
PeriodicSketch:
Finding Periodic Items in Data Streams

Zhuochen Fan†, Yinda Zhang†, Tong Yang†‡, Mingyi Yan†, Gang Wen†, Yuhan Wu†, Hongze Li† and Bin Cui†
† School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology

and Application, Peking University, Beijing, China ‡ Peng Cheng Laboratory, Shenzhen, China

{fanzc, yanmingyi, jnwengang, yuhan.wu, pku lhz, bin.cui}@pku.edu.cn, {hgdkgszyd, yangtongemail}@gmail.com

Abstract—In this paper, we study periodic items in data
streams, which refer to those items arriving with a fixed interval.
All existing works involving mining periodic patterns does not
fit for data stream scenarios. To find periodic items in real time,
we propose a novel sketch, PeriodicSketch, aiming to accurately
record top-K periodic items. To the best of our knowledge, this is
the first work to find periodic items in data streams. Any interval
may occur many times, and we use frequency to denote the
number of an interval occurred. To pick out periodic items with
high frequency, we propose a key technique called Guaranteed
Soft Uniform (GSU) replacement strategy. Our theoretical proofs
show that when replacement is successful, it is more likely that
the new item has a higher frequency than the current smallest
frequency; and GSU can ensure that our items in the sketch
will approach the true periodic items closer and closer. And as
soon as we get all the periodic items, the state would not change
worse with high probability. We conduct extensive experiments,
and the experimental results show that the Average Absolute
Error (AAE) of our sketch using 1/10 memory is around 737
times (up to 2019 times) lower than the baseline solution. Finally,
we provide a concrete case: Cache prefetch, which proves that
PeriodicSketch can significantly improve the Cache hit ratio. All
related codes of PeriodicSketch are open-sourced and available
at GitHub [1].

I. INTRODUCTION

A. Background and Motivations
Nowadays, data stream processing is an important task

where we need to extract the needed information from a

large volume of data with high speed in one pass. However,

due to the contrast between the large volume of data and

limited memory we have, we cannot accurately extract the

information while keeping up with the high speed of data

streams. Therefore, many probabilistic data structures (called

sketches in this paper) [2]–[5] have been widely accepted

because they can work in a small memory and catch up with

the high speed with small errors. These sketches work on

common tasks, such as finding frequent items [2], [6], [7],

persistent items [8]–[10], and super-spreaders [5], [11], [12].

In this paper, we work on finding periodic items in the

data stream model. To the best of our knowledge, this is the

first work to find periodic items in the data stream model.

In this paper, periodic items refer to items that arrive with

a fixed interval. Finding periodic items is to report top-K
periodic items and their intervals. For example, an item arrives

at 8:00 every day, and lasts for one month. We consider it as

a periodic item. Moreover, its period/interval is a day, and

Corresponding author: Tong Yang (yangtongemail@gmail.com).

the interval’s frequency is 30. The formal definition of this

problem is provided in Section III. Finding periodic items

is important, and below we show four use cases on finding

periodic item in data streams.

Case 1 - Cache: In the Cache scenario [13], the requests of

items form a stream, and some requests may arrive periodi-

cally. If we can pick out such periodic requests and measure

its period, we can significantly improve the performance of

prefetching [14]: we can prefetch/load the item to the Cache

just before its next arrival time, and delete it afterwards. In

this way, we can not only significantly increase the Cache hit

ratio for the periodic requests, but also make room for other

items.

Case 2 - APT detection: Recently, frequent Advanced Per-

sistent Threats (APT) [15] has received widespread attention

due to its great harm, strong destruction, long duration, and

difficulty in detection and early warning. Its main feature is to

use advanced information technologies to carry out targeted,

continuous and concealed attacks on specific target systems

within a long time span. In fact, apart from low frequency,

APT generally has periodicity [16]. The implementer of the

APT refers to the working hours of the target system and

major festivals when implementing the attack, so it is likely to

be periodic. APT may periodically establish TCP connections

and perform DNS queries. In addition, when controlling the

hacked server to send back the stolen data, the data sending

behavior also show periodicity. Therefore, we can first find

periodic items, and then further ascertain whether they are

APT by existing detection methods.

Case 3 - Network traffic prediction and classification:
Nowadays, machine learning (ML) is playing an increasingly

important role in data stream mining [17]. As an important

property, the periodic items in the data stream can make

the ML model perform prediction and even classification

tasks well. For example, for network traffic prediction and

classification, item1 periodicity is a significant feature, and

periodic items often worthy of being given a higher weight to

obtain more accurate output results. Moreover, they can reduce

the complexity of the ML model and improve its performance.

Case 4 - Periodic transactions in finance and customer
purchases: First, periodic transactions by the same customer

1Here, the item ID refers to the 5-tuple of the packet which consists of
source IP, destination IP, source port, destination port, and protocol.

in financial transactions stream may be suspected of illegal

market manipulation [18]. Therefore, we can quickly find

suspicious customers who may be laundering money by real-

time detecting periodic transaction items. Second, when users

click or purchase different products online [19], a transaction

stream is generated. In this case, users’ periodic clicking on a

category of commodities can be regarded as a periodic item.

Therefore, mining such periodic items helps to understand the

users’ buying behaviors and recommend relevant products or

deliver advertisements to them.
To find periodic items in data streams, a baseline solution

consists of many Bloom filters [20] and a Space-Saving [21].

These Bloom filters are used to record the historic appearances

of items, and the Space-Saving is used to record top-K
frequent items with the same intervals. Specifically, given

a data stream, the item interval ranges from 1 to 10000

seconds. It builds 10000 sketches: S1,S2, . . . ,S10000. Si is

used to record and report the top-K frequent items with

interval of i seconds. At the end of the data stream, we can

traverse all sketches to update the top-K periodic items in

the Space-Saving. Unfortunately, this solution is time- and

space- consuming. What is worse, this solution cannot report

those periodic items with other non-predefined intervals, such

as 1.5, 1.6, 2.7 seconds. More details are provided in Section

VI-A. We aim to replace these two algorithms to achieve better

performance.

B. Our Solution
Although there are some works on mining periodic patterns,

their definitions are different from ours. None of them can be

used to find periodic items in data stream model, because their

insertion for each item in the data stream cannot be finished

in O(1) time, see Section II-D for details. Therefore, this

paper proposes a novel sketch for finding periodic items in

data stream model for the first time, named PeriodicSketch.

PeriodicSketch is compact. It only requires 50KB of memory

consumption when working on 30M items. PeriodicSketch is

fast. The throughput of PeriodicSketch is 3.1 times faster than

the baseline solution in average. PeriodicSketch is accurate.

Compared with the baseline solution, PeriodicSketch improves

the Precision Rate (PR) by 77.3% and the Recall Rate (RR) by

74.4%, respectively, and decreases the Average Absolute Error

(AAE) up to 2019 times (737 times in average) in finding

periodic items.
PeriodicSketch includes two parts: a Cover-Min sketch and

a GSU sketch to replace the above Bloom filters and Space-

Saving, respectively. We first use the Cover-Min sketch to

record and report the interval of the incoming item, then

use the GSU sketch to record and report periodic items. The

Cover-Min sketch is used to report the interval between now

and the last arrival time for the incoming item, which is our

first key technique. The details are provided in Section IV-B.

It combines with the second part can significantly reduce the

time and space overhead of the above baseline solution: we

only need to build two sketches instead of 10000 sketches.
The second part of PeriodicSketch, i.e., GSU sketch, is

used to catch the potential periodic items. By appropriate

modifications (see Section IV-C), this problem can be trans-

formed into the hot issue – finding frequent elements/items.

The most popular prior art of finding frequent elements is

Space-Saving [21] and Unbiased Space-Saving (SIGMOD’18)

[22]. They use a min-heap to keep the potential frequent

elements. Every time a new element comes, they increment the

frequency of least frequent element recorded (Element min).

Most elements are infrequent, and every infrequent element

increment the frequency of Element min. This leads to

serious over-estimation errors of the elements’ frequency in

the min-heap. To address this problem, our GSU selectively

increments the frequency of Element min with an adaptive

probability P , which is often small (e.g., < 0.01). In this way,

we can minimize the influence of infrequent elements, and thus

achieve much higher accuracy. In addition, GSU can also treat

elements that arrive early/late fairly/uniformly. More details

are provided in Section IV-D.

