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Abstract—This paper introduces a novel framework, M4, de-
signed to estimate per-flow quantiles in data streams accurately. M4
is a versatile framework that can be integrated with a wide array of
single-flow quantile estimation algorithms, thereby enabling them
to perform per-flow estimation. The framework employs a sketch-
based approach to provide a space-efficient method for record-
ing and extracting distribution information. M4 incorporates two
techniques: MINIMUM and SUM. The MINIMUM technique mini-
mizes the noise on a flow from other flows caused by hash collisions,
while the SUM technique efficiently categorizes flows based on
their sizes and customizes treatment strategies accordingly. We
demonstrate the application of M4 on three single-flow quantile
estimation algorithms (DDSketch, t-digest, and ReqSketch), de-
tailing the specific implementation of the MINIMUM and SUM
techniques. We provide theoretical proof that M4 delivers high
accuracy while utilizing limited memory. Additionally, we conduct
extensive experiments to evaluate the performance of M4 regarding
accuracy and speed. The experimental results indicate that across
all three example algorithms, M4 significantly outperforms two
comparison frameworks in terms of accuracy for per-flow quantile
estimation while maintaining comparable speed.

Index Terms—Per-flow, quantile estimation, data streams.

I. INTRODUCTION

A. Background and Motivation

W ITH the development of data stream processing, accu-
rate, real-time extraction of required information from a
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large volume of high-speed data streams is attracting increasing
attention [2], [3], [4], [5], [6]. Among the various types of
information, quantile information, which requires distribution
statistics for data streams, has become a focal point of numerous
studies [7], [8], [9], [10], [11], [12], [13]. Recent research
trends have evolved from estimating the quantile for a single
data stream to developing data structures that can concurrently
estimate quantiles for multiple sub-streams, also known as
flows. In practical scenarios, many metrics necessitate per-flow
granularity estimation of distribution, such as Latency [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], Inter-Arrival
Time [24], [25], [26], Packet Size [27], [28], [29], [30], and
TTL (Time to Live) Value [31], [32]. Accurate estimation of
per-flow distribution has wide-ranging practical applications and
significant potential in distributed network scenarios, including
improving the quality of service (QoS) for users [33], [34],
[35], enhancing network anomaly detection [36], [37], [38],
and boosting the performance of Content Delivery Networks
(CDNs) [39]. Consequently, the primary objective of this article
is to perform quantile estimation for each individual flow in the
data stream.

A data stream is a sequence of items, each repre-
sented as a key-value pair. Items sharing the same key
compose a flow. The shared key serves as the flow ID.1

The value is the metric that needs processing. All items
from different flows are intermixed in a data stream
(e.g., DS = {〈a, 3〉, 〈a, 2〉, 〈b, 5〉, 〈d, 1〉, 〈a, 4〉, . . .}). This pa-
per uses quantile to demonstrate per-flow value distribution.
The items in a flow can be represented by a multiset F =
{〈a, x1〉, 〈a, x2〉, . . . , 〈a, xn〉} of size n, where a is the key,
xi is the value and x1 ≤ x2 ≤ · · · ≤ xn. Given a percentage
p (0 ≤ p ≤ 1), the p-quantile of value is x∗ s.t. the percent-
age of xi ≤ x∗ in the multiset F equals to p. With the above
preliminaries, we give the problem definitions:
� Per-Flow Quantile Estimation:

SELECT key, p-quantile(value)
FROM DataStream
GROUP BY key

� Single-Flow Quantile Estimation:
SELECT p-quantile(value)
FROM DataStream

Accurately estimating the per-flow distribution is of wide
practical usage and has many important potential applications
in distributed scenarios. We provide three use cases as follows:

1) Improving of the quality of service (QoS) for online app
users: In the digital era, online applications such as real-time

1A flow ID is typically defined as a part of the five tuples: source IP address,
destination IP address, source port, destination port, and protocol. This paper
considers the number of items in a flow as the flow size, also referred to as the
item frequency.
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video communications, online gaming, and streaming services
have become integral to daily life [33], [34], [35]. These appli-
cations demand high-quality network services to ensure seam-
less user experience. Any degradation in network performance,
particularly in terms of latency, can significantly affect the
Quality of Service (QoS). This is especially true for applications
requiring real-time interactions, such as remote control systems
and remote sensing applications, where delays can compromise
operational integrity and user experience. The challenge for
network managers in maintaining optimal QoS lies in the ability
to precisely identify and rectify latency issues at a per-user gran-
ularity. By pinpointing the exact source and user with latency
issues, network managers can implement targeted interventions
to resolve these issues swiftly and efficiently.

2) More effective network anomaly detection: In this scenario,
a flow refers to packets going through a network link with the
same five-tuple ID. Network anomalies, such as congestion or
the presence of malware, often manifest as abrupt increases in the
latency of several flows [36], [37], [38] within a network link.
These anomalies are critical to identify and mitigate, as they
can severely impact network performance and security. Tradi-
tional single-flow quantile estimation approaches aggregate data
across all flows, which can dilute the impact of anomalies present
in a small subset of flows. This aggregation effect can lead to a
failure in detecting subtle yet critical anomalies, allowing them
to persist undetected and potentially cause extensive damage to
the network infrastructure or compromise sensitive data. Our
algorithm, by contrast, ensures that even minor deviations in
latency are detected, thereby significantly enhancing the sensi-
tivity of anomaly detection.

3) Cache performance optimization: A core challenge in
this domain [40], [41], [42] is the diverse latency requirements
and usage patterns across different flows, where a flow may
represent a distinct user or a specific service. High latency in a
flow often signals suboptimal data placement within the cache,
necessitating strategic adjustments to either the data’s location
or its storage modality to enhance access speed. Our approach
effectively evaluates cache strategy impacts on different flows,
identifying when optimizations reduces average latency but
inadvertently disadvantage high-priority users. It also identifies
strategies that benefit latency-insensitive services at the cost of
sensitive ones, allowing the development of cache strategies
that enhance system efficiency without compromising critical
service performance.

Numerous studies have significantly advanced the field of
single-flow quantile estimation [16], [17], [18], [19], [43],
[44], [45], [46]. Approximate algorithms—often referred to as
sketches—have predominantly excelled in scenarios requiring
low memory overhead and rapid processing, with only minimal
accuracy trade-offs. However, a critical limitation inherent in
these approaches is their inability to discern among multiple flow
IDs. They are designed either to estimate quantiles for individual
keys in isolation or to aggregate across all data stream values
without key differentiation. This results in a binary choice: a
focused but isolated single-flow estimation or a comprehensive
yet undifferentiated analysis across all flows. It fails to address
the nuanced requirements of modern networked systems, where
identifying and analyzing per-flow metrics is crucial for opti-
mizing performance and detecting anomalies.

The evolution of applications and the diversity of their re-
quirements necessitate a more granular approach to quantile

estimation—one that can accurately measure and adapt to the
unique characteristics of each flow. To bridge this gap, there are
two strategic paths: designing a brand new algorithm tailored for
per-flow estimation [47], [48] or a versatile framework capable
of enabling existing single-flow algorithms to handle per-flow
queries. We advocate for the latter, recognizing its potential for
broad applicability and design simplicity. This approach lever-
ages the strengths of existing algorithms to cater to scenarios
with varying priorities like throughput, accuracy, and memory
efficiency.

By opting for a framework that transforms single-flow algo-
rithms into their per-flow counterparts, we present a solution
that is both adaptable and scalable. This framework not only
retains the inherent advantages of the original algorithms but
also expands their utility to support per-flow estimation, thereby
addressing a critical need in network management and analysis.
In doing so, our approach provides a comprehensive toolset for
network administrators and researchers, enabling them to tackle
a wide array of challenges with unprecedented precision and
flexibility.

