceedings of the ACM SIGCOMM 2022
Conference. 486-502.

Yu Zhou, Chen Sun, Honggiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. 2020. Flow Event Telemetry
on Programmable Data Plane. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 76-89.

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-level
telemetry in large datacenter networks. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. 479-491.

https://doi.org/10.12142/ZTECOM.202501012

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Measurement Tasks
	2.2 Measurement Solutions and the Heap
	2.3 Challenges of Heap Implementation
	2.4 Limitations of Recirculation

	3 PipHeap Design
	3.1 Overview
	3.2 The Aggregation Node
	3.3 The Max Node
	3.4 Summary of Design

	4 Task Applications
	4.1 Single Key Query
	4.2 Hierarchical Key Query
	4.3 Arbitrary Partial Key Query

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Experiments on PipHeap
	5.3 Experiments on PipHeap-based Solutions
	5.4 Resources Usage on Programmable Switch Testbed

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Ethics
	References

