
One-Hashing Bloom Filter

Jianyuan Lu†, Tong Yang†, Yi Wang†, Huichen Dai†, Linxiao Jin†, Haoyu Song§ and Bin Liu†
† Tsinghua National Laboratory for Information Science and Technology

† Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
§ Huawei Technologies, USA

Abstract—Bloom filters are widely used in many network
applications but the high computation cost limits the system
performance. In this paper, we introduce a new variation of
Bloom filter named One-Hashing Bloom Filter (OHBF) to solve
the problem. OHBF requires only one base hash function plus
a few simple operations to implement a Bloom filter. While
keeping nearly the same theoretical false positive ratio as an ideal
Bloom filter, OHBF significantly reduces the hash computation
overhead. We show that the false positive performance of a
standard Bloom filter implementation strongly relies on the
selection of hash functions, even if these hash functions are
considered good. In contrast, OHBF presents consistently better
performance with a proven mathematical foundation. OHBF is
ideal for high throughput and low latency applications. As OHBF
is a fundamental technique in Bloom filter theory, it can be
applied to many other Bloom filter variations, such as Counting
Bloom Filter and Space-Code Bloom Filter.

I. INTRODUCTION

The recent trends of Software Defined Networking (SDN)

and Network Function Virtualization (NFV) [1] increasingly

demand implementing and deploying network functions in

software appliance such as commodity servers for flexibility

and cost efficiency. Hash Table is an indispensable and pow-

erful tool to realize a wide range of network functions. Bloom

filter, as a memory efficient hashing scheme, has found its

applications throughout all layers of network stack [2]. Ex-

tensive research has been conducted to improve this classical

data structure in the past few years. Various novel network

applications are made possible by the clever use of Bloom

filter variants [3, 4, 5].

While the memory efficiency is a given benefit, the suc-

cessful use of Bloom filter does come with a cost. A Bloom

filter needs to use a relatively large number of hash functions

(e.g. 35 as in [6]) and conduct the same number of memory

accesses. To achieve the theoretical performance bound of

a Bloom filter, these hash functions need to be strong (i.e.
presenting good randomness and uniformity) and mutual in-

dependent. Unfortunately, good hash functions (e.g. MD5 and

SHA-1) are known to be computation-intensive. While the

This work is supported by 863 project (2013AA013502), NSFC (61373143,
61432009, 61402254), the Specialized Research Fund for the Doctoral
Program of Higher Education of China (20131019172), Tsinghua Univer-
sity Initiative Scientific Research Program (20121080068), CISCO Award
Fund, China Postdoctoral Science Foundation (No. 2014M550734, No.
2013M540949), and Jiangsu Future Networks Innovation Institute: Prospective
Research Project on Future Networks (No. BY2013095-1-03). Corresponding
Author: Bin Liu (liub@tsinhua.edu.cn)

memory access latency can be hidden with well established

mechanisms such as caching and banking, hash computations

alone consume a lot of CPU cycles and introduce excessive

latency which can become the system performance bottleneck.

For example, a moderate 10GE interface requires 15Mpps

throughput. This leaves less than 300 clock cycles for a

state-of-the-art 4GHz CPU to finish processing a packet. This

limited clock budget simply cannot afford to compute a large

number of independent and strong hash functions. Therefore,

it is a critical and essential system requirement to reduce the

cost of hash computation while retaining the desired hashing

properties. Although simple hash functions may be alternatives

when implementing Bloom filters for speedup [7, 8, 9], to the

best of our knowledge, no papers guarantee the worst case of

false positive for using them.

In this paper, we address the hash computation cost issue

by introducing a novel algorithm that requires only one strong

hash function to realize a Bloom filter. To the best of our

knowledge, this is by far the most efficient approach with

a proven performance bound. The resulting data structure,

named One-Hashing Bloom Filter (OHBF), presents excellent

false positive performance which is close to an ideal Bloom

filter. Actually, we found that using many good hash functions

does not necessarily lead to better false positive performance.

Our experiments show that OHBF can outperform many

existing practical Bloom filter implementations with more than

one strong hash function.

Strictly speaking, in OHBF, the hashing process still gener-

ates k hash values as if we have k independent hash functions.

The difference is, all the k hash values originate from a single

hash function plus some simple modulo operations. It is proven

that this method is equivalent to using k independent good

hash functions. Meanwhile, the computation cost is effectively

reduced to 1/k, especially when the element size is large.

While we leave the proof of the convergence of our al-

gorithm as future work, we extensively explore the design

space covering a wide range of realistic application scenarios.

It shows our algorithm, although simple, can satisfy all appli-

cation requirements under different design constraints, such as

memory size, element set size, and target false positive ratio.

II. RELATED WORK

A. Bloom Filter and Variations

A Standard Bloom Filter (SBF) [10] is a bit vector of length

m used to represent a set S of n elements. All the bits in the

Bloom filter are initialized to zero. When an element x∈S978-1-4673-7113-1/15/$31.00 c© 2015 IEEE

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

978-1-4673-7113-1/15/$31.00 ©2015 IEEE 289

comes, we use k different hash functions hi(x), 1≤i≤k to

map the element to k random integer numbers uniformly in

the range [0,m−1]. Then the corresponding bits are set to be

one. Repeat the above process for each of the elements in set

S. After all the elements are hashed to the Bloom filter bits,

the Bloom filter has been successfully established.

A membership query could determine whether an element

y belongs to the set S or not. If all the k corresponding bits

indexed by hi(y) are ones, then y ∈ S . Otherwise, y /∈ S.

But the answer to the querying process can be false positive.

Suppose that y /∈ S, but all the k hashed bits happen to be

ones and the query conclusion is that y ∈ S. The false positive

ratio for SBF is

fSBF =
(
1− (1− 1/m)nk

)k ≈
(
1− e−

nk
m

)k

(1)

A Bloom filter can be optimized and enhanced in different

aspects. 1) Dynamic Updates. While SBF only supports in-

sertions, but no deletions, different techniques are developed

in [11, 12, 13, 14] to support element deletion. 2) Counting.