There are several challenges when designing such a frame-
work. (1) Algorithmic Compatibility. Different single-flow
algorithms may have unique characteristics, optimizations, and
assumptions that may not directly translate to a per-flow context.
The framework must provide a flexible architecture that can
adapt various single-flow algorithms to per-flow requirements
without compromising their inherent advantages. (2) Scalabil-
ity. One of the foremost challenges is ensuring that the frame-
work scales efficiently with the number of flows. Single-flow
algorithms are typically optimized for performance with a single
data stream. Extending these to accommodate multiple, poten-
tially thousands or millions of flows, can introduce significant
computational and memory overhead. The framework must
efficiently manage resources to maintain high performance and
accuracy across all flows. (3) Data Skew and Flow Variability.
In real-world networks, some flows may be more active or larger
than others, leading to data skew. The framework needs to handle
such variability, ensuring that large or high-volume flows do not
overshadow smaller ones.

B. Our Solution and Contributions

To achieve our design goal, we propose a novel framework
named MINIMUM-SUM (M4). M4 is a framework that can
be applied to an extensive range of single-flow quantile esti-
mation algorithms, enabling them to perform per-flow quantile
estimation. For simplicity, we refer to the single-flow algorithm
on which we employ M4 as META. As depicted in Fig. 1, M4
uses limited memory to construct several layers of buckets. Each
bucket contains a META to record distribution. Every META
treats all incoming items identically. We use hash functions to
map flows to buckets for recording. A single flow can be mapped
to multiple buckets. If a hash collision occurs, the distribution
of the collided flows will sum up in the bucket. Each bucket
has a load capacity. The insertion of a flow starts at a lower
layer. When the buckets in the lower layer overflow, we insert
the subsequent items into the upper layers. Buckets in higher
layers have larger capacity and finer granularity. M4 comprises
two techniques: MINIMUM and SUM. As long as the META
can generate the value distribution for a single flow, we can use
MINIMUM and SUM to transform it into an efficient per-flow
quantile estimation algorithm.
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Fig. 1. Illustration of M4. Arrows pointing from II to I represent the hashing
operation. Flow A is represented by blue. Flow B is represented by red.

MINIMUM resolves hash collisions by randomly selecting
several buckets for each flow in each layer using multi-hashes
and extracting the real distribution from these selected buckets.
To address hash collisions, a straightforward solution is to use
a hash table of buckets, each containing a META to record the
value distribution of a flow. However, this approach requires
recording IDs and executing complex operations (typically de-
pendent on the number of flows) to locate another available
bucket during a hash collision, which is both memory and time
consuming. A more efficient solution is Memory Sharing. We
use w hash functions to map a flow to w buckets of META for
recording, providing us with w records for every flow. Due to
hash collisions, more than one flow may be mapped into one
bucket. Thus, every flow record may contain some noise from
other flows, and we need to compare and analyze the distribu-
tions given by all the records to restore the real distribution. For
instance, as shown in Fig. 1, a small flow A and a large flow
B are inserted into M4.2 Flow A can be contained in the first
layer, while flow B is segmented into parts I and II3 due to its
large size. Flow A and B encounter a hash collision at bucket
2© in the first layer, so their distribution information is mixed

in the bucket. We need to use bucket 1© and 2© to restore the
real distribution of flow A and use bucket 2© and 3© to restore
the real distribution of part I of flow B. Because noise at one
value point only increases the density at that point, by selecting
the lowest density at each value point, the estimated value
distribution bears the slightest noise possible. As we take the
intersection of distributions, we call it the MINIMUM technique.
We can see in Fig. 1 that the MINIMUM technique allows us to
restore the real distribution of flow A and part I of flow B. It
should be noted that if META can give an error-free result when
estimating single-flow distribution, our MINIMUM is optimal
and can guarantee a unilateral error of over-estimation when
estimating per-flow distribution.

SUM categorizes flows based on their sizes through segmen-
tation. It uses multiple layers to segment every flow into multiple
parts and tailor the treatment in each layer. Then it aggregates

2There is a predefined threshold that classifies flows based on their sizes.
Flows with sizes below this threshold are called small flows, otherwise they are
called large flows.

3We cut flow B into top and bottom halves just for simplicity.

these parts to generate the full distribution. There are two reasons
why we need flow categorization. First, the flow size distribution
in a data stream is usually highly skewed. For example, in
CAIDA [49] dataset, about 40% flows only contain ≤ 3 items. It
would be a colossal waste to allocate equal resources to a small
flow and a large one. Second, large flows get more attention
in practical applications4. Hence, the larger a flow is, the more
resources should be allocated to achieve a fair or better accuracy
than small flows. Thus, we want to categorize flows according to
their sizes efficiently. However, we do not know if a flow is large
or small in advance. To solve this, M4 has a layered structure,
where lower layers are for coarse-grained recording of small
flows and higher layers are for fine-grained recording of large
flows. Each flow is considered a small flow in the beginning.
When the recorded flow size exceeds the capacity in lower layers,
we know it is a large flow, so we insert the subsequent items into
higher layers. In this way, the distribution information of a large
flow is scattered at multiple layers. We need to aggregate all
parts together to get the entire distribution. As shown in Fig. 1,
we need to use bucket 4© and ( 2©MINIMUM 3©) to restore the
real distribution of flowB. Because the distribution in two layers
corresponds to two disjoint parts of flowB, we should sum up the
density at each value point to construct the overall distribution
information. Therefore, we call it the SUM technique. We can
see in Fig. 1 that the SUM technique allows us to restore the real
distribution of flow B.

We apply our M4 to three METAs (DDSketch [16], t-
digest [17], [19], and modified ReqSketch [18], [43]). The
three METAs each have their emphasis. DDSketch allows us
to focus on the tail value distribution and bounds the relative
error of quantile estimation to a constant at different percentages.
t-digest allows us to tailor the relative accuracy of quantile
estimation at different percentages. ReqSketch provides a rel-
ative guarantee on the error of rank estimation. We design the
MINIMUM and SUM techniques for them according to their
features. See Section III for more details. Further, we provide
theoretical proof that M4 delivers high accuracy while utilizing
limited memory in Section IV.

We conduct extensive experiments to evaluate our perfor-
mance regarding accuracy and speed in Section V. We devise
two comparison frameworks for better comparison. CPU experi-
mental results indicate that M4 is per-flow friendly and accurate.
For tiny flows, maximum value estimation is on average 90.6%
error-free, while comparison frameworks offer almost no error-
free estimates. For larger flows, the Average Logarithm Error
(ALE) of M4 reach 2.26× lower than comparison frameworks.
M4 is memory-efficient. It only needs 6 MB to handle 27M
items. Finally, we implement M4 entirely on the Tofino platform.
All codes are available on GitHub [50].

Key contributions:
� We introduce M4, the first general framework that can be

applied to a wide range of single-flow quantile estimation
algorithms to accomplish per-flow quantile estimation, fill-
ing a gap in the research field.

� We propose the MINIMUM and SUM techniques. Together,
they reduce the error from hash collisions and allow us to
tailor treatment strategies for flows of different sizes.

4Large flows tend to represent critical or high-priority data. By paying more
attention to large flows, administrators can optimize the delivery of important
information and enhance overall system performance.
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� We apply M4 to DDSketch, t-digest, and modified ReqS-
ketch and implement them on a CPU platform. Compared
to two comparison frameworks, M4 achieves significantly
better accuracy with a comparable speed across all three
algorithms. M4 is also implemented in a P4 version.

