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ABSTRACT
∗The data plane cache, a critical functionality found in numerous
network devices, such as programmable switches, intelligent NICs,
and DPUs, is often subject to limitations in its programmability and
memory access capacity. As a result, the majority of existing data
plane caches rely on simple and inefficient replacement policies.
This paper is set to introduce LRU, a near-optimal replacement
policy, into the programmable data plane. We first explore the rea-
sons why the traditional implementation of LRU is not suitable for
deployment on the data plane. Consequently, we propose P4LRU, a
pipeline-optimized version of the LRU implementation. Building on
P4LRU, we conceive three distinct in-network systems – LruTable,
LruIndex, and LruMon, and successfully bring them to life on Tofino
switches. Our thorough experimental trials establish that P4LRU
provides a significant performance boost over existing data plane
caches in these three systems. We have open-sourced the source
codes for the three systems on GitHub [1].
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1 INTRODUCTION
1.1 Background and Motivation
Caching is a vital and core component in computer science. The
storage in most computer systems is organized into a hierarchical
structure revolving around the processor, with the storage media
closest to the processor delivering the highest performance. There-
fore, positioning the cache at the apex of this hierarchical structure
can markedly boost system performance. For switches offering net-
work functions [32], such as forwarding, routing, and firewalling,
the on-chip memory in the data plane is the closest to the packet
processing logic, whereas the off-chip memory in the control plane
augments the capacity. In the case of remote services with a client-
server architecture, the on-chip memory in the switches around the
client is closer to the user than the server memory, hence can yield
higher performance. Therefore, establishing an efficient cache in
the data plane of switches offers considerable benefits to network
functions and remote services.

The most significant measure to evaluate cache is the hit rate,
which is directly determined by the cache replacement policy. Over
the years, various cache replacement policies have been proposed by
researchers, including LRU (Least Recently Used) [41], LFU (Least
Frequently Used) [49], LFRU, [8, 33] and others, with LRU being the
most universal and tested policy. Multiple studies indicate that LRU
performs exceptionally well in most scenarios, only slightly behind
more complex replacement policies based on dedicated design or
machine learning [5, 6, 20, 24]. As such, LRU is often considered the
go-to choice. However, implementing an efficient and strict LRU
is challenging, even on a CPU platform. To attain 𝑂 (1) complex-
ity, the renowned Memcached [21] implementation uses a doubly
linked-list to record entries in LRU order and employs a linked hash
table to swiftly locate entries. Its successor, MemC3 [20], utilizes a
cuckoo hash table [43] to improve the loading rate and applies the
CLOCK algorithm [14] to approximate LRU, hence saving memory.
Regrettably, neither the linked hash table nor the cuckoo hash table
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can be implemented in the data plane, and the scanning thread
required by the CLOCK algorithm poses a considerable challenge
for the data plane.

In the context of switches, data plane caching often serves not
only as a read-cache but also as a write-cache. For instance, both
Netseer [61] and Beaucoup [9] employ caching for flow-level in-
formation on the data plane. Consequently, each incoming packet
alters the value of the corresponding cache entry, adding to the
complexity of implementing the cache replacement policy. Despite
these challenges, none of the existing works have successfully im-
plemented the LRU policy in the data plane. Instead, they have
primarily opted for two policies: the timeout policy and the LFU
policy.
• The timeout policy involves using a hash table to log the cached
entries, where each entry is linked with a timestamp noting
the last access time. Beaucoup [9] is a typical example of this
approach. In the event of a hash collision, they only replace the
old entry with the incoming packet if the timestamp of the former
has expired. The major drawback of this method is the need for
careful timeout threshold setting; otherwise, the hit rate would
significantly decrease.
• On the other hand, the LFU policy utilizes a multi-level hash
table to log the cached entries, and each entry’s access frequency
is recorded. CocoSketch [59], Elastic [58], and HashPipe [52] are
typical examples of this approach. In case of a hash collision,
they employ different frequency-based replacement policies to
decide whether to evict the old entry, aiming to cache the most
frequently accessed flows. However, this method’s downside is
that entries hit many times tend to be cached for a long duration,
even though there might not be any new access.

This paper, therefore, strives to achieve an approximate LRU re-
placement policy on the programmable data plane. The objectives
are to (R1) meet the programming constraints of the data plane
and ensure implementation on commercial programmable switches
(e.g., the Tofino switch), (R2) achieve cache performance nearly
equivalent to an ideal LRU replacement policy, and (R3) utilize ad-
ditional storage cost acceptably, without impacting the data plane’s
throughput.

1.2 Our Proposed Solution
The primary reason why standard LRU implementations cannot
be applied in the programmable data plane is due to the strict
data access requirements of the latter. The cached data must be
segmented and positioned at various stages within the data plane.
Each packet traversing through the data plane can only access a
small block of data (e.g., 8 bytes) at each stage and cannot repeatedly
access the same data block across different stages. However, almost
all conventional LRU implementations necessitate a second access
to the same data (refer to § 2.1 for further details). To realize an
approximate LRU replacement policy, we progressively investigate
and propose the following essential techniques.
Design of P4LRUwithout SecondData Traversal:Conventional
LRU implementations necessitate second data access due to their
data placement scheme that stores keys and values together. We
discovered that separating the keys and values eliminates this need.
We designed P4LRU, which keeps keys and values in different orders
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Figure 1: A simple example of our P4LRU (𝑛 = 3).

and maintains a Deterministic Finite Automaton (DFA) called cache
state to denote the mapping relationship between keys and values.
As illustrated in Figure 1, P4LRU arranges keys in LRU order in
the queue within the pipeline, but keeps the order of all values
constant. For each incoming packet, P4LRU places it at the head
of the queue and modifies the cache state to maintain the correct
mapping relationship, thereby avoiding a second access to the same
data block.
Design of Stateful ALU-Based Cache State DFA: Given the lim-
ited programming model of the current programmable data plane,
implementing a DFA poses a significant challenge. Specifically, the
P4LRU cache that records 𝑛 entries has 𝑛! states, and each state has
𝑛 transitions. This implies that we need 𝑛 tables, each with a size
of 𝑛!, to log all transitions. However, on the current programmable
data plane, when operating the stateful register, we can only access
a tiny table1. Luckily, when the cache has fewer entries, we can en-
code the cache states into numbers and define the state transition
of the DFA through arithmetic logic. For example, using a well-
designed coding scheme, we can depict 18 transitions of the DFA
of P4LRU cache that records 3 entries (𝑛 = 3) with only five simple
numerical operations, implemented with three stateful arithmetic
logic units (ALUs).
The Series & Parallel Connection Technique of P4LRU Units.
The P4LRU scheme can maintain a strict LRU cache with fewer
entries. To scale the cache capacity and adhere more closely to
the ideal LRU when the capacity is large, we propose a technique
involving the serial and parallel linking of P4LRU units. The Parallel
Connection Technique substitutes the buckets of a hash table with
P4LRU cache units of 𝑛 = 2 or 𝑛 = 3 to accomplish arbitrary cache
capacity. The Series Connection Technique links multiple P4LRU
cache units in series to construct a deeper, albeit approximate, LRU
structure. Parallel connection is always advantageous, but serial
connection may introduce duplicate entries, thus preventing the
achievement of higher cache performance. However, in certain
scenarios, we have found opportunities to avoid duplicate entries.
Whenever each key requires twice the access to the data plane
(e.g., round trip), we can separate the cache query and update,
avoid entry duplication, and make the cache utilizing the series
connection technique closer to the ideal LRU.

We categorize three types of data plane caches that can be served
by P4LRU: (1) Local Read-Cache: It caches the most accessed en-
tries in the large-scale flow table stored in control plane memory
onto the data plane, accelerating packet forwarding. (2) Remote
Read-Cache: It caches the most accessed data from a remote mem-
ory server on the data plane, thereby speeding up remote queries.

1Of course, the programmable data plane allows us to access sufficiently large flow
tables either before or after operating the register.
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(3) Remote Write-Cache: It buffers flow-level information des-
tined for a remote server on the data plane, conserving upload or
transmission bandwidth. For these cache types, we have developed
three prototype systems to assess the performance of our P4LRU: (1)
LruTable, a Network Address Translation (NAT) system [32] that
employs P4LRU to cache fast path table entries on the data plane,
achieving up to a 35% reduction in additional latency compared
to the baseline. (2) LruIndex, an in-network query acceleration
system that uses the P4LRUwith the series connection technique to
cache database indexes. It can increase the throughput speedup by
up to 8% compared to the baseline. (3) LruMon, a network teleme-
try system that uses TowerSketches [57] to filter minor flows and
employs P4LRU to aggregate and measure major flows on the data
plane. This can reduce the upload or transmission volume of the
telemetry system by up to 35%.