If an SBF answers that an element belongs to the set, we

do not know the concrete frequencies of this item in this

set. This is amended in [11, 15, 16, 17] at the cost of

more memory or hashing computation. 3) Scalability. An

SBF only supports static membership queries. In case the set

cardinality is unknown prior to the Bloom filter construction,

the Bloom filter variations in [18, 19] can be used. 4)
Generalization. [20, 21] introduce false negatives to Bloom

filters. A tradeoff between false positives and false negatives

makes the applications more flexible. The Bloomier filter [22]

generalizes the SBF to support arbitrary function queries.

Some previous work also aims to reduce the hash computa-

tion cost. Kirsh and Mitzenmacher use two base hash functions

h1(x) and h2(x) to construct additional hash functions in the

form of gi(x) = h1(x)+ih2(x) [23]. We call this scheme Less

Hashing Bloom Filter (LHBF). Since this technique cannot

guarantee the independence of the synthetic hash functions1,

the false positive ratio in practice could be much higher

than the theoretical expectation [8]. Song et al. introduce a

simple method to produce k hash values using O(lg k) seed

hash functions [24]. However, the paper does not analyze the

correlation of the k hash values. In [25], the authors also

use one hash function to implement Bloom filters for set

reconciliation between two nodes. Our work is generalized

for wider application scenarios. More importantly, we propose

and formally analyze a hash value generation and Bloom filter

construction algorithm which can guarantee the false positive

ratio to be nearly the same as that of an ideal Bloom filter.

B. Practical Hash Functions for Bloom Filter

A Bloom filter needs k uniform and independent hash

functions. If the hash function properties are compromised,

the actual false positive ratio can be much worse than the

1An example to illustrate the correlation of the simulated hash functions is:
consider g2(x) = h1(x)+2h2(x) and g4(x) = h1(x)+4h2(x), apparently,
g2(x) and g4(x) have the same parity

theoretical analysis. The hash functions used for Bloom filters

mainly fall in three groups:

1) Cryptographic Hash Functions. Cryptographic hash func-

tions have good randomness assurance, so they are popular

choices for implementing Bloom filters. For example, MD5 is

used in Bloom filter implementations [9, 11]. The complexity

of MD5 is high. The cost of MD5 is proportional to key size.

It requires 6.8 CPU cycles per byte on average [26]. The cost

on hashing long keys can be prohibitive for some applications.

2) Non-cryptographic Hash Functions. Several relatively

simple hash functions, such as CRC32, FNV and BKDR, are

often used to implement Bloom filters [7, 8, 9]. Similarly, the

computation complexity of these hash functions is proportional

to the element size. While these hash functions are less

computation-intensive than the cryptographic hash functions,

their randomness is not as good, which translates to higher

Bloom filter false positive ratios.

3) Universal Hash Functions. Hash functions can be se-

lected from a family of hash functions with a certain mathe-

matical property [27]. The Bloom filter implementations with

these hash functions can approach the ideal false positive

ratio [28]. Since the universal hash functions need to be “ran-

domly” selected from a family, the practical implementation

still need the aid of traditional hash functions (i.e., crypto-

graphic and non-cryptographic hash functions). Therefore, in

the latter of this paper, we do not consider universal hash

functions when implementing Bloom filters.

III. DESIGN AND THEORETICAL ANALYSIS

A. Two Stages of Bloom Filter Hashing

In a Bloom filter, hash functions are used to compute the

filter entry index. The process is essentially a mapping from

U → V , where U is the space of elements and V is the space

of the Bloom filter. This process is often conducted in two

stages:

Stage I: Hash Stage, U → M, mapping U to a machine

word size M (e.g., 32-bit or 64-bit), using a hash function

h(x). This is the common understanding of hash functions.

Stage II: Modulo Stage, M → V , mapping M to target

V , by modulo |V| (i.e. h(x) mod m). This is needed because

h(x) usually covers a larger space than the Bloom filter size

m.

People usually treat the hash mapping as an integral process

and do not distinguish these two stages explicitly. Because in

most cases, modulo stage will always modulo a same length.

But we show that the separation of hash functions can be

taken advantage of to significantly simplify the Bloom filter

implementation. In the latter of this paper, we use the notation

h(x) to represent hash stage, and h(x) mod m to represent

modulo stage.

The structure of OHBF is a little variation of SBF. Instead

of treating the entire filter memory as one bit vector as in SBF,

we partition the bit vector into k parts, where k is the number

of hash functions used in SBF. The parts are purposely made

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

290

Fig. 1. A schematic view of SBF with k = 3 and n = 2. Three hash
functions are used in Stage I. The output of hash functions will modulo a
same length in Stage II.

Fig. 2. A schematic view of OHBF with k = 3 and n = 2. Only one
hash function is used in Stage I. The output of the one hash function will
modulo different partition lengths in Stage II.

uneven. Figure 1 shows a schematic view of SBF and Figure 2

shows a schematic view of OHBF. SBF firstly uses different

hash functions to get k machine words and then uses these

machine words to modulo the same length m. The results can

address the entire filter space. In contrast, OHBF firstly uses

just one hash function to get a machine word and then uses

the same machine word to modulo each partition’s length. The

results address one bit per partition.

We use an example to illustrate the mechanism of OHBF.

Let mi, 1≤i≤k denotes the ith partition length of OHBF. We

have m = Σk
i=1mi. Suppose k = 3, m1 = 11, m2 = 13, and

m3 = 15. When an element e comes, we apply the only hash

function h(·) and suppose h(e) = 4201. As h(e) mod m1 =
10, h(e) mod m2 = 2, and h(e) mod m3 = 1, the

corresponding 10th, 2nd, and 1st bit of each partition is set.

Not any partition scheme leads to good performance. To

make this scheme viable, we have to carefully choose the

partition sizes for OHBF to meet several requirements:

• The partition ensures the modulo operation to generate

independent values. This is proved by theoretical analysis.

With this good property, we only need to find one good

hash function.

• The sum of the partition sizes is close enough to the

filter memory constraint. As the final size probably has a

deviation from the target size, we expect the gap between

them are minor enough, without noticeably affecting the

target memory consumption.

• Most importantly, the resulting false positive ratio should

be close enough to the equivalent SBF. The false positive

ratio change due to partitions should be small enough.

All these requirements will be satisfied in our scheme.

Actually, we expect the OHBF scheme is a substitute of SBF.

