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Abstract. Detecting heavy hitters, which are flows exceeding a specified threshold,
is crucial for network measurement, but it faces challenges due to increasing through-
put and memory constraints. Existing sketch-based solutions, particularly those using
Comparative Counter Voting, have limitations in efficiently identifying heavy hitters.
This paper introduces the Two-Factor Armor (2FA) Sketch, a novel data structure
designed to enhance heavy hitter detection in data streams. 2FA Sketch implements
dual-layer protection through an improved Arbitration strategy for in-bucket compe-
tition and a cross-bucket conflict Avoidance hashing scheme. By theoretically deriving
an optimal λ parameter and redesigning vote+new as a conflict indicator, it optimizes
the Comparative Counter Voting strategy. Experimental results show that 2FA Sketch
outperforms the standard Elastic Sketch, reducing error rates by 2.5 to 19.7 times and
increasing processing speed by 1.03 times.

Keywords: Heavy Hitter · Sketch · Data Stream.

1 Introduction

1.1 Motivation

Network measurement is a critical aspect of networking, providing essential data for appli-
cations such as load balancing, quality of service (QoS) management, network caching, con-
gestion control, anomaly detection, and intrusion prevention [4, 10, 14, 20, 24, 32, 35]. Within
this domain, identifying heavy hitters — flows whose sizes exceed a specified threshold —
is particularly crucial as these flows often have a disproportionate impact on network per-
formance and security [10, 34]. These flows are typically identified by a combination of five
tuples: source IP/port, destination IP/port, and protocol.

However, heavy hitter detection faces significant challenges in modern networks. Detection
systems must track millions of flows in real-time, updating counters for each packet arrival.
The exponential growth in network throughput has outpaced advancements in CPU pro-
cessing capabilities, while the memory wall — the growing disparity between processor and
memory speeds — further exacerbates these limitations [21]. These factors collectively render
traditional measurement approaches increasingly inadequate for contemporary network.

In recent years, sketch-based solutions have gained significant attention for addressing
resource constraints by offering approximate methods balancing accuracy and efficiency [7–9,
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11–13,16,19,28,31]. These approaches leverage SRAM’s capabilities and simple computational
operations to meet latency requirements for real-time processing, utilizing CPU power. They
divide memory into key-value pairs to record heavy hitter information. However, SRAM’s
limited size (generally a few megabytes) [15] constrains the flows simultaneously monitored,
challenging comprehensive capture of all heavy hitters.

Various sketch techniques aim to approach this goal by prioritizing heavy hitters during
the allocation of limited memory resources, exploiting frequency disparities between heavy
hitters and small flows [11, 17, 25, 28, 29, 33]. These techniques primarily rely on arbitration
strategies during flow competition, which can be categorized into three main approaches:
Exponential Weighted Decaying, Inverse Frequency Replacement, and Comparative Counter
Voting (elaborated in Section 2). While recent advancements have optimized the first two
strategies for more accurate heavy hitter detection, Comparative Counter Voting, as imple-
mented in Elastic Sketch [28], has received less attention. Unlike probabilistic approaches,
this deterministic arbitration strategy offers significant potential for enhancing heavy hitter
detection, particularly in scenarios requiring predictability and consistency.

Elastic Sketch employs Comparative Counter Voting primarily to bifurcate flows into
two structures: a Light Part with an 8-bit counter CM Sketch [6] for small flows, and a
Heavy Part for larger flows, facilitating heavy hitter detection. This bifurcation enhances
generality, but allocating memory to small flow data in the Light Part potentially constrains
key-value pair storage for heavy hitters in the Heavy Part, suggesting room for optimization.
However, naively discarding the Light Part would forfeit filtering advantages conferred by this
structural separation, resulting in diminished generality without necessarily improving heavy
hitter detection efficacy.

1.2 Our Solution

We introduce the Two-Factor Armor (2FA) Sketch, a novel data structure providing dual-
layer protection for enhanced heavy hitter detection, addressing key limitations in existing
Comparative Counter Voting approaches.

Comparative Counter Voting, which augments positive votes for matching flow keys and
negative votes for mismatches, faces two critical challenges in its current implementation: (1)
The empirical values of key parameters (λ and vote+new) are inherently linked to the Light Part
in Elastic Sketch, making its simple removal ineffective. (2) The design lacks a mechanism to
resolve competition among heavy hitters within a bucket, occasionally resulting in the loss of
some heavy hitter records.

Our proposed solution addresses these challenges by theoretically deriving an optimal λ
that preserves the flow order relationship, and redesigning vote+new to function as an indicator
of intense heavy hitter competition within a bucket. Upon detecting such competition, a
rehashing mechanism is triggered for conflict avoidance, thereby preventing the omission of
heavy hitters.

