
IEEE/ACM TRANSACTIONS ON NETWORKING 1

PISketch: Finding Persistent and Infrequent Flows
Zhuochen Fan , Zhoujing Hu , Yuhan Wu , Jiarui Guo , Sha Wang, Wenrui Liu,

Tong Yang , Member, IEEE, Yaofeng Tu, and Steve Uhlig

Abstract— Finding persistent and low-active activity periods is
very helpful in practice, for example to detect intrusion activities.
Most of the literature focuses on finding persistent flows or
frequent flows. No previous work is able to find persistent and
infrequent flows. In this paper, we propose a novel sketch data
structure, PISketch, to find persistent and infrequent flows in
real time. The key idea of PISketch is to define a weight and its
Reward and Penalty System for each flow to combine and balance
the information of both persistency and infrequency, and to
keep high-weighted flows in a limited space through a strategy.
We implement PISketch on P4, FPGA, and CPU platforms,
and compare the performance of PISketch with two strawman
solutions (On-Off + CM sketch, and PIE + CM sketch), in terms
of finding persistent and infrequent flows. Our experimental
results demonstrate the advantage of PISketch, by comparing
it to two strawman solutions: 1) The F1 Score of PISketch is
around 22.1% and 57.6% higher than two strawman solutions,
respectively; 2) The Average Relative Error (ARE) of PISketch
is around 820.9 (up to 1188.8) and 126.2 (up to 265.6) times
lower than two strawman solutions, respectively; 3) The insertion
throughput of PISketch is around 1.23 and 16.5 times higher than
two strawman solutions, respectively. Moreover, we implement
two concrete cases of PISketch through end-to-end experiments.
All of our codes are available at GitHub.

Index Terms— Data streams, persistent flows, infrequent flows,
advanced persistent threats, sketch, weight, P4, FPGA.

Manuscript received 19 July 2022; revised 17 December 2022;
accepted 25 April 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor K. Park. This work was supported in part
by the Key-Area Research and Development Program of Guang-
dong Province under Grant 2020B0101390001 and in part by the
National Natural Science Foundation of China (NSFC) under Grant
U20A20179. The preliminary version of this paper titled “PISketch: Find-
ing Persistent and Infrequent Flows” [DOI: 10.1145/3528082.3544834]
was published in the Proceedings of the ACM SIGCOMM Work-
shop on Formal Foundations and Security of Programmable Net-
work Infrastructures, August 22 (https://doi.org/10.1145/3528082.3544834).
(Zhuochen Fan, Zhoujing Hu, and Yuhan Wu are co-primary authors.)
(Corresponding author: Tong Yang.)

Zhuochen Fan, Zhoujing Hu, Yuhan Wu, Jiarui Guo, and Wenrui Liu
are with the National Key Laboratory for Multimedia Information Pro-
cessing, School of Computer Science, Peking University, Beijing 100871,
China (e-mail: fanzc@pku.edu.cn; rwy@pku.edu.cn; yuhan.wu@pku.edu.cn;
ntguojiarui@pku.edu.cn; liuwenrui@pku.edu.cn).

Sha Wang is with the College of Computer, National University of Defense
Technology, Changsha 410073, China (e-mail: ws0623zz@163.com).

Tong Yang is with the National Key Laboratory for Multimedia Information
Processing, School of Computer Science, Peking University, Beijing 100871,
China, and also with the Peng Cheng Laboratory, Shenzhen 518066, China
(e-mail: yangtongemail@gmail.com).

Yaofeng Tu is with the ZTE Nanjing Research and Development Center,
Nanjing 210012, China (e-mail: tu.yaofeng@zte.com.cn).

Steve Uhlig is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, E1 4NS London, U.K. (e-mail:
steve.uhlig@quml.ac.uk).

Digital Object Identifier 10.1109/TNET.2023.3272287

I. INTRODUCTION

A. Background and Motivation

F INDING frequent flows and persistent flows have been
considered as two important tasks in approximate data

stream processing and network measurement [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13]. Here, we define the
persistency of flow f as the number of time windows where
f occurs [2], while time-based windows mean that the window
size is defined as a fixed period of time. Differently, we find
that finding persistent and infrequent flows in data streams is
also important, for example to identify activities that are sus-
tained but low-active. Note that a flow in this paper is defined
as a part of the five tuples: source IP address, destination IP
address, source port, destination port, and protocol. Let us
describe three possible use cases for finding persistent and
infrequent flows.
• Case 1. Attack defense. Many cyber attacks like

Advanced Persistent Threats (APT) [14], [15] prefer per-
sistently and covertly intruding target streaming databases
to evade detection.

• Case 2. High-risk service discovery. In enterprise
networks, high-risk services like Fast Reverse Proxy
(FRP) [16] can expose local servers behind a Network
Address Translation (NAT) or firewall to the Internet.
It supports HTTP/HTTPS, TCP, UDP and many other
protocols, and forwards requests to internal services
through domain names. These connections are charac-
terized by persistence and infrequency: FRP persistently
produces packets, but the number of produced packets is
very limited.

• Case 3. Lightweight heartbeat packet detection. A heart-
beat is a periodic packet that keeps the persistent con-
nection alive (e.g., TCP keep-alive) and synchronizes
the state, which is always persistent and infrequent.
By detecting heartbeat packets, network administrators
can count the number of persistent connections [17],
[18]. However, traditional measurement solutions are
not enough to support this. They often use a timeout
mechanism to measure the number of active flows in the
recent time window [19]. Therefore, a more convenient
way to detect persistent and infrequent flows spanning
a large number of windows is needed. Moreover, each
persistent connection is a customer client in the financial
market network. Once a large amount of critical infor-
mation needs to be quickly distributed and transmitted
to each client, the network may experience bursts and

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0003-1722-9146
https://orcid.org/0000-0001-7115-5390
https://orcid.org/0000-0003-1551-7646
https://orcid.org/0000-0003-2402-5854

2 IEEE/ACM TRANSACTIONS ON NETWORKING

sudden congestion. For network administrators, knowing
the number of persistent connections allows them to
estimate potential bursts and prevent them [20].

Finding persistent and infrequent flows is fundamental in
these cases. However, no existing work focuses on finding
persistent and infrequent flows. The majority of relevant works
aim to either finding frequent flows or persistent ones. In this
paper, we are concerned with finding persistent and infrequent
flows, i.e., flows that are seen persistently but do not occur
that frequently. We call such flows PI flows.

B. Prior Art and Limitations

To find PI flows, one straightforward solution is to find the
intersection of persistent flows and infrequent flows. The state-
of-the-art algorithms for finding persistent flows are the On-
Off [2] and the PIE [3], [4]. The state-of-the-art algorithms
for estimating flow frequencies are sketch-based algorithms
like the Count-Min (CM) sketch [21]. They are typically used
to find frequent flows. As the distribution of flow frequencies
(also known as flow sizes, the number of packets in a flow)
is highly skewed [22], [23] in real network traces, the number
of infrequent flows is always very large but considered as
less important than frequent ones. To the best of our knowl-
edge, no prior work has focused on finding infrequent flows.
Although the above two types of algorithms can find persistent
flows and frequent flows respectively, their combination is not
optimized for finding persistent and infrequent flows. Indeed,
because the set of persistent flows and the set of infrequent
flows can be very large, storing both sets leads to large memory
consumption, which is unacceptable in network measurement.
Large memory consumption also leads to slow speed, because
such algorithms often need to run on fast on-chip SRAM
(Static RAM) to achieve high speed, and the size of the on-chip
SRAM is limited [9], [24]. Here, on-chip memory includes
CPU cache, FPGA block RAM [25], etc. In summary, the
problem of finding PI flows is new and existing solutions
do not work, and we aim to design an efficient algorithm to
approach it.

C. Our Solution

In this paper, we propose a novel sketch (i.e., a kind of
probabilistic data structures and algorithms), named PISketch,
to find persistent and infrequent flows (PI flows) in real time.
To the best of our knowledge, this is the first effort to find
PI flows. PISketch is compact. For example, it only requires
100KB of memory when working on 10M flows with 4-byte
flow ID each. PISketch is accurate. Based on our experiments,
the F1 Score of PISketch is around 22.1% and 57.6% higher
than two strawman solutions (i.e., On-Off + CM sketch, and
PIE + CM sketch), respectively. Also, the Average Relative
Error (ARE) of PISketch is on average 820.9 (up to 1188.8)
times and 126.2 (up to 265.6) times lower than two strawman
solutions, respectively. PISketch is fast. The time complexity
for insertion and query is O(1), and its throughput is around
1.23 and 16.5 times higher than two strawman solutions,
respectively.