1.3 Key Contributions
• We explore the reasons why typical LRU implementations can’t
be deployed on a programmable data plane, and we introduce a
novel LRU implementation, P4LRU, that complies with pipeline
programming constraints.
• We investigate the actual deployment of P4LRU units encom-
passing two or three entries on the current programmable data
plane, and put forth the series connection technique to further
enhance cache performance in specific scenarios.
• We leverage the P4LRU cache to construct three practical data
plane systems – LruTable, LruIndex and LruMon on the pro-
grammable switch, and we evaluate the performance and scala-
bility of the P4LRU cache through comprehensive experiments.

Ethics: This work does not raise any ethical issue.

2 IN-NETWORK P4LRU
In this section, we first explore how to create an LRU cache within a
network in a pipelined fashion. Then, we elaborate on the process of
setting up an LRU cache that accommodates two or three key-value
pairs on the current programmable data plane.

2.1 Limitations on Implementing LRU
LRU cache has two prevalent implementation methods: timestamp-
based LRU cache and queue-based LRU cache. First, we introduce
these two implementation methods, followed by an explanation as
to why they cannot be implemented in a pipelined manner.
Timestamp-based LRU Cache. Figure 2 illustrates the use of
a bucket array 𝐶 [1 · · ·𝑛] of width 𝑛 to store cache entries in a
timestamp-based LRU. Each bucket includes three fields ⟨𝑘, 𝑣, 𝑡⟩.
For a bucket 𝐶 [𝑖] that stores an entry, 𝐶 [𝑖] .𝑘 represents the key,
𝐶 [𝑖] .𝑣 represents the value, and 𝐶 [𝑖] .𝑡 represents the most recent
access time of the entry. For a new item ⟨𝑘 ′, 𝑣 ′⟩, we traverse through
𝑛 buckets. If there exists a bucket 𝐶 [𝑖] that fulfills 𝐶 [𝑖] .𝑘 = 𝑘 ′, we
update the value 𝐶 [𝑖] .𝑣 and timestamp 𝐶 [𝑖] .𝑡 . Otherwise, if there
are available empty buckets, we select one to store the key 𝑘 ′ and
value 𝑣 ′. If there are no empty buckets, we eliminate the bucket
with the oldest timestamp to free up space.
Limitations: In the worst-case scenario for implementing the
timestamp-based LRU cache, we must traverse the bucket array
𝐶 twice. When an incoming key isn’t found in any bucket and no
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Figure 2: Examples of two LRU implementations.

bucket is empty, we locate the bucket with the oldest timestamp
in the first pass. Then, in the second pass, we alter the stored en-
try in that bucket. However, this necessity to access the same data
twice contravenes the principles of pipeline programming. Using
P4 language as an example, the data plane pipeline consists of mul-
tiple stages. Each stage can only access a restricted number of data
blocks with a confined bit width (e.g., 64 bits). The program is not
allowed to access the same data block across different stages.
Queue-based LRU Cache. As illustrated in Figure 2, the queue-
based LRU cache utilizes a queue 𝑄 , with a capacity of 𝑛, to store
entries. Every entry ⟨𝑘, 𝑣⟩ within the queue only keeps a record
of the key 𝑘 and value 𝑣 , without accounting for any timestamp.
For any incoming item ⟨𝑘 ′, 𝑣 ′⟩, we scan the entirety of the queue.
If we find an existing entry ⟨𝑘, 𝑣⟩ that fulfills 𝑘 = 𝑘 ′, we proceed
to update the value 𝑣 and shift this entry to the beginning of the
queue. In contrast, if the current number of entries registered in
queue𝑄 has not reached its limit 𝑛, we generate a new entry at the
front of the queue, logging the key 𝑘 ′ and value 𝑣 ′ within. Lastly, if
the queue 𝑄 is at full capacity, we expunge the final entry at the
tail end of the queue.
Limitations: The implementation of the queue-based LRU cache
still confronts the issue of accessing the same data twice. The queue
needs to be configured in the pipeline in a sequenced manner. The
front of the queue is placed at the first stage; the second entry is
placed in the subsequent stage, and this continues down the line. For
an incoming key, we have to store the key at the head of the queue,
and the initial head entry is displaced to the second stage, with
subsequent entries shifting down the pipeline. However, during
this process, if we encounter an entry that contains the same key
as the incoming key, we need to update the value of the entry at
the queue’s head with this entry’s value. This requirement results
in a second access to the queue’s head.

2.2 Implementing P4LRU in the Pipeline
Rationale: Our understanding is that the fundamental obstruction
preventing the implementation of LRU cache methods, as discussed
in Section 2.1, in a pipelined manner, originates from the fact that
both methods locate the key and value of an entry together. As seen
in Figure 2, this prohibits us from obtaining the position of the
oldest key (in the case of the timestamp-based LRU) or the initial
value of the incoming key (in the case of the queue-based LRU)
during the first access to the LRU cache. However, storing keys and
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Figure 3: An example of our in-network P4LRU algorithm.
values separately could allow for the implementation of LRU in a
pipelined manner. We keep all keys arranged in the LRU order, while
maintaining a consistent order of values. Instead of altering the order
of values, we discern the position of the value to be modified in
each operation through a deterministic finite automaton (DFA) that
represents the current key-value mapping state of the LRU cache.
Data Structure of P4LRU: As illustrated in Figure 3, our P4LRU
deviates from the typical LRU cache implementation by storing
keys and values separately. For an LRU cache with a capacity
of 𝑛, P4LRU incorporates a key array key[1 · · ·𝑛] with a width
of 𝑛 (stored across 𝑛 stages), a value array val[1 · · ·𝑛] with a
width of 𝑛, and a DFA state 𝑆𝑙𝑟𝑢 referred to as the cache state.

𝑆𝑙𝑟𝑢 =

(
1 · · · 𝑛

𝑝1 · · · 𝑝𝑛

)
fundamentally represents a permutation,

documenting the mapping relationship between positions in the
key array and those in the value array. For instance, when 𝑛 = 3

and the cache state is 𝑆𝑙𝑟𝑢 =

(
1 2 3
2 1 3

)
, the key in key[1] aligns

with the value in val[2], the key in key[2] aligns with the value in
val[1], and the key in key[3] aligns with the value in val[3]. In
essence, this P4LRU cache currently documents the three key-value
pairs: ⟨key[1], val[2]⟩, ⟨key[2], val[1]⟩, and ⟨key[3], val[3]⟩.
Update Operation of P4LRU: As outlined in Algorithm 1, we
update the P4LRU cache in three steps for an incoming key-value
pair ⟨𝑘, 𝑣⟩. To elucidate the update process of the P4LRU, we of-
fer a detailed step-by-step depiction of the update process of the
P4LRU data structure using two examples shown in Figure 3. As-
sume a P4LRU cache with 𝑛 = 5 initially records five key-value
pairs: ⟨𝐾𝐴,𝑉𝐴⟩, ⟨𝐾𝐵,𝑉𝐵⟩, ⟨𝐾𝐶 ,𝑉𝐶 ⟩, ⟨𝐾𝐷 ,𝑉𝐷 ⟩, and ⟨𝐾𝐸 ,𝑉𝐸⟩, with the

cache state in the initial state, that is, 𝑆𝑙𝑟𝑢 =

(
1 2 3 4 5
1 2 3 4 5

)
.