The main contributions of this paper are as follows:

– An improved Arbitration strategy for in-bucket competition, serving as the first armor
layer. This Arbitration strategy, an improved version of Comparative Counter Voting, is
applied to flows after the Light Part has been discarded to allocate more space for heavy
hitters.

– A cross-bucket conflict Avoidance hashing scheme, acting as the second armor layer.
This method complements the Arbitration strategy by addressing recall rate degradation
caused by excessive flow congestion within individual buckets.
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– Our experimental results demonstrate that 2FA Sketch significantly outperforms the stan-
dard Elastic Sketch, reducing the error rate by 2.5–19.7 times and increasing processing
speed by 1.03 times. All source codes are publicly available on GitHub [1] to facilitate
reproducibility and further research.

2 Background and Related Work

In this section, we begin with essential definitions of heavy hitters. We then briefly introduce
the common sketch data structure.Finally, we focus our discussion on the distinguishing flow
competing strategies within these sketches.

2.1 Problem Definition

Data streams are defined as continuous sequences of packets, each represented by a tuple
(f, vf ) and processed exactly once. The flow key f comprises any combination of the five-
tuple elements: source IP, destination IP, source port, destination port, and protocol number.
The value vf represents either a unit count 1 or the packet size.

A flow f is classified as a heavy hitter if its accumulated frequency Vf over the data stream
exceeds the threshold Θ = θ · N , where N denotes the total number of packets in the data
stream and θ a predefined fraction, e.g, 0.01.

2.2 Common Sketch Data Structure

The common data structure of sketches for heavy hitter detection comprises a matrix of size
w × d, where d denotes the number of buckets, each containing w cells (as shown in Figure
1)7. This configuration aligns with set-associative cache memory structures. When w = 1, the
structure is a hash table [23] with elevated collision probability, while d = 1 corresponds to
the SpaceSaving [22] algorithm, necessitating Stream Summary technique for expedited cell
location. These parameters primarily influence processing speed.

Each cell typically stores two fields for a flow: the flow key and its corresponding value.
Packet arrival triggers mapping to a hashed bucket. Insertion is straightforward when the
bucket contains the flow key or has empty cells. Conflicts arise when the hashed bucket is
full and does not contain the flow key. To address this, various methods identify the cell
with the minimum value C within the bucket, minimizing conflict. The incoming flow key
then undergoes arbitration with the existing flow to determine retention and resulting value.
Exploiting the frequency disparity between heavy hitter and small flows, research has yielded
three main arbitration strategies: Exponential Weighted Decaying [27,29], Inverse Frequency
Replacement [3, 11,25,33], and Comparative Counter Voting [28]. The configuration of these
strategies predominantly affects processing accuracy.

7 Here, structures containing key-value pairs are generally referred to as counter-based methods
in previous research, while those containing only values are termed sketch-based methods. For
simplicity, we refer to both as "sketches" in this paper. The latter type of methods is discussed in
Section 2.6.
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Fig. 1: Common Sketch Data Structure.

2.3 Exponential Weighted Decaying

This arbitration strategy was initially introduced in the HeavyGuardian paper [27]. For the
cell with the minimum value C, the count field is decayed by 1 with probability P = b−C ,
where b is a predefined constant (e.g., b = 1.08). Post-decay, if the count field reaches 0, the
new flow f replaces the flow key field and resets the count to 1; otherwise, f is either discarded
or inserted into an alternative structure. This approach amplifies the value differentials be-
tween conflicting flows by utilizing the value as an exponent. The HeavyKeeper [29] algorithm
also incorporated this concept. Subsequently, ActiveKeeper [26] and HeavyTracker [30] have
further refined the probability expression, building upon HeavyKeeper to enhance accuracy.
This strategy is especially suitable to the top-k elephant flow detection task.

2.4 Inverse Frequent Replacement

This approach probabilizes replacement while maintaining deterministic counting, in contrast
to the previous method that probabilized counting and determinized replacement. For the
cell with the minimum value C, counting invariably occurs upon the arrival of a new flow,
incrementing by 1. The key field has a 1

C+1 probability of being replaced by the new flow
and a C

C+1 probability of remaining unchanged. This method amplifies the tracking differ-
ences between flows by utilizing the value in the denominator as the replacement probability.
Several algorithms, including USS, CocoSketch, RAP, and ChainSketch [3, 11, 25, 33], have
implemented this design. These studies demonstrate that under this replacement probability,
the expected count of a flow remains unbiased.