PISketch has two key techniques. The first technique is a
Reward and Penalty System that can summarises both persis-
tency and infrequency through one numeric weight; The sec-
ond technique is a Weight sketch that can find high-weighted
flows even if the weight decreases over time:

1) Finding PI flows is much more challenging than finding
frequent or persistent flows. The reason behind this is that the
traditional weight (frequency/persistency) increases incremen-
tally as time goes by. In contrast, the weight of a PI flow could
increase sharply or decrease incrementally. Therefore, the key
is to capture the changes of the weight of PI flows. Our first
key technique is to design a Reward and Penalty System
which awards or punishes the weight reasonably. The details
are provided in Section III-A.

2) After weighting the PI flows, the challenge lies in how
to find the most high-weighted PI flows with limited space.
In other words, as new flows arrive continuously, it is a
challenge to preserve the old high-weighted flows while taking
in new PI flows whose weights have just begun to grow. In this
process, the old and new flows will compete fiercely to stay.
Since the stayed flows can successfully become potential PI
flows, they can get more opportunities to be observed. There is
no existing work can directly handle the top-k weight problem
whose weight could decrease. Thus, we propose our second
key technique in the Weight sketch, called Weight Fusion
Strategy, which decrements the low weight flows to make
room for new flows (see Section III-B - III-C for details).

We provide strict theoretical derivations, see Section IV for
details. We implement PISketch entirely on P4 and FPGA plat-
forms in Section V. Further, we conduct extensive experiments
on CPU platform, and our experimental results demonstrate the
obvious advantages of PISketch over two strawman solutions.
In addition, we implement two concrete cases of PISketch for
the preliminary detection of APT and FRP flows. More details
are provided in Section VI. We provide all the related code
open-source at GitHub [26].

Key Contributions:
• We propose and define a new problem called “finding

persistent and infrequent flows”, which has not been
studied before.

• We propose a novel sketch, PISketch, to find persistent
and infrequent flows, accurately, fast, and using limited
memory.

• We mathematically analyze PISketch to prove its accu-
racy and space-time efficiency by theoretically deriving
its error bounds and memory and time cost.

• We fully implement PISketch on P4 and FPGA, and
conduct extensive experiments on CPU. Experimental
results show that our PISketch outperforms two strawman
solutions (On-Off + CM sketch, and PIE + CM sketch).
In addition, we also implement two concrete cases of
PISketch through end-to-end experiments.

II. RELATED WORK

A. Finding Persistent Flows

Several algorithms have been proposed to find persis-
tent flows [2], [3], [4], [5], [6], [27], [28]. The state-of-art

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PISketch: FINDING PERSISTENT AND INFREQUENT FLOWS 3

algorithms are On-Off [2] and PIE [3], [4]. The idea of On-Off
is to exploit the increasing persistence of flows. No matter
how many flows are mapped to the same counter in a time
window, On-Off only increases this counter by one. In this
way, On-Off first estimates the persistence of all flows, and
then changes the data structure to split persistent and non-
persistent flows. It only stores the information about persistent
flows, and protects them from replacements and hash collisions
with other flows. PIE uses a data structure called Space-Time
Bloom filter based on the Invertible Bloom filter [29], [30]
and a Raptor code [31] to encode the flow IDs. During each
measurement period, PIE maintains a Space-Time Bloom filter.
When inserting a flow, it uses the Raptor code to encode
the flow ID into many segments, and randomly selects some
segments to store in the Space-Time Bloom filter, which aims
at reducing the memory usage. When querying a flow, PIE
gathers all Space-Time Bloom filters. If and only if it occurs
in enough measurement periods and enough encoded bits for
the stored ID, PIE can decode its flow ID from the Space-Time
Bloom filter.

B. Frequency Estimation

Frequency (flow size) estimation consists of estimating
the number of occurrences of flows. It has been widely
studied. Sketches have proved their superiority in frequency
estimation [11], [12], [32], [33]. Actually, they can achieve
high accuracy and speed with limited memory usage. There
are many sketch-based algorithms for estimating flow fre-
quency [7], [9], [10], [21], [34], [35], [36], [37], [38], [39],
[40], the most typical being the widely used Count-Min (CM)
sketch [21]. The CM sketch uses multiple equal-sized buckets.
Every bucket is associated with a hash function hi. When a
flow f arrives, every bucket calculates its hash value hi(f)
to map f to the cell A[i][hi(f)], and the value of the cell
is increased by 1. For the recorded flow, its frequency is
the minimum value of all its mapped cells, and then top-k
frequent flows can be selected. Besides the CM sketch, other
typical sketch-based algorithms include sketches of CU [34],
C [35], CSM [36], and ASketch [37], PyramidSketch [38],
HeavyKeeper [10], HeavyGuardian [39], Cold Filter [40], etc.
which focus on accurately estimating large/elephant flows.
State-of-the-art sketch-based network measurement systems
include SketchVisor [8], UnivMon [7], ElasticSketch [9],
Nitrosketch [11], CocoSketch [12], LightGuardian [41], etc.

C. Membership Query

The most typical algorithm for membership query is Bloom
filter [42]. A standard Bloom filter is a highly compact
probabilistic structure that consists of an M bits array with k
hash mapping functions: h1(.), h2(.), . . . , hk(.), and each bit is
set to 0 at the beginning. For each incoming flow, its k mapped
bits are set to 1. For a membership query, i.e., querying
whether a flow occurs in the data stream, the Bloom filter
checks whether all its k mapped bits have been set to 1. The
above makes Bloom filter very good at “removing duplicates”:
if the k mapped bits are all 1, it means the flow has already
appeared/repeated. Some successors include Counting Bloom

Filter [43], Spectral Bloom Filters [44], Dynamic Bloom
Filter [45], Variable-Increment Counting Bloom Filter [46],
and Elastic Bloom Filter [47], etc.

III. PISKETCH DESIGN

In this section, we first define the weight of a flow
in Section III-A. Then, we introduce the data structure of
PISketch in Section III-B. Next, we give the details of how to
process incoming flows based on the weight in Section III-C.
For convenience, we provide the symbols frequently used in
this paper and their meanings in Table I.

A. Weight Definition

Preliminary: Given a data stream S, we divide it into V
equal-sized and continuous time windows.

We use the same weight definition for each time window.
If flow f appears in the ith window for the first time, its weight
Wi is incremented by the initial value L; when f appears in
this window for the second time, its weight is decremented
by 1; when f appears in this window for the third time, its
weight is also decremented by 1, and so on.

Initially, the weight Wi (1 ≤ i ≤ V, i ∈ Z+) of flow f that
occurs Oi (Oi ∈ Z+) times in the ith window can be calcu-
lated as:

Wi =

{
0, if Oi = 0;
L− (Oi − 1) , if Oi ≥ 1.

(1)

where Oi is the number of occurrences of flow f in the ith

window. If Oi = 0, flow f never occurs in the window, so we
set Wi = 0. L (L ∈ Z+) is the initial value assigned to each
flow when it first appears in the ith window.

Equation 1 is the mathematical expression of our proposed
Reward and Penalty System. Next, we define the total weight
Wf of flow f in all windows as Wf =

∑V
i=1 Wi.

PISketch design goal: Persistent and infrequent flows (PI
flows) refer to the flows whose total weight is larger than a
given threshold T . Actually, T can be defined by the users
according to their requirements or the specific application
requirements. Flows with higher total weight are more likely
to be reported as PI flows. Note that the total weight of a flow
may be negative, in which case the flow is definitely not among
the PI flows we want to report, due to its high occurrences.

B. Data Structure

As illustrated in Figure 1, PISketch consists of two parts:
The first part reports whether a flow occurs in current time
window for the first time. The second part calculates the
weight of each flow and finds out which flows are most likely
to have high weight.