We conduct rigorous mathematical derivation in Section V

and extensive experiments in Section VI, and the results show

that PeriodicSketch has obvious advantages over comparison

algorithm in the accuracy of finding periodic elements/items.

Key Contributions:
• We propose and define a problem named finding periodic

items in data streams, which are important in many

applications but not studied before.

• We propose a novel sketch named PeriodicSketch to

accurately find periodic items using small memory with

high speed.

• We get to concise theoretical results by strict derivation.

• We conduct extensive experiments, and the results show

that our sketch significantly outperforms the baseline

solution. Particularly, the AAE of PeriodicSketch using

1/10 memory is around 737 times (up to 2019 times)

lower than the baseline solution, and the throughput of

PeriodicSketch is about 3.1 times faster than the baseline

solution.

II. RELATED WORK

To the best of our knowledge, no prior work can directly

deal with finding periodic items in data streams. In this section,

we first present the CM sketch, which is the inspiration

of our algorithm. Next, we present the similar problem of

finding frequent items and typical solutions. Then, we briefly

introduce Bloom filter and Space-Saving, because they are the

components of the baseline algorithm we proposed in Section

VI-A. Finally, we give some existing work on mining periodic

pattern. Note that we give this part of the related work only

because they have some similarity with our work. In fact, the

problems raised and solved are different.

A. CM Sketch

CM sketch [2] is composed of d arrays, each array

Ai (1 ≤ i ≤ d) has w counters, and Ai is associated with a

hash function hi(.). For the CM sketch, when the coming item

e is inserted, it increments the d hashed counters Ai[hi(e)]
by one. It is easier to delete, just directly decrements the

mapped counter by 1, which is the reverse process of insertion.

For querying the item e, CM sketch reports the minimum

one among the d hashed counters. Some successors include

sketches of CU [23], Count [24], CSM [25], CMM [26].

B. Finding Frequent Items
The task is to find items with large frequencies. Frequency,

i.e., the number of appearances of an item. To find frequent

items, two types of solutions exist. The first type, record
all, records the frequencies of all items. Typical algorithms

are made of a sketch (e.g., sketches of CM [2], CU [23], and

Count [24]) plus a min-heap, and ASketch [27]. Recording

the frequencies of cold items is unnecessary. The second type

only records hot items: the information of items with large

frequencies. Typical algorithms are Space-Saving [21],

Unbiased Space-Saving [22], Lossy Counting [6], and Cold

filter [28].

C. Bloom filter & Space-Saving
A Bloom filter [20] is an array of m bits associated with k

independent hash functions, which is set to 0 at the beginning.

Its k mapped bits are to 1 for each incoming item. For a

membership query, i.e., querying whether an item occurs in the

data stream, the Bloom filter checks whether all its k mapped

bits are 1. Space-Saving [21] designs a data structure named

Stream-Summary to record and keep top-K frequent items.

When the Stream-Summary is full and a new item that it has

not recorded arrives, the item in the Stream-Summary with

the least frequency will be replaced by the new item. These

two algorithms are the components of our baseline scheme,

see Section VI-A for details.

D. Mining Periodic Pattern
There are indeed some algorithms for mining periodic pat-

terns in time-series data [29]–[34], but their (1) Problem
Definitions and (2) Application Scenarios are

quite different from ours. In fact, the difference in (2) is more

obvious, because only our work meets the two requirements

(2-REQ for short) of processing data stream model: 1) The

processing of each item is one-pass; 2) The processing of

each item is fast enough to catch up with the high-speed data

stream, and the processing time is O(1) complexity. Next, we

will introduce the distinctions between PeriodicSketch and the

literature in more detail based on (1) and (2).

TiCom [32] addresses the problem of mining periodicity in

interweaved, noisy, and incomplete sequence data, while its

time complexity reaches O(n2). RobustPeriod [34], SAZED

[33], STAGGER [31] and others [35], [36] have similar

problem definitions to TiCom. Among them, SAZED can

only detect single period, while STAGGER and [36] can only

process fixed-length data fragment. Some [33], [34], [36] of

them have a time complexity of O(n log n), while others

[31], [35] are worse. Compared with the previous ones, [37]

has no time dimension and defines a counter-based matching

problem with slightly better time complexity. There is another

type of existing works [29], [30] whose ultimate goal is to

mine regular patterns in data streams. Since they define a

problem of finding special subsets/supersets and calculating

the difference among the sets, their time complexity is much

worse than O(1). In summary, the above algorithms obviously

cannot satisfy 2-REQ, which are different from our application

and focus. Therefore, we cannot borrow the ideas of them to

address the problem of periodic items in data streams.

III. PROBLEM STATEMENT

Data stream model: Given a data stream S =
(e1, e2, e3, . . . , ei, . . .), given an item e, let ti be the ith

appearance of e. Then e has many intervals, where interval

Vi is ti+1 − ti.
Periodic Items: Generally, for e, if one of its interval occurs

many times, we consider it as a periodic item. Formally, we

characterize periodic items from two aspects: interval and

frequency (i.e., the number of intervals occurred, denoted as

f). Specifically, for an interval V , the frequency is defined

as the number of arriving intervals that fall in the range

[V − ΔT, V + ΔT], where ΔT refers to the threshold of

allowable error. This ΔT can be set to a fixed value, or it

can be set as a ratio of the interval (e.g., if the ratio is 5%,

then ΔT = 0.05V). Users can flexibly set the ΔT according
to their own needs and application scenarios.
Finding Top-K Periodic Items: Given a data stream, the

problem is to find K periodic items whose frequency is the

K largest. Note that one item could have several different

intervals, and thus could be reported more than once.

Example: We present an example to make our prob-

lem definition clearer. Given a data stream S =
(a, b, a, b, d, d, a, c, a, c, e, e, a, b, a, b), suppose they arrives at

the constant speed and the time interval between them is

V = 2, and suppose the threshold ΔT = 0 for convenience.

Then we should obtain the periodic items as follows. Top 1:

〈a, 2〉 occurs 3 times. Top 2: 〈a, 4〉 occurs twice. Top 2: 〈b, 2〉
occurs twice.

IV. THE PERIODICSKETCH

In this section, we show our solution with two key tech-

niques: Cover-Min and Guaranteed Soft Uniform. We provide

the symbols frequently used and their meanings in Table I.

TABLE I: Symbols frequently used in this paper.
Notation Meaning

S a data stream

e a distinct item in S
SV Cover-Min sketch of PeriodicSketch

S[i] ith bucket of the GSU sketch

t timestamp of the item

V time interval

ΔT the threshold of allowable error

f the interval’s frequency

P the probability of replacing the item/element (GSU)

hd(.) dth hash function of the Cover-Min sketch

h(.) hash function of the GSU sketch

E an element formed by combining e and its interval V

L the least frequent element in the mapped bucket

A. Overview

As shown in Figure 1, PeriodicSketch includes two parts: a

Cover-Min sketch and a GSU sketch. Our first key technique,

the Cover-Min sketch, is used to record and report the interval

for each incoming item, while the GSU sketch is used to keep

candidates of top-K periodic items. Given an incoming item

e and its timestamp t, we first insert them into the Cover-Min

sketch, and get the time interval V . Then we try to insert

item e and its interval V into the GSU sketch. Note that

before this, we first combine the ID of item e and its interval

V to form an element E = 〈e, V 〉, and then insert this

element into the GSU sketch. The same item ID with different

intervals will be treated as different elements. In the GSU

sketch, we propose another key technique called Guaranteed

Soft Uniform (GSU) replacement strategy to capture and keep

potential periodic elements with a higher probability. Finally,

to find top-K periodic elements, we just traverse the GSU

sketch, and report top-K elements according to the K largest

frequencies.

Cover-Min
sketch

GSU
sketch

item
(e,t)

element

PeriodicSketch

E=<e,V>

Top-K
<e,V>
pairs

Get items’ intervals Keep top-K
periodic elements

Part 1 Part 2

Fig. 1: The workflow of the PeriodicSketch.

B. The Cover-Min Sketch
Data Structure (Figure 2): In order to record and report

the time interval of item e, we propose a novel sketch called

the Cover-Min sketch, inspired by the well-known CM sketch

[2] (mentioned in Section II-A). A Cover-Min sketch SV has

d × w buckets, and d pairwisely independent hash functions

h1(.), h2(.), h3(.), . . . , hd(.). Each bucket has two cells, which

record ID e and timestamp t, respectively. For any time interval

V , it could occur/recur many times.

e, t₁

e, t₂

…

e, td

w buckets

d arrays

Cover-Min sketch

h₁(e)(e)

h₂(e)
hd(e)

h ()h (e

…

…

…

Fig. 2: The data structure of Cover-Min sketch.