All the parameters of OHBF should be nearly the same as SBF.

Thus, we could use OHBF, anywhere needs Bloom filters, to

reduce the computation cost. In the following subsections we

propose a simple algorithm and provide formal mathematical

analysis.

B. Proof of Independence

Let gi(x) = h(x) mod mi, 1 ≤ i ≤ k. We claim

that in Stage II of OHBF hashing, g1(x), g2(x) . . . , gk(x) are

pairwise independent if the length of each partition satisfies:

(mi,mj) = 1, 1 ≤ i < j ≤ k (2)

where (mi,mj) means the greatest common divisor of two

integers mi and mj . Such mi and mj are also called relatively

prime.

Before we prove our claim, we need to prove two lemmas

first. To facilitate the proof, we borrow some notations from

Number Theory and Probability Theory. In the following of

this paper, a|b denotes that a divides b; (a, b) denotes the

greatest common divisor of two integers a and b; a ≡ b mod q
denotes a and b are congruent modulo q ; a �≡ b mod q denotes

a and b are incongruent modulo q.

Lemma 1. If two integers a, b ∈ [0, q − 1], where a �= b,
(p, q) = 1, then ap �≡ bp mod q.

Proof by Contradiction. Suppose that ap ≡ bp mod q. Let us

assume a < b. Then q|(bp − ap), which means q|(b − a)p.

By definition (p, q) = 1, we can derive q|(b − a). But this is

impossible because 1 ≤ b− a < q. Therefore, the supposition

does not hold and the statement is true.

Lemma 2. Let Z denote a uniformly distributed non-negative
integer random variable over range [0, rpq−1], where r, p, q ∈
Z
+. Let X = (Z mod p) and Y = (Z mod q), where (p, q) =

1. Then X , Y are mutually independent random variables.

Proof. Obviously, X ∈ [0, p−1], Y ∈ [0, q−1]. Let us assume

X = a, a ∈ [0, p− 1]. Then, by definition, Z = cp+a, where

c ∈ [0, rq−1]. Let Za denote {Z|Z = cp+a, c ∈ [0, rq−1]},

Zd
a denote {Z|Z = cp+a, c ∈ [dq, dq+q−1], 0 ≤ d ≤ r−1}.

Then Za =
⋃r−1

d=0 Zd
a .

We first consider c ∈ [0, q−1]. By Lemma 1, we know that

the q remainders Z0
a mod q are not equal to each other. Note

that the q remainders range in [0, q−1] and they are not equal

to each other, then we can say that Z0
a mod q are uniformly

distributed in the range [0, q − 1].
Then we consider c ∈ [dq, dq + q − 1], 1 ≤ d ≤ r −

1. Because (cp + a) ≡ ((c mod q)p + a) mod q, so the

q remainders Zd
a mod q are equal to Z0

a mod q. Therefore,

Zd
a mod q are also uniformly distributed in the range [0, q−1].
Consequently, we can conclude that Za mod q are uni-

formly distributed in [0, q − 1]. That is, Pr(Y = b|X = a) =

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

291

Pr(Y = b) = 1/q, where a ∈ [0, p − 1], b ∈ [0, q − 1].
Similarly, we can obtain that Pr(X = a|Y = b) = Pr(X =
a) = 1/p. Successfully, we prove that X , Y are mutually

independent random variables.

Theorem 1. Suppose that the machine word output, M =
h(x), is uniformly distributed over [0, rm1m2. . .mk − 1]. If
the partition lengths m1,m2, . . . ,mk are pairwise relatively
prime, then g1(x), g2(x), . . . , gk(x) are pairwise mutually
independent random variables.

Proof. Let us assume an arbitrary pair (i, j) which satisfies

that 1 ≤ i < j ≤ k. Let s = rm1m2. . .mk/mimj , then

we know that M is uniformly distributed over [0, smimj −
1]. Since (mi,mj) = 1 by definition, we get that gi(x) and

gj(x) are mutually independent random variables by Lemma

2. As (i, j) is selected arbitrarily, we can conclude that the

Stage II of hashing results g1(x), g2(x), . . . , gk(x) are pairwise

mutually independent random variables.

In Theorem 1, we assume that M covers a range which is

a multiple of the product m1m2. . .mk. However, in practice,

M usually covers the range a power of 2, i.e., |M| = 2L,

where L is the machine word bit width. The result that |M|
modulo m1m2. . .mk may not be zero, which makes Theorem

1 inapplicable. There exists a simple method to solve the

problem. We can discard the redundant numbers by restrict the

range to [0, c], where c equals to |M|−|M|%(m1m2 . . .mk).
This implies that |M| > m1m2 . . .mk. If |M| is far greater

than the product m1m2 . . .mk, i.e., |M| � m1m2 . . .mk,

then the modulo part can be ignored in practice.

We have proven that the Stage II hashing outputs are

independent to each other, on one condition that the partition

lengths are pairwise relatively prime. This result guarantees

that we can eliminate the correlation of hash functions from

theoretical level. With this property, we only need to find one

good Stage I hash function to implement OHBF.

C. False Positive Analysis

The false positive of OHBF is caused by two factors. The

first factor is the hashing collision in Stage I, denoted as event

E . If the machine words collide, it will definitely cause false

positive. The second factor is the modulo collision in Stage

II. If the machine words from Stage I do not collide but all

the modulo remainders happen to collide, this will also cause

false positive.Then the total false positive probability is:

fOHBF = Pr(F) = Pr(F|E)Pr(E) + Pr(F|¬E)Pr(¬E)
= Pr(E) + Pr(F|¬E)(1− Pr(E))

(3)

Suppose the machine word has L bits and Le effective

bits, where Le = log2(2
L − 2L%m1m2 . . .mk) according to

Theorem 1. A specific machine word will be selected with

probability 1
2Le , and not selected with probability 1 − 1

2Le .