2.5 Comparative Counter Voting

In this strategy, each bucket comprises multiple key-value cells (with values serving as vote+)
and one final cell without a key, which records negative votes (vote−), collectively forming
the Heavy Part in Elastic Sketch. Upon conflict in the minimum-value cell, vote− increments
while vote+ remains static. Replacement occurs when vote−

vote+ exceeds a preset threshold λ (e.g.,
4). During replacement in the Elastic Sketch, vote+new resets to 1, vote− to 0, and the flow
key updates to the new flow (f). The original flow’s count is then evicted to the Light Part, a
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CM Sketch. Thus, large flow counts combine the cell’s value and potential CM Sketch counts.
This approach, utilizing vote comparison between different count values, ensures deterministic
replacement and counting mechanisms.

2.6 Other Sketches for Heavy Hitters

Various methods beyond key-value pair-based sketches are employed to identify heavy hitters.
Algorithms that eschew key storage, such as CM [6], CU [10], Count [5], and CSM [18] sketches,
often utilize an auxiliary min-heap for heavy hitter maintenance. Among these, the CU sketch
achieves the highest accuracy, while the CSM sketch provides optimal processing speed.

3 The 2FA Sketch

In this section, we present the details of 2FA Sketch, including its data structure and opera-
tions, design innovations and examples.

3.1 Algorithm Overview

Data Structure (Fig. 2): The data structure of 2FA Sketch aligns with the structure
outlined in Section 2.2, retaining only the Heavy Part of Elastic Sketch. It comprises a bucket
array B of size d, determined by the available memory and required accuracy constraints.
Each bucket contains w cells: one cell records the negative votes (vote−) for the bucket, while
the remaining cells store two fields per flow: the flow key and positive votes (vote+, equivalent
to the value field).
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Fig. 2: An example for the 2FA Sketch.

Insertion (Fig. 2): When inserting an incoming packet with flow key f , we calculate the
hash function, check the hashed bucket B[h(f)] and do the corresponding operations. The
pseudo-code without SIMD (Single Instruction Multiple Data) speedup is shown in algorithm
1. After locating the hashed bucket B[h(f)]:



6 X. Liu et al.

1) If f matches a flow key within any cell of the bucket, only the corresponding positive votes
(vote+) are incremented.
2) If f is not in the bucket, there are the following two cases:

Case 1: There are empty cells in the bucket. We just insert f with vote+ of 1 into the first
empty cell;

Case 2: When no empty cell exists in the bucket, we first increment B[h(f)].vote− by
1 (hereafter, B[h(f)] is omitted for brevity). We then locate the cell [minindex] with the
minimum positive votes in the bucket.

1) If [minindex].vote
+ exceeds Θ0 (a threshold related to Θ, e.g., Θ/2), we rehash to an

alternative backup bucket B[h2(f)] and restart the insertion process (only once).
2) Otherwise, we compare vote− with [minindex].vote

+. If vote−

[minindex].vote+
> λ = 1,

[minindex].key is replaced by f and [minindex].vote
+ (equivalent to vote+new) replaced by

vote−; otherwise, f is discarded.

Algorithm 1: Insertion Procedure
Input: an incoming flow f , threshold Θ

1 FP = hash(f), pos = FP % d, minval =∞, minindex = 0, Θ0 = Θ/2, λ = 1
2 for i← 1 to w − 1 do
3 if FP == B[pos].key[i] then
4 B[pos].vote[i]+ = 1 // vote[i] represents vote+ in loop
5 return

6 if B[pos].val[i] < minval then
7 minindex = i
8 minval = B[pos].vote[i]

9 if minval == 0 then // Case 1
10 B[pos].key[minindex] = f , B[pos].vote[minindex] = 1
11 return

12 if minval >= Θ0 then // Case 2.1, vote+new’s judgment
13 hash = h2, goto line 1

14 guardval = B[pos].vote[0] + 1 // vote[0] represents vote−

15 if guardval
minval

>= λ then // Case 2.2
16 B[pos].vote[0] = guardval

17 else
18 B[pos].key[minindex] = f , B[pos].vote[0] = 0
19 B[pos].vote[minindex] = guardval // vote+new’s update

Query: For a single flow f , querying whether it is a heavy hitter follows a process similar
to insertion. The algorithm locates the buckets B[h(f)] and B[h2(f)] using hash functions.
If f matches a flow key within any cell of these buckets, we obtain the corresponding vote+

value. The flow is reported as a heavy hitter if this value exceeds the threshold Θ. Notably,
the information for f is stored in at most one of the buckets B[h(f)] or B[h2(f)].

To identify all heavy hitters, the algorithm traverses all cells within each bucket, querying
the size of each flow. Any flow with a size surpassing the predetermined threshold is classified
and reported as a heavy hitter.
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3.2 Design