The data structure of the first part is a Bloom filter [42] (see
Section II-C). The Bloom filter is a compact representation
of the flows that have arrived in the current time window.
When a new time window begins, we reset the Bloom filter.
Every time a flow comes, we query whether it has been seen
for the first time (i.e., has not been inserted), and if so then
insert it into the Bloom filter. Then, we pass the answer to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I
SYMBOLS FREQUENTLY USED IN THIS PAPER

Fig. 1. Data structure of PISketch.

the next part for weight calculation. A Bloom filter is used to
remove duplicates from incoming flows. Removing duplicates
is necessary because the operations for the first arrival and
subsequent arrivals are different, according to Equation (1).
If the Bloom filter reports true, it means that the flow has
appeared in this time window.

The data structure of the second part is the Weight sketch. Its
basic structure is a hash table with U buckets B1, B2, . . . , BU .
Based on the query results in the previous part, the Weight
sketch calculates the total weight of each flow according
to Equation (1) and keeps the flows whose weights might
potentially exceed T as much as possible. Each bucket of
the Weight sketch has p cells, and each cell has three fields
including flow ID (key), (total) weight and the number of
windows where the flow occurs. A hash function h(.) also
randomly maps the flow to one of the buckets.

C. Operations

Insertion: Given an incoming flow f to the ith window,
we first query the Bloom filter to check whether this flow has

Fig. 2. Examples of processing flows.

occurred in the current window. If the Bloom filter reports
false, indicating f does not occur in the current window, then
we insert f into the Bloom filter and perform two operations
for this window: initialize the weight Wi = L and increment
window number Nf = Nf +1. Otherwise, it indicates that flow
f has already occurred in the current window. We decrement
the weight Wi of this window by 1, i.e., Wi = Wi − 1,
as shown in Equation (1). Then, we try to store the information
of f to its mapped bucket Bh(f). According to the content of
Bh(f), there are three different cases:

Case 1: If a cell contains f , we update the fields of this cell:
(1) We add Wi to the total weight Wf , i.e., Wf ←Wf +Wi;
(2) We update the stored Nf to the current one.

Case 2: If we fail to find f in Bh(f) and Bh(f) is not full,
then we store f in an arbitrary empty cell. We set Wf to Wi,
i.e., Wf ←Wi. In this case: Wf = L, Nf = 1.

Case 3: If no cell in Bh(f) contains f and Bh(f) does not
contain empty cells, then we try to evict a flow from Bh(f)

to make room for f . To keep as many potential PI flows as
possible in the data structure, we select a flow f ′ whose weight
is the smallest among all flows of Bh(f). Although the weight
of f ′ is the smallest, we cannot determine yet whether f ′ is a
PI flow or not. Therefore, we evict f ′ with the smallest weight
Wf ′ in Bh(f) using the Weight Fusion Strategy: Whenever
an eviction/replacement happens, we decrement Wf ′ by 1.
After decrementing, if Wf ′ is lower than 0, it means that
the replacement is successful. We then evict flow f ′, and f
occupies the position of f ′. Wf is set to Wi + 1, and Nf is
set to 1. If the replacement is unsuccessful, f leaves.

Finally, we clear the Bloom filter by setting all bits to 0 at
the end of each time window. The pseudo-code of the insertion
operation is shown in Algorithm 1.

Query: Based on the above operations, PISketch can keep
many PI flows with high weights. To get these PI flows,
PISketch only needs to traverse the buckets. Note that all
the reported flows are potential PI flows. Therefore, users
should carry on further analysis of these potential PI flows.
Furthermore, the number of reported PI flows depends on the
memory size of the data structure. The minimum memory
size of the data structure should therefore be adapted to the
minimum expected number of PI flows.

Examples: As shown in Figure 2, we set L = 5, U = 3,
and p = 2. We assume that flows e, r, g are coming to this

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PISketch: FINDING PERSISTENT AND INFREQUENT FLOWS 5

Algorithm 1 Insertion Procedure
Input: a incoming flow f

1 search for f in the Bloom filter;
2 if f is in the Bloom filter then
3 Wi = −1;
4 else
5 insert f into the Bloom filter;
6 Wi = L;

7 search for f in bucket Bh(f);
8 if f is in Bh(f) then
9 Wf ←Wf + Wi;

10 if Wf < 0 then
11 evict f ;

12 else
13 if the bucket has empty cells then
14 allocate a cell for f ;
15 Wf ←Wi;
16 else
17 // let f ′ be the minimum weight flow in Bh(f);
18 Wf ′ ←Wf ′ − 1;
19 if Wf ′ < 0 then
20 replace f ′ with f ;
21 Wf ←Wi + 1;

22 if f is the last flow in the current window then
23 empty the Bloom filter;

window for the first time. When receiving a flow e, PISketch
maps it to B1 through the hash function h(e). Because there
is a cell storing e, PISketch directly updates the three fields
of the cell: PISketch increments the We by 5, and increments
the Ne by 1. When receiving a flow r, PISketch maps it to
B2. Note that r is not stored in B2, and there is an empty
cell. PISketch stores r in the empty cell: set the ID, Wr, Nr

to the ID of r, 5 and 1, respectively. When processing flow
g, PISketch first calculates the hash function h(g) to locate
bucket B3. Because none of the cells in B3 stores g, PISketch
tries to evict a flow stored in B3 to make room for g. Two flows
are stored in B3, and the weight of d is obviously larger than
the one of c. Therefore, PISketch decrements Wc by 1, and
Wc becomes -1. g now occupies the cell storing c. PISketch
stores g in this cell: set the ID, Wg , Ng to the ID of g, 6 and 1,
respectively.

IV. MATHEMATICAL ANALYSIS

In this section, we first analyze the property of the weight of
a flow in Section IV-A. Then, we derive error bounds for the
Bloom filter and Weight sketch in Section IV-B and Section
IV-C, which are the data structures of Part 1 and Part 2 of
PISketch, respectively. Finally, we analyze the time complexity
of PISketch in Section IV-D.

Based on Equation (1), if a flow occurs Oi times in a single
window, then its weight in this window Wi can be calculated

TABLE II
SYMBOLS USED IN SECTION IV

as:

Wi =

{
0, if Oi = 0;
L + 1−Oi, if Oi ≥ 1.

(2)

In this section, we analyze the implementation of PISketch
and provide a theoretical bound. We make the following two
assumptions:

1) The majority of the flows in the data stream are neither
persistent nor frequent flows (see Table V in Section
VI-A for related evidence); another proportion of flows
are both persistent and frequent flows, and PI flows only
make up a small quantity of data streams.

2) For all PI flows, there is a probability of 1 − q that
it does not appear in this window, and a probability
of q that its appearance in this window, following a
Poisson distribution with parameter λ. In other words,
let X ∼ B(1, q) and Y ∼ P (λ) be two independent
random variables, then Oi can be written as

Oi = (Y + 1) · 1{X=1}. (3)

Here, we use Y + 1 instead of Y to guarantee at least
one occurrence in a given window.

The symbols used in this section is listed in Table II.

A. Property of the Weight of a Flow

In this part, we first give the expectation of the weight when
the frequency of the flow satisfies a special distribution. Then,
we claim the limited extent of over-estimation error, which
shows that the precision rate (PR) of PISketch is usually close
to 1.

We first show the expectation of the weight when the
frequency in each window follows a special distribution in
an ideal situation.

Theorem 1: If the weight changes due to some unsuccessful
replacement or false positives in the Bloom filter are ignored,
then the expectation of the weight after a window is given by
the following equation:

EW = q(L− λ). (4)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Proof: Let O denote the number of occurrences in a
window. Since

P(O = k + 1) = q
λk

k!
e−λ, (k ≥ 0) (5)

the expectation of its weight can be written as

EW = q
+∞∑
k=0

(L− k)
λk

k!
e−λ

= qL
+∞∑
k=0

λk

k!
e−λ − q

+∞∑
k=0

k
λk

k!
e−λ

= qL
+∞∑
k=0

λk

k!
e−λ − qλ

+∞∑
k=1

λk−1

(k − 1)!
e−λ

= q(L− λ). (6)

□
Based on the theorem above, a reasonable explanation for the
parameter q and λ is that q measures the persistence of a
flow: for a large q, the probability of a flow appearing in each
window will be high as well, which illustrates its persistence;
λ measures the frequency of a flow: for a larger λ, the flow
tends to appear more times in a single window, which relates
to its frequency. As a result, to guarantee a sufficiently high
expectation of the weight in a single window, a PI flow shall
have a large q and a small λ with respect to its occurrence.