After n elements are inserted, the probability that a specific

machine word has not been hashed is
(
1− 1

2Le

)n
, which

implies that the machine word collision probability is:

Pr(E) = 1−
(
1− 1

2Le

)n

(4)

The analysis of the second factor is similar to the machine

word collision analysis. We can conclude that the false positive

ratio caused by the second factor is:

Pr(F|¬E) =
∏k

i=1
(1− (1− 1/mi)

n
) (5)

Typically the machine word range (e.g. 232 or 264) is far

greater than the length of Bloom filter, i.e., 2L � m. A

collision of machine word is not likely happen as long as

the machine word space is large enough, so Pr(E) in practice

is nearly to be 0. Therefore, the false positive probability of

OHBF is simplified to be:

Pr(F) ≈ Pr(F|¬E) =
∏k

i=1
(1− (1− 1/mi)

n
) (6)

Because the function
(
1− (

1− 1
x

)n)
with respect to x is a

monotonically decreasing function, we have

(
1−

(
1− 1

maxmi

)n)k

≤ fOHBF ≤
(
1−

(
1− 1

minmi

)n)k

Further, we can obtain the following theorem.

Theorem 2. The false positive ratio of OHBF can be estimated
by the following inequality,

fOHBF ≤
(
1−

(
k

√∏k

i=1
(1− 1/mi)

)n)k

≈
(
1− k

√∏k

i=1
e
− n

mi

)k
(7)

Proof. Making use of the well-known mathematical property

that the arithmetic mean is greater than or equal to the

geometric mean, we can derive:

fOHBF =
∏k

i=1
(1− (1− 1/mi)

n
)

≤
(
1

k

∑k

i=1
(1− (1− 1/mi)

n
)

)k

=

(
1− 1

k

∑k

i=1
(1− 1/mi)

n

)k

≤
(
1− k

√∏k

i=1
(1− 1/mi)

n

)k

=

(
1−

(
k

√∏k

i=1
(1− 1/mi)

)n)k

≈
(
1− k

√∏k

i=1
e
− n

mi

)k

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

292

TABLE I
THEORETICAL FALSE POSITIVE PROBABILITY COMPARISON BETWEEN

SBF AND OHBF

m
n = 1000 , k = 3

SBF False Positive OHBF False Positive Difference (%)

10003 1.7399 e-2 1.7404 e-2 0.026
19993 2.7054 e-3 2.7058 e-3 0.014
29989 8.6273 e-4 8.6281 e-4 0.010
39995 3.7740 e-4 3.7743 e-4 0.007
49991 1.9761 e-4 1.9762 e-4 0.006

m
n = 1000 , k = 10

SBF False Positive OHBF False Positive Difference (%)

10012 1.0118 e-2 1.0149 e-2 0.308
19986 8.9441 e-5 8.9612 e-5 0.192
30034 3.3187 e-6 3.3238 e-6 0.154
39994 2.8084 e-7 2.8116 e-7 0.113
49988 3.8390 e-8 3.8424 e-8 0.086

fOHBF has the similar form as SBF’s false positive proba-

bility fSBF =
(
1− (

1− 1
m

)nk)k

≈
(
1− e−

n
m/k

)k

. Note

that
k

√∏k
i=1 e

− n
mi is the geometric mean of e

− n
mi . This

suggests that the partition size should be very close to each

other. If the distribution of mi is near m/k and m is large

enough, fOHBF will be very close to fSBF .

Table I shows the theoretical false positive probability

comparison between SBF and OHBF. It can be seen that the

OHBF’s false positive ratio is very close to SBF. As OHBF’s

partition length must meet Equation 2, the total length of

OHBF may have a difference from the target filter length.

If the difference is minor enough, the OHBF mechanism also

works. Algorithm 1 described in the next subsection is used

to determine the partitions.

D. Determine the Length of Partitions

From the previous analysis, we have known that the partition

algorithm should meet the following two requirements:

• The lengths of partitions must satisfy (mi,mj) = 1, 1 ≤
i < j ≤ k . Only by ensuring this, can we guarantee that

the Stage II hashing in OHBF are independent to each

other.

• The lengths of partitions are close to each other with

small deviation. According to the false positive analysis

of OHBF, this has direct impact to fOHBF .

We provide a simple algorithm to satisfy these requirements:

just pick k consecutive primes as the length of the partitions.

We first build a prime table. The maximum prime in the table

can be determined by demand. Our experience shows that in

most cases it should be around m/k + δ, where δ < 300.

Note that taking consecutive primes as the partition lengths is

not necessary. We can find more simple partition method in

practice.

The sums of these consecutive primes are discrete. Given

a planned overall length mp for a Bloom filter, we usually

cannot get k prime numbers to make their sum mf to be

exactly mp. As long as the difference between mp and mf is

small enough, it neither causes any trouble for the software

implementation nor noticeably shifts the false positive ratio.

Algorithm 1 Determine the Length of Partitions

Input: mp, k, pTable
Output: mf , partLen

1: scan pTable to find the prime closest to 	mp/k
 and

denote its index in pTable as pdex
2: sum ← 0, diff ← 0, mf ← 0
3: for i ← pdex− k + 1 to pdex do
4: sum ← sum+ pTable[i]
5: end for
6: min ← abs(sum−mp)
7: j ← pdex+ 1
8: while true do
9: sum ← sum+ pTable[j]− pTable[j − k]

10: diff ← abs(sum−mp)
11: if diff ≥ min then
12: break
13: end if
14: min ← diff
15: j ← j + 1
16: end while
17: for i ← 1 to k do
18: partLen[i] ← pTable[j − k + i]
19: mf ← mf + partLen[i]
20: end for

Fig. 3. Standard deviation of the partition lengths when k = 32

We refer to pTable as our prime table, and the ith number of

pTable is pTable[i]. The primes in the pTable are consecutive

primes in ascending order. Refer k as the number of hash

functions in standard Bloom filter and refer partLen[i] as the

length of the ith partition. We determine the length of each

partition and the overall length by Algorithm 1.

Table II shows some partition examples. It can be seen that

the difference between the planned length and the actual length

is very small, and the length of each partition is very close. We

also scan the difference between mp and mf when k = 32 and

mp < 10, 000, 000, the result shows that the biggest difference

between them is only 315. The standard deviation of OHBF

partition lengths when k = 32 is shown in Figure 3. These

results illustrate that our partition algorithm can meet all the

OHBF design requirements.