Step 1: Maintain Key Array in LRU Order. Firstly, we compare
the incoming key 𝑘 with the most recently used key key[1] in the
key array. If these two keys are identical, the key array requires
no operation and we end Step 1. However, if they differ, we record
key 𝑘 at position key[1] and consider the original key[1] as the
evicted key 𝑘𝑒 . Subsequently, we compare 𝑘 with key[2] in the key
array. If these keys are identical, we record the evicted key 𝑘𝑒 at
position key[2] and conclude Step 1. Otherwise, we swap 𝑘𝑒 and
key[2], treating the original key[2] as the new evicted key 𝑘𝑒 . This
operation continues until a key[𝑖] satisfying key[𝑖] = 𝑘 is found,

Algorithm 1: Update operation of P4LRU.
Input: key array key[1 · · ·𝑛], value array val[1 · · ·𝑛],

cache state 𝑆𝑙𝑟𝑢 =

( 1 · · · 𝑛
𝑝1 · · · 𝑝𝑛

)
, key-value pair

⟨𝑘, 𝑣⟩ for insertion.
1 ⟨𝑘𝑒 , 𝑖⟩ = Update_Key_Array(key, 𝑘);
2 𝑆𝑙𝑟𝑢 = Update_Cache_State(𝑆𝑙𝑟𝑢 , 𝑖);
3 if 𝑘𝑒 = 𝑘 then
4 Update_Value(val, 𝑆𝑙𝑟𝑢 (1), 𝑣);
5 else
6 Replace_Value(val, 𝑆𝑙𝑟𝑢 (1), 𝑣);
7 end
8 Function Update_Key_Array(key[], 𝑘):
9 𝑘𝑒 ← 𝑘 ;

10 for 𝑖 = 1→ 𝑛 do
11 Swap(𝑘𝑒 , key[𝑖]);
12 if 𝑘𝑒 = 𝑘 then
13 return ⟨𝑘, 𝑖⟩;
14 end
15 end
16 return ⟨𝑘𝑒 , 𝑛⟩;
17 end
18 Function Update_Cache_State(𝑆𝑙𝑟𝑢 , 𝑖):
19 return

(1 2 · · · 𝑖 𝑖 + 1 · · · 𝑛
𝑖 1 · · · 𝑖 − 1 𝑖 + 1 · · · 𝑛

)
× 𝑆𝑙𝑟𝑢 ;

20 end
21 Function Update_Value(val[], 𝑖, 𝑣):
22 val[𝑖] =Update(val[𝑖], 𝑣);
23 end
24 Function Replace_Value(val[], 𝑖, 𝑣):
25 val[𝑖] = 𝑣 ;
26 end

stopping Step 1, or until the least recently used key key[𝑛] in the
key array is evicted. Step 1 is represented in pseudo code on line 1
and lines 8-17 of Algorithm 1.
Example 1: Suppose the incoming packet carries the key-value
pair ⟨𝐾𝐷 ,𝑉 ′𝐷 ⟩. During Step 1, we record key 𝐾𝐷 at position key[1]
and evict the original key 𝐾𝐴 from key[1] to key[2]. Subsequently,
we evict key 𝐾𝐵 from key[2] to key[3], evict key 𝐾𝐶 from key[3]
to key[4], and discover that the key 𝐾𝐷 , evicted from key[4], is
identical to the incoming key. Following Step 1, the key array is
updated to {𝐾𝐷 , 𝐾𝐴, 𝐾𝐵, 𝐾𝐶 , 𝐾𝐸 }.
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Example 2: Suppose the incoming packet carries the key-value
pair ⟨𝐾𝐹 ,𝑉𝐹 ⟩. In Step 1, we record key 𝐾𝐹 at position key[1] and
evict the original key 𝐾𝐷 from key[1] to key[2]. Then, we evict
key 𝐾𝐴 from key[2] to key[3], evict key 𝐾𝐵 from key[3] to key[4],
evict key 𝐾𝐶 from key[4] to key[5], and finally, we entirely evict
key 𝐾𝐸 initially recorded in key[5] from the cache. Post Step 1, the
key array becomes {𝐾𝐹 , 𝐾𝐷 , 𝐾𝐴, 𝐾𝐵, 𝐾𝐶 }.
Step 2: Update Cache State to Transition Mapping Relation-
ship. During Step 1, if we find key[𝑖] = 𝑘 , our operations on the
key array are equivalent to a rotation

𝑅 =

(
1 2 · · · 𝑖 − 1 𝑖 𝑖 + 1 · · · 𝑛

2 3 · · · 𝑖 1 𝑖 + 1 · · · 𝑛

)
of the key array. As a consequence, to update the cache state and
depict the mapping relationship between the updated key and value
arrays, we need to pre-multiply2 (left-multiply) the cache state by
the inverse of rotation 𝑅. That is, we update the cache state 𝑆𝑙𝑟𝑢 to

𝑅−1 × 𝑆𝑙𝑟𝑢 =

(
1 2 · · · 𝑖 𝑖 + 1 · · · 𝑛

𝑖 1 · · · 𝑖 − 1 𝑖 + 1 · · · 𝑛

)
× 𝑆𝑙𝑟𝑢 .

If 𝑘 is not found in the key array, then wewill evict the least recently
used key key[𝑛] at the end of Step 1. In this situation, we want
the incoming key 𝑘 recorded in key[1] to reuse the position of the
value corresponding to the least recently used key. In such a case,
we let

𝑅 =

(
1 · · · 𝑛 − 1 𝑛

2 · · · 𝑛 1

)
.

The pseudo code of Step 2 is shown on line 2 and lines 18-20 of
Algorithm 1.
Example 1: After completing Step 1, we find that

𝑅 =

(
1 2 3 4 5
2 3 4 1 5

)
.

Proceeding to Step 2, we use the inverse of 𝑅 to update the cache
state as follows:

𝑆𝑙𝑟𝑢 =

(
1 2 3 4 5
4 1 2 3 5

)
×
(
1 2 3 4 5
1 2 3 4 5

)
=

(
1 2 3 4 5
4 1 2 3 5

)
.

Example 2: After completing Step 1, we find that

𝑅 =

(
1 2 3 4 5
2 3 4 5 1

)
.

Proceeding to Step 2, we use the inverse of 𝑅 to update the cache
state as follows:

𝑆𝑙𝑟𝑢 =

(
1 2 3 4 5
5 1 2 3 4

)
×
(
1 2 3 4 5
4 1 2 3 5

)
=

(
1 2 3 4 5
5 4 1 2 3

)
.

Step 3: Find and Update the Value through the Cache State.
Whether the key 𝑘 was originally present in the key array or not,
it will be recorded at position key[1] as the most recently used
key after Step 1. If the cache state updated in Step 2 is 𝑆𝑙𝑟𝑢 =

2Permutation multiplication:(
1 · · · 𝑛

𝑝1 · · · 𝑝𝑛

)
×
(
1 · · · 𝑛

𝑞1 · · · 𝑞𝑛

)
=

(
1 · · · 𝑛

𝑞𝑝1 · · · 𝑞𝑝𝑛

)

(
1 · · · 𝑛

𝑝1 · · · 𝑝𝑛

)
, the position of the value corresponding to key[1]

is val[𝑝1]3. If we find a key[𝑖] = 𝑘 in Step 1, indicating that the
position val[𝑝1] holds the original value of 𝑘 , we update it to
Update(val[𝑝1], 𝑣) with the incoming value 𝑣 . If we don’t find 𝑘
in the key array, then the position val[𝑝1] holds the value of the
evicted key, and we overwrite it with 𝑣 . The operator Update()
is contingent on the specific usage scenario of the cache. It could
be an operation that accumulates or aggregates two values (for a
write-cache), or an operation that retains one of the values (for a
read-cache). These scenarios are discussed in detail in Section 3.
The pseudocode for Step 3 is shown on lines 3-7 and lines 21-26 of
Algorithm 1.
Example 1: In Step 3, we use the current cache state to iden-
tify that the value 𝑉𝐷 , which corresponds to the key key[1], is
located at the position val[4]. We then update this to val[4] =
UPDATE(𝑉𝐷 ,𝑉 ′𝐷 ) = 𝑉

′′
𝐷
.

Example 2: In Step 3, we use the current cache state to determine
that the value corresponding to the key key[1] should be stored at
position val[5]. We then replace this with val[5] = 𝑉𝐹 .

2.3 Deploying P4LRU on the Data Plane
Although the P4LRU cache we proposed in Section 2.2 meets the
constraints of pipeline programming, the limited computing re-
sources of the current programmable data plane make its deploy-
ment on the data plane nontrivial. More specifically, computing the
product of permutations on the data plane is virtually impossible,
and to record all transitions of a cache state DFA with a parameter
of 𝑛, we need to use 𝑛 tables, each of size 𝑛!. However, considering
the Tofino chip [2] – one of the most widely used programmable
chips – as an example, we are required to store the cache state in
registers. When operating registers through the stateful arithmetic
logic unit (ALU), we can only access a table of size 16, which is
typically used to support approximate floating-point operations. Al-
though Tofino provides sufficiently large flow tables at each stage, it
currently does not support the logic of “read register – lookup
table – write register”.