Insertion (Algorithm 1): When inputting a coming item e
and its timestamp t, it is mapped to one bucket in each of the

d arrays by computing the associated d hash functions. Next,

the Cover-Min sketch covers/rewrites the timestamp in each

corresponding bucket to the current time.

Report (Algorithm 1): For the current item e and its times-

tamp t, we find the d buckets and extract the d timestamps

inside by calculating the associated d hash functions. We use

the current timestamp t minus [the smallest/earliest timestamp

among the above d timestamps (written as min t)] to obtain

the time interval V , i.e., V = t−min t, and report it with e.

Algorithm 1: Insertion and report of a coming item e.

Input: input a coming item e with the timestamp t
Output: output the time interval V of e

1 min t ← infinity;

2 foreach i (0 ≤ i ≤ d− 1) do
3 min t ← min(min t, SV [i][hi(e)]);
4 SV [i][hi(e)] = t;

5 return t−min t;

C. Modification
The union of ID and interval: As shown in Figure 1, after

obtaining the time interval V of item e through the Cover-

Min sketch, we combine the ID of item e and its time interval

V to form an element E = 〈e, V 〉, and then insert this

element into the GSU sketch. In this way, the same item ID

with different intervals will be treated as different elements.

Example: For the same item e and its different time interval

V1 and V2, we treat E1 = 〈e, V1〉 and E2 = 〈e, V2〉 as different

elements.

u buckets

E, f L, fminE
h(E)h(E)

S[j]

λ cells

<e,V>

GSU sketch

f+1

…
…

…

Fig. 3: The data structure of GSU sketch. We assume that

〈e, V 〉 is hashed into S[j], and regard 〈e, V 〉 as an element E
for convenience.

D. The GSU Sketch
Data Structure (Figure 3): We propose the GSU sketch

to keep and report the top-K periodic elements. The data

structure of the GSU sketch can be regarded as a hash table.

It consists of u buckets S[1 . . . u], and is associated with a

hash function h(.). Each bucket has λ(λ > 0) cells. Each

cell stores an element E = 〈e, V 〉 and its frequency f ,

and the frequency refers to the number of occurrences

of the time interval V . Therefore, each cell actually stores

the 3-tuple information of the original item e: 〈e, V, f〉. In

the following, we use English capital letters to

represent elements.

Insertion (Algorithm 2): For an incoming item e, we first

query the Cover-Min sketch to obtain its time interval V , and

combine the ID of item e and its time interval V to form the

element E = 〈e, V 〉. As shown in Figure 3, then we insert

E into one of the bucket S[j] (0 ≤ j ≤ u) through the hash

function h(.). There are two cases for insertion:

Case 1: E is not in the bucket S[j]. This can be divided into

the following two sub-cases: 1) If S[j] is not full, we insert

E into an empty cell of S[j], and set the frequency to 1; 2) If

S[j] is full, we try to replace the least frequent element L in

S[j] with E through the Guaranteed Soft Uniform replacement

strategy (GSU for short, explain later). We propose the GSU to

probabilistically select the elements that have high probability

to be periodic elements.

Case 2: There is already an element E in a cell of S[j].
In this case, we increment the frequency f by one.

Report: In order to report periodic elements, we directly

traverse the buckets of the GSU sketch S and return the

elements (i.e., 〈item′s ID, interval〉 pairs) with the top-K
largest frequencies.

Algorithm 2: Insertion process of GSU Sketch.

Input: An element E
1 random() ∈ [0, 1]
2 if E ∈ S[h(E)] then
3 f(E) + +;

4 else
5 if S[h(E)] has empty cells then
6 S[h(E)].insert(E);
7 else
8 if random() � 1

2∗fmin−tfail+1 then
9 L ← E;

10 fmin ← fmin +
tfail

fmin
;

11 tfail ← 0;

12 else
13 tfail ++;

Guaranteed Soft Uniform Replacement (GSU): The GSU

technique is one of the key novelties of this paper. The

workflow of GSU is as follows. Suppose that the smallest

cell of S[j] stores element L with frequency fmin. Given an

incoming element E which is not in the cell, we replace L
with incoming element E with a probability

P =
1

2 ∗ fmin − tfail + 1

where tfail is the number of replacement failures. If L is

successfully replaced by E, indicating that the frequency of

E is likely to be larger than L, we increment the frequency

of L from fmin to fmin + �tfail/fmin	 and set tfail to 0.

Otherwise, tfail is incremented by 1. For convenience, fmin+
�tfail/fmin	 is abbreviated to fmin+tfail/fmin in this paper.

Designing the Expression of P: We carefully design the

expression of P to meet the following five properties. 1) To

successfully replace the original element, the value of tfail
should reach an expectation of fmin. 2) The larger fmin is,

the less likely it is to be replaced. 3) The more replacement

failures there are, the more likely the replacement will happen.

4) When the number of replacement failures reaches 2∗fmin,

the probability P increases to 1. This can avoid too many

replacement failures. 5) When the replacement happens when

number of replacement failures is small, tfail/fmin = 0, we

do not increase the smallest frequency. When the replace-

ment happens when number of replacement failures is large,

tfail/fmin = 2, we increase the smallest frequency by 2. In

other cases, we increase the smallest frequency by 0 or 1.

The mapped bucket

QEGEGGZGStream 1

Probability
Successful?

1/41/31/71/61/51/4 1/5

Smallest cell

12345678

G E E E E L L L

GYZEEEEE

1/51/51/51/41/31/21 1/5

12345678

fmin

4 3 3 3 3 2 2 2
√ √ 7+1

4 2 2 2 2 2 2 2

Stream 2

Probability
Successful?

Smallest cell

√ √ √ √

E Z Z Z Z Z Y G

tfail 0 3 2 1 0 2 1 0

tfail 0 4 3 2 1 0 0 0

P = 1
2fmin−tfail+1

L , 2 D, 9C, 6 Q, 7

…

… …A, 5

fmin+= tfail
fmin

fmin+= tfail
fmin

fmin

Fig. 4: Examples of GSU.

To clearly show the advantage of GSU, we give two

common running examples to show how GSU works.

Example 1 (Figure 4): Suppose that there is a data stream

consisting of a series of elements Q,E,G,E,G,G,Z,G.

For convenience, we assume that they have the same ID

but different intervals, and they are all mapped to the same

bucket S[j] (0 ≤ j ≤ u). For the first incoming element Q,

we increment the frequency of Q in the cell by one. For the

following two elements E and G, replacements fail, and thus

tfail is incremented to 1 and then 2. The probability increases

to 1/3 for the fourth element E. Then L is successfully

replaced by the fourth element E in the cell, and the frequency

fmin is incremented by
tfail

fmin
= 1, from 2 to 3, and tfail

is reset to 0. Since the actual frequency of element E is 2

at present but we record it as 3, the frequency is slightly

overestimated. Then the following 3 elements (G, G, Z) arrive

and replace E with probabilities 1/7, 1/6, and 1/5, but all fail.

Finally, the eighth element G successfully replaces E and the

frequency fmin is incremented from 3 to 4, which is exactly

the frequency of element G by now in data stream 1.

Example 2 (Figure 4): Given another data stream (stream 2):

G, Y, Z,E,E,E,E,E, and G, Y, Z,E also have the same ID

but different intervals. We suppose that each of the first three

elements successfully replaces the cell with the same probabil-

ity of 1/5, and increments the frequency fmin by
tfail

fmin
(= 0)

each time. Then element E arrives five times in succession.

After four unsuccessful replacements with probabilities 1/5,

1/4, 1/3, and 1/2, the eighth element E replaces element Z in

the cell with probability 1, and increments the frequency fmin

by
tfail

fmin
(= 2), from 2 to 4. The frequency fmin is slightly

underestimated, since element E has appeared 5 times in the

data stream by now. The first three replacements are wrong,

but do not bring a large error to the final value of fmin.

From the two examples, we see that in our algorithm, the

frequency fmin might be overestimated or underestimated.

Fortunately, an element might be overestimated at first, but

it could be underestimated later, and finally the estimate of

the element is probably very close to its true value. More-

over, successful replacement of non-periodic elements hardly

impacts the final result of fmin.