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

293

TABLE II
EXAMPLES OF PARTITION

mp mf Difference Length of Each Partition for mf (k = 10)

10000 10012 1.2 e-3 971 977 983 991 997 1009 1013 1019 1021 1031
20000 19986 7.0 e-4 1973 1979 1987 1993 1997 1999 2003 2011 2017 2027
40000 39994 1.5 e-4 3947 3967 3989 4001 4003 4007 4013 4019 4021 4027
80000 80044 5.5 e-4 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059
160000 159990 6.3 e-5 15937 15959 15971 15973 15991 16001 16007 16033 16057 16061
320000 319984 5.0 e-5 31957 31963 31973 31981 31991 32003 32009 32027 32029 32051
640000 640024 3.8 e-5 63929 63949 63977 63997 64007 64013 64019 64033 64037 64063
1280000 1280084 6.6 e-5 127931 127951 127973 127979 127997 128021 128033 128047 128053 128099

IV. PRACTICAL BLOOM FILTER ANALYSIS

An SBF needs k hash functions, an LHBF needs 2 hash

functions, and an OHBF needs just one hash function. Through

the theoretical analysis of OHBF, people may get the impres-

sion that we reduce the number of hash functions at the cost

of higher false positive ratio. However, in practice, OHBF is

most likely to present lower false positive ratio than SBF and

LHBF. This can be explained by the fact that the practical hash

functions are far worse than truly random hash functions.

All the Bloom filter analysis is based on two main as-

sumptions on the hash functions: 1) randomness. all the hash

functions used in Bloom filters map data elements uniformly

to the range, and 2) independence. all the hash functions used

in Bloom filters map data elements to the range independently.

In this section, we test some representative practical hash

functions on their randomness and independence. The chi-
squared test, a well-known method in hypothesis testing, is

introduced.

A. Chi-Squared Test

Chi-squared(χ2) test is one of the well-known methods in

hypothesis testing [29]. It is used to decide whether a null
hypothesis H0, stating that a sample frequency distribution

of certain events is consistent with a particular theoretical

distribution, should be rejected or not. A null hypothesis in

chi-squared test is mostly like:

H0 : o1 = e1, o2 = e2, . . . , ol = el (8)

where l is the number of categories in the event, oi is

the observed sample frequency of category i, and ei is the

expected probability of category i. Usually the null hypothesis

is the expectation result we want to see.

A null hypothesis is judged by a test statistic whether to

accept or not. The test statistic of chi-squared test is:

S =
l∑

i=1

(ni − nei)
2

nei
=

∑
all cells

(observed− expected)2

expected

(9)

where n is the total trials and ni is the observed trials of

category i.

The rejection region of chi-squared test is

S ≥ χ2
α,l−1 (10)

where α is the test significance level (usually α is set to

be 0.05) and (l − 1) is the freedom degrees of chi-squared

distribution. The hypothesis H0 would be rejected if the test

statistic falls into the rejection region; otherwise, H0 would

be accepted.

B. Randomness Test of Single Hash Function

The hash functions used in Bloom filters will first map an

element to a machine word of L bits. If we directly evaluate

whether the hash value is uniform distribution or not, the

sample space size will be 2L. The huge size sample space

will make the evaluation process very complex. Alternatively,

to simplify the problem, we convert the hash value’s uniform

distribution test into the hash value bits sum’s binomial dis-

tribution test.

If a hash function is truly random, then each bit of the

hash value X should be 0-1 distribution, i.e., Pr(xi = 0) =
1/2, P r(xi = 1) = 1/2, 1 ≤ i ≤ L. And the sum of all

bits, HX =
∑L

i=1 xi, should be binomial distribution. The

probability distribution of HX is:

Pr(HX = i) =
C(L, i)

2i
, 0 ≤ i ≤ L (11)

So the null hypothesis in this hypothesis test is:

H0: The sum of hash value bits, HX , has binomial distri-
bution, Pr(HX = i) = C(L,i)

2i

The test statistic SX in randomness test is:

SX =
L∑

i=0

(
O(hi

X)− E(hi
X)

)2
E(hi

X)
(12)

where O(hi
X) is the observed frequency when HX = i ,

E(hi
X) is the expected frequency when HX = i.

As the binomial distribution has L+1 values, the degrees of

freedom of χ2 distribution are L. Hence, the rejection region

in randomness test is:

SX ≥ χ2
α,L (13)

C. Independence Test between Different Hash Functions

Now we test the independence between two hash functions.

We call every two hash functions a hash function pair.

Similar to the last subsection, we convert the independence

test into binomial goodness-of-fit test. If a pair of hash

functions are independent, then the corresponding hash values

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

294

X and Y would be independent. Therefore, the exclusive-
or operation result, Z = X ⊕ Y , would be a uniformly

distributed variable. So each bit of Z would be 0-1 distribution

with Pr(zi = 0) = 1/2, P r(zi = 1) = 1/2, where

zi = xi ⊕ yi, 1 ≤ i ≤ L. The sum of each bit of Z,

HZ =
∑L

i=1 zi, would follow binomial distribution.

Pr(HZ = i) =
C(L, i)

2i
, 0 ≤ i ≤ L (14)

So the null hypothesis in this independence test is:

H0: The sum of all bits of Z, HZ , has binomial distribution,
Pr(HZ = i) = C(L,i)

2i

The test statistic SZ in independence test is:

SZ =
L∑

i=0

(
O(hi

Z)− E(hi
Z)

)2
E(hi

Z)
(15)

And, the rejection region in independence test is:

SZ ≥ χ2
α,L (16)

D. Hash Function Collection and Test

We collect a total of 20 hash functions, consisting of 18

non-cryptographic hash functions and 2 cryptographic hash

functions (MD5 and SHA-1). The hash functions are shown in

Table III. The name and source of these hash functions mainly

refer to [30]. All the hash values are 32 bits, i.e., L = 32. As

the standard MD5 and SHA-1 hash values are 128 and 160

bits respectively, we convert them to 32 bits by exclusive-or
the hash values every 32 bits. The significance level is set to

be α = 0.05. So the rejection region in both randomness test

and independence test is S ≥ χ2
0.05,32 = 46.194 .