Fortunately, when 𝑛 is small, such as 𝑛 = 2 or 𝑛 = 3, we can
carefully encode the cache state as an integer and utilize the stateful
ALU provided by the programmable data plane to transition the
cache state. We will further detail how to encode the cache state and
embed state transitions into arithmetic calculations. For simplicity
of notation, we will refer to the P4LRU cache of 𝑛 = 2 and 𝑛 = 3 as
P4LRU2 and P4LRU3.

2.3.1 Details of Implementing P4LRU2.
For a P4LRU2 cache, there are only two possible cache states.

We can encode one state as 0 and the other as 1. For instance,

𝑆𝑙𝑟𝑢 =

(
1 2
1 2

)
≡ 0, 𝑆𝑙𝑟𝑢 =

(
1 2
2 1

)
≡ 1.

Similarly, there are only two operations we can perform on the key
array in Step 1. For the incoming key 𝑘 , if we find it to be the same
as key[1], we do not change the cache state 𝑆𝑙𝑟𝑢 , i.e.,

𝑆𝑛𝑒𝑤
𝑙𝑟𝑢

= 𝑆𝑙𝑟𝑢 ;

3To simplify the notation, we also denote 𝑝1 as 𝑆𝑙𝑟𝑢 (1) .
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Table 1: Encoding scheme for the cache state of P4LRU3.

Cache state Code(
1 2 3
1 2 3

)
4(

1 2 3
2 1 3

)
5(

1 2 3
3 1 2

)
2

Cache state Code(
1 2 3
1 3 2

)
1(

1 2 3
2 3 1

)
0(

1 2 3
3 2 1

)
3

𝐴 𝐵 𝐶

1 2 3
1 2 3 ≡ 4

𝐵 𝐴 𝐶

5 ≡ 1 2 3
2 1 3

𝐴 𝐶 𝐵

1 2 3
1 3 2 ≡ 1

𝐶 𝐴 𝐵

2 ≡ 1 2 3
3 1 2

𝐵 𝐶 𝐴

1 2 3
2 3 1 ≡ 0

𝐶 𝐵 𝐴

3 ≡ 1 2 3
3 2 1

𝑆!"# = 𝑆$%&^1

𝑆!"# = 𝑆$%&^3

𝑆!"# = 𝑆$%&^3

Type-2 Permutation

Figure 4: An example of P4LRU algorithm.

However, if we find it to be the same as key[2], or if it is not in the
cache, we change the cache state to another one, i.e.,

𝑆𝑛𝑒𝑤
𝑙𝑟𝑢

= 𝑆𝑙𝑟𝑢 ∧ 1.
On the programmable switch’s data plane, we can use registers to
store cache states and utilize the stateful ALU4 associated with the
registers to accomplish the aforementioned arithmetic logic of state
transitions. For example, each stateful ALU in the Tofino chip can
support two arithmetic branches, meaning that one stateful ALU
can accommodate the arithmetic logic of a P4LRU2 cache.

2.3.2 Details of Implementing P4LRU3.
For a P4LRU3 cache, the potential cache states increase to six,

and the possible operations on the key array also rise to three. To
facilitate state transitions as arithmetic operations, we encode the
six states as displayed in Table 1. The theory of permutation groups
in abstract algebra informs our encoding scheme. For instance, we
encode even permutations as even numbers and odd permutations
as odd numbers, which simplifies the embedding of state transitions.
Below, we discuss the three operations on the key array.
Operation 1. For the incoming key 𝑘 , if we find that it matches
key[1], we do not alter the cache state 𝑆𝑙𝑟𝑢 . That is,

𝑆𝑛𝑒𝑤
𝑙𝑟𝑢

= 𝑆𝑙𝑟𝑢 .

Operation 2. For the incoming key 𝑘 , if we find that it matches
key[2], we modify the cache state according to the transitions
shown in Figure 4. According to the encoding scheme in Table 1,
the following arithmetic logic describes these state transitions:

𝑆𝑛𝑒𝑤
𝑙𝑟𝑢

=

{
𝑆𝑙𝑟𝑢 ∧ 1 𝑆𝑙𝑟𝑢 ⩾ 4
𝑆𝑙𝑟𝑢 ∧ 3 𝑆𝑙𝑟𝑢 ⩽ 3

.

4A stateful ALU can be shared by multiple cache states within a single stage.

𝐴 𝐵 𝐶

1 2 3
1 2 3 ≡ 4

𝐶 𝐴 𝐵

2 ≡ 1 2 3
3 1 2

𝐵 𝐶 𝐴

0 ≡ 1 2 3
2 3 1

𝑆!"# = 𝑆$%& − 2

𝑆!"# = 𝑆$%& + 4

𝑆!"# = 𝑆$%& − 2

𝐵 𝐴 𝐶

1 2 3
2 1 3 ≡ 5

𝐶 𝐵 𝐴

3 ≡ 1 2 3
3 2 1

𝐴 𝐶 𝐵

1 ≡ 1 2 3
1 3 2

𝑆!"# = 𝑆$%& − 2

𝑆!"# = 𝑆$%& + 4

𝑆!"# = 𝑆$%& − 2

Type-3 Permutation

Figure 5: An example of P4LRU algorithm.

Operation 3. For the incoming key 𝑘 , if we find that it matches
key[3], or that it is not in the cache, we switch the cache state ac-
cording to the transitions shown in Figure 4. Following the encoding
scheme in Table 1, the subsequent arithmetic logic demonstrates
these state transitions:

𝑆𝑛𝑒𝑤
𝑙𝑟𝑢

=

{
𝑆𝑙𝑟𝑢 − 2 𝑆𝑙𝑟𝑢 ⩾ 2
𝑆𝑙𝑟𝑢 + 4 𝑆𝑙𝑟𝑢 ⩽ 1

.

We can use registers to store cache states and employ stateful
ALUs to execute the above-mentioned state transitions. Let’s con-
tinue to use the Tofino chip as an illustrative example. Although
one stateful ALU cannot cover all five types of arithmetic logic due
to the limitation on the number of arithmetic branches, we can
utilize three stateful ALUs to implement the arithmetic logic cor-
responding to operations 1, 2, and 3 respectively. Importantly, the
number of stateful ALUs employed does not exceed the maximum
that the Tofino chip can support in one stage, which is up to four
stateful ALUs.

2.3.3 From the Perspective of Group Theory.
It is established that all cache states of P4LRU𝑛 housing 𝑛 key-

value pairs effectively represent the 𝑛-element permutation group
𝑆𝑛 . The multiplication operation, associated with the 𝑛 possible
transitions, is genuinely a subset of the group’s multiplication op-
eration. This raises an intriguing question: which groups and their
corresponding operations are implementable on the programmable
data plane? Considering that the data plane’s registers can store in-
tegers and the affiliated stateful ALU is equipped to handle addition
and subtraction, the 𝑛-element cyclic group𝐶𝑛 can indeed be mate-
rialized on the data plane. To achieve this, the set {0, 1, · · · , 𝑛 − 1}
can be employed to represent the elements {𝑒, 𝑔, · · · , 𝑔𝑛−1} of the
group𝐶𝑛 , with integer addition symbolizing element multiplication.

Delving into more complex groups, if both groups 𝐻 and 𝐾 are
encodable on the data plane, and (1) given that group 𝐺 = 𝐻 × 𝐾 ,
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Table 2: Hardware resources used by P4LRU systems.

Resource Percentage
LruTable LruIndex LruMon

Hash Bits 7.55% 10.82% 3.97%
SRAM 11.25% 14.09% 24.90%
Map RAM 18.58% 23.21% 41.23%
TCAM 0% 0% 0%
Stateful ALU 14.58% 20.83% 17.71%
VLIW instr 6.25% 6.64% 4.17%

it’s plausible to encode 𝐺 onto the data plane. For an element
𝑔 = (ℎ, 𝑘) ∈ 𝐺 , where ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾 , both ℎ and 𝑘 can be
encoded separately. When multiplying elements 𝑔1 = (ℎ1, 𝑘1) and
𝑔2 = (ℎ2, 𝑘2) to derive 𝑔3 = 𝑔1 · 𝑔2, we can compute ℎ3 = ℎ1 · ℎ2
and 𝑘3 = 𝑘1 · 𝑘2 independently. (2) If the quotient group𝐺/𝐻 (with
𝐻 ⊴ 𝐺) is isomorphic to 𝐾 , encoding on the data plane remains
feasible. An element can be denoted by its mapping as ℎ ∈ 𝐻

and 𝑘 ∈ 𝐾 and each can be encoded individually. For element
multiplication, while direct multiplication might not be feasible
across both sections, more sophisticated techniques can achieve
this. However, an exhaustive exploration of these techniques is
beyond the current discourse.