E. Key Parameters of PeriodicSketch
r: The ratio of the memory size of Cover-Min sketch to the

memory size of the whole PeriodicSketch.

d: The number of hash functions in Cover-Min sketch. Thus,

the Cover-Min sketch can be regarded as d hash tables.

We set the total memory of PeriodicSketch as M. Based

on the above parameters, it is easy to get the memory of each

hash table of the Cover-Min sketch and GSU sketch:{
MHC = Mr/d

MHG = M (1− r)

According to the results of our parameter setting experi-

ment, we recommend r = 15% and d = 2, please refer to

Section VI-B for more details.

V. MATHEMATICAL ANALYSIS

In this section, we separately conduct mathematical analysis

on the Cover-Min Sketch and GSU sketch that constitute

PeriodicSketch. Initially, we derive the error and memory

bounds of the Cover-Min sketch in Section V-A. For the GSU

sketch, since its error bound is difficult to derive directly, so we

conduct the following mathematical analysis. In Section V-B,

we first separately analyze the properties of the probability

equation P proposed in Section IV-D and provide some

theoretical results. On the basis of these conclusions, we

further analyze the GSU sketch in Section V-C and Section

V-D under the real data stream model, as shown below: 1) We

prove the feasibility of the GSU in Section V-C, and obtain

Theorem V.6, which proves that our GSU sketch can well

keep the top-k frequent elements as periodic elements. 2) We

derive the memory bound of the GSU sketch in Section V-D,

which proves the superiority of GSU from the perspective of

memory cost. Finally, we discuss the memory cost of the entire

PeriodicSketch and prove that its worst case is o(n) when n
is the length of the stream in Section V-E.

A. Error and Memory Bounds of the Cover-Min sketch

Let Ai[j] be the value recorded in the jth bucket of the ith

array (1 ≤ j ≤ w, 1 ≤ i ≤ d, hi(·) be the ith hash function,

and let ε and δ be two numbers that are related to d and w as

follows: d =
ln(1δ)� and w =
 exp
ε �. For a given item e at

time t, let Te, be its last occurrence and T̂e be the estimated

timestamp, and Xi,(e)[j] = Ai[j]− Te where j = hi(e). Note

that the time interval V = t−Te and the estimation V̂ = t−T̂e.

Let N be the total number of items, then as all hash function

have uniformly distributed output, Pr[hi(e1) = hi(e2)] =
1
w .

Therefore, ∀i, j, E(Xi,(e)[j]) ≤ E(Ai[j]) ≤ t·N
w ≤ εt·N

exp .

First, we derive the probabilistic bound on the underestima-

tion error of the Cover-Min sketch.

Pr[V̂
= V − εt ·N] = Pr[T̂ (e) ≥ T (e) + εt ·N]

= Pr[∀i, Ai[j] ≥ T (e) + εt ·N]

= (Pr[Xi,(e)[j] ≥ εt ·N])d

≤ (Pr[Xi,(e)[j] ≥ exp · E[Xi,(e)[j]])
d

≤ exp−d ≤ δ

We can also see from above results that given fixed ε and

δ, the Cover-Min sketch requires the memory of d × w =

 exp

ε ln(1δ)� counters. For example, suppose d = 2, ε = 0.01,

then w must be at least 272 so that the result holds. Note that

δ = 0.13, and the total memory requirement of Cover-Min

sketch is 2× 272× 16 byte = 8.5KB.
Then, we present the correctness rate of Cover-Min sketch.

Suppose that there are K other items between its two occur-

rences, therefore V̂ < V if and only if hash collisions occur in

all d arrays. According to the pairwise independence of hash

functions:

Pr
[
V̂ < V

]
=

[
1−

(
1− 1

w

)K
]d

≤
(
K

w

)d

Note that if K is small compared to w when V ∈
[V −ΔT, V +ΔT], then the Cover-Min sketch has a high

probability to be able to compute the time intervals precisely.

B. Theoretical Properties of the GSU sketch
Initially, we assume that our hash table only contains one

bucket and that fmin does not increase before the replacement.

Let Pi be the probability that the ith replacement succeeded.

Theorem V.1. (Guaranteed to be replaced) 0 ≤ tfail ≤ 2 ·
fmin.

Proof. When tfail’s incrementation reaches 2 · fmin, the

probability of replacement becomes

P =
1

2 · fmin − tfail + 1
= 1

Therefore the success of replacement is guaranteed after

several GSU processes and tfail ≤ 2 · fmin. End proof.

Remark. We call the replacement strategy a soft method

because it is an “uncertain” replacement strategy by proba-

bilistic method.

Theorem V.2. (Uniformly distributed individual replacement
probability) For all 0 ≤ i ≤ 2 · fmin, Pi =

1
2·fmin+1 .

Proof. When the ith replacement succeeded, tfail = i − 1,

which means that the first i − 1 GSU processes all failed.

Therefore,

Pi =
1

2 · fmin − (i− 1) + 1
×

i−2∏
j=0

2 · fmin − j

2 · fmin − j + 1

=
1

2 · fmin − i+ 2
× 2 · fmin − i+ 2

2 · fmin − i+ 3
× · · · × 2 · fmin

2 · fmin + 1

=
1

2 · fmin + 1
(1 ≤ i ≤ 2 · fmin + 1) .

End proof.

Theorem V.3. On average the GSU process activates fmin

times before the replacement occurs.

Proof. We calculate the expectation of tfail:

E (tfail) =

2fmin∑
i=0

i

2 · fmin + 1

=
1

2 · fmin + 1
· 1
2
· (2fmin) · (2fmin + 1)

= fmin.

End proof.

Remark. According to above results, on average fmin

increases by 1 and the smallest element is most likely to be

replaced by the element that activates the GSU process the

most.

Theorem V.4. (Non-asymptotic upper error bound) f̂ ≤ f +
fmin

Proof. We have f = f̂ if an element has never been the

least frequent element (L). Otherwise, suppose f ′
min to be

its frequency the last time when it’s L, note that from then

on, the increment of its frequency would not exceed f and

f ′
min ≤ fmin. Thus, f̂ ≤ f + fmin. End proof.

C. Quasiconsistency of the GSU sketch
Consider an i.i.d data stream with a finite domain S =

{E1, E2, · · · , EM}, and their arrival probability p1 > p2 >
· · · > pM . Assume that the hash table only contains one bucket

with λ cells, where λ << M and elements are denoted as

H = {Ê1, Ê2, · · · , Êλ}. Note that the least frequent element

(L) is Êλ, and let S1 = {E1, E2, · · · , Eλ−1}, S2 = S\S1,

and f̂(E) be the estimated frequency of E.

In this subsection we would like to show from two aspects

that when the data stream is sufficiently large, then GSU

choose elements with largest frequency with high probabil-

ity. (We call this quasiconsistency) Thus, our algorithm can

provide an accurate solution to the top-k problem.

Theorem V.5. If p2i ≥ pj , and Ej
= L is in the hash table
while Ei is L or not in the hash table. Then as t → ∞, Ei

would be inserted in the hash table and not be L.

Remark. Theorem V.5 shows that GSU choose elements

whose frequency are larger to some extent.

Next, we present the main theorem of quasiconsistency:

Theorem V.6. (quasiconsistency) If at the time t′, Êλ ∈ S2,
fmin > 1

minEi∈S1Ej∈S2
|pi−pj | , and S1∩H\{Êλ} = S1\{Êλ}.

Then
S1 ∩H\{Êλ} = S1\{Êλ}

holds always with probability at least

1− c(
pλ−1

pλ
)(min f̂(H\{̂Eλ})−fmin).

where c is a constant determined by pλ−1 and pλ.

Remark. The equation in the above theorem means that all

elements in S1 appear in the bucket. Keeping this equation

established means that the vast majority of hot elements have

a certain probability that they will not be replaced if they

are recorded by GSU. Because we consider an infinite data

stream here, there will certainly be a time when GSU arrives

at a situation where this equation holds. Also, consider the

fact that we do not have any prior knowledge of the coming

data streams, it is natural to assume that those elements who

come the earliest and the most will remain in the hash table.

According to the theorem, as the time goes by, those with

highest frequency will almost not change, which is enough

for our top-k estimation.

Before we begin the proof of the main theorem, we need

two more lemmas. We will prove Lemma V.2 using Lemma

V.1 and then we will give the proof of Theorem V.6.