TABLE III
COLLECTED HASH FUNCTIONS AND THEIR NUMBER IN THIS PAPER

APHash BKDR BOB CRC32 DEKHash
h1 h2 h3 h4 h5

DJBHash FNV32 Hsieh JSHash OCaml
h6 h7 h8 h9 h10

OAAT PJWHash RSHash SBOX SDBM
h11 h12 h13 h14 h15

Simple SML STL MD5 SHA-1
h16 h17 h18 h19 h20

We use the internet packet trace, obtained from CAIDA

[31], to evaluate the hash functions. The trace is extracted

from an OC-192 link and lasts 60 minutes. It contains 2G

packets, 5M different destination IP addresses, and 50M flows.

Because the input key length can affect the evaluation of hash

functions, we use two kinds of keys to evaluate these hash

functions. The first kind of keys is the 4-byte destination IP

address and the second kind of keys is the 13-byte 5-tuple IP

header.

Table IV is the randomness test result of each single hash

function. The notation ‘+’ represents that we accept the

assumption and the notation ‘−’ represents that we reject the

assumption. We can see that most of the non-cryptographic

hash functions cannot pass through the chi-squared test, and

some hash functions, such as BKDR, FNV32 and OAAT,

perform better randomness property when the input keys are

longer. The two cryptographic hash functions behave good

randomness property, just in accordance with our instinct.

Table V is the independence test result of hash function

pairs. The notation ‘+’ and ‘−’ represent that we accept and

reject the assumption respectively. The notation ′◦′ means

the test does not apply. It can be concluded that many

hash function pairs demonstrate some correlation relationship,

especially for two hash functions both with poor randomness

property. The correlation could result in large deviation from

desired false positive probability. And the correlation makes

the choice for hash function combinations difficult.

E. Discussion

The hash functions used by Bloom filters are not truly

random in practice. First, many hash functions cannot be

regarded as uniformly distributed. Second, many hash function

pairs have some degree of correlation. Therefore, hash func-

tion selection when implementing a Bloom filter is difficult,

especially for large k. A poor selection may lead to big

false positive deviation from the theoretical value, just as

the statement in [28]. Although the same good hash function

with different initial seeds mostly show good independence

property, the use of hash functions in this way still incurs the

multiplied computation cost. On the contrary, OHBF requires

only one good hash function to implement a Bloom filter.

The fewer practical hash functions we need, the easier we can

make the right selection. Moreover, the actual false positive

rate would also be closer to the theoretical value since the

possible correlation of hash functions is eliminated in OHBF.

V. EVALUATION

We evaluate the OHBF scheme from the following three

aspects: 1) the cost of modulo operation, 2) practical false

positive ratio and 3) query running time.

We compare the different Bloom filter implementations on a

commodity Server with Intel Xeon CPU E5645×2 (6 cores×2

threads, 2.4GHz) and 48GB DDR3(1,333MHz, ECC) memory.

The Server runs OS Linux 2.6.43 kernel(x86 64). we use the

C++ Programming Language to implement the programs. The

experiments use the same real-world trace as that used in

section IV-D.

A. The Cost of Modulo Operation

The cost of the modulo operation cannot be ignored. How-

ever, it only applies on the fixed-size output of the Stage I hash

function. We test the modulo function on our Server and find

each operation needs 7.3 clock cycles on average. In contrast,

the cost of the Stage I hash functions is directly proportional

to the element size. For example, CRC32, MD5, SHA-1 costs

6.9, 6.8, 11.4 clock cycles per byte respectively [26]. The

cost comparison between fixed-size input modulo operation

and variable-length input hash functions is shown in Figure 4.

Compared to common hash functions, one modulo operation

is fast enough. Intuitively, OHBF will have better performance

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

295

TABLE IV
RANDOMNESS TEST OF SINGLE HASH FUNCTIONS

Function h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

key len = 4 − − + + − − − − − − − − − + − − − − + +
key len = 13 − + + + − − + − − − + − + + − − + − − +

TABLE V
INDEPENDENCE TEST BETWEEN DIFFERENT HASH FUNCTIONS, THE UPPER TRIANGULAR MATRIX CORRESPONDING TO KEY LEN=4, THE LOWER

TRIANGULAR MATRIX CORRESPONDING TO KEY LEN=13

Function h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

h1 ◦ − + + − − − + − − + − − + − − − − + +
h2 + ◦ + + − − − − − − − − − + − − − − + +
h3 + + ◦ + + + + + + + + + + + + + + + + +
h4 + + + ◦ + + + + + + + + + + + + + + + +
h5 + + + + ◦ − − + − − + − − + − − − − + +
h6 + − + + + ◦ − − − − + − − + − − − − + +
h7 + − + + + − ◦ + − − − − − + − − − − + +
h8 + + + + + + + ◦ − − + − + + + − − − + +
h9 + + + + + + + + ◦ − + − − + − − − − + +
h10 + − + + − − − + + ◦ − − − + − − − − + +
h11 + + + + + + + + − + ◦ − − + − − + − + +
h12 + + − + − + + − + + + ◦ − + − − − − + +
h13 + − + + + − − + + − + + ◦ + − − − − + +
h14 + + + + + + + + + + + + + ◦ + + + + + +
h15 − − + − + − − + + − + + − + ◦ − − − + +
h16 + − + − + − − + + − + + − + − ◦ − − + +
h17 + − + − + − − + + − − + − + − − ◦ − + −
h18 + − + + + − − + + − + + − + − − − ◦ + +
h19 + + + + + + + + + − + − + + − + + + ◦ +
h20 + + − + + + + − + + + + + + + + + + − ◦

gain over SBF and LHBF as the element size and the number

of hash functions increase. This is confirmed by our experi-

ments in the following subsections.

Fig. 4. The cost of fixed-size input modulo operation compared to variable-
length input hash functions

B. False Positive Evaluation

We compare three Bloom filter implementations: SBF,

LHBF, and OHBF. In the experiments, we set n = 1000. All

the hash functions are selected from Table III, and their outputs

are 64 bits. Other parameters will be shown in the figures.

We do not run the experiments on SBF but use its ideal case

as benchmark for comparison. LHBF employs the extended

double hashing cube scheme discussed in [23]. The two hash

functions for LHBF are MD5 and SHA-1. The one hash

function for OHBF is MD5. We implement the experiments on

both destination IPs (key len=4) and 5-tuple flow identifiers

(key len=13).