II. RELATED WORK

A. Sketch

A sketch is a type of probabilistic data structure designed to
process data with small and controllable errors. One of the most
classic sketches is CM Sketch [51], designed for estimating item
frequency. CM Sketch consists of d arrays, each array Ai(1 ≤
i ≤ d) has w counters and is associated with a hash function
hi(·). When an incoming item e is inserted, we increase the
counter Ai[hi(e)%w] by 1 for all i ∈ {1, 2, . . . , d}. To query
the item e, CM Sketch reports the minimum counter among
all the d mapped counters determined by hash functions. Other
classic sketches include Flajolet-Martin (FM) Sketch [52], CU
Sketch [53], Count Sketch [54], CSM Sketch [55] and CMM
Sketch [56].

B. Single-Flow Quantile Estimation

Quantile estimation approximates the distribution of metrics,
essential for analyzing large or streaming datasets. While previ-
ous studies have advanced single-flow quantile estimation [16],
[17], [18], [19], [43], [44], [45], [46], [57], [58], they fall short
in multi-flow scenarios typical in data streams from diverse
sources. Our framework, M4, extends these methods to esti-
mate distributions per flow. We illustrate its application using
three algorithms: DDSketch, t-digest, and ReqSketch, each with
unique advantages. DDSketch allows us to focus on the tail value
distribution and bounds the relative error of quantile estimation
to a constant at different percentages. t-digest allows us to
tailor the relative accuracy of quantile estimation at different
percentages. ReqSketch provides a relative guarantee on the
error of rank estimation.

1) DDSketch: DDSketch [16] is designed for estimating
value distributions by partitioning the value range into segments,
each monitored by a counter for values within the segment. The
segment boundaries are determined by γ := (1 + α)/(1− α),
with each segment’s counter, Ci, tallying values x in the
range γi−1 < x ≤ γi. The insertion of a value x is indexed
by �logγ(x)	. DDSketch approximates values in a segment by

x̂ = 2γi

γ+1 , maintaining a relative error within α. The trade-off
between the range coverage and accuracy is governed by α: a
higher α extends the range but reduces accuracy. To estimate the
value at a certain percentile p ∈ [0, 1], we sum counters up to the
relevant segment i and use x̂ = 2γi

γ+1 as the quantile estimate.
2) t-Digest: The t-digest [17], [19] algorithm clusters real-

valued samples to approximate value distributions, grouping
items by similarity. Each cluster records the mean value and
total count of its items. Items are added to the closest cluster,
updating its statistics. t-digest controls cluster sizes to balance
precision and memory use, adjusting cluster counts through a
scale function k and a compression parameter δ. The function k
ensures uniform cluster weight growth, allowing more clusters
where data is denser. For quantile queries, weights are summed

until the target cluster is identified, assuming uniform distribu-
tion within clusters to estimate the queried value.
t-digest [17], [19] is designed to estimate value distributions

by clustering real-valued samples. t-digest uses clusters to group
items with near values. Each cluster contains an average cell
recording the mean value of absorbed items, and a weight cell
recording the total number of absorbed items. Each incoming
item is assigned to the cluster with the nearest average value,
after which the average and weight cells of that cluster are
updated. The key idea of t-digest is to confine the weight
of each cluster to an appropriate level, being small enough
to record the distribution accurately, while large enough to
avoid unacceptable memory costs. Accurate confinement is
achieved by constantly monitoring all clusters’ weights and
keeping them at the same level. There are a non-decreasing
scale function k : [0, 1] → R describing the weight restriction
and a compression parameter δ bounding the number of
clusters used. We define wi as cluster Ci’s weight value, and N
as

∑
i wi. Each wi must satisfy: k(w<i+wi

N )− k(w<i

N ) ≤ 1
δ . As

a result, t-digest allocates more clusters to the segment of value
with more items. Besides, we can tailor the relative accuracy
of quantile estimation at different percentages by changing the
scale function k. To query for the value at percentage p ∈ [0, 1],
we accumulate cluster weights until finding the cluster that p
falls in. Deeming that items are uniformly distributed in each
cluster, we can get the estimated value according to the position
of p in that cluster.

3) ReqSketch: ReqSketch [18], [43] employs multiple levels
of compactors to store item values, utilizing O(logN) com-
pactors for a flow sizeN , each with a buffer of similar size. Items
enter at level 0 and, upon a compactor’s capacity being reached,
a sorted even-sized subset is compacted and half its elements
are elevated to the next level, preserving total item weight due
to the weighting scheme where items at level h are assigned a
weight of 2h. This mechanism, known as compaction, ensures
the integrity of distribution estimates. To estimate a value at a
certain percentile p, item weights are cumulatively tallied from
the smallest value until reachingp, with the corresponding item’s
value serving as the estimate.

III. M4 DESIGN

A. Problem Statement

Definition 1 (Data Stream): A data stream is a series of
items appearing in sequence. Each item ei is a key-value pair.
The key serves as an ID, while the value represents the metric
we aim to process. An example of a data stream is DS =
{〈a, 3〉, 〈a, 2〉, 〈b, 5〉, 〈d, 1〉, 〈a, 4〉, . . .}.

Definition 2 (Flow): Items sharing the same key compose a
flow, and the shared key is their flow ID. The number of items in a
flow is the flow size, also called the item frequency. An example
of a flow is F = {〈a, 3〉, 〈a, 2〉, 〈a, 4〉, . . .}.

Definition 3 (Quantile): Given a numerical multiset
S ={x1, x2, . . . , xn} of sizen, wherex1 ≤ x2 ≤ · · · ≤ xn, and
a percentage p (0 ≤ p ≤ 1), the p-quantile of multiset S is
defined as x�p(n−1)�+1.

Per-Flow Quantile Estimation: Given an arbitrary flow f in
a data stream of key-value pairs and a percentage p, we need to
estimate the p-quantile of value in f . To express it in SQL:
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Fig. 2. Framework structure of M4.

CREATE TABLE DataStream (
key int,
value int
)
/∗ Insert items into DataStream. ∗/
SELECT key, p-quantile(value)
FROM DataStream
GROUP BY key

B. Framework Description

This section describes the structure and operations of M4.
Frequently used notations are outlined in Table I.

1) Framework Structure: In Fig. 2, M4 is presented as a four-
tiered bucket array, chosen for its balance between precision and
efficiency. Each level Li comprises bi buckets and employs wi

hash functions (hi,1(·) to hi,wi
(·)). L1 captures the size and

maximum value of small flows, L2 the value distribution of
moderate flows, and L3 and L4 the distribution of large flows.
We classify tiny, medium, and huge flows as having sizes in
[1,3), [3,255), and [255,+∞), respectively. The algorithm M4,
when integrated with META (DDSketch, t-digest, or modified
ReqSketch), is referred to as M4-META.

Each L1 bucket in any M4-META contains c1 counters and
an MX cell for flow size and maximum value, respectively, with
a counter cell of l1 bits. Overflows occur when a cell’s count
maxes out. L1 is designed for scenarios where small flows are
less critical.

For levels Li where i ≥ 2, each bucket holds a META, with
uniform capacity and granularity within the level but varying
across levels to accommodate the significance and size of the
flows. A bucket overflows once its META reaches capacity. The
details for different METAs on Li(i ≥ 2) are as follows:

DDSketch: Referencing Section II-B1, DDSketches in lev-
els Li(i ≥ 2) consist of ci counter cells (c2 ≤ c3 ≤ c4), each
tracking the frequency of values within distinct segments. The
bit length of counters in Li is li (l2 ≤ l3 ≤ l4). A bucket in Li

overflows when any counter cell’s frequency hits its maximum
li-bit value.