Lemma V.1. Suppose a simple random walk on
Z has a diagram with transition probabilities

−2 −1 0 1 2

p

q

satisfying p > q. Let τn0 denote the hitting time starting from
n and ending at 0, and let ρn0 = P (τn0 < +∞). Then we
conclude that ρn0 = αn, α = q

p , n ≥ 0.

Proof. By definition, if i ≥ 1, we have

ρi0 = qρi−1,0 + pρi+1,0.

Obviously ρ00 = 1. Then the equation above is indeed an

order-2 homogeneous linear frequency relations with constant

coefficients. Thus, we can easily derive that ρn0 is of the form

αn, n ≥ 0. Along with the transient property for the random

walk, 0 < α < 1.

Substitute this exponential form into the above equation, we

get α = q
p . End proof.

Lemma V.2. Suppose a random walk with biased steps has a

−2b −b 0 a 2a

p

q

diagram with transition probabilities satisfying p > q,
and biased steps a < b. Let τn0 denote the hitting
time starting from n and ending at the negative half
axis, and let ρn0 = P (τn0 < +∞). More precisely, set
a = 1 − 1

fmin
, b = 1 + 1

fmin
. If pa > bq, we conclude that

ρx0 ≤ (c + 1) · α�x/b�, α = q
p , x ≥ 0, where c is a constant

determined by p and q.

Proof. By Kolmogorov’s strong law of large numbers, we

easily know that the biased random walk is transient. And it

will approach +∞ eventually. For any x > b > 0, we can get

ρx0 = qρx−b,0 + pρx+a,0.

Since it is obvious that ρx0 is decreasing with respect to x,

the equation can transform to the following inequality:

ρx,0 ≥ qρx−a,0 + pρx+a,0.

Assume that x = an, n ∈ Z
+ without harm to our aim. From

this inequality, we get

q(ρx,0 − ρx−a,0) ≥ p(ρx+a,0 − ρx,0).

⇒ ρx+a,0 − ρx,0 ≤ (
q

p
)n(ρa0 − 1).

Let κ = ρa0 − p
q , then

⇒ ρx+a,0 − ρx,0 ≤ (
q

p
)n(

p

q
+ κ− 1).

From Lemma V.1,

ρx+a,0 − ρx,0 ≤ αn + κ · p

p− q
.

It remains to bound κ. After direct calculations, κ ≤ (1 −
q)(P (τx0 > fmin, τx0 < +∞)) . End Proof.

Now we present proof of Theorem V.6 based on the above

lemma:

Proof. We will prove the theorem using skills called the de-

composition of stochastic process and comparison of Markov

chain.

For any Ei ∈ S1, Ej ∈ S2, we have

pi − pj >
1

·fmin
.

Let Δt = min f̂(H\{Êλ}) − fmin, t ≥ t′, then Δt

is a discrete time non-homogeneous Markov chain. So we

decompose it to

Δt = Δt
1 +Δt

2.

Then we construct another Markov chain Πt
1, which is a

birth and death chain with delay, starting from Δt′ . The birth

rate is pλ−1 and the death rate is pλ. Easy to prove that Δt
1 is

stochastically larger than Πt
1. Thus, without loss of generality,

suppose that Δt
1 is a birth and death chain with delay. The

transition probabilities are⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (Δt+1

1 = Δt
1 + 1|Δt

1) = pλ−1.

P (Δt+1
1 = Δt

1 − 1|Δt
1) = pλ.

P (Δt+1
1 = Δt

1|Δt
1) = 1− (P (Δt+1

1 = Δt
1 + 1|Δt

1)

+ P (Δt+1
1 = Δt

1 − 1|Δt
1))

However, the complex part hides in Δt
2. It is a non-

homogeneous Markov chain with transition probabilities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (Δt+1
2 = Δt

2 + 1|Δt
2) = 0.

P (Δt+1
2 = Δt

2 − 1|Δt
2) = 0, 0 ≤ tfail ≤ fmin.

P (Δt+1
2 = Δt

2 − 1|Δt
2) =

1

2 · fmin − tfail + 1
,

fmin + 1 ≤ tfail ≤ 2fmin.

P (Δt+1
2 = Δt

2|Δt
2) = 1− (P (Δt+1

2 = Δt
2 + 1|Δt

2)

+ P (Δt+1
2 = Δt

2 − 1|Δt
2))

Construct Πt
2. The transition probabilities are⎧⎪⎪⎪⎨⎪⎪⎪⎩

P (Δt+1
2 = Δt

2 + 1|Δt
2) = 0.

P (Δt+1
2 = Δt

2 − 1|Δt
2) = δ(tfail, fmin)

P (Δt+1
2 = Δt

2|Δt
2) = 1− (P (Δt+1

2 = Δt
2 + 1|Δt

2)

+ P (Δt+1
2 = Δt

2 − 1|Δt
2))

where δ is the Kronecker delta symbol. Easy to prove that

Δt
2 is stochastically larger than Πt

2, since fmin is monoton-

ically nondecreasing. Now we have transformed our origi-

nal complex question to an easier question on the process

Πt = Πt
1+Πt

2. This, however, is equivalent to a biased random

walk with steps defined in Lemma V.2, and p = pλ−1, q = pλ
(here we may ignore some normalised constants). Easily check

that the condition in the Lemma V.2 has been satisfied. Thus,

the conclusion is immediate. End proof.

D. Memory Bounds of the GSU sketch
In this subsection, we will focus on i.i.d streams like V-C

and compute memory cost of the GSU sketch. Suppose a

Zipf stream with a finite Domain S = {E1, E2, ..., EM} and

skewness α = 1, and let the arrival probability of Ei be

pi =
i−1

ΣM
n=1n

−1 . Define ΣD
1 = ΣD

n=1n
−1 = log (1.78D)+o (1)

(D ≥ 1). We again assume that the hash table only contains

one bucket. We define that the algorithm can successfully

identify the top-k elements when limn→∞Pλ,k(n) = 1(λ is

the number of cells in the bucket, k is the number of the

most frequent elements we need, and n means after processing

n elements). We call the largest k cells in the bucket head

counters and the other λ − k cells tail counters. In order

to make limn→∞Pλ,k(n) = 1, we must guarantee that the

increment rate of tail counters must below all the increment of

head counters. Because the increment rate of the kth element

is the slowest among all head counters, we only need to

guarantee that the increment rate of tail counters is below the

the increment rate of the kth element.

Theorem V.7. To solve the top-k problem with i.i.d Zipf stream
and skewness α = 1, for any fixed k << M , GSU requires
O(

√
logM) cells.

Proof. Every time when an element Ei appears, if i ∈ [k +
1, λ], approximately that one of tail counters increase by 1. But

if the rank of element is ∈ [λ + 1,M], the smallest element

will be replaced with probability P̃ . Therefore, the increment

rate of tail counters is:

p̂ =
Σλ

i=k+1pi + P̃ ·ΣM
i=λ+1pi

λ− k
=

Σλ
1 −Σk

1 + P̃ · (ΣM
1 −Σλ

1)

ΣM
1 · (λ− k)

GSU must guarantee pk > p̂, therefore:

λ > k + k(Σλ
1 −Σk

1 + P̃ · (ΣM
1 −Σλ

1))

= k + k ·O
(
log

λ

k
+ P̃ · log1.78M

)
= O

(
P̃ · klogM

)
We suppose N is the total number of the elements. We must

guarantee the least frequent element will appear. Therefore,

N · M
−1

ΣM
1

≥ 1 ⇒ N ≥ ΣM
1

M−1

Then, we consider P̃ , which is relative to fmin and the number

of the λth frequent element, and that M is sufficiently large:

P̃ =
1

(2 · fmin − tfail + 1)

= O

(
1

fmin

)
= O

(
λ−1

ΣM
1

·N
)−1

≤ O

(
λ

M

)
= O

(
klogM

M

)
≤ O

(
1

k
√
logM

)
Therefore, GSU requires λ = O

(√
logM

)
. End proof.

E. Memory Cost of the Entire PeriodicSketch
Here, we discuss the overall memory cost of PeriodicSketch.

Firstly, suppose M is the number of items inserted into the

GSU sketch, and GSU has one bucket with λ = M cells. Note

that all items will be placed in a corresponding position and no

item will be replaced, we can conclude that in this case GSU

has zero error and we can solve the top-k problem with at

most O(M) memory. Secondly, let N be the number of items

in the data stream (the stream length) and N0 be the number

of distinct items, we have M = o(N), N0 = o(N) and that if

w = O(N0) then there is a high probability that there will be

no hash collisions, so the Cover-Min sketch has high accuracy

with O(N0) memory. In conclusion, we can find the periodic

items with at most o(N) memory.