Moreover, if λ > L for a flow f , by Kolmogorov’s Strong
Law of Large Numbers, we know that

P
(

lim
V→∞

Wf

V
= q(L− λ)

)
= 1. (7)

Hence the total weight of f converges almost surely to a
negative value. We conclude that these flows are definitely
not PI flows we want to find.

Theorem 2 (Claim of Limited Over-Estimation Error):
If f has not been evicted from the Weight sketch, then
Wf ≤ Ŵf + 1.

Proof: The weight of flow f will be incremented by
at most 1 when f successfully replace a flow in the Weight
sketch, but may be decremented by 1 every time a flow not in
the Weight sketch comes to the bucket. Also, the false positives
brought by the Bloom filter will wrongly change Wi from
L to −1, which potentially decrements Wf as well. Hence,
Wf ≤ Ŵf + 1. □

The theorem above points out that PISketch tends to under-
estimate the weight of a flow. Only under the following
circumstance will Wf > Ŵf + 1: leftmargin=1em
• f appears a sufficiently large number of times in a given

window. As a result, it will be evicted from the Weight
sketch first, which makes every decrement operation on
f afterwards in vain (f is not in the bucket, so there is
nowhere to decrement its weight).

• f finally enters the Weight sketch, so its weight will be
reported by PISketch.

Since f appears many times in a single window, f is defi-
nitely not a PI flow we want to find. As a result, we conclude
that for every PI flow f , Wf ≤ Ŵf + 1. In other words, the
over-estimation error of PISketch is limited, and the precision
rate of PISketch is always close to 1.

B. Error Bound of the Bloom Filter

In this part, we work out the error caused by the Bloom
filter [42]. We use W̃f to denote the total weight of f reported
by PISketch with a perfect Bloom filter.

Theorem 3: Let δ be the false positive rate (FPR) of the
Bloom filter, then

0 ≤ EW̃f − EWf ≤ δqV (L + 1). (8)

Proof: The expectation of the number of windows that
f will appear is qV , and every false positive will change Wi

to −1 instead of L. Since the false positive rate is δ,

0 ≤ EW̃f − EWf ≤ δqV (L + 1). (9)

□
It is already known that m = O

(
Γ log 1

δ

)
. Hence, for a given

constant C > 0, by Markov’s inequality we get

P
(
W̃f −Wf ≥ C

)
≤ E(W̃f −Wf)

C
=

qV (L + 1)
C

e−O(m
Γ).

(10)

By allocating more space for the Bloom filter, the probability
above can be bounded.

C. Error Bound of the Weight Sketch

In this part, we focus on the error brought by the Weight
sketch. We first define the idea of safe flows. Then, we analyze
the memory cost to ensure that a PI flow will become “safe”
and give a property for PI flows which has its weight less than
the threshold.

Before we give an error bound for the Weight sketch,
we take a careful look at a PI flow f after it enters the Weight
sketch: f is expected to enter the Weight sketch with its initial
weight Wf = L (if there is an empty cell in the bucket),
Wf = L + 1 (if f replaces some flow in the bucket and f
appears for the first time in this window) or Wf = 0 (if f
replaces some flow in the bucket and f does not appear for
the first time in this window). Since most flows in the data
stream are non-persistent and infrequent, we assume that they
appear in a single window in the data stream and the weight of
most non-persistent and infrequent flows in the Weight sketch
is at most L + 1. Hence, f is most likely to be cleared from
the Weight sketch when Wf ≤ L + 1. Once Nf ≥ 2 and
Wf > L+1, f will stand out in the bucket and will hardly be
evicted from the Weight sketch. Since flows with higher weight
are unlikely to be evicted due to the replacement strategy,
we define safe flows as follows:

Definition 4: A PI flow f , is called safe in the time window
i if Wf > L + 1 at the end of time window i.

Theorem 5: Assume that the number of cells in each bucket
is kept constant. If a PI flow f has entered the Weight sketch,
to ensure that the probability of f being safe is not less than
1− ε, the Weight sketch needs U = O

(
Γ log 1

ε

)
buckets.

Proof: The main idea for the proof is that more space
for the Weight sketch will bring more low-weight flows to
the bucket. On this occasion, the replacement strategy will
influence these victims and allow for the infrequency of flow
f . We will just give a proof based on an average case for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PISketch: FINDING PERSISTENT AND INFREQUENT FLOWS 7

simplicity. Assume that all flows are distributed into each
bucket evenly. As a result, approximately U(L+1) flows will
lead to L+1 flows coming to a single bucket, which can evict
one flow in the bucket. If our Weight sketch unluckily chooses
f for eviction, then f will be driven out of the bucket. These
U(L + 1) flows consist of approximately U(L+1)

Γ windows,
and an evicted f shall not appear in these windows. Hence,
we get

(1− q)
U(L+1)

Γ ≤ ε⇒ U ≥ Γ
L + 1

·
log 1

ε

log 1
1−q

. (11)

Here, q is determined by f , and L is a parameter usually
defined by users, so we get U = O

(
Γ log 1

ε

)
. □

The theorem above gives a conservative estimation of the
probability, as the Weight sketch will choose the flow with
the smallest weight for replacement and the existence of some
frequent flows will make PI flows more difficult to be evicted.
Hence, a PI flow f which does not appear in many windows
in a row can still be kept in the Weight sketch with a high
weight.

As to safe flows, there is a high probability that the total
weight of f exceeds the threshold T .

Theorem 6: For a PI flow f , assume that its weight is never
changed due to unsuccessful replacement and false positives
never occurs with respect to the Bloom filter. If the Bloom
filter reports Wi = L for n times before it successfully enters
the Weight sketch and becomes safe and finally Wf < T , then
n >

Ŵf−T
L .

Proof: f shall enter the Weight sketch very late to get a
relatively small weight. Every ignored appearance reported by
the Bloom filter will subtract L from its weight. Hence W̃f =
Ŵf − nL. With a perfectly accurate Bloom filter, W̃f = Wf ,
hence

Wf = W̃f = Ŵf − nL < T ⇒ n >
Ŵf − T

L
. (12)

□
Although the Bloom filter cannot be perfectly correct in

practice, Equation (10) offers a solution to control the error
caused by it, hence the theorem above still applies to the data
stream in practice.

D. Time Cost of PISketch

Theorem 7: For each flow in the data stream, the time cost
to handle it is O(1).

Proof: For each flow in the data stream, PISketch first
checks the Bloom filter, then uses a hash function h(.) to
map the flow into one of the buckets. In insertion operation,
PISketch either updates it in the bucket or tries to replace a
flow in the bucket. Since the number of cells in each bucket
is small, all these operations can be done in constant time.
At the end of every window, PISketch empties the Bloom
filter, the amortized cost of which is O(1) for each flow.
Hence, the total time cost for each flow is O(1). □

Fig. 3. Architecture design of the Tofino version of PISketch.

V. IMPLEMENTATION

In this section, we implement and evaluate PISketch on
the Tofino switch and FPGA, presented in Section V-A and
Section V-B, respectively.

A. Evaluation on Tofino Platform

We have fully built a P4 prototype of the PISketch on
the Tofino switch [48] using P4 language [49]. In the Tofino
version of PISketch, only the ID and weight of the flow are
reserved for each cell in the Weight sketch (Part 2) to ensure
sufficient hardware resources.

Challenge: In Tofino architecture, packets go through the
ingress pipeline, the traffic manager and the egress pipeline in
turn. The Ingress and egress pipeline each contains 12 separate
stages, each capable of handling some simple logic operations
and having independent memory. Due to the speed require-
ments of the switch, packets can only visit each stage once,
so finding the minimum value in the bucket and modify-
ing it becomes the biggest challenge in our implementation.
To address the above challenge, we use Tofino built-in resub-
mit function, which means that a packet will be resent to the
ingress port after passing through the ingress pipeline, and then
go through the ingress pipeline again, accessing the memory
of each stage for a second time, so as to find the minimum
value and modify the buckets.