Remarkably, the cache state utilized by P4LRU3 pertains to the
group 𝑆3, where 𝑆3/𝐶3 is isomorphic to 𝐶2. This insight steered
our encoding strategy for cache states, and with 𝑆4/𝑉4 (Klein four-
group) isomorphic to 𝑆3 and 𝑉4 = 𝐶2 ×𝐶2, it suggests that P4LRU4
could be implemented on the data plane. However, this would
demand amore nuanced logic to store andmanage the cache states.

3 P4LRU BASED IN-NETWORK SYSTEMS
In alignment with the P4LRU3 data plane cache detailed in Section
2, we’ve developed three practical in-network systems: LruTable,
LruIndex, and LruMon. In this section, we’ll delve into each of these
systems individually.

3.1 LruTable System
LruTable serves as a data plane network address translation (NAT)
system. Its primary task is to convert a packet’s virtual destination
address into the corresponding real address. Figure 6 illustrates that
LruTable utilizes a NAT table in the control plane for the address
translation and has an array of 216 P4LRU3 cache units on the data
plane to cache specific table entries. The processing routine for
LruTable is as follows:
Processing routine: LruTable incorporates a hash function ℎ(·)
and an array 𝑃 [1 · · · 216]. Each entry in this array is a P4LRU3
cache unit. For an incoming packet with virtual address 𝑣𝑎, the
hash function ℎ(·) determines the cache unit 𝑃 [ℎ(𝑣𝑎)]. The virtual
address 𝑣𝑎 is then inserted into this cache unit.
• Fast Path: If a cache hit occurs, meaning the address 𝑣𝑎 matches
one of 𝑃 [ℎ(𝑣𝑎)] .key[1], 𝑃 [ℎ(𝑣𝑎)] .key[2], or 𝑃 [ℎ(𝑣𝑎)] .key[3],
the cache state is updated. We then fetch the real address 𝑟𝑎
corresponding to the virtual address 𝑣𝑎 from the position

𝑃 [ℎ(𝑣𝑎)] .val[𝑃 [ℎ(𝑣𝑎)] .𝑆𝑙𝑟𝑢 (1)]
within the value array.
• Slow Path: In case of a cache miss, we update the cache state
and mark a placeholder (e.g., 0x00000000 or 0xFFFFFFFF) in

key 1 key 2 key 3 𝑆!"# val [1] val [2] val	[3]
Data Plane

Control Plane

𝑓$
Fast Path

Virtual IP Real IP

𝑓%
Slow Path

Lookup

LruTable

Figure 6: An example of LruTable system.

P4LRU P4LRU P4LRU P4LRU

𝑘𝑒𝑦!

𝑘𝑒𝑦"

cache miss

cache hit

reply / insert

reply / update

Switch Data Plane

database

LruIndex

Figure 7: An example of LruIndex system.

the value array. The packet is then forwarded to the control plane
to consult the full NAT table and determine the real address 𝑟𝑎.
Upon retrieval, this packet carries the real address 𝑟𝑎 through
the data plane once more, updating the cache unit 𝑃 [ℎ(𝑣𝑎)] and
replacing the prior placeholder with the newly obtained real
address 𝑟𝑎.

Furthermore, if a cache hit occurs but returns a placeholder, the
packet still requires the real address from the control plane. How-
ever, it won’t process through the data plane cache again.
Resource Usage: LruTable is fully realized within the data plane
of the Tofino programmable switch chip. The hardware resource
consumption of this system is detailed in Table 2(a). Notably, the
system occupies one out of the four available data plane pipelines.

3.2 LruIndex System
LruIndex serves as an in-network query acceleration system. Unlike
NetCache [30], which caches key-value pairs directly, LruIndex
caches the index (specifically, the 48-bit memory address) of the
key in the database. This design facilitates supporting values of
variable lengths (64 bytes in our configuration). As depicted in
Figure 7, LruIndex deploys four series-connected P4LRU3 cache
arrays to store indexes. Each array encompasses 216 P4LRU3 cache
units. The system follows the routines described below to process
each incoming packet.
Processing routine: As depicted in Figure 7, each cache array
𝑃𝑖 [1 · · · 216] pairs with a hash function ℎ𝑖 (·), for 1 ⩽ 𝑖 ⩽ 4. LruIn-
dex treats query packets, which originate from the client and are
destined for the database server, differently from reply packets
dispatched from the server. Both packet types incorporate two sup-
plementary fields in their header: cached_flag and cached_index.
• Query packet: For each incoming query packet containing the
key 𝑘 , the system consults all four cache arrays in a read-only
fashion. In the context of the 𝑖-th cache array, the hash function
ℎ𝑖 (·) determines the cache unit 𝑃𝑖 [ℎ𝑖 (𝑘)] where a check is made
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LruMon Switch Data Plane

𝑓, 𝑙𝑒𝑛

Tower Filter P4LRU

elephant flow

𝑓, 𝑓𝑝′, 𝑙𝑒𝑛′

evicted entry

Control Plane / Controller

Figure 8: An example of LruMon system.

to ascertain if the key 𝑘 is cached. If the 𝑖-th array retains the
key 𝑘 , the packet header’s cached_flag is populated with 𝑖 and
cached_index is filled with the index sourced from 𝑃𝑖 [ℎ𝑖 (𝑘)]. If
absent, cached_flag is set to 0. On receipt, the database server
inspects cached_flag. If it reads 0, the server invokes built-in
indexing, like the B+ Tree [12], to pinpoint key 𝑘’s index; other-
wise, it straightforwardly pulls the value linked to the key from
cached_index.
• Reply packet: For query packets that read a cached_flag of 0,
the database embeds the key 𝑘’s index, derived from the inherent
index structure, into the reply packet’s cached_index. For each
inbound reply packet, LruIndex examines its cached_flag. If it’s
non-zero (i.e., 𝑖 ≠ 0), meaning the key was earlier cached in the
𝑖-th array, the key 𝑘 gets prioritized as the most recent entry
in the cache unit 𝑃𝑖 [ℎ𝑖 (𝑘)] of the 𝑖-th array. In cases where the
cached_flag field is set to 0, denoting that the key 𝑘 is not in
the cache, we undertake the following series of actions to insert
the key 𝑘 and its index cached_index: Firstly, we deposit the
key 𝑘 and its index into the cache unit 𝑃1 [ℎ1 (𝑘)] of the first
array. In doing this, the least recently used entry, which is the
key 𝑘1 = 𝑃1 [ℎ1 (𝑘)] .key[3] and its respective index, gets evicted.
Subsequently, we place the evicted key 𝑘1 and its index into
the cache unit 𝑃2 [ℎ2 (𝑘1)] of the second array, designating it as
the least recently used entry. During this step, the existing key
𝑘2 = 𝑃2 [ℎ2 (𝑘1)] .key[3] and its paired index in the cache unit
𝑃2 [ℎ2 (𝑘1)] are substituted by the key 𝑘1 and its index. We then
advance to the third array. Here, the key 𝑘3 = 𝑃3 [ℎ3 (𝑘2)] .key[3]
and its index within the cache unit 𝑃3 [ℎ3 (𝑘2)] are replaced by
the key 𝑘2 and its index. In the final stage involving the fourth
array, the key 𝑘4 = 𝑃4 [ℎ4 (𝑘3)] .key[3] and its associated index
situated in the cache unit 𝑃4 [ℎ4 (𝑘3)] are switched out for the
key 𝑘3 and its index. By the culmination of this series of actions,
the key 𝑘4 along with its linked index are fully expelled from the
data plane cache.