Since it is hard to accurately analysis the memory cost of

the entire PeriodicSketch, we only get the above result o(N),
which is a loose theoretical bound. In fact, the experimental

results shows that our memory cost is much better compared

with N (e.g., 1.8 ∗ 106 bytes for N = 108 items).

VI. EXPERIMENTAL RESULTS

In this section, we show the experimental results of Period-

icSketch. First, we describe the experimental setup in Section

VI-A. Second, how parameter settings affect PeriodicSketch’s

performance is shown in Section VI-B. Third, we evaluate

the performance of PeriodicSketch on different datasets and

compare it with the baseline solution in Section VI-C. Finally,

through the Cache prefetch experiment, we provide a concrete

case of the application of PeriodicSketch.

A. Experimental Setup
Dataset: We use four real-world datasets, CAIDA datasets

(CAIDA2016, CAIDA2018), MAWI datasets and MACCDC

datasets. They can be divided into the following 3 types

according to the sources.

1) IP Trace Dataset. The IP Trace Dataset is streams of

anonymized IP traces collected by CAIDA [38]. Our exper-

iment uses CAIDA2016 and CAIDA2018. They consist of

many types of traffic (e.g., DDoS attack, TCP and UDP

probing, BGP monitoring) [39], and have different flow size

distribution and different portion of the traffic type (i.e., the

proportion of their TCP is 44% and 65%) [40]. For IP Trace

Dataset, there are around 30M items and 900K distinct items.

2) Packet Traffic Traces Dataset. This real traffic traces data

is provided by the MAWI Working Group [41]. For MAWI

Dataset, there are around 9M items and 13K distinct items.

3) MACCDC: The MACCDC datasets is provided by the U.S.

National CyberWatch Mid-Atlantic Collegiate Cyber Defense

Competition (MACCDC) [42]. For MACCDC Dataset, there

are around 13M items and 400K distinct items.

For the above datasets, each item contains a source IP

address (4 bytes) and a destination IP address (4 bytes), 8

bytes in total. Timestamps are in microseconds.

Default Parameter: We set ΔT to a fixed value of 1ms.

Implementation: We have implemented PeriodicSketch and

the baseline solution in C++. The hash functions are imple-

mented using the 32-bit Bob Hash (obtained from the open-

source website [43]) with different initial seeds.

Computation Platform: We conducted all the experiments

on a machine with one 4-core processor (8 threads, Intel(R)

Core(TM) i5-8259U CPU @ 2.30GHz) and 16 GB DRAM

memory. The processor has 64KB L1 cache, 256KB L2 cache

for each core, and 6MB L3 cache shared by all cores.

Metrics:
1) Precision Rate (PR): Precision Rate (PR) is the ratio of the

number of correctly periodic items to the number of periodic

items reported.

2) Recall Rate (RR): Recall Rate (RR) is the ratio of the

number of correctly reported periodic items to the number of

correctly periodic items.

3) Average Absolute Error (AAE): For each ID e that

is periodic, we calculate the average absolute error for the

predicted mean. We define the average absolute error as

AAE = 1
|Ψ |

∑
ei∈Ψ |fi − f̂i|, where fi is the real frequency

of periodic item ei, f̂i is its estimated frequency of periodic

item, and Ψ is the query set.

4) Average Relative Error (ARE): We define the average

relative error as ARE = 1
|Ψ |

∑
ei∈Ψ

|fi−f̂i|
fi

, where fi is the

real frequency of periodic item ei, f̂i is its estimated frequency

of periodic item, and Ψ is the query set.

5) Throughput: We use Million of operations (insertions) per

second (Mips) to measure the throughput. Experiments are

repeated 10 times and the average throughput is reported.

Baseline Solution: As the first method to find periodic items

in data streams, and considering that existing works cannot be

directly compared with our work, we propose a sketch-based

baseline approach of finding periodic items in data streams.

Similar to PeriodicSketch, our baseline solution processes new

items by two steps. First, we record the historic appearances of

the item using Bloom filters [20]. Second, we use the Space-

Saving [21] algorithm to find frequent items with the same

intervals.

STEP 1: Specifically, we first divide the timeline into many

pieces of size X , i.e., the ith time piece is a time span [(i−
1)×X , i×X). Each time piece has a Bloom filter, a compact

data structure recording all the items arrived in the time piece.

So that we know whether any item appears in any time piece,

with tolerable error.

STEP 2: For each inserted item (e), we first look up the

Bloom filters, and then subtract the last arrival time (i.e., time

piece ID l) from the current time (i.e., time piece ID c) to get

an estimate of the time interval V ∗ = (c − l)X ≈ V . Next,

we combine the item ID e with the interval V ∗ to get item

pair e′ =< e, V ∗ >. We use the Space-Saving algorithm, the

most well known algorithm of finding top-K frequent items,

to find K most frequent item pairs. Finally, we treat them as

periodic elements for return.

B. Experiments on Parameter Settings
In this section, we conduct several experiments to measure

the effects of key parameters of PeriodicSketch, namely, the

ratio r of the memory size of Cover-Min sketch to the memory

size of the whole PeriodicSketch, and the number of hash

functions d in Cover-Min sketch. In other words, the Cover-

Min sketch is composed of d hash tables, while the GSU

sketch is composed of one hash table. We use the CAIDA2016

in these experiments, and PR and RR to evaluate the effects.

10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

PR

r (%)

Memory=20KB Memory=30KB
Memory=40KB Memory=50KB

(a) PR of r

10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
R

r (%)

Memory=20KB Memory=30KB
Memory=40KB Memory=50KB

(b) RR of r

Fig. 5: Effect of the system parameter r.

Effect of ratio r (Figure 5): The experimental results show

that the best value for the ratio r is from 15 to 20. When r =
10 to r = 25, PR increases with the increase of r, and tends to

be stable when r = 20 and r = 25. RR first increases slightly,

and stabilizes at r = 15 and r = 20, and then decreases at

r = 25 and r = 30.

1 2 3 4 5

0.8

0.85

0.9

0.95

PR

d

Memory=20KB Memory=30KB
Memory=40KB Memory=50KB

(a) PR of d

1 2 3 4 5

0.7

0.75

0.8

0.85

0.9

0.95

R
R

d

Memory=20KB Memory=30KB
Memory=40KB Memory=50KB

(b) RR of d

Fig. 6: Effect of the system parameter d.

Effect of ratio d (Figure 6): The experimental results show

that the optimal value for d is 2. When d = 2, PR has a

maximum value. PR tends to decrease when d = 3, 4, 5. RR

has an optimal value when d = 2 and d = 3. When d = 3 to

d = 5, RR has a tendency to decrease and fluctuate.
We must emphasize that even if the ARE of r and d is

slightly larger in some values, our sketch is far superior to the

baseline solution.

Parameter Selection: Based on the comprehensive analysis

of the results (Figure 5 and 6), we recommend the selection

of key parameters as follows: r = 15(%) and d = 2.

C. Comparison with Baseline Solution
In this section, we compare PeriodicSketch’s performance

with the baseline solution in the metrics below. For Period-

icSketch, we set the memory size range to 50-150KB. In

addition, for the values of the main system parameters r
and d, we directly choose the recommendations in Section

VI-B: r = 15(%) and d = 2. It should be noted here
that for the baseline solution, the memory size range is
set to 500-1500KB, which is 10 times higher than that of
PeriodicSketch.
PR (Figure 7): This experiment shows that the PR of Peri-
odicSketch is greatly outperforms the baseline solution. The

results show that PeriodicSketch’s PR is about 77.3% higher

than the baseline solution.

RR (Figure 8): This experiment shows that RR of Period-
icSketch is overwhelmingly higher than the baseline solution.
Compared to the baseline solution, RR of PeriodicSketch is

about 74.4% higher in average.

AAE (Figure 9): This experiment shows that AAE of Period-
icSketch is significantly lower than the baseline solution. On

different datasets, the AAE of PeriodicSketch has different

degrees of advantage over the baseline solution. Specifically,

the AAE of the PeriodicSketch is between 173 to 206, 273

to 360, 1346 to 2019, and 656 to 830 times lower than the

baseline solution on the four datasets, respectively. On average,

the AAE of the PeriodicSketch is 737 times smaller than the

baseline solution.