TABLE I
NOTATIONS

DDSketch(C): DDSketch with collapsing strategy [DDS-
ketch(C)] is an optimized variant of the original data structure,
designed to efficiently manage memory usage while maintaining
accurate quantile estimates. DDSketch(C) implements a specific
collapsing mechanism that works as follows: When the number
of buckets exceeds the maximum limit, we remove the smallest
bucket (index 0) and merge its count into the next smallest
bucket. This merging process effectively collapses adjacent
buckets at the lower end of the distribution. Technically, the
collapsing happens by: 1) Removing the bucket at position 0
from our ordered vector of 〈position, count〉 pairs; 2) Adding
its count value to the new smallest bucket (which becomes the
new position 0); 3) Maintaining the ordered structure of buckets
by position. This approach creates a variable-width binning
where smaller values have wider buckets (reduced precision)
while larger values maintain narrow buckets (higher precision).
The key insight is that we selectively sacrifice precision for
smaller values to save memory while retaining accuracy for
higher quantiles at the tail of the distribution that are typically
more important.
t-digest: As per Section II-B2, a t-digest in levels Li(i ≥ 2)

includes ci clusters (c2 ≤ c3 ≤ c4), with each cluster holding an
average and a weight cell for the mean value and item count,
respectively. The weight cell length in Li is li (l2 ≤ l3 ≤ l4).
Overflow occurs when a bucket’s weight cell frequency in Li

maxes out its li-bit capacity.
mReqSketch: Mentioned in Section II-B3, mReqSketches in

Li(i ≥ 2) comprise li compactors (l2 ≤ l3 ≤ l4) with ci cells
each (c2 ≤ c3 ≤ c4) for value storage. The maximum weight for
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Algorithm 1: Framework Insertion.

an mReqSketch in Li is (2li − 1)× ci. Overflow is determined
when a bucket’s recorded frequency in Li reaches this limit.

2) Framework Insertion Operation: To insert an item e =
〈f, v〉 into M4-META, we target the lowest non-overflowed level,
denoted as Ltop. First, e is mapped to w1 buckets in L1 using the

index �h1,j(f)%(b1c1)
c1

� for j ∈ 1, 2, . . . , w1. The (h1,j(f)%c1)
th

counter cell in each mapped bucket is incremented, and the
MX cell is updated to maxMX, v, unless overflow occurs,
prompting an attempt to insert e into L2.

For levels Li where i ≥ 2, e is mapped to wi buckets using
hi,j(f)%bi. If no overflow occurs in the mapped buckets, e is
inserted into the META of each, concluding the insertion.

The pseudo-code of the insertion operation is shown in
Algorithm 1.

3) Framework Query Operation: Querying a flow with ID
f involves mapping it to corresponding buckets across levels,
starting fromL1 up toLtop, the highest non-overflowed level for
f . Unlike insertion, querying aggregates results from all relevant
levels up to Ltop.

Algorithm 2: Framework Query.

At each level Li, we obtain wi records for f , which may
be affected by hash collisions. To mitigate this, we employ the
MINIMUM technique to derive the least polluted distribution
by selecting the minimum values from counter and MX cells for
L1, representing the size and maximum value of f . For levels Li

where i ≥ 2, the approach adjusts based on META’s structure,
detailed in Section III-C.

The output for f depends on top. For top = 1, the result is
based solely onL1 data using the MINIMUM method. For top ≥
2, it is a SUM-merged aggregation fromL2 toLtop, with specifics
on the SUM technique in Section III-C.

The pseudo-code of the query operation is shown in
Algorithm 2

4) Example: Our example uses parameters 〈c1 = 4, l1 =
2, w1 = 3〉, 〈w2 = 3〉, 〈w3 = 3〉, and 〈w4 = 3〉.

In the insertion operation illustrated in Fig. 2(a), item
e1 = 〈f1, v = 136〉 is first mapped to L1’s three buckets,
but due to counter overflows, it’s redirected and successfully
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Fig. 3. From META to histogram.

inserted into L3. For item e2 = 〈f2, v = 1671〉, mapping to L1

reveals no overflow, so counters are incremented, and 1341 is
updated to 1671.

Fig. 2(b) shows the query operation. For f1, overflow at L1

and L2 leads to top = 3, with results merged using the SUM and
MINIMUM techniques from L2 and L3. For f2, L1 provides the
flow size as the minimum counter value (1) and the maximum
value as the smallest MX cell (1671).

C. MINIMUM & SUM

In this section, we expound on applying MINIMUM and
SUM to an arbitrary META and illustrate the workflow on three
example METAs, DDSketch, t-digest, and mReqSketch. First,
we present the distribution stored in the META as histograms
(Section III-C2). Subsequently, we perform MINIMUM and
SUM operations on the histograms (Section III-C3).

1) Rationale: MINIMUM. The MINIMUM technique miti-
gates hash collision effects without tracking IDs, facilitating
O(1) time complexity for both insertion and query operations.
Recognizing that accurate distribution estimation equates to
frequency estimation at each value point, this method leverages
the fact that lower densities in flow buckets, resulting from hash
collisions, provide a more accurate density at any given value
point. Thus, selecting the minimum density from all mapped
buckets yields the most reliable value distribution estimate.

SUM: The SUM technique efficiently categorizes flows based
on their sizes and tailors treatment strategies accordingly, max-
imizing the overall accuracy. To achieve so, we use multiple
levels to divide a flow’s distribution information into various
fractions. Since the information in these fractions is disjointed,
we need to sum up the density at each value point to construct
the overall distribution, akin to piecing together a jigsaw puzzle.

2) From META to Histogram: Histograms are a widely
used method for representing distributions. Consequently, every
META can transform the distribution information stored with its
data structure into a histogram. In this subsection, we illustrate
how DDSketch, t-digest, and mReqSketch are transformed into
histograms.

DDSketch: As discussed in Section II-B1, DDSketch divides
the entire range of value into fixed segments, each tracked by a

counter cell that records the number of values that fall into that
segment. If we index each segment by i ∈ Z, then the counterCi

records the number of value x that falls between Vi−1 = γi−1 <
x ≤ γi = Vi.

The process of transforming a DDSketch into a histogram is
illustrated on the left side of Fig. 3. The range of each segment
on the horizontal axis is determined by Vi (i ∈ {0, 1, 2, 3}), and
the frequency of each segment is the corresponding Ci.

DDSketch(C): The process of converting a DDSketch(C) to a
histogram involves dynamically calculating bin edges based on
position values and a scaling factor γ, populating the histogram
with corresponding frequencies, and inserting zero-height bins
to account for any gaps, ensuring a continuous and accurate
representation of the frequency distribution.
t-digest: As discussed in Section II-B2, t-digest uses clus-

ters to group items with near values. Each cluster contains an
average cell Vi recording the mean value of absorbed items,
and a weight cell Ci recording the total number of absorbed
items. Each incoming item is assigned to the cluster with the
nearest average value, after which the Vi and Ci of that cluster
are updated. Besides, t-digest records the minimum value Vmin

and the maximum value Vmax.
The process of transforming a t-digest into a histogram is

illustrated in the middle of Fig. 3. The range of each segment
on the horizontal axis is determined by Vmin, Vmax, and Vi (i ∈
{1, 2, 3}). Since Vi is an average value, we divide Ci into two
halves and distribute them to adjacent segments.

mReqSketch: As discussed in Section II-B3, ReqSketch con-
sists of several levels of compactor serving as buffers. Each
level comprises multiple cells storing the value Vi of items.
Each cell in level i carries a weight Ci = 2i (i ∈ {0, 1, 2, . . .}).
Besides, ReqSketch also records the minimum value Vmin and
the maximum value Vmax.