Design: As shown in Figure 3, we use a total of 11 stages
in Ingress to implement the P4 version of PISketch under the
Tofino model. Specifically, Stage 1 to 3 are Bloom filters,
Stage 5 to 7 are 3 buckets that store flow IDs, and Stage 8
to 10 are 3 buckets that store the weights Wf corresponding
to flow IDs. Each stage holds a bucket array of length 217,
and each bucket holds 32-bit data in width. As packets pass
through, the data corresponding to the index of the array is
accessed and logically manipulated using the hash result of
the flow ID as the index. Each packet passes through the
ingress pipeline twice. The key operation of the first round
is to complete the reading of each stage data. When packets
enter the switch, they go through Bloom Filter and record
the query result in packet header. Then the packets read three
group of ID buckets and WF buckets in turn to find whether
there is an ID match and record the bucket number with the
smallest WF value. After finishing the process, the switch
resubmits the packets to the ingress port. The key operation of
the second round is the processing of writes to empty buckets
or buckets whose flow IDs are matched or buckets with the
smallest weight Wf among them. Packets resubmitted to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III
H/W RESOURCES USED BY PISKETCH

ingress port will go through the ingress pipeline again. Based
on the query results of the first round, PISketch performs the
operations of ID replacement or WF increase or decrease.
When finishing the two round, the packets enter the traffic
manager, pass the egress pipeline and leave from the switch.

In practice, we need two sets of exactly the same PISketch
structure. The old and the new PISketch are switched while
the time window is switched. When we use the new PISketch,
the control plane records the old PISketch results and clear
the old data.

Evaluation Results: We list the utilization of various
hardware resources on the switch in Table III. We find that
Map RAM and Stateful ALU are the two most used resources
of PISketch, accounting for 31.94% and 29.17% of the total
quota, respectively. For other kinds of sources, PISketch uses
up to 19.17% of the total quota.

The Tofino switch ensures the strict order of entry into the
ingress pipeline, which means the order of packets passing
through each stage is the same as the entering sequence. The
CPU environment can easily simulate the behavior of the
Tofino Ingress, so the Tofino test results can be illustrated by
the CPU simulation experiments. We do not show them here
repeatedly.

B. Evaluation on FPGA Platform

We implement PISketch on an FPGA network experimental
platform (Virtex-7 VC709). The FPGA integrated with the
platform is xc7vx690tffg1761-2 with 433200 Slice LUTs,
866400 Slice Register, and 1470 Block RAM Tile.

Design: The architecture design diagram is shown in Fig-
ure 4. The FPGA version of PISketch follows a hierarchical
and modular design concept. The top-level module implements
the overall input and output of the system, and controls the
parameter transfer between the following three sub-modules:
calculating the hash values (Hash), checking the number of
times the flow arrives at the window (Bloom filter), and writing
to the matched bucket (Weight sketch). Among them, since
the Bloom filter module needs to be cleared periodically,
we choose to use the register to store the Bloom filter.
However, larger registers result in lower clock frequency,
which is the performance bottleneck of FPGA-based PISketch.
Also, the clearing of RAM requires RAM depth sub-clock
cycles, so we have to sacrifice performance to ensure complete
functionality. In addition, the matching bucket in the Weight

Fig. 4. Architecture design of the FPGA version of PISketch.

sketch module chooses RAM for storage and involves the
operation of reading the relevant data from RAM and then
comparing it with the current flow. However, the RAM used
in this experiment requires two clock cycles for read and write
operations, so the module uses FIFO (First Input First Output)
to process the current flow after two clock cycles in order to
achieve the goal of full pipeline. In short, our FPGA-based
PISketch makes full use of hardware parallel processing to
achieve full pipeline operation. The processing of each flow
requires 16 clock cycles, and each clock cycle completes the
corresponding 1/16 subtask, thus 16 flows can be processed
in parallel per clock cycle.

Evaluation Results: The evaluation results of the FPGA
implementation are shown in Table IV. 1) The over-
all resource usage information is as follows: ① PISketch
uses 11745 LUTs, 2.71% of the 433200 total available; ②
PISketch uses 3985 Register, 0.46% of the 866400 total avail-
able; ③ PISketch uses 900 Block RAM Tile, 61.22% of the
total on-chip Block RAM. Specifically, the resource usage and
percentages of sub-modules (Hash, Bloom filter, and Weight
sketch) correspond to the numbers in the table and the ones in
parentheses beside them, respectively. 2) The clock frequency
of our implementation in FPGA is 276 MHz, meaning the
processing speed (i.e., throughput in Section VI-B) of the
system can be 276 Mips (million items per second).

VI. EXPERIMENTAL RESULTS

In this section, we show the experimental results of PISketch
on CPU. First, we describe the experimental setup and metrics
in Section VI-A and Section VI-B, respectively. Second,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PISketch: FINDING PERSISTENT AND INFREQUENT FLOWS 9

TABLE IV
PERFORMANCE ON FPGA PLATFORM

Fig. 5. Evaluation on parameter settings: p, with different memory sizes.

Fig. 6. Evaluation on parameter settings: p, with different NTotal.

Fig. 7. Evaluation on parameter settings: p, with different NPI .

we explain how parameter settings affect PISketch’s perfor-
mance in Section VI-C. Third, we evaluate the performance
of PISketch on different datasets and compare it with two
strawman solutions in Section VI-D. Then, we provide two
concrete applications of PISketch through two end-to-end
experiments in Section VI-E and Section VI-F, along with
a discussion about them in Section VI-G. Finally, we pro-
vide examples of parameter settings for problem definition
and an open question in Section VI-H and Section VI-I,
respectively.

A. Experiment Setup

Implementation: We implement our algorithm and related
algorithms in C++. Our hash function is the Bob Hash [50].
We conduct experiments on a server with two CPUs (Intel
Xeon E5-2620V3@2.4GHZ) and 62GB DRAM.

Datasets: We use three real-world datasets and two syn-
thetic datasets. Each dataset contains about 5M packets.

(1) CAIDA Dataset: This IP Trace Dataset is streams of
anonymized IP traces collected in 2018 by CAIDA [51].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Evaluation on parameter settings: NTotal, with different memory sizes.

Fig. 9. Evaluation on parameter settings: NPI , with different memory sizes.

(2) MAWI Dataset: This real packet traffic trace dataset is
provided by the MAWI Working Group [52].

(3) Network Dataset: This dataset contains users’ posting
history on the stack exchange website [53]. Each flow has
three values u, v, t, which means user u answered user v’s
question at time t. We use u as the ID and t as the timestamp
of a flow.

Here, we list the number and percentage of persistent flows
as well as frequent flows in the three real-world datasets men-
tioned above in Table V. We can further draw the following
conclusions: the proportion of persistent flows is very small,
and the proportion of PI flows, which must also be infrequency
flows under this premise, is even less.

(4) Synthetic Dataset I: Since large-scale real APT flows
are too difficult to obtain, we synthesize this dataset by
referring to some literature [54], [55], [56], [57] to evalu-
ate the performance of PISketch’s preliminary screening for
suspected APT flows. Specifically, our synthetic approach
consists of mixing the real APT flows from Contagio Malware
Database [58] with the normal flows from CAIDA Dataset.
In this dataset, about 600 real attack flows are mixed with
millions of normal flows.

(5) Synthetic Dataset II: Since large-scale real FRP flows
are too difficult to obtain, we synthesize this dataset to
evaluate the performance of PISketch’s preliminary screening
for suspected FRP flows. Our synthetic approach is similar
to the above Synthetic Dataset I, except that the real FRP
flows are collected by ourselves (see the Methodology in
Section VI-F). In this dataset, about 40 captured FRP flows
are mixed with millions of normal flows.

B. Metrics

We evaluate the following three performance metrics: F1
Score, Average Relative Error (ARE) and Throughput.

(1) F1 Score: 2∗PR∗RR
PR+RR . Precision Rate (PR) indicates the

ratio of truly reported PI flows to the reported flows, and Recall
Rate (RR) indicates the ratio of truly reported PI flows to the
total PI flows. We use F1 Score to evaluate the accuracy.

(2) Average Relative Error (ARE): Let N̂1, N̂2, . . . , N̂k

be the estimated window number of the reported flows, and let
N1, N2, . . . , Nk be the true window number of the reported
flows. ARE is defined as 1

k ·
∑k

j=1
|Nj−N̂j |

Nj
.

(3) Throughput: Million operations (insertions) per second
(Mops). All the experiments about throughput are repeated
10 times, and the average throughput is reported. We use
throughput to evaluate the speed.

C. Experiments on Parameter Settings

We have four key parameters, which can be divided into the
following two types:

(1) Parameters related to the problem definition: They
include the initial value L, the number of windows V , and the
threshold T . These parameters are usually defined by users
according to different use cases. In this experiment, we set
L = 10, V = 1000 and T = 3000. We recommend this set of
parameters because of their good filtering performance across
different datasets. Please refer to Section VI-H for details.