ARE (Figure 10): This experiment shows that ARE of Peri-
odicSketch is obviously lower than the baseline solution. On

different datasets, the ARE of PeriodicSketch has different

degrees of advantage over the baseline solution. Specifically,

the ARE of the PeriodicSketch is between 128 to 168, 231

to 290, 218 to 270, and 479 to 551 times lower than the

baseline solution on the four datasets, respectively. On average,

the ARE of the PeriodicSketch is 284 times smaller than the

baseline solution.

Throughput (Figure 11): Our results show that the insertion
throughput of the PeriodicSketch is much higher than that
of the baseline solution. The throughput of PeriodicSketch

is 14.5Mips in average. Moreover, the throughput of Period-

icSketch is between 2.8 to 4.1 times higher than that of the

baseline solution.

Analysis: Our experimental results show that our PeriodicS-

ketch can achieve high accuracy and high throughput in small

memory. The baseline solution needs much more memory to

work because it needs multiple Bloom filters to record the

information of every time piece, while our PeriodicSketch

only use one Cover-Min sketch to record the approximate

state of each item, which largely save the space. In addition,

the baseline solution needs to check multiple Bloom filters

in one insertion, which decreases its throughput, while our

PeriodicSketch guarantees that it can finish one insertion in

O(1) time.

50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

Periodic Baseline

(a) CAIDA2016

50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

Periodic Baseline

(b) CAIDA2018

50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

Periodic Baseline

(c) MAWI

50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

PR

Memory (KB)

Periodic Baseline

(d) MACCDC

Fig. 7: The Periodic Precision Rate (PR) vs. memory.

50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

R
R

Memory (KB)

Periodic Baseline

(a) CAIDA2016

50 75 100 125 150

0.2

0.4

0.6

0.8

1

R
R

Memory (KB)

Periodic Baseline

(b) CAIDA2018

50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

R
R

Memory (KB)

Periodic Baseline

(c) MAWI

50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

R
R

Memory (KB)

Periodic Baseline

(d) MACCDC

Fig. 8: The Periodic Recall Rate (RR) vs. memory.

50 75 100 125 150
100

101

102

103

104

105

A
A
E

Memory (KB)

Periodic Baseline

(a) CAIDA2016

50 75 100 125 150
100

101

102

103

104

105

A
A
E

Memory (KB)

Periodic Baseline

(b) CAIDA2018

50 75 100 125 150
100

101

102

103

104

105

A
A
E

Memory (KB)

Periodic Baseline

(c) MAWI

50 75 100 125 150
100

101

102

103

104

105

A
A
E

Memory (KB)

Periodic Baseline

(d) MACCDC

Fig. 9: The Periodic Average Absolute Error (AAE) vs. memory.

50 75 100 125 15010-3

10-2

10-1

100

101

A
R
E

Memory (KB)

Periodic Baseline

(a) CAIDA2016

50 75 100 125 150
10-3

10-2

10-1

100

101

A
R
E

Memory (KB)

Periodic Baseline

(b) CAIDA2018

50 75 100 125 150
10-3

10-2

10-1

100

101

A
R
E

Memory (KB)

Periodic Baseline

(c) MAWI

50 75 100 125 150
10-3

10-2

10-1

100

101

102

A
R
E

Memory (KB)

Periodic Baseline

(d) MACCDC

Fig. 10: The Periodic Average Relative Error (ARE) vs. memory.

CAIDA2016 CAIDA2018 MAWI MACCDC
0

5

10

15

20

Th
ro
ug
hp
ut
(M
ip
s)

Dataset

PeriodicSketch Baseline Solution

Fig. 11: Throughput comparison.

D. End-to-End Experiments for a Concrete Case
We implement the Cache Prefetching (Case 1) through

end-to-end experiments in this section. Specifically, we ob-

serve whether applying PeriodicSketch to Least Recently Used

(LRU) [44] and Least Frequently Used (LFU) [45] algorithms

improves the Cache hit ratio. The details are as follows:

Experimental Setup: In this experiment, there is a Cache

and a PeriodicSketch. When each period/interval starts, we

prefetch the periodic items with a frequency grater than 5

from the PeriodicSketch, and insert them into the Cache. We

use this prefetch method to improve the performance of two

famous Cache strategies: LRU and LFU. LRU evicts the least

recently used items when a new item comes. LFU evicts the

least frequently used items instead. Cache Hit Ratio refers to

(Number of Cache hits)/(Number of Cache hits + Number of

Cache misses). We show the experimental results of two real-

world datasets2 (CAIDA2018 and Criteo3) and one Synthetic

dataset. Our Synthetic dataset has 108 items totally. Among

them, the items of the P% ratio are periodic items, each of

which has a period with the interval of 5 ∗ 104 items and

repeats for 2000 times. The other items are random items,

and most of them only appear once. The memory usage is

as follows: 1) PeriodicSketch uses 3 ∗ 105 bytes (293KB) in

the real-world datasets; 2) PeriodicSketch uses 1.8∗106 bytes

(1758KB) in the Synthetic dataset4; 3) the memory used by

the Cache is the Cache size*4 bytes in the figures below.

Experimental Results (Real-World Datasets): We find that

PeriodicSketch significantly improves the Cache hit ratio of

LFU or LRU by more than 10% in a large Cache Size

range from Figure 12(a)-12(b). In CAIDA2018 and Criteo,

the proportions of periodic items among all items/packets are

45.0% and 96.0%, respectively.

Experimental Results (Synthetic Dataset): Figure 13(a)-

13(b) shows that PeriodicSketch can improve the Cache hit

ratio of LFU and LRU by more than 100 times when the

2In fact, we have conducted experiments on more than 10 real-world
datasets, but the proportion of periodic items in some datasets is too small
to help improve the Cache Hit Ratio (explain later). In addition, we also
find that the real-world datasets we have experimented so far are difficult to
significantly improve the Cache hit ratio for both LRU and LFU. Thus, we
separately select a real-world dataset as a representative from all datasets that
can help improve LRU or LFU to show the experimental results.

3Criteo Dataset [46] contains feature values and conversion feedback for
clicked display ads sampled over a two-month period. Every ad is associated
with a timestamp and 9 categorical terms hashed for anonymity, for a total
of 150K unique hashed categorical terms [47].

4Since our Synthetic dataset has many periodic items, a larger memory is
needed to store these periodic items.

100 1000 10000 100000
20

40

60

80

100

C
ac
he
H
it
R
at
io
(%
)

Cache Size

LFU+Periodic LFU
LRU+Periodic LRU

(a) CAIDA2018

100 1000 100000
20

40

60

80

100

C
ac
he
H
it
R
at
io
(%
)

Cache Size

LFU+Periodic LFU
LRU+Periodic LRU

(b) Criteo

Fig. 12: The Cache hit ratio of LFU and LRU on the

CAIDA2018 and Criteo datasets, where the proportion of pe-

riodic items to the total items in the two datasets is as follows:

1.22 ∗ 107/2.71 ∗ 107 ≈ 45.0%, 9.6 ∗ 106/107 = 96.0%.

Cache size is small. The reason why LRU and LFU performs

poorly is the Cache thrash [48], which is a cascade of Cache

misses caused by a special traffic pattern (e.g., periodic items).

100 1000 10000 100000
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

C
ac
he
H
it
R
at
io
(%
)

Cache Size

LFU+Periodic LFU
LRU+Periodic LRU

(a) Fixed Proportion: 50%

10 20 30 40 50 60 70 80 90 100
10-5
10-4
10-3
10-2
10-1
100
101
102

C
ac
he
H
it
R
at
io
(%
)

Proportion of Periodic Items (%)

LFU+Periodic LFU
LRU+Periodic LRU

(b) Fixed Cache Size: 104

Fig. 13: The Cache hit ratio of LFU and LRU on the Synthetic.

When P% = 100%, the Cache hit ratio of LFU and LRU is 0.

VII. CONCLUSION

Finding periodic items in high-speed data streams in real

time plays an essential role in many applications. This paper

proposes a novel algorithm called PeriodicSketch for finding

top-K periodic items in data streams, which is the first sketch-

based method to solve this problem. Our first key technique,

the Cover-Min sketch, is used to record and report the in-

terval for each incoming item. Our second key technique is

called GSU replacement strategy, which is able to differentiate

periodic items from others with high probability, in limited

memory space. Experimental results show that PeriodicSketch

can achieve around 77.3% higher PR, 74.4% higher RR, 3.1

times higher throughput, and up to 2019 times (737 times

in average) lower ARE than the baseline solution. Finally,

our Cache prefetch experiment verify that PeriodicSketch can

significantly improve the Cache hit ratio on several datasets.