The original design of compaction operation in ReqSketch
is memory-intensive and slow, making it unsuitable for estimat-
ing per-flow value distribution in data streams. We introduce
minor modifications to the original design while maintaining
its quintessence and rename it mReqSketch. According to the
new design, the incoming items are always inserted into level 0.
Whenever a level h becomes full, we sort the items in level
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Fig. 4. Segment alignment.

h, remove them from this level, and randomly select half of the
items (either odd or even indexed) to be inserted into levelh+ 1.

The process of transforming a mReqSketch into a histogram is
illustrated on the right side of Fig. 3. The range of each segment
on the horizontal axis is determined by Vmin, Vmax, and Vi (i ∈
{1, 2, 3, 4, 5}). Since Vi is a randomly selected value, we divide
Ci into two halves and distribute them to adjacent segments.

3) MINIMUM & SUM on Histogram: After transforming
META into histograms, we can perform the MINIMUM and
SUM operations. These operations necessitate a prerequisite
known as Segment Alignment. As illustrated in Fig. 4, suppose
we have two histograms H1 and H2, which require alignment.
We first need to obtain the union boundary set on the horizontal
axis. The boundary set in H1 is S1 = {20, 120, 200}, and that
of H2 is S2 = {50, 140, 260}. Thus, the union boundary set
is U = {20, 50, 120, 140, 200, 260}. Next, for both histograms,
we scatter the frequency recorded in each segment determined by
Si into the new segments determined by U , following a uniform
distribution. The rationale here is that focusing on a minimal
interval allows us to approximate any distribution with a uniform
one, mirroring the central concept in calculus.

After Segment Alignment, we can operate on the frequency in
each segment of H ′

1 and H ′
2. As shown in Fig. 5, if H ′

1 and H ′
2

originate from the same level of the same flow, we will need to
MINIMUM-merge them. We select the minimum frequency in
each segment to construct the MINIMUM-merged distribution.
If H ′

1 and H ′
2 originate from different levels of the same flow,

we will need to SUM-merge them. We add the frequencies in
each segment to construct the SUM-merged distribution.

To query for the value at percentage p ∈ [0, 1], we accumulate
segment frequencies until finding the segment that p falls in.
Then we calculate a quantile according to the uniform distribu-
tion and report it as the estimation result.

D. Discussion

1) Using Histogram as an Intermediate Step: A critical as-
pect of developing a universally applicable framework is ensur-
ing the adaptability of core operations, such as MINIMUM and
SUM, to accommodate a wide range of single-flow algorithms.
The inherent challenge lies in the diversity of distribution outputs
that quantile estimation algorithms can produce. Our solution

Fig. 5. MINIMUM & SUM on aligned Histograms.

is normalizing these distributions into histograms, which serve
as a standardized intermediary representation. It simplifies the
implementation of the MINIMUM and SUM operations by re-
ducing them to operations on histogram bins, thereby enhancing
the framework’s efficiency and scalability.

This design choice underscores the flexibility of the M4
framework, allowing it to seamlessly incorporate a vast array of
quantile estimation algorithms without necessitating extensive
customization or reconfiguration. This adaptability is crucial for
a general framework aimed at broad applicability across diverse
network environments and applications.

2) Data Aging: One potential area for improvement in our
framework is enhancing the data aging process to better align
with real-time data distribution changes. Currently, the mech-
anism for phasing out outdated data is clearing the data struc-
ture for every time window. It may not be sufficiently prompt,
creating a gap between the stored data distribution and the ac-
tual current distribution. This discrepancy becomes particularly
problematic when data distribution shifts rapidly, potentially
compromising the method’s effectiveness. Improving the data
aging process to more accurately reflect immediate distribution
changes is essential for maintaining M4’s accuracy in dynamic
data environments.

3) Flow Size Distribution: Our methodology, including the
underlying data structures and operations, is specifically opti-
mized for data streams characterized by a long-tailed distribution
of flow sizes, a common phenomenon in real-world applications
where the principle of the few governing the many often applies.
This long-tailed distribution pattern ensures that a small fraction
of flows carries a significant portion of data.

It is important to note, however, that in environments where
the flow size distribution is uniform, our approach may not be the
most efficient. We acknowledge that this specificity may limit
the universal applicability of our approach but we believe that
its optimized performance in its intended context represents a
significant contribution to the field.

IV. MATHEMATICAL ANALYSIS

There are two sources of error for M4: (1) The accuracy of
the recording algorithm in each bucket and (2) hash collision.
The error introduced by (1) is due to inaccuracies in META.
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We will present an error bound for mReqSketch in this section
as we modified the original design of ReqSketch. As for (2),
which is hash collision related, we will present an error bound
for M4-DDSketch. The analysis is conducted at one specific
level at once, assuming that there are n buckets and m flows
arriving at the level we are examining, with each flow mapped
to w buckets.

A. Analysis of M4-DDSketch

We begin by defining some frequently used notations. freq
represents the total number of items at a level. freqi represents
the number of items in flow i at this level. freqTi represents
the number of items in flow i within a segment T at this level.
freqT represents the total number of items within the segment
T at this level.

1) Huge and Medium Flows: Theorem 1: Let ˆfreqi denote
the estimation of freqi. Then

P
(

ˆfreqi > freqi + ε
)
< (

freq

nε
)w (1)

Proof: Let ˆfreqi,k (k ∈ {1, 2, . . . , w}) denote thekth record
of freqi. They are independent from each other because cor-
responding hash functions are independent. Since ˆfreqi =

min{ ˆfreqi,k}, we obtain that

P ( ˆfreqi > freqi + ε) = P ( ˆfreqi,k > freqi + ε)w (2)

Now we analyze the situation where w = 1. Let Aj denote
the event that flow j (j �= i) is mapped to the same bucket as
flow i. Then we have ˆfreqi,1 = freqi +

∑
j �=i freqj1Aj

(1Aj

is the characteristic function of the event Aj) and P (Aj) =
1
n .

Hence, E( ˆfreqi,1 − freqi) =
∑

j �=i freqj
1
n < freq

n . Because
ˆfreqi,1 − freqi ≥ 0, we use the Markov inequality to obtain

P ( ˆfreqi,1 − freqi > ε) ≤ E( ˆfreqi,1 − freqi)

ε
<

freq

nε
(3)

Therefore,

P ( ˆfreqi > freqi + ε) = P ( ˆfreqi,1 − freqi > ε)w

<

(
freq

nε

)w

(4)

�
Let ˆfreqTi denote the estimation of freqTi . Then we similarly

have5

P ( ˆfreqTi > freqTi + ε) < (
freqT

nε
)w. (5)

Theorem 2. Let t̂p denote the estimated quantile of percent-
age p. Then

P (|t̂p − tp| < αtp) ≥ 1− (1− e−
m
n )w (6)

Proof: The probability of hash collision happening in all
mapped buckets of a flow is PC = [1− (n−1

n )m]w ≈ (1−

5Strictly speaking, bucket collapsing in DDSketch(C) algorithm will influence
ˆfreqTi but only buckets with shortest latency. Since we focus on buckets with

long latency, we ignore this effect.

e−
m
n )w. So the probability that there is at least one bucket

where no hash collision occurs is 1− PC = 1− (1− e−
m
n )w.

In this case, the error is bounded by |t̂p − tp| < αtp, as proved in
DDSketch. Therefore, P (|t̂p − tp| < αtp) ≥ 1− (1− e−

m
n )w

�
Hash collisions may have a significant impact on quantile tp.