The results are shown in Table VI to IX. From the four

tables, we can see that both the theoretical and practical false

positive rates of OHBF are very close to SBF. Although LHBF

is claimed to have the same asymptotic false positive ratio as

SBF when m/n is constant and n → ∞, in practice, the

false positive ratio difference between LHBF and SBF can be

significant when n is not very large. Our experiments show

that the practical false positive ratio of LHBF is much higher

than SBF’s theoretical false positive ratio when n is small and

especially when the ideal false positive probability is very low.

The reason for its poor false positive ratio is that the synthetic

hash functions for LHBF have some degree of correlation, .

According to the analysis of hashing independence in sec-

tion III-B, we know that the hash function at least needs

38, 40, 109, 115 hash bits for experiments corresponding

to Table VI to IX respectively for OHBF. However, the

hash outputs are all set to be 64 bits, which means that

experiments corresponding to Table VIII to IX do not satisfy

the independence requirement strictly for OHBF. However,

the results of Table VIII to IX tell us that OHBF has good

scalability for large number of hash functions.

C. Running Time Evaluation

In this subsection, we evaluate the computation overhead

for hash functions when implementing Bloom filters. To give

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

296

TABLE VI
PRACTICAL FALSE POSITIVE RATIO COMPARISON ON KEY LEN=4, K=3

m
SBF Difference Compared to SBF Theory (%)

Theory OHBF Theory OHBF Sim LHBF Sim

10003 1.740 e-2 0.026 0.029 0.046
11003 1.359 e-2 0.024 0.057 0.021
11993 1.084 e-2 0.022 0.016 0.057
13003 8.747 e-3 0.021 0.001 0.014
13993 7.186 e-3 0.019 0.038 0.036
14995 5.962 e-3 0.018 0.014 0.169
16003 4.996 e-3 0.017 0.105 0.171
17011 4.227 e-3 0.017 0.012 0.138
18005 3.616 e-3 0.016 0.006 0.147
19009 3.112 e-3 0.015 0.117 0.049

TABLE VII
PRACTICAL FALSE POSITIVE RATIO COMPARISON ON KEY LEN=13, K=3

m
SBF Difference Compared to SBF Theory (%)

Theory OHBF Theory OHBF Sim LHBF Sim

10003 1.740 e-2 0.026 0.089 0.119
11993 1.084 e-2 0.022 0.027 0.116
13993 7.188 e-3 0.019 0.017 0.101
16003 4.996 e-3 0.017 0.058 0.009
18005 3.616 e-3 0.016 0.035 0.005
19993 2.706 e-3 0.014 0.014 0.138
22013 2.068 e-3 0.013 0.057 0.173
24013 1.620 e-3 0.012 0.005 0.192
26009 1.293 e-3 0.011 0.092 0.205
28001 1.049 e-3 0.010 0.063 0.134

TABLE VIII
PRACTICAL FALSE POSITIVE RATIO COMPARISON ON KEY LEN=4, K=10

m
SBF Difference Compared to SBF Theory (%)

Theory OHBF Theory OHBF Sim LHBF Sim

10012 1.012 e-2 0.308 0.165 0.489
11018 5.706 e-3 0.287 0.520 0.863
11978 3.379 e-3 0.294 0.267 0.678
12990 1.991 e-3 0.250 0.356 1.609
14002 1.200 e-3 0.294 0.270 0.900
14968 7.554 e-4 0.244 0.495 1.351
16000 4.701 e-4 0.227 0.211 1.715
16974 3.059 e-4 0.243 0.017 2.282
18008 1.974 e-4 0.240 0.377 2.584
18974 1.331 e-4 0.217 0.451 2.721

TABLE IX
PRACTICAL FALSE POSITIVE RATIO COMPARISON ON KEY LEN=13,K=10

m
SBF Difference Compared to SBF Theory (%)

Theory OHBF Theory OHBF Sim LHBF Sim

10012 1.012 e-2 0.308 0.212 0.489
11978 3.379 e-3 0.294 0.063 0.629
14002 1.200 e-3 0.294 0.507 1.096
16000 4.701 e-4 0.227 0.127 1.627
18008 1.974 e-4 0.240 0.457 2.668
19986 8.944 e-5 0.191 0.476 3.969
21956 4.295 e-5 0.229 0.057 5.915
24010 2.104 e-5 0.171 0.054 9.452
25998 1.102 e-5 0.185 0.222 14.93
28014 5.946 e-6 0.154 0.033 23.21

a fair comparison for different schemes, all the hash functions

are BOB-based with different seeds.

Figure 5 shows the query running time comparison when the

length of Bloom filters varies. The search keys are composed

in a way that 50% keys are in the programmed element set and

50% keys are not. We can see from the four figures that OHBF

takes the least time for querying. As the key length increasing,

OHBF can spend much less time than SBF and LHBF; as the

hash function number increase, OHBF spends slightly more

time than LHBF and vast more time than SBF. This is because

when the key becomes longer or more hash function need,

more time is consumed for hash function computation. As

the false positive rate decreases when m is increasing, the

querying time in the same Bloom filter presents a decreasing

trend. This is because the non-member keys tend to terminate

the search earlier when the false positive rate is lower.

Note that sometimes not all the hash functions need to be

calculated when querying an element. If the current querying

bit is 0, we do not need to query the following bits. Therefore,

the composition of the querying elements will affect the

querying time. Figure 6 shows the querying time comparison

when the percentage of member elements in the specific query

set varies. It can be concluded that OHBF can spend much less

time as the percentage of member elements in the specific

query set increases. Moreover, the longer the keys are or the

larger the hash function number is, the less time OHBF spends.

VI. CONCLUSIONS

OHBF requires only one base hash function and a set of k
consecutive prime numbers as modulo operands. The compos-

ite hash functions have the strength and the desired property

of k strong and independent hash functions yet the overall

computation complexity is dominated by the only base hash

function. The Bloom filter vector is conditioned to the selected

prime numbers and each hash value addresses one of the

partitions accordingly. With proven false positive performance,

OHBF is ideal for applications which need both low latency

and high throughput. Since OHBF is a fundamental alternative

for Bloom filter implementation, it is straightforward to extend

OHBF to other Bloom filter variants, such as Counting Bloom

filter [11] and Space-Code Bloom Filter [16].