Series Connection Technique: LruIndex employs the series con-
nection approach using P4LRU cache arrays. This method leverages
the inherent nature of the in-network query acceleration system:
each key in the packet traverses the data plane twice. This behav-
ior permits read-only access to multiple serially-connected cache
arrays, enabling the determination of the cache array storing the
query key. The cache’s modification is solely executed by the re-
ply packet when it accesses the data plane for its second round.
Imagining a scenario where the data plane is accessed only once,
and all query keys are injected from the first cache array, the same
key might be logged in several arrays, leading to suboptimal cache
utilization. LruIndex circumvents this issue by postponing cache
updates until reply packets are received.

Resource Usage: LruIndex is fully implemented within the data
plane of the Tofino programmable switching chip. Table 2(b) details
the hardware resource consumption for the system. The system
occupies all four available data plane pipelines. Each P4LRU3 cache
array utilizes one pipeline. Put differently, we “fold” the switch’s
pipelines, turning parallel pipelines into a serial one, a trade-off
where throughput is sacrificed for additional storage. LruIndex also
supports versions employing either two or three pipelines.

3.3 LruMon System
LruMon is an advanced network telemetry system engineered to
meticulously classify packets into their respective data flows via the
data plane. The primary objective is to capture and measure the size
of each flow, ensuring that the collective measurement across all
flows is maximized, while simultaneously ensuring that no individ-
ual flow’s size is overstated. Such precision is critical, particularly
for tasks like traffic billing, as discussed in [18, 35]. Consulting
Figure 8, we observe that LruMon is anchored on two foundational
data structures. Firstly, it incorporates the TowerSketch [57] – a
refined iteration of the Count-Min sketch [15], primarily harnessed
for filtering mouse flows. The secondary structure is a P4LRU3
cache array that houses 217 P4LRU3 units, employing both 32-bit
flow fingerprints and 32-bit flow lengths as its keys and values,
respectively. Detailing the operational logic, LruMon adopts the
following procedural framework for packet processing:
Processing routine: Referring again to Figure 8, the system lever-
ages the TowerSketch as its filtering mechanism. This filter is char-
acterized by two distinct hash functions, 𝑔1 (·) and 𝑔2 (·), and is
accompanied by two counter arrays,𝐶1 [1 · · · 220] and𝐶2 [1 · · · 219].
Within these, the array 𝐶1 integrates 220 8-bit counters, while
its counterpart 𝐶2 assimilates 219 16-bit counters. Notably, every
counter is paired with an 8-bit timestamp, facilitating periodic
counter resets, typically on a millisecond scale. Further, LruMon
integrates a cache array denoted as 𝑃 [1 · · · 217], paired with a hash
functionℎ(·). For every inbound packet characterized by its 5-tuple5
– designated as 𝑓 for key and its packet length 𝑙𝑒𝑛 for value – the
system initially employs hash functions to pinpoint two counters,
specifically 𝐶1 [𝑔1 (𝑓 )] and 𝐶2 [𝑔2 (𝑓 )].
• Tower Filter: For each counter, the timestamp is updated. We
check if there counter requires a reset, then increment the counter
based on the packet length denoted by 𝑙𝑒𝑛. The estimated total
length of flow 𝑓 during the present interval is expressed as ˆ𝑙𝑒𝑛 =

min{𝐶1 [𝑔1 (𝑓 )],𝐶2 [𝑔2 (𝑓 )]}6. Packets that belong to mouse flows
and satisfy ˆ𝑙𝑒𝑛 < 𝐿, where 𝐿 is a predetermined threshold, are
filtered out.
• Cache Array: For packets that are part of elephant flows, they
are incorporated into the cache array. Specifically, the hash func-
tion ℎ(·) is used to pinpoint a cache unit 𝑃 [ℎ(𝑓 )]. Another hash
function 𝑓 𝑝 (·) computes the 32-bit fingerprint 𝑓 𝑝 (𝑓 ) of flow 𝑓 ,
subsequently inserting the fingerprint 𝑓 𝑝 (𝑓 ) into the cache unit
𝑃 [ℎ(𝑓 )]. If there’s a cache hit – that is, fingerprint 𝑓 𝑝 (𝑓 ) is found
in the unit – we modify the cache state and augment the value
linked to the key 𝑓 𝑝 (𝑓 ) to 𝑃 [ℎ(𝑓 )] .val[𝑃 [ℎ(𝑓 )] .𝑆𝑙𝑟𝑢 (1)] + 𝑙𝑒𝑛.
In case of a cache miss, which means fingerprint 𝑓 𝑝 (𝑓 ) isn’t

5 ⟨source IP, source port, destination IP, destination port, protocol⟩
6For more details on the operation of TowerSketch, refer to [57].
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found in the unit, we refresh the cache state, adjust the value as-
sociated with key 𝑓 𝑝 (𝑓 ) to 𝑙𝑒𝑛, and evict the existing key, which
is 𝑓 𝑝 ′ = 𝑃 [ℎ(𝑓 )] .key[3], and its length 𝑙𝑒𝑛′.
• Remote Analyzer: In instances of cache misses, an entry

⟨𝑓 , 𝑓 𝑝 ′, 𝑙𝑒𝑛′⟩
is also created and sent to the remote analyzer. This analyzer
keeps a table 𝑇𝑓 𝑝 with 5-tuples and their respective fingerprints,
and another table 𝑇𝑙𝑒𝑛 with 5-tuples and their respective lengths.
If the flow 𝑓 isn’t listed in tables𝑇𝑓 𝑝 and𝑇𝑙𝑒𝑛 , an entry ⟨𝑓 , 𝑓 𝑝 (𝑓 )⟩
is appended to table 𝑇𝑓 𝑝 and an entry ⟨𝑓 , 0⟩ to table 𝑇𝑙𝑒𝑛 . Using
the fingerprint 𝑓 𝑝 ′, the 5-tuple 𝑓 ′ corresponding to 𝑓 𝑝 ′ is identi-
fied, and the length of flow 𝑓 ′ in table 𝑇𝑙𝑒𝑛 is increased by 𝑙𝑒𝑛′.

All packets that successfully pass through the Tower filter are tem-
porarily stored in the data plane cache and subsequently uploaded
to the remote analyzer. This ensures that LruMon measures these
flows with impeccable accuracy. While different data plane caches
don’t compromise measurement precision, a more efficient cache
can diminish the number of entries transferred from the data plane to
the analyzer, consequently alleviating the burden on the analyzer.
Resource usage: We have successfully implemented the entire
LruMon system within the data plane of the Tofino programmable
switching chip. Table 2(c) presents a detailed overview of the sys-
tem’s hardware resource utilization. The system occupies two out
of the four available data plane pipelines. Specifically, the Tower
filter consumes one pipeline, while the P4LRU3 cache array utilizes
another. Essentially, we’ve chosen to “fold” the switch’s pipelines, a
decision reflecting a trade-off: opting for enhanced logic capabilities
at the expense of throughput. LruMon is also compatible with other
sketches, such as the CM sketch [15] or the approximate CU sketch
[60], when used as filters.

4 EVALUATION
In this section, we first utilize a Flnet S9280 Tofino switch with
two pipelines to establish a testbed, upon which we evaluate the
three P4LRU systems. Following this, we deepen our performance
analysis of the three systems by running simulations on a CPU
platform.
Datasets: We employ the CAIDA 2018 [3] dataset, an anonymized
IP trace, to create a synthetic dataset denoted as CAIDA𝑛 . This
is done by partitioning the one-hour CAIDA 2018 trace into 60
distinct one-minute datasets. From the initial 𝑛 datasets, we extract
1
𝑛 minutes of data to craft our synthetic dataset. The intent behind
the creation of CAIDA𝑛 is to vary the concurrency level of the
dataset. Each of the datasets encompasses approximately 2.6 × 107
packets. Progressing from CAIDA1 to CAIDA60, the flow count
varies from 1.3 × 106 to 2.4 × 106. Concurrently, the maximal count
of concurrent flows escalates from 1.5 × 105 to 5.8 × 105.

4.1 Testbed Experiments
In this section, we elucidate the performance variations discerned
between the P4LRU3 cache and the hash table-based cache (analo-
gous to P4LRU1) within the context of our three system prototypes.
Within the depicted charts, the moniker P4LRU3 signifies systems
employing the P4LRU3 cache. In contrast, systems utilizing the
hash table-based caching mechanism are denoted by the Baseline
label. The Naive Solution label is reserved for configurations that do

(a) Miss rate v.s. concurrency. (b) Latency v.s. concurrency.
Figure 9: Testbed experiment of LruTable system.