(2) Parameters related to the algorithm setting: They
include the number of cells in a bucket p, the total flow number
NTotal, and the number of PI flows NPI . We use the CAIDA
dataset, and use F1 Score, ARE and Throughput as metrics to
evaluate its effects.

Effects of p (Figure 5-7): We find that the PISketch
achieves the best F1 Score when the number of cells in a
bucket is 4 and 5. 1) In this experiment, we first compare
the performance of the PISketch when p varies from 1 to
10 and with different memory sizes, as shown in Figure 5(a)-
5(c). When the memory size is 200/300KB, the F1 Score

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PISketch: FINDING PERSISTENT AND INFREQUENT FLOWS 11

TABLE V
THE NUMBER AND PERCENTAGE OF PERSISTENT FLOWS AND FREQUENT FLOWS IN THE THREE REAL-WORLD DATASETS

Fig. 10. F1 Score on finding PI flows.

Fig. 11. ARE on finding PI flows.

Fig. 12. Throughput on finding PI flows.

peaks when p = 4 and p = 5. When the memory size is
100KB, the F1 Score peaks for p = 7, but the advantage is
limited, as per Figure 5(a). In addition, we find that the ARE
first decreases and then stabilizes with the increase of p, and
the overall the throughput smoothly decreases as p increases,
as per Figure 5(b). As shown in Figure 5(c), compared with
p = 4, the throughput at p = 5 is acceptable, as it does
not bring any major drawback. 2) Secondly, we compare
the performance of the PISketch when p varies from 1 to
10 and with different NTotal, as shown in Figure 6(a)-6(c).

We find that the trends of ARE and throughput for different
NTotal are similar to those for different memory sizes, but
the F1 Score of NTotal = 8 × 106 is slightly smaller than
that of NTotal = 2 × 106/5 × 106 when p is small. 3)
Thirdly, we compare the performance of the PISketch when
p varies from 1 to 10 and with different NPI , as shown
in Figure 7(a)-7(c). We find that the F1 Score decreases as
NPI increases, especially that of NPI = 1545 is significantly
smaller than that of NPI = 313/773. In addition, ARE
increases as NPI increases, and the trend of throughput for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

different NPI is also similar to that of different memory sizes.
For sub-experiments 2) and 3), we also find that each metric
for p = 5 performs well or acceptably at their respective
different NTotal or NPI . In summary, we set p to 5 in our
experiments.

Effects of NTotal (Figure 8(a)-8(c)): We find that the
optimal values for NTotal are 5 × 106 and 7 × 106. In this
experiment, we compare the performance of PISketch when
NTotal varies from 1 × 106 to 8 × 106 with a step size of
1× 106. When the memory size is 200/300KB, the F1 Score
peaks when NTotal = 7 × 106. When the memory size is
100KB, the F1 Score peaks when NTotal = 5×106, as shown
in Figure 8(a). In addition, the performance of PISketch’s ARE
and throughput at NTotal = 5 × 106 is similar to the one at
NTotal = 7 × 106 as shown in Figures 8(b)-8(c). Thus, the
optimal value of NTotal is 5 × 106 and 7 × 106, and we set
NTotal = 5× 106.

Effects of NPI (Figure 9(a)-9(c)): We find that the value
of NPI affects the F1 Score and ARE of PISketch. In this
experiment, we compare the performance of PISketch when
NPI varies from 223 to 1545, where all variable values are
223, 313, 457, 773, 1545, in that order. We find that the F1
Score of PISketch first increases slightly and then gradually
decreases with the increase of NPI , ARE gradually increases
with the increase of NPI , and there is no obvious trend for
throughput to change with NPI .

Analysis: 1) The value of p should be selected based on
a trade-off between the F1 Score and throughput, especially
when its value is relatively small. 2) The performance under
different scales of NTotal is similar, and users should pay
more attention to the impact of different memory sizes under
the same NTotal on the performance of PISketch. 3) When
the memory size is fixed and NPI exceeds a certain scale,
PISketch needs to store too many PI flows, resulting in a slight
decrease in accuracy and a slight increase in ARE.

D. Experiments on Finding PI Flows

We compare PISketch with two strawman solutions: 1)
On-Off + CM sketch; 2) PIE + CM sketch. For PISketch
and On-Off + CM sketch, we set the memory size range
to 100KB-250KB. For PIE + CM sketch, the memory size
range is set to 10000KB-25000KB. This means its mem-
ory range is 100 times the one of PISketch (applicable
to Sections VI-D - VI-F). Specifically, we use PIE [3]/On-
Off [2] to estimate flow persistency (i.e., the time window
number), and the CM sketch [21] to estimate flow frequency.
We then combine them together to get the estimated persis-
tency and infrequency, and finally find PI flows. The parameter
configurations of PISketch and two strawman solutions is
detailed in our supplemental material [59]. In the following,
we refer to On-Off + CM sketch as Sol-1 and PIE + CM
sketch as Sol-2 for short.

F1 Score (Figure 10(a)-10(c)): We find that the F1 Score
of PISketch is much higher than the one of Sol-1 and Sol-2.
On the three real-world datasets, the F1 Score of PISketch is
around 22.1% and 57.6% higher than the one of Sol-1 and
Sol-2 on average, respectively.

ARE (Figure 11(a)-11(c)): We find that the ARE of
PISketch is significantly lower than the one of Sol-1 and Sol-
2. On the three real-world datasets, the ARE of PISketch is
around 820.9 (up to 1188.8) and 126.2 (up to 265.6) times
lower than the one of Sol-1 and Sol-2 on average, respectively.

Throughput (Figure 12(a)-12(c)): We find that the inser-
tion throughput of PISketch is higher than the one of Sol-1 and
is obviously higher than the one of Sol-2. On the three real-
world datasets, the throughput of PISketch is around 1.23 and
16.5 times higher than the one of Sol-1 and Sol-2 on average,
respectively.
Analysis: Our results show that PISketch has better perfor-
mance than Sol-1 and Sol-2, as expected. The main reasons
are: 1) PISketch has converted frequencies and persistencies
into weights. Therefore, there is no need to store them in each
time window; 2) PISketch filters out most low-weight flows
and finds PI flows more effectively through a competition
(i.e., eviction and replacement) mechanism. Also, the space
complexity of PISketch is lower than the one of Sol-1, and
much smaller than the one of Sol-2.

E. End-to-End Experiment I: Application in Preliminary APT
Detection

Methodology: The implementation method of this experi-
ment is similar to Section VI-D. Specifically, we run PISketch
on the Synthetic Dataset I (see Section VI-A), and the output
PI flows is the suspected APT flows. We use F1 Score, ARE,
and throughput as evaluation metrics. Note that the memory
range for PISketch and On-Off + CM sketch in Section VI-E-
VI-F is set to 150KB-300KB, while for PIE + CM sketch is
15000KB-30000KB.

Experimental Results (Figures 13(a)-13(c)): We find
that PISketch performs better than Sol-1 and Sol-2 in the
preliminary screening of suspected APT flows. The results are
as follows. 1) The F1 Score of PISketch is around 62.4% and
34.3% higher than the one of Sol-1 and Sol-2, respectively. 2)
The ARE of PISketch is around 112.1 and 1.69 times lower
than the one of Sol-1 and Sol-2 on average, respectively. 3)
The throughput of PISketch is around 1.50 and 17.7 times
higher than the one of Sol-1 and Sol-2 on average, respectively.

F. End-to-End Experiment II: Application in Preliminary
FRP Detection

Methodology: We deploy FRP in two cloud servers. One
server is hidden in the enterprise network and it deploys a FRP
client (FRPc). The other server runs as a FRP server (FRPs),
which can expose the server with FRP client to the Internet.
When FRPs starts the service, FRPc connects through IP and
port number, and they communicate every once in a while.
Next, we use tcpdump [60] to capture the communication
traffic between the two servers. Within the NAT, the IP address
of FRPc may change due to DHCP. We repeat the experiment
20 times including setting up new cloud servers and capturing
the communication traffic between FRPc and FRPs. Finally,
we mix these captured traffic (40 FRP flows in total) into the
normal flows to generate the Synthetic Dataset II described in
Section VI-A, and evaluate whether PISketch can find the FRP

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PISketch: FINDING PERSISTENT AND INFREQUENT FLOWS 13

Fig. 13. Evaluation on APT preliminary detection.