The simple partition algorithm discussed in the paper is

easy to implement and give good performance. However, the

overall actual memory size would have a small discrepancy

with the target memory size. This is hardly an issue for

a software system but can potentially cause trouble for a

hardware implementation where embedded memory is used.

Therefore, it is an interesting open question whether we can

find an optimal partition that satisfies the two conditions and

makes the final memory sizes meet.

REFERENCES

[1] M. C. et.al., “Network Functions Virtualisation - Introductory White
Paper,” in SDN and OpenFlow World Congress, 2012.

[2] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[3] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix
Matching Using Bloom Filters,” in ACM SIGCOMM, 2003.

[4] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast Hash
Table Lookup using Extended Bloom Filter: An Aid to Network Pro-
cessing,” in ACM SIGCOMM, 2005.

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

297

(a) key len = 4, k=3 (b) key len = 13, k=3 (c) key len = 4, k=10 (d) key len = 13, k=10

Fig. 5. Running time of the three Bloom filters, with the length m varying. Each point in this figure is the mean of 1,000 experiments. We implement
1,000,000 queries in each experiment.

(a) key len = 4, k=3 (b) key len = 13, k=3 (c) key len = 4, k=10 (d) key len = 13, k=10

Fig. 6. Running time of the three Bloom filters, with the percentage of member elements in the query set varying. Each point in this figure is the mean of
1,000 experiments. We implement 1,000,000 queries in each experiment.

[5] M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO: Bloom Filter For-
warding Architecture for Large Organizations,” in CoNEXT, 2009.

[6] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep Packet Inspection Using Parallel Bloom Filters,” Micro, IEEE,
vol. 24, no. 1, pp. 52–61, 2004.

[7] F. Hao, M. Kodialam, and T. Lakshman, “Building High Accuracy
Bloom Filters using Partitioned Hashing,” in ACM SIGMETRICS, 2007.

[8] A. A. Iqbal, M. Ott, and A. Seneviratne, “Simplistic Hashing for
Building a Better Bloom Filter on Randomized Data,” in The 13th In-
ternational Conference on Network-Based Information Systems (NBiS),
2010.

[9] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and Practice
of Bloom Filters for Distributed Systems,” Communications Surveys &
Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[10] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scal-
able Wide-area Web Cache Sharing Protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 3, pp. 281–293, 2000.

[12] F. Deng and D. Rafiei, “Approximately Detecting Duplicates for Stream-
ing Data Using Stable Bloom Filters,” in ACM SIGMOD, 2006.

[13] H. Shen and Y. Zhang, “Improved Approximate Detection of Duplicates
for Data Streams over Sliding Windows,” Journal of Computer Science
and Technology, vol. 23, no. 6, pp. 973–987, 2008.

[14] C. E. Rothenberg, C. A. B. Macapuna, F. L. Verdi, and M. F. Magalhaes,
“The Deletable Bloom Filter: A New Member of the Bloom Family,”
IEEE Communications Letters, vol. 14, no. 6, pp. 557–559, 2010.

[15] S. Cohen and Y. Matias, “Spectral Bloom Filters,” in ACM SIGMOD,
2003.

[16] K. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-code Bloom
Filter for Efficient Per-flow Traffic Measurement,” in IEEE INFOCOM,
2004.

[17] Y. Matsumoto, H. Hazeyama, and Y. Kadobayashi, “Adaptive Bloom
Filter: A Space-efficient Counting Algorithm for Unpredictable Network
Traffic,” IEICE transactions on information and systems, vol. 91, no. 5,
pp. 1292–1299, 2008.

[18] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable
Bloom Filters,” Information Processing Letters, vol. 101, no. 6, pp. 255–
261, 2007.

[19] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The Dynamic Bloom Fil-
ters,” IEEE Transactions on Knowledge and Data Engineering, vol. 22,
no. 1, pp. 120–133, 2010.

[20] B. Donnet, B. Baynat, and T. Friedman, “Retouched Bloom Filters:
Allowing Networked Applications to Trade off Selected False Positives
Against False Negatives,” in ACM CoNEXT, 2006.

[21] R. P. Laufer, P. B. Velloso, D. de O Cunha, I. M. Moraes, M. D. Bicudo,
M. D. Moreira, and O. Duarte, “Towards Stateless Single-packet IP
Traceback,” in 32nd IEEE Conference on Local Computer Networks,
2007.

[22] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier Filter:
An Efficient Data Structure for Static Support Lookup Tables,” in The
fifteenth annual ACM-SIAM symposium on Discrete algorithms, 2004.

[23] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Performance:
Building A Better Bloom Filter,” Random Structures & Algorithms,
vol. 33, no. 2, pp. 187–218, 2008.

[24] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 Lookups using
Distributed and Load Balanced Bloom Filters for 100gbps Core Router
Line Cards,” in IEEE INFOCOM, 2009.

[25] M. Skjegstad and T. Maseng, “Low Complexity Set Reconciliation using
Bloom Filters,” in ACM SIGACT/SIGMOBILE International Workshop
on Foundations of Mobile Computing, 2011.

[26] “Crypto++ 5.6.0 benchmarks,” 2013, http://www.cryptopp.com/benchma
rks.html.

[27] J. L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,”
Journal of computer and system sciences, vol. 18, no. 2, pp. 143–154,
1979.

[28] M. Ramakrishna, “Practical Performance of Bloom Filters and Parallel
Free-text Searching,” Communications of the ACM, vol. 32, no. 10, pp.
1237–1239, 1989.

[29] J. L. Devore, Probability & Statistics for Engineering and the Sciences.
Duxbury Press, 2012.

[30] C. Henke, C. Schmoll, and T. Zseby, “Empirical Evaluation of Hash
Functions for Multipoint Measurements,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, pp. 39–50, 2008.

[31] C. Walsworth, E. Aben, kc claffy, and D. Andersen, “The caida
anonymized 2012 internet traces,” 2012, http://www.caida.org/data/pas
sive/passive 2012 dataset.xml.

2015 IEEE 23rd International Symposium on Quality of Service (IWQoS)

298

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