Unless strong assumptions are made on the value distributions
of flows, giving an error bound of t̂p is impossible when hash
collisions happen in all mapped buckets.

Comparison with prior work: We choose to compare M4-
DDSketch with SketchPolymer [48], a per-flow quantile esti-
mation algorithm which has a similar algorithm principle with
M4-DDSketch. The main difference between M4-DDSketch
and SketchPolymer is that M4-DDSketch uses multiple levels
for huge and medium flows, while SketchPolymer only uses one
level/layer after the filtration of tiny flows. When the memory is
limited, our algorithm is usually more accurate for huge flows.
The reason is that by using less bits storing medium flows, we can
allocate more memory for huge flows to avoid hash collisions.

First, let us consider M4-DDSketch. We divide the flows to
medium and huge flows. The DDSketch for medium and huge
flows has the same α6, but we use fewer bits for the counters
of medium flows. We denote the memory cost of one bucket for
medium and huge flows by b1 and b2, respectively. We setw = 1
and the amount of buckets for medium and huge flows to be n1

and n2. We denote the total memory by C. Then, we have

n1b1 + n2b2 = C (7)

We can choose the proportion of n1 and n2 to make the expected
value of hash collision probability (denoted byE(HC)) the same
for medium and huge levels. For a huge flow i, the error of
its frequency (sum of medium and huge parts) freqi has the
expectation value:

E( ˆfreqi − freqi) = E(HC)F, (8)

where F is the total number of items. We denote the number of
medium flows by X1 and the number of huge flows by X2, then
we have

X1 +X2 = E(HC)n1

X2 = E(HC)n2 (9)

Combining (7), (8) and (9), we get

E( ˆfreqi − freqi) =
F

C
(X1b1 +X2b1 +X2b2) (10)

Therefore, we have the error bound

P ( ˆfreqi − freqi > ε) ≤ E( ˆfreqi − freqi)

ε

=
F

Cε
(X1b1 +X2b1 +X2b2) (11)

Next, let us consider SketchPolymer. We have total memory=
C, bucket size= b2 (all the buckets should be of the size for huge
flows),X1 medium flows andX2 huge flows. The corresponding
error bound is

P ( ˆfreq′i − freqi > ε) ≤ F

Cε
(X1b2 +X2b2) (12)

6For the definition of α, please refer to Section II-B1
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The difference of the error bound is
F

Cε
(X2b1 −X1(b2 − b1)) (13)

In real situations, X1 is much larger than X2. So the error
bound of M4-DDSketch is smaller than that of SketchPolymer.

2) Tiny Flows: Theorem 3: Let x = wm
n , then the probabil-

ity of getting a wrong maximum value is ( e
−x+x−1

x )w.
Proof: Suppose that a flow f is mapped to w buckets

a1, a2, . . . , aw. The probability that there are ki other flows in
bucket ai (i ∈ {1, 2, . . . , w}) is

P ({ki}) =
(
wm−w

k1

)(
wm−w−k1

k2

)
. . .

(
wm−w−k1−k2−...−kw−1

kw

)
nwm−w

· (n− w)wm−k1−k2−...−kw−w. (14)

The equation above is based on the assumption that the
w hash values of a flow are independent. Due to the factor
(n− w)−k1−k2−...−kw , the probability of ki being large is low.
So we can assume that ki << m and arrive at the approx-
imation P ({ki}) ≈ [

∏
i

(
wm−w

ki

)
(n− w)−ki ](1− w

n )
wm−w ≈

[
∏

i

(
wm
ki

)
n−ki ]e−

w2˜m
n . In this situation, the probability of ob-

taining an incorrect maximum value is
∏

i
ki

ki+1 . Hence, the
probability of obtaining an incorrect maximum value is[∏

i

wm∑
ki=1

(
wm
ki

)
n−ki

ki
ki + 1

]
e−

w2m
n

=

[
wm∑
k=1

(
wm
k

)
n−k k

k + 1

]w

e−
w2m

n

=

[
n− (

1 + 1
n

)wm
(−wm+ n)

wm+ 1
e−

wm
n

]w

x=wm
n≈

(
e−x + x− 1

x

)w

(15)

�

B. Analysis of mReqSketch

In this section, we conduct the error analysis for mReqSketch.
R(y) represents the count of values that is less than or equal to
value y across all items recorded at a level. Ri(y) represents the
count of value that is less than or equal to value y in flow i at
this level.

Error bound of mReqSketch: Consider the following set-
ting. There are M compactors C0, C2, . . . , CM−1 in the mRe-
qSketch. The buffer size in each compactor is b = 2a. The
number of items in this mReqSketch is at maximum capacity
N = 2a(2M − 1) ≈ 2a+M . Let p denote the real value of the
fraction of values less than y. Consider the estimation for R(y).

Theorem 4: Let ˆR(y) denote the estimation of R(y). Then

P (|R̂(y)−R(y)| > εN) < 2e
− 4b2

1−(1−2p)b
ε2

(16)

Each time we conduct the compaction operation, we operate
on b values. Among these, the probability that the number of
value less than y is odd is given by

P =

∑b
i=1[

(
b
i

)
pi(1− p)b−i]−∑b

i=1[
(
b
i

)
(−p)i(1− p)b−i]

2

=
1− (1− 2p)b

2
(17)

We must perform the compaction operation on C0 for 2M

times. If the selected items have odd indices, the probability
of having an error of +1 on R(y) is P , and the probability of
error-free is (1− P ). If items with even indices are selected,
the probability of having an error of −1 on R(y) is P , and
the probability of error-free is (1− P ). Therefore, the expected
error is 0 each time, and the error variance is P (1− P ). The
overall expected error is 0, and the overall error variance is
2MP (1− P ).

We need to perform the compaction operation on C1 for
2M−1 times. If items with odd indices are selected, the proba-
bility of having an error of +2 on R(y) is P , and the probability
of error-free is (1− P ). If items with even indices are selected,
the probability of having an error of −2 on R(y) is P , and
the probability of error-free is (1− P ). Therefore, the expected
error is 0 each time, and the error variance is 4P (1− P ). The
overall expected error is 0, and the overall error variance is
2M+1P (1− P ).

Performing the above analysis for all the compactors, we find
that the overall expected error in Ci(i ∈ {0, 1, 2, . . . ,M − 1})
is 0. The overall variance of the error in Ci is 2M+iP (1− P ).
Therefore, the variance of the error across the whole mReqS-
ketch is

σ2 = P (1− P )(2M + 2M+1 + . . .+ 22M−1)

= P (1− P )2M (2M − 1)

≈ 1− (1− 2p)2b

4
22M

≈ 1− (1− 2p)b

4

N2

b2
(18)

Note that the variance from Ci increases with i, so the
Lindeberg-Feller condition is not satisfied. We cannot apply
the central limit theorem. However, we can employ the sub-
Gaussian distribution estimation and find

P (|R̂(y)−R(y)| > εN) < 2e−(
εN
σ )

2

= 2e
− 4b2

1−(1−2p)b
ε2

(19)

V. EXPERIMENTAL RESULTS

A. Experiment Setup

1) Implementation: We implement M4 and all related META
data structures (DDSketch, t-digest, and mReqSketch) in C++.
The hash functions used uniformly are the 32-bit Bob Hash
(sourced from an open-source website [59]) with different initial
seeds. All the experiments are executed on an 18-core CPU
server (Intel i9-10980XE) with 128 GB memory and 24.75 MB
L3 cache. Each experiment is repeated ten times to compute an
average result.