(a) Throughput v.s. # threads. (b) Speedup v.s. # items.
Figure 10: Testbed experiment of LruIndex system.

(a) Upload v.s. concurrency. (b) Upload v.s. threshold.
Figure 11: Testbed experiment of LruMon system.

not utilize any caching mechanisms. We’ve deployed approximately
6000 lines of P4 code to implement all these systems.
LruTable system (Figure 9): For our simulation, we employed the
DPDK [4] driver to iterate and replay the CAIDA𝑛 datasets origi-
nating from our sender client. These packets traverse the Tofino
switch, undergoing address translation in the process, before being
relayed to the receiving client. Our observations, especially regard-
ing the fast-path miss rate and the supplementary latency relative
to direct forwarding without address translation, are illuminating.
As illustrated in Figure 9(a), with increasing traffic concurrency,
the miss rate of the system incorporating the P4LRU3 cache rises
from a baseline of 1.4% to a zenith of 2.7%. Conversely, the systems
leveraging the baseline solution display a steeper incline in the
miss rate, from 3.0% to 5.1%. In comparative terms, the P4LRU3
manifests a performance that is, at its apex, 2.14×more robust than
its baseline counterpart. Further insight is gleaned from Figure 9(b),
detailing latency metrics. As traffic concurrency intensifies, the
additional latency introduced by the P4LRU3 system elevates from
an initial 0.11 𝜇𝑠 to 0.18 𝜇𝑠 . In contrast, the baseline solution sees
its latency swell from 0.16 𝜇𝑠 to a heftier 0.26 𝜇𝑠 . In summation, at
its optimal performance, P4LRU3 boasts efficiency that is roughly
1.35× greater than the baseline approach.
LruIndex system (Figure 10): We utilized the DPDK driver to
facilitate the query thread and database server, assessing the data-
base performance through the YCSB [13] benchmark. The query
transaction set was generated based on the Zipf distribution [45]
with a skewness of 𝛼 = 0.9. We employ the two-pipeline version
of LruIndex. As depicted in Figure 10(a), for a database housing
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(a) Miss rate v.s. memory. (b) Miss rate v.s. Δ𝑇 .
Figure 12: Comparative experiment of LruTable.

(a) Miss rate v.s. memory. (b) Miss rate v.s. Δ𝑇 .
Figure 13: Comparative experiment of LruIndex.

1× 106 items and an escalating number of query threads, the query
throughput of the P4LRU3-integrated system elevates from 98.5
KTPS (Kilo Transactions Per Second) to 644.8 KTPS. Meanwhile,
the throughput of the baseline system grows from 100.3 KTPS to
629.2 KTPS. On the whole, the P4LRU3 system demonstrates a per-
formance that’s up to 1.03× superior to the baseline. Turning to
Figure 10(b), for a configuration of 8 query threads, the throughput
speedup of the P4LRU3 system relative to a naive solution oscillates
between 1.26 and 1.36, whereas the baseline system’s range is from
1.23 to 1.34. Conclusively, at its peak performance, P4LRU3 achieves
a 1.08× edge over the baseline.
LruMon system (Figure 11): Employing the DPDK driver, we
replayed the CAIDA𝑛 datasets at a 10Gbps speed from the sender
client. Packets were directed to the Tofino switch for measurement,
with generated data plane entries subsequently being dispatched
to an external analyzer. Our focus was on the generation rate of
packets, which contained entries sent to the analyzer straight from
the data plane.We utilize the CM sketch [15] as the filter for LruMon.
As illustrated in Figure 11(a), given a filter threshold of 1500 bytes
and a reset span of 10𝑚𝑠 , the upload rate of the P4LRU3-infused
system surges from 35.5 KPPS (Kilo Packets Per Second) to 74.0
KPPS as traffic concurrency intensifies. Conversely, the baseline
system sees its rate climb from 48.0 KPPS to 93.7 KPPS. Broadly
speaking, the P4LRU3 system outperforms the baseline by a factor
of up to 1.35×. Figure 11(b) reveals that with an ascending filter
threshold, the upload rate of the P4LRU3 system diminishes from
92.9 KPPS to 36.0 KPPS. Simultaneously, the baseline system’s rate
drops from 115.8 KPPS to 47.9 KPPS. Summarizing, the P4LRU3
system is, at its zenith, 1.33× more proficient than its baseline
counterpart.
Analysis: The relatively muted improvement of P4LRU in the
LruIndex system, compared to the other two systems, can be at-
tributed to the stochastic generation of the query transaction set.
This renders the temporal continuity of the same query key less
pronounced than that observed in the CAIDA dataset.

(a) Miss rate v.s. memory. (b) Miss rate v.s. Δ𝑇 .
Figure 14: Comparative experiment of LruMon.

4.2 Simulation Experiments
In this section, we leverage the capabilities of a CPU platform
to simulate the performance nuances of the P4LRU cache across
a diverse set of conditions. To quantify the similarity between
the LRU replacement policy and other replacement strategies, we
employ the metric, LRU similarity. Given a cache with a capacity
of 𝑛, for each evicted entry, if the ranking of its last access time
is represented by 𝑘 , its relative ranking is deduced as 𝑘

𝑛 . In an
ideal LRU cache scenario, this relative ranking consistently equals
1. Therefore, we define the LRU similarity as the average relative
ranking of all evicted entries. We adopt the CAIDA60 dataset as our
default, rescaling its temporal aspect to a duration of one second. In
the illustrations presented, LRU𝐼𝐷𝐸𝐴𝐿 exemplifies the prototypical
LRU cache. Meanwhile, P4LRU1 is indicative of the cache using the
hash table, and P4LRU2 and P4LRU3 have their definitions anchored
in Section 2.3.

4.2.1 Comparative Experiments.
Our study juxtaposes P4LRU with two LFU-based caching mech-

anisms, namely Elastic and Coco. These mechanisms utilize Elastic
sketch [58] and Cocosketch [59] respectively to dictate item replace-
ments. Additionally, we explore a timeout-based cache approach.
This approach logs the last access timestamp for each entry, leverag-
ing a predefined timeout threshold for item replacements. Notably,
we’ve meticulously adjusted the timeout threshold to ensure opti-
mal performance across different settings.
LruTable system (Figure 12): In Figure 12(a), by varying the cache
memory allocation, we assess the cache miss rate. The miss rates
achieved with the Cocosketch and Elastic replacement policies are
comparable. The timeout strategy exhibits a slightly lower miss rate,
whereas our P4LRU3 policy leads to reductions of up to 26.8%, 20.8%,
and 12.7%, respectively. In a subsequent experiment (Figure 12(b)),
adjusting the slow path latency Δ𝑇 , the cache miss rate demon-
strates analogous trends. With P4LRU3, we achieve reductions of
18.4%, 17.3%, and 9.3%, respectively.
LruIndex system (Figure 13): As depicted in Figure 13(a), we
modulate the cache memory and examine the resultant miss rate.
The Cocosketch policy incurs a higher miss rate than the Elastic
policy. The timeout strategy fares better with a reduced miss rate,
and our P4LRU3 policy further decreases the rate by up to 33.3%,
23.6%, and 10.4%, respectively. When the query latency Δ𝑇 is altered
(as seen in Figure 13(b)), the findings mirror the aforementioned
results, with P4LRU3 delivering reductions of 23.7%, 19.0%, and
9.8%, respectively.
LruMon system (Figure 14): Figure 14(a) showcases the impact
of varying cache memory on the miss rate. The miss rates under
Cocosketch and Elastic replacement policies appear similar. The
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(a) Miss rate v.s. memory (b) Similarity v.s. memory (c) Miss rate v.s. Δ𝑇 (d) Similarity v.s. Δ𝑇

Figure 15: Simulation experiment of LruTable system.

(a) Miss rate v.s. # connection levels (b) Similarity v.s. # connection levels (c) Miss rate v.s. memory (d) Miss rate v.s. Δ𝑇
Figure 16: Simulation experiment of LruIndex system.

(a) Total error v.s. threshold (b) Upload v.s. threshold (c) Upload v.s. total error (d) Max error v.s. threshold
Figure 17: Simulation experiment of LruMon system.

timeout strategy yields a diminished miss rate, while our P4LRU3
policy results in reductions by up to 35.2%, 31.7%, and 8.0%, respec-
tively. Further, when the filter threshold is adjusted (as illustrated
in Figure 14(b)), the findings remain consistent with previous obser-
vations. Employing P4LRU3 allows for reductions by up to 36.0%,
31.2%, and 8.1%, respectively.