Fig. 14. Evaluation on FRP preliminary detection.

flows out (similar to the experiment in Section VI-E). We still
use F1 Score, ARE, and throughput as evaluation metrics.

Experimental Results (Figure 14(a)-14(c)): We find that
PISketch outperforms than Sol-1 and Sol-2 on preliminary
detection of suspected FRP flows. The results are as follows. 1)
The F1 Score of PISketch is around 83.8% and 46.2% higher
than the one of Sol-1 and Sol-2, respectively. 2) The ARE of
PISketch is around 69.0 times lower than Sol-1 and 1.99 times
higher than Sol-2, while Sol-2 uses 100 times the memory size.
3) The throughput of PISketch is around 1.57 and 18.7 times
higher than the one of Sol-1 and Sol-2 on average, respectively.

G. Discussion of Section VI-E-VI-F

We have implemented two use cases for PISketch intro-
duced in Section I-A: the preliminary detection of Advanced
Persistent Threats (APT) [14], [15] and Fast Reverse Proxy
(FRP) [16], but the applications of PISketch is not limited to
them. The main contribution of PISketch in these two cases is
the obvious efficiency improvement: it outputs only suspicious
APT/FRP flows at a high speed with a small cost. In this
way, users can further analyze these suspicious flows using
existing solutions (e.g., various intrusion detection systems
(IDS)), which are orthogonal to PISketch. As future work,
we plan to implement system-level deployment of PISketch
in existing IDS solutions.

H. Examples of Problem Definition Parameter Settings

In this section, we present examples of the choice of three
problem definition parameters (i.e., the initial value L, the
number of windows V , and the threshold T) on different
datasets (CAIDA, MAWI, Network). To achieve this goal,

we have conducted extensive experiments on the aforemen-
tioned datasets. As shown in Figure 15, each line in these
figures represents the following equation:

V (L + 1)−frequency = T (13)

where frequency represents the frequency of flows in these
datasets.

Conclusions: 1) The flows in the direction of the lower
right corner of each line is the PI flows obtained under
the corresponding parameters (L, V , T). If a flow is closer
to the lower right corner from the specified line, the more
persistent and infrequent (PI) it is (and of course the higher
the corresponding weight). 2) The lines of different colors in
the figures represent the degree of “preference” for different
parameters. Therefore, according to our continuous testing,
we finally select the parameters corresponding to the red line
in the figures as follows: L = 10, V = 1000 and T = 3000.
Users can refer to our example and select these parameters
flexibly according to their own needs.

I. An Open Question

Question: Can the expected number of PI flows be asserted
by the flow distribution?

Answer: On the surface, flow distribution can only describe
frequency information, but cannot describe persistence infor-
mation. However, we may be able to estimate an upper limit
for the expected number of PI flows through flow distribution:
those with extremely low frequencies are definitely not PI
flows, and those with extremely high frequencies are also not
PI flows.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 15. An example of problem definition parameter settings for finding PI
flows. When V = 0, the absolute value of frequency is T .

VII. CONCLUSION

In this paper, we propose PISketch, which is the first
algorithm for finding PI (persistent and infrequent) flows in
real time. We implement PISketch entirely on P4, FPGA, and

conduct extensive experiments on CPU. We compare PISketch
with two strawman solutions, one being On-Off + CM sketch
and the other PIE + CM sketch. Our experimental results
illustrate the advantages of our approach: PISketch can achieve
around 22.1%/57.6% higher F1 Score, 1.23/16.5 times higher
throughput, and 820.9/126.2 times lower ARE. Furthermore,
our two end-to-end experiments demonstrate the good perfor-
mance of PISketch in preliminary detection of APT and FRP
flows.

ACKNOWLEDGMENT

The authors would like to thank their editor, and the
anonymous reviewers for their thoughtful feedback.

REFERENCES

[1] Z. Fan et al., “PISketch: Finding persistent and infrequent flows,” in
Proc. ACM SIGCOMM Workshop Formal Found. Secur. Program. Netw.
Infrastructures, Aug. 2022, pp. 8–14.

[2] Y. Zhang et al., “On-off sketch: A fast and accurate sketch on persis-
tence,” Proc. VLDB Endowment, vol. 14, no. 2, pp. 128–140, Oct. 2020.

[3] H. Dai et al., “Identifying and estimating persistent items in data
streams,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2429–2442,
Dec. 2018.

[4] H. Dai, M. Li, A. X. Liu, J. Zheng, and G. Chen, “Finding persistent
items in distributed datasets,” IEEE/ACM Trans. Netw., vol. 28, no. 1,
pp. 1–14, Feb. 2020.

[5] H. Huang et al., “You can drop but you can’t hide: K-persistent
spread estimation in high-speed networks,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2018, pp. 1889–1897.

[6] H. Huang et al., “An efficient K-persistent spread estimator for traffic
measurement in high-speed networks,” IEEE/ACM Trans. Netw., vol. 28,
no. 4, pp. 1463–1476, Aug. 2020.

[7] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 101–114.

[8] Q. Huang et al., “SketchVisor: Robust network measurement for
software packet processing,” in Proc. ACM SIGCOMM, Aug. 2017,
pp. 113–126.

[9] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 561–575.

[10] T. Yang et al., “HeavyKeeper: An accurate algorithm for finding top-k
elephant flows,” IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1845–1858,
Aug. 2019.

[11] Z. Liu et al., “NitroSketch: Robust and general sketch-based monitoring
in software switches,” in Proc. SIGCOMM, Aug. 2019, pp. 334–350.

[12] Y. Zhang et al., “CocoSketch: High-performance sketch-based measure-
ment over arbitrary partial key query,” in Proc. SIGCOMM, Aug. 2021,
pp. 207–222.

[13] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “SketchLib:
Enabling efficient sketch-based monitoring on programmable switches,”
in Proc. 19th USENIX Symp. Networked Syst. Design Implement.
(NSDI), Mar. 2022, pp. 743–759.

[14] E. Cole, Advanced Persistent Threat: Understanding the Danger and
How to Protect Your Organization. Waltham, MA, USA: Syngress, 2012.

[15] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1851–1877, 2nd Quart., 2019.

[16] (2021). Fatedier/FRP: A Fast Reverse Proxy to Help you Expose a Local
Server Behind a NAT or Firewall to the internet. [Online]. Available:
https://github.com/fatedier/frp

[17] L. Wang, K. S. Park, R. Pang, V. Pai, and L. Peterson, “Reliability and
security in the CoDeeN content distribution network,” in Proc. USENIX
Annu. Tech. Conf. (ATC), Jun. 2004, pp. 171–184.

[18] M. S. Rahman, M. Y. S. Uddin, T. Hasan, M. S. Rahman, and
M. Kaykobad, “Using adaptive heartbeat rate on long-lived TCP connec-
tions,” IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 203–216, Feb. 2018.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: PISketch: FINDING PERSISTENT AND INFREQUENT FLOWS 15

[19] A. Argyriou and V. Madisetti, “Using a new protocol to enhance path
reliability and realize load balancing in mobile ad hoc networks,” Ad
Hoc Netw., vol. 4, no. 1, pp. 60–74, Jan. 2006.

[20] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-
Start: A just-in-time signaling architecture for WDM burst-switched
networks,” IEEE Commun. Mag., vol. 40, no. 2, pp. 82–89, Feb. 2002.

[21] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[22] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 435–446,
Aug. 2013.

[23] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,” in
Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 479–491.

[24] A. Kumar, J. Xu, and J. Wang, “Space-code Bloom filter for efficient
per-flow traffic measurement,” IEEE J. Sel. Areas Commun., vol. 24,
no. 12, pp. 2327–2339, Dec. 2006.

[25] T. Yang et al., “Guarantee IP lookup performance with FIB explosion,”
in Proc. ACM Conf. SIGCOMM, Aug. 2014, pp. 39–50.

[26] (2022). Source Code and More details related to PISketch. [Online].
Available: https://github.com/pkufzc/PISketch

[27] B. Lahiri, J. Chandrashekar, and S. Tirthapura, “Space-efficient tracking
of persistent items in a massive data stream,” in Proc. 5th ACM Int.
Conf. Distrib. Event-Based Syst., Jul. 2011, pp. 255–266.

[28] Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent spread measure-
ment for big network data based on register intersection,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 1, no. 1, pp. 1–29, Jun. 2017.