2) Straw-Man Solution: To compare effectively, we develop
a straw-man solution using a Dleft-like approach for each META
(DDSketch, t-digest, and mReqSketch), featuring three bucket
arrays for an optimal balance between accuracy and speed. Each
bucket records a flow ID key and the distribution of values using
a META. We use three distinct hash functions, h′

1(·), h′
2(·), and

h′
3(·), for the arrays. Additionally, a global META aggregates the

value distribution for all flows, serving as a fallback for queries
on unrecorded flows.
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Insertion: When a new item e = 〈f, v〉 arrives, it’s first added
to the global META. We then try to insert e to the h′

1(f)
th bucket

of the first array. If this bucket is free or already contains a flow
with key = f , e is added to this bucket’s META, setting key to
f . Failing that, we move to the h′

2(f)
th bucket of the second

array, and if necessary, to the h′
3(f)

th bucket of the third array.
Should all arrays reject e, it is discarded.

Query: To find a flow f , we check the h′
1(f)

th, h′
2(f)

th, and
h′
3(f)

th bucket of the respective arrays for a key = f . A match
returns the query from that bucket’s META; otherwise, the global
META provides the result.

3) Cuckoo Filter: We devise another comparison framework
based on Cuckoo Filter [60]. Cuckoo Filter is an efficient hash
table implementation based on cuckoo hashing [61], which can
achieve both high utilization and compactness. It records the
fingerprint instead of the flow ID to improve space efficiency.

The structure employs a table with buckets and three hash
functions, h1(·), h2(·), and hf (·), where each bucket records a
fingerprint fpc and the distribution of values using a META. For
an item e = 〈f, v〉, we determine fp = hf (f) and map e to the
[h1(fp)]

th and [h2(fp)]
th buckets. We then try to locate one of

these two buckets where fpc = fp and insert v to the META in
that bucket. If no matching bucket is found but an empty bucket
exists, we insert e to it by setting its fpc = fp and inserting v
to the META. If both buckets are full, then one of the two flows
in them will be evicted to its alternate bucket (because each
flow has two mapped buckets). This random eviction continues
until an empty bucket is found or a preset maximum number
of attempts, MAX_NUMBER_OF_TURNS, is reached.
If that happens, we discard this item. Like what we do in the
straw-man solution, a global META is maintained as a fallback
for queries. We choose MAX_NUMBER_OF_TURNS =
8 and 32-bit fp to minimize collisions, as increasing
MAX_NUMBER_OF_TURNS beyond this point does not
significantly enhance accuracy but does reduce throughput.

4) Datasets:
1) CAIDA Dataset: This dataset comprises streams of

anonymized IP items collected from high-speed monitors
by CAIDA in 2018 [49]. We use the trace with a mon-
itoring interval of 60 s. Each item consists of a 5-tuple
(13 bytes). There are around 27 M items and 1.3 M flows
in this dataset.

2) MAWI Dataset: This dataset contains real traffic trace data
maintained by the MAWI Working Group [62]. Similar to
CAIDA, each item in the dataset is a 5-tuple. There are
around 9 M items and 13 K flows in the MAWI dataset.

3) IMC Dataset: This dataset comes from one of the data
centers studied in [63]. Each item also consists of a 5-tuple.
There are around 14 M items and 5 K flows in this dataset.

4) Web Latency Dataset: The Web Latency Dataset is col-
lected by Webget via 182 probes distributed around the
world [64]. We consider the fetch time of each request as
value.

5) Seattle Dataset: The Seattle Dataset consists of round trip
times (RTTs) between many nodes [22] in the constructed
network [65]. We consider RTTs between the same two
nodes as the same item and the RTT as its value. Note
that this dataset has no tiny flows and the experiments in
Section V-D will not be run on it.

5) Metrics:
1) ALE (Average Logarithm Error): We employ ALE

to evaluate the accuracy of quantile estimation for

TABLE II
DEFAULT PARAMETER SETTINGS

huge and medium flows. Since the order magni-
tude of latency may vary significantly, it is un-
reasonable to measure the error by absolute value
alone. We define ALE as 1

|Ψ|
∑

fi∈Ψ |log2ti − log2t̂i| =
1
|Ψ|

∑
fi∈Ψ |log2 ti

t̂i
|, where Ψ represents the set of all huge

and medium flows in the data stream. ti and t̂i denote the
real and estimated quantile at a given percentage p.

2) APE (Average Percentage Error): We employ APE to
evaluate the accuracy of quantile estimation for huge and
medium flows. We define APE as 1

|Ψ|
∑

fi∈Ψ |p− p̂i|,
where Ψ represents the set of all the huge and medium
flows in the data stream. Here, p is a given percentage we
need to query, returning a value t. Then, we query t in the
real distribution to get the percentage p̂. The difference
between p and p̂ represents the error of our query.

3) AAE (Average Absolute Error): We employ AAE to eval-
uate the accuracy of quantile estimation for large and
medium flows from another perspective. We define AAE
as 1

|Ψ|
∑

fi∈Ψ |t− t̂i|, where Ψ, ti, and t̂i are consistent
with the above ALE’s.

4) RE (Relative Error): We employ RE to evaluate the accu-
racy of quantile estimation for tiny flows. We define RE
as |x̂max−xmax|

xmax
, where xmax and x̂max are the real and

estimated maximum value in a flow.
5) Throughput (Insertion and Query): We use million oper-

ations (insert an item or query a flow) per second (Mops)
to measure the throughput.

6) Default Settings: In our experiment, we set p = 0.5 as the
default setting. For M4, the memory ratio of L1, L2, L3, L4 is
3%, 60%, 35%, 2%, respectively. Each arriving item at every
level is mapped to 3 buckets (wi = 3, i ∈ {1, 2, 3, 4}). Each
bucket inL1 has 4 counter cells (c1 = 4) and 1 MX cell, and each
counter cell consists of 2 bits (l1 = 2). The parameter settings for
DDSketch, t-digest, and mReqSketch on different frameworks
are shown in Table II.

B. Experiments on Parameter Setting

Effect of # levels: We conduct experiments on the choice of
the number of levels for M4 (represented by M4-DDSketch) and
the straw-man solution. As shown in Fig. 6, choosing # lv =
4 gives the best accuracy and a comparatively good speed for
M4, so we design the M4 to have 4 levels. As shown in Fig. 7,
choosing # lv = 3 gives a close to the best accuracy and a
comparatively good speed for the straw-man solution, so we
design the straw-man solution to have 3 levels.

Effect of the hash number w: We conduct w tuning
experiments on different M4-METAs on the CAIDA dataset. As
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Fig. 6. Effect of the number of levels on M4.

Fig. 7. Effect of the number of levels on Straw-man.

Fig. 8. Effect of w on accuracy.

Fig. 9. ALE of M4-DDSketch.

shown in Fig. 8, we find that the three versions of M4 all reach
sub-optimal ALE and the gap between it and the optimal is small
at w = 3, so the overall performance of M4 at w = 3 is the best
among different w values. In light of this, we select w = 3 as
our default setting.

C. Experiments of Huge and Medium Flows on Accuracy

Experiments on M4-DDSketch: As shown in Figs. 9, 10,
and 11, the results show that the ALEs (APEs) [AAEs]
of M4-DDSketch are lower than those of the compari-
son frameworks. Specifically on the five real-world datasets,
the ALEs (APEs) [AAEs] of M4-DDSketch are on av-
erage 1.80× (1.34×) [1.61×], 2.26× (1.39×) [2.53×],

1.27× (1.11×) [0.97×], 1.22× (1.26×) [1.21×], and
1.11× (1.40×) [1.27×] lower than those of the straw-
man solution, and 1.45× (1.17×) [1.24×], 1.42× (1.09×)
[1.51×], 1.10× (1.01×) [0.94×], 1.16× (1.05×) [1.04×],
and 1.05× (1.23×) [1.06×] lower than those of Cuckoo
Filter.