4.2.2 Parameter Experiments.
LruTable system (Figure 15): In Figures 15(a) and 15(b), we ad-
just the memory allocated to the cache and study both the cache
miss rate and LRU similarity. When considering the miss rate, the
P4LRU3 cache consistently mirrors the ideal LRU cache’s perfor-
mance. With ample memory, P4LRU2, P4LRU3, and the ideal LRU
cache exhibit analogous results. In terms of similarity, the P4LRU3
cache consistently scores the highest, remaining largely unaffected
by memory variations. Figures 15(c) and 15(d) present findings
when the slow path latency Δ𝑇 is varied. For both the miss rate and
similarity, the P4LRU3 cache’s performance remains commendably
close to the ideal LRU cache, and it remains largely constant with
latency changes.
LruIndex system (Figure 16): As presented in Figures 16(a) and
16(b), we vary the number of connection levels used in the serial
connection technique, evaluating cache miss rate and LRU simi-
larity in the process. In terms of the miss rate, the P4LRU3 cache
consistently has the lowest rate, with both P4LRU2 and P4LRU3
outperforming P4LRU1 by a significant margin. Notably, as the
number of levels increases, the similarities for P4LRU2 and P4LRU1

rise, while for P4LRU3, it decreases. Given that LRU similarity often
signifies universality, this implies that more levels boost perfor-
mance for the CAIDA dataset, but not necessarily for others. As a
compromise, we default to four levels, ensuring a desirable balance
between a low miss rate and adequate LRU similarity. Figures 16(c)
and 16(d) highlight findings from adjustments in memory and query
latency Δ𝑇 of the database server. Across these experiments, the
P4LRU3 cache remains the most aligned with the ideal LRU cache.
LruMon system (Figure 17): Figures 17(a) and 17(b) demonstrate
the impact of tweaking the bandwidth threshold and reset period
of the Tower filter on P4LRU3, where we assess the total error
rate and upload volume. The bandwidth threshold is derived as
the filter threshold’s ratio to the reset period, while the total error
rate equates to the total underestimation error’s ratio over the total
byte count. Findings suggest that a shorter reset period decreases
errors but increases upload volume. This is attributed to longer
reset periods filtering out burst traffic. Intriguingly, Figure 17(c)
illustrates that regardless of the reset period, the upload volume
remains fairly consistent when total error is kept constant. Lastly,
Figure 17(d) showcases the maximum flow-level error, which never
surpasses the filter threshold.

5 RELATEDWORK
In this section, we first explore standard cache replacement policies
presented in §5.1, followed by a discussion on existing data plane
cache solutions in §5.2.
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5.1 Cache Replacement Policies
The quintessential cache replacement algorithm would always dis-
card the item least likely to be needed in the foreseeable future.
Implementing such an ideal is unattainable, given our inability to
foresee upcoming requirements. However, several algorithms have
been proposed over the years aiming to approximate this ideal.
Broadly, these can be categorized into three: recency-based policies,
frequency-based policies, and hybrid policies.
Recency-based policies prioritize discarding items based on their
most recent reference in their lifespan. For instance, the widely
recognized LRU policy targets the eviction of least recently used
items. Prominent variants of LRU encompass Early Eviction LRU
(EELRU) [53], Segmented LRU (Seg-LRU) [23], RRIP [27], among
others [17, 28, 46, 55]. On the other end of the spectrum, the MRU
(Most Recently Used) policy [10] seeks to remove the most recently
accessed items. Interestingly, studies show that for patterns like
random or cyclic access, MRU policies surpass LRU in hits, given
their inclination to maintain older data [16]. Furthermore, a niche
subset of recency-based policies [26, 48] prolongs the lifespan of
selected items by housing them in a supplementary buffer.
Frequency-based policies employ access frequency as a yard-
stick for item replacement, giving preference to items with higher
access frequencies over those accessed less often. The LFU (Least
Frequently Used) [11] stands out as the most direct approach in
frequency-based policy, attributing a frequency counter to individ-
ual items. A notable shortcoming of frequency-based policies is
their occasional inability to adapt to shifting application phases;
an item revered in a previous phase due to high frequency might
continue to be cached in a subsequent phase despite being obsolete.
Numerous strategies have been proposed to tackle this challenge,
primarily by integrating frequency data with recency metrics to age
out older items. Representative solutions feature FBR [50], LRFU
[33], and others [19, 42, 51].
Hybrid policies nimbly adjust their replacement strategies in
alignment with the prevailing working set. The challenge here
is to discern the most fitting policy while minimizing hardware
overhead, as they juggle multiple strategies simultaneously. Note-
worthy implementations of hybrid policies comprise ARC (Adaptive
Replacement Cache) [25, 40, 56], Set Dueling [46, 47], and others
[29].

5.2 Data Plane Cache Solutions
Existing data plane cache solutions can broadly be categorized
into three primary domains: hash-based solutions, frequency-based
solutions, and non-real-time solutions. For additional insights into
other solutions, readers are directed to references such as [31, 36,
38, 44, 54].
Hash-based solutions focus on the recording of recent entries by
sustaining a hash table on the data plane. Pioneering works in this
domain include NetSeer [61], Pegasus [34], SpiderMon [37], and
Jaqen [39]. To elucidate, NetSeer [61] orchestrates a basic hash table
in the data plane, ensuring that older entries are replaced upon a
collision of two items in the same slot. Similarly, SpiderMon [37]
employs comparable techniques to retain telemetry data within the
data plane. However, a dominant challenge faced by these methods

arises from hash collisions. The frequency of accessed items collid-
ing into the same slot can precipitate a substantial decline in the
hit rate.
Frequency-based solutions prioritize the conservation of fre-
quently accessed items on the data plane. Such techniques craft
sophisticated data structures, aiming to proficiently log volumi-
nous flows while filtering out minuscule ones. Even though they
do not explicitly promote themselves as data plane caches, their
underlying functionality essentially serves as a cache—retaining
frequently accessed items and discarding the seldom-used ones.
Renowned works in this area include HashPipe [52], PRECISION
[7], CocoSketch [59], and Elastic sketch [58]. Nevertheless, one criti-
cal limitation of these frequency-centric solutions is their prolonged
retention of frequent items, even if they have become obsolete.
Non-real-time solutions adopt a more deferred approach to cache
updating. For instance, NetCache [30] operates a table of recurrent
items on the data plane, with periodic interchanges of these items
through the control plane. BeauCoup [9], on the other hand, logs
the last access time of every entry, periodically expunging stale en-
tries to make space for newer items. However, a prevalent drawback
of these non-real-time solutions is their elongated update latency,
making them less adept at adapting to abrupt workload fluctua-
tions. Elaborating further, PKache[22] utilizes the P4 language and
BMv2 architecture to implement a plethora of cache replacement
strategies, inclusive of LRU. Nonetheless, PKache demands deferred
cache updates on cache misses, necessitating a second access of the
same requested packet to the data plane. Moreover, when executing
LRU policies, PKache must account for the storage of timestamps.

6 CONCLUSION
In this paper, we begin by examining the challenges of implement-
ing the classical LRU cache on the data plane of programmable
switches. Subsequently, we introduce a pipelined variant of the
LRU implementation, termed as P4LRU. Within the P4LRU design,
we sidestep the pitfalls of circular data access by incorporating a
deterministic finite automaton (DFA), denoted as 𝑆𝑙𝑟𝑢 . We delve
into the intricacies of employing the stateful arithmetic logical unit
(ALU) of programmable ASICs to facilitate the storage and state
transitions of the DFA. Building upon the P4LRU cache, we concep-
tualize three innovative in-network systems: a data plane network
address translation (NAT) system LruTable, an in-network data-
base query acceleration system LruIndex, and a data plane network
telemetry system LruMon. These systems undergo rigorous perfor-
mance evaluations to ascertain their efficacy. The empirical results
are compelling. In comparison to the baseline replacement policy,
the P4LRU cache registers end-to-end performance enhancements
of up to 35%, 8.2%, and 35% across our triad of systems, respectively.
For those interested in further exploration or adaptation, all associ-
ated source codes for the three systems are accessible on GitHub
[1].
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