ACKNOWLEDGMENT

We would like to thank our Sheng Long, Ruwen Zhang and

the anonymous reviewers, for their help in improving this pa-

per. This work is supported by Key-Area Research and Devel-

opment Program of Guangdong Province 2020B0101390001,

National Natural Science Foundation of China (NSFC) (No.

U20A20179, 61832001).

REFERENCES

[1] “The source codes of our and other related algorithms.” [Online].
Available: https://github.com/pkufzc/PeriodicSketch

[2] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, 2005.

[3] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM), 2018, pp.
561–575.

[4] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang,
H. Wu, Y. Wang, and N. Zhang, “Lightguardian: A Full-Visibility,
lightweight, in-band telemetry system using sketchlets,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2021, pp. 991–1010.

[5] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch.” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013, pp. 29 –
42.

[6] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1699
– 1699, 2012.

[7] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian:
Separate and guard hot items in data streams,” in Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2018, pp. 2584 – 2593.

[8] Y. Zhang, J. Li, Y. Lei, T. Yang, Z. Li, G. Zhang, and B. Cui, “On-off
sketch: A fast and accurate sketch on persistence,” Proceedings of the
VLDB Endowment, vol. 14, no. 2, pp. 128 – 140, 2020.

[9] S. A. Singh and S. Tirthapura, “Monitoring persistent items in the union
of distributed streams,” Journal of Parallel and Distributed Computing,
vol. 74, no. 11, pp. 3115–3127, 2014.

[10] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proceedings of the VLDB Endowment, vol. 10, no. 4,
pp. 289 – 300, 2016.

[11] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in
small memory,” in Proceedings of the 28th Conference on Computer
Communications (INFOCOM), 2009, pp. 504 – 512.

[12] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New streaming
algorithms for fast detection of superspreaders,” Department of Electri-
cal and Computing Engineering, 2005.

[13] A. Floratou, N. Megiddo, N. Potti, F. Ozcan, U. Kale, and J. Schmitz-
Hermes, “Adaptive caching in big sql using the hdfs cache,” in Proceed-
ings of the 7th ACM Symposium on Cloud Computing (SoCC), 2016,
pp. 321 – 333.

[14] Y. Zhang and R. Gupta, “Enabling partial cache line prefetching through
data compression,” in Proceedings of the International Conference on
Parallel Processing (ICPP), 2003, pp. 277 – 285.

[15] E. Cole, Advanced Persistent Threat: Understanding the Danger and
How to Protect Your Organization. Syngress Publishing, 2012.

[16] “Mila Parkour. Contagio malware database.” [Online]. Available: https:
//www.mediafire.com/folder/c2az029ch6cke/base

[17] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. a. Gama,
“Machine learning for streaming data: State of the art, challenges, and
opportunities,” ACM SIGKDD Explorations Newsletter, vol. 21, no. 2,
p. 6–22, 2019.

[18] C. Pirrong, “Energy market manipulation: Definition, diagnosis, and
deterrence,” The Energy Law Journal, vol. 31, 2010.

[19] T. Chen, H. Yin, H. Chen, H. Wang, and X. Li, “Online sales prediction
via trend alignment-based multitask recurrent neural networks,” Knowl-
edge and Information Systems, vol. 62, no. 7, pp. 1–29, 2020.

[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, 1970.

[21] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Proceedings of the
10th International Conference on Database Theory (ICDT), 2005, pp.
398–412.

[22] D. Ting, “Data sketches for disaggregated subset sum and frequent
item estimation,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2018, pp. 1129 – 1140.

[23] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems, vol. 21, no. 3, pp. 270 – 313, 2003.

[24] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” Theoretical Computer Science, vol. 312, no. 1, pp. 3–15,
2002.

[25] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking,
vol. 20, no. 5, pp. 1622 – 1634, 2012.

[26] D. Fan and R. Davood, “New estimation algorithms for streaming data:
Count-min can do more.” Webdocs. Cs. Ualberta. Ca, 2007. [Online].
Available: https://webdocs.cs.ualberta.ca/∼fandeng/paper/cmm.pdf

[27] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2016,
pp. 1449 – 1463.

[28] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig, “Cold
filter: A meta-framework for faster and more accurate stream process-
ing,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2018, pp. 741 – 756.

[29] K. Amphawan, P. Lenca, and A. Surarerks, “Mining top-k periodic-
frequent pattern from transactional databases without support threshold,”
Communications in Computer and Information Science, vol. 55 CCIS,
pp. 18 – 29, 2009.

[30] S. K. Tanbeer, C. F. Ahmed, and B.-S. Jeong, “Mining regular patterns
in data streams,” in Proceedings of the 15th International Conference
on Database Systems for Advanced Applications (DASFAA), 2010, pp.
399–413.

[31] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Stagger: Periodicity
mining of data streams using expanding sliding windows,” in Proceed-
ings of the 6th International Conference on Data Mining (ICDM), 2006,
pp. 188 – 199.

[32] Q. Yuan, J. Shang, X. Cao, C. Zhang, X. Geng, and J. Han, “Detecting
multiple periods and periodic patterns in event time sequences,” in
Proceedings of the 26th ACM on Conference on Information and
Knowledge Management (CIKM), 2017, pp. 617 – 626.

[33] M. Toller, T. Santos, and K. R., “Sazed: parameter-free domain-agnostic
season length estimation in time series data,” Data Mining and Knowl-
edge Discovery, vol. 33, no. 6, pp. 1775 – 1798, 2019.

[34] Q. Wen, K. He, L. Sun, Y. Zhang, M. Ke, and H. Xu, “Robustperiod:
Time-frequency mining for robust multiple periodicities detection,” in
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), 2021, pp. 2328 – 2337.

[35] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic
behaviors for moving objects,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), 2010, pp. 1099 – 1108.

[36] S. Ma and J. Hellerstein, “Mining partially periodic event patterns with
unknown periods,” in Proceedings of the 17th International Conference
on Data Engineering (ICDE), 2001, pp. 205 – 214.

[37] F. Ergun, H. Jowhari, and M. Sağlam, “Periodicity in streams,” in
Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, 2010, pp. 545–559.

[38] “The CAIDA Anonymized Internet Traces.” [Online]. Available: http:
//www.caida.org/data/overview/

[39] A. Ferriyan, A. H. Thamrin, K. Takeda, and J. Murai, “Generating
network intrusion detection dataset based on real and encrypted synthetic
attack traffic,” Applied Sciences, vol. 11, no. 17, p. 7868, 2021.

[40] S. Bauer, B. Jaeger, F. Helfert, P. Barias, and G. Carle, “On the
evolution of internet flow characteristics,” in Proceedings of the Applied
Networking Research Workshop (ANRW), 2021, p. 29–35.

[41] “MAWI Working Group Traffic Archive.” [Online]. Available: http:
//mawi.wide.ad.jp/mawi/

[42] “Capture files from Mid-Atlantic CCDC.” [Online]. Available: https:
//www.netresec.com/?page=MACCDC

[43] “The source code of Bob Hash.” [Online]. Available: http://burtleburtle.
net/bob/hash/evahash.html

[44] A. Dan and D. Towsley, “An approximate analysis of the lru and
fifo buffer replacement schemes,” in Proceedings of the 1990 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 1990, pp. 143 – 152.

[45] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (lru) and least frequently used (lfu) policies,” in

Proceedings of the 1999 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS),
1999, pp. 134 – 143.

[46] “The Criteo dataset Internet Traces.” [Online]. Available: https://ailab.
criteo.com/criteo-attribution-modeling-bidding-dataset/

[47] P. Chen, D. Chen, L. Zheng, J. Li, and T. Yang, “Out of many we
are one: Measuring item batch with clock-sketch,” in Proceedings of
the 2021 International Conference on Management of Data (SIGMOD),
2021, pp. 261 – 273.

[48] P. J. Denning, “Thrashing: Its causes and prevention,” in Proceedings
of the December 9-11, 1968, Fall Joint Computer Conference, Part I
(AFIPS), 1968, pp. 915 – 922.