Experiments on M4-DDSketch(C): As shown in Figs.
12, 13, and 14, the results show that the ALEs (APEs)
[AAEs] of M4-DDSketch(C) are always lower than those
of the comparison frameworks. Specifically on the five
real-world datasets, the ALEs (APEs) [AAEs] of M4-DDSketch
are on average 1.71× (1.36×) [2.19×], 1.51× (1.23×) [1.88×],
1.66× (1.16×) [1.88×], 1.22× (1.20×) [1.47×], and 1.12×
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Fig. 10. APE of M4-DDSketch.

Fig. 11. AAE of M4-DDSketch.

Fig. 12. ALE of M4-DDSketch(C).

Fig. 13. APE of M4-DDSketch(C).

Fig. 14. AAE of M4-DDSketch(C).

(1.34×) [1.29×] lower than those of the straw-man solution,
and 1.19× (1.09×) [1.51×], 1.07× (1.02×) [1.16×], 1.21×
(1.04×) [1.41×], 1.17× (1.17×) [1.20×], and 1.07× (1.17×)
[1.07×] lower than those of Cuckoo Filter.

Experiments on M4-t-digest: As shown in Figs. 15, 16, and
17, the results demonstrate that the ALEs (APEs) [AAEs] of
M4-t-digest are always lower than those of the comparison
frameworks. Specifically on the five real-world datasets, the
ALEs (APEs) [AAEs] of M4-t-digest are on average 2.19×
(1.99×) [2.89×], 2.13× (1.77×) [2.74×], 1.90× (1.23×)

[2.13×], 1.26× (1.18×) [1.37×], and 1.02× (1.05×) [1.07×]
lower than those of the straw-man solution, and 1.41× (1.42×)
[1.71×], 1.36× (1.32×) [1.65×], 1.40× (1.17×) [1.72×],
1.33× (1.13×) [1.22×], and 1.01× (1.01×) [1.02×] lower than
those of Cuckoo Filter.

Experiments on M4-mReqSketch: As shown in Figs. 18, 19,
and 20, the results demonstrate that the ALEs (APEs) [AAEs]
of M4-mReqSketch are lower than those of the comparison
frameworks. Specifically on the five real-world datasets, the
ALEs (APEs) [AAEs] of M4-mReqSketch are on average 1.94×
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Fig. 15. ALE of M4-t-digest.

Fig. 16. APE of M4-t-digest.

Fig. 17. AAE of M4-t-digest.

Fig. 18. ALE of M4-mReqSketch.

Fig. 19. APE of M4-mReqSketch.

(1.29×) [1.32×], 1.97× (1.37×) [1.60×], 1.39× (1.05×)
[1.22×], 1.11× (1.26×) [1.20×], and 1.03× (1.76×) [1.43×]
lower than those of the straw-man solution, and 1.50× (1.07×)
[1.27×], 1.45× (1.15×) [1.28×], 1.44× (0.99×) [1.16×],

1.19× (1.27×) [1.22×], and 1.03× (1.73×) [1.44×] lower than
those of Cuckoo Filter.

Analysis: The accuracy advantage in Figs. 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, and 20 is established by making better
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Fig. 20. AAE of M4-mReqSketch.

Fig. 21. RE distribution of tiny flows on different datasets.

Fig. 22. Insertion throughput on the CAIDA dataset.

use of resources. First, the separation of medium and huge
flows brought by the SUM technique allows for allocating fewer
bits for medium flows. Furthermore, the multi-layer structure
prevents huge and medium flows from contaminating each other.
Otherwise, once a medium flow collides with a huge one, its
distribution will be utterly covered up by the huge flow because
of its size. Second, the MINIMUM technique improves the
algorithm’s robustness against hash collisions.

D. Experiments of Tiny Flows on Accuracy

As shown in Fig. 21, the experimental results demonstrate that
for most tiny flows, the maximum value can be well estimated
by M4, which significantly outperforms the two comparison
frameworks. Specifically on the four real-world datasets (except
Seattle), M4 attains an error-free (i.e., RE = 0) rate of 84.5%,
89.1%, 98.2%, and 97.4%, while the comparison frameworks
offer almost no error-free estimates.

Analysis: Tiny flows are too small to well-define a distribu-
tion. Using METAs to record tiny flows would be inaccurate
and memory-consuming. Hence, only recording the maximum
value gives us significantly better results than two comparison
frameworks.

E. Experiments on Speed

We conduct experiments on the speed (insertion and query
throughput) of different M4-METAs and two comparison frame-
works on the CAIDA dataset.

As shown in Figs. 22 and 23, the results demonstrate that
the insertion (query) throughput of M4-METAs is slower than
or at the same level with respect to the comparison frame-
works. Specifically on the CAIDA dataset, the insertion (query)
throughput of M4-(DDSketch, DDSketch(C), t-digest, and
mReqSketch) is on average 2.40× (3.15×), 2.39× (6.28×),
1.24× (4.98×), and 2.05× (1.24×) lower than those of the
straw-man solution, and 1.78× (3.33×), 1.46× (6.38×), 0.77×
(5.28×) and 1.89× (1.09×) lower than those of Cuckoo Filter.

Analysis: The experiments show that the throughput of M4 in
insertion and query is slightly lower than that of the comparison
frameworks. This is because our solution contains more layers.
Besides, MINIMUM and SUM operations take extra time.

F. Evaluation on Tofino Platform

We fully build a P4 prototype of M4 on the Tofino switch [66]
using P4 language.

Challenges and Design: The architectural design is shown
in Fig. 24. Since the P4 pipeline can only access each register
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Fig. 23. Query throughput on the CAIDA dataset.

Fig. 24. Architecture design of the Tofino version of M4.

TABLE III
H/W RESOURCES USED BY M4

once, the Tofino version of M4 uses recirculate, i.e., each packet
enters the pipeline twice. When it enters the pipeline for the first
time, each layer is checked for overflow and the final layer to
be inserted is calculated, while the insertion is completed the
second time it enters the pipeline. Of course, this results in half
the efficiency of the switch. We add a custom header to the
measured packets, including a 32-bit flow ID and 16-bit delay.
The second to fourth level META uses DDSketch, and its base is
2. For simplicity, the number of segments of DDSketch at each
level is the same, which is 16 segments: segment 1 corresponds
to [0, 2), segment i corresponds to [2i−1, 2i), i = 2, . . . , 16. We
directly use longest prefix matching (LPM) on 16-bit delay to
complete the segment number query.

Results: We list the utilization of various hardware resources
on the Tofino switch in Table III. We find that Stateful ALU is
the most used resources of M4, accounting for 31.25% of the
total quota, while Map RAM accounts for 5.21% .

VI. CONCLUSION

This paper introduces the M4 framework designed to enable
per-flow quantile estimation using single-flow estimation algo-
rithms. The key techniques of M4 are MINIMUM, employed
for minimization of the noise caused by hash collisions, and
SUM, employed for efficient flow categorization based on their
sizes and customized treatment strategies. M4 is implemented
on CPU and Tofino platforms. CPU experimental results indicate
that M4 outperforms two comparison frameworks in estimating
the value distribution of huge, medium, and tiny flows. We have
made our code publicly available on GitHub [50] to facilitate
further research and application in this field.
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