[29] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference? Efficient set reconciliation without prior context,” ACM SIG-
COMM Comput. Commun. Rev., vol. 41, no. 4, pp. 218–229, Aug. 2011.

[30] M. T. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup tables,”
in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput. (Aller-
ton), Sep. 2011, pp. 792–799.

[31] A. Shokrollahi and M. Luby, “Raptor codes,” Found. Trends Commun.
Inf. Theory, vol. 6, nos. 3–4, pp. 213–322, May 2011.

[32] R. Schweller et al., “Reversible sketches: Enabling monitoring and
analysis over high-speed data streams,” IEEE/ACM Trans. Netw., vol. 15,
no. 5, pp. 1059–1072, Oct. 2007.

[33] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: Methods, evaluation, and applications,” in Proc. ACM
SIGCOMM Conf. Internet Meas. (IMC), Oct. 2003, pp. 234–247.

[34] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[35] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proc. EATCS ICALP, Jul. 2002, pp. 693–703.

[36] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp. 1622–1634, Oct. 2012.

[37] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and
more accurate stream processing,” in Proc. Int. Conf. Manage. Data,
Jun. 2016, pp. 1449–1463.

[38] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: A sketch
framework for frequency estimation of data streams,” Proc. VLDB
Endowment, vol. 10, no. 11, pp. 1442–1453, Aug. 2017.

[39] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavy-
Guardian: Separate and guard hot items in data streams,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 2584–2593.

[40] Y. Zhou et al., “Cold filter: A meta-framework for faster and more
accurate stream processing,” in Proc. SIGMOD, Jun. 2018, pp. 741–756.

[41] Y. Zhao et al., “LightGuardian: A full-visibility, lightweight, in-
band telemetry system using sketchlets,” in Proc. NSDI, Apr. 2021,
pp. 991–1010.

[42] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[43] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[44] S. Cohen and Y. Matias, “Spectral Bloom filters,” in Proc. ACM
SIGMOD, Jun. 2003, pp. 241–252.

[45] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic Bloom
filters,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 120–133,
Jan. 2010.

[46] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” IEEE/ACM Trans. Netw., vol. 22, no. 4,
pp. 1092–1105, Aug. 2014.

[47] Y. Wu et al., “Elastic Bloom filter: Deletable and expandable filter using
elastic fingerprints,” IEEE Trans. Comput., vol. 71, no. 4, pp. 984–991,
Apr. 2022.

[48] (2022). Barefoot Tofino: World’s Fastest P4-Programmable Eth-
ernet Switch Asics. [Online]. Available: https://barefootnetworks.
com/products/brief-tofino/

[49] (2020). P4-16 Language Specification. [Online]. Available: https://p4.
org/p4-spec/docs/P4-16-v1.2.1.html#sec-checksums

[50] (1997). Bob Jenkins’ Hash Function Web Page, Paper Pub-
lished in Dr Dobb’S Journal. [Online]. Available: http://burtleburtle.
net/bob/hash/evahash.html

[51] (2018). The CAIDA Anonymized Internet Traces. [Online]. Available:
https://www.caida.org/catalog/datasets/overview/

[52] (2010). MAWI Working Group Traffic Archive. [Online]. Available:
http://mawi.wide.ad.jp/mawi/

[53] (2014). The Network Dataset Internet Traces. [Online]. Available:
http://snap.stanford.edu/data/

[54] L. Shang, D. Guo, Y. Ji, and Q. Li, “Discovering unknown advanced
persistent threat using shared features mined by neural networks,”
Comput. Netw., vol. 189, Apr. 2021, Art. no. 107937.

[55] J. Lu, K. Chen, Z. Zhuo, and X. Zhang, “A temporal correlation and
traffic analysis approach for APT attacks detection,” Cluster Comput.,
vol. 22, no. S3, pp. 7347–7358, May 2019.

[56] J. Tan and J. Wang, “Detecting advanced persistent threats based on
entropy and support vector machine,” in Proc. 18th Int. Conf. Algorithms
Architectures Parallel Process. (ICAPP), Nov. 2018, pp. 153–165.

[57] D. Shick and A. Horneman, “Investigating advanced persistent
threat 1 (APT1),” Carnegie Mellon Univ., Softw. Eng. Inst.,
Hanscom AFB, MA, USA, Tech. Rep., CMU/SEI-2014-TR-001,
May 2014. [Online]. Available: https://kilthub.cmu.edu/articles/journal_
contribution/Investigating_Advanced_Persistent_Threat_1_APT1_/
6574880/files/12061442.pdf

[58] (2013). Mila Parkour Contagio Malware Data-Base. [Online].
Available: https://www.mediafire.com/folder/c2az029ch6cke/TRAFFIC_
PATTERNS_COLLECTION#734479hwy1b97

[59] (2022). The Supplementary Material of PISketch. [Online]. Available:
https://github.com/pkufzc/PISketch/blob/main/PISketch_Supplementary_
Material.pdf

[60] (2018). Tcpdump Examples. [Online]. Available: https://hackertarget.
com/tcpdump-examples/

Zhuochen Fan received the Ph.D. degree in com-
puter science from Peking University in 2023,
advised by Tong Yang. He is currently working as
a Boya Post-Doctoral Fellow with the School of
Computer Science, Peking University. He published
papers in IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, ICDE, RTSS, ICPP, and
ICNP. His research interests include data stream
processing and algorithms, computer networks, and
network measurements.

Zhoujing Hu is currently pursuing the bachelor’s
degree in computer science with Peking University.
His research interests include data sketches and data
stream processing systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

Yuhan Wu received the bachelor’s degree from the
Department of Electrical Engineering and Computer
Science, Peking University, in 2021. He is currently
pursuing the Ph.D. degree in computer science with
the School of Computer Science, Peking University,
advised by Tong Yang. His research interests include
computer networks and database, including key-
value stores, network measurement, and sketches.

Jiarui Guo is currently pursuing the bachelor’s
degree in computer science with Peking University,
advised by Tong Yang. His research interests include
approximation algorithms in data streams and com-
puter network systems.

Sha Wang is currently pursuing the M.S. degree
with the College of Computer, National University
of Defense Technology. Her main research interests
include time sensitive networks.

Wenrui Liu is currently pursuing the bachelor’s
degree in computer science with Peking University,
advised by Tong Yang. His research interests include
network measurements, programmable switch, and
network systems.

Tong Yang (Member, IEEE) received the Ph.D.
degree in computer science from Tsinghua Uni-
versity in 2013. He visited the Institute of Com-
puting Technology, Chinese Academy of Sciences
(CAS). He is currently an Associate Professor with
the School of Computer Science, Peking Univer-
sity. His research interests include network mea-
surements, sketches, IP lookups, Bloom filters, and
KV stores. He has served as a TPC Member for
several premier conferences, such as INFOCOM
and ICNP. He is currently an Associate Editor

of Knowledge and Information Systems. He published dozens of papers
in IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON PAR-
ALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUT-
ERS, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
VLDB Journal, SIGCOMM, NSDI, INFOCOM, SIGKDD, SIGMOD, VLDB,
and ICDE.

Yaofeng Tu was born in 1972. He received the
Ph.D. degree. He is currently a Researcher with the
ZTE Nanjing Research and Development Center. His
main research interests include big data, distributed
systems, and machine learning.

Steve Uhlig received the Ph.D. degree in applied
sciences from the Catholic University of Louvain,
Belgium, in 2004. From 2004 to 2006, he was
a Post-Doctoral Fellow with the Belgian National
Fund for Scientific Research (F.N.R.S.). His the-
sis won the annual IBM Belgium/F.N.R.S. Com-
puter Science Prize in 2005. From 2004 to 2006,
he was a Visiting Scientist with Intel Research
Cambridge, U.K., and the Department of Applied
Mathematics, The University of Adelaide, Australia.
From 2006 to 2008, he was with the Delft University

of Technology, The Netherlands. From 2012 to 2016, he was a Guest Professor
with the Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China. Since January 2012, he has been a Professor of networks
and the Head of the Networks Research Group, Queen Mary University of
London. Prior to joining the Queen Mary University of London, he was
a Senior Research Scientist with Technische Universität Berlin/Deutsche
Telekom Laboratories, Berlin, Germany.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Peking University. Downloaded on May 12,2023 at 07:05:14 UTC from IEEE Xplore. Restrictions apply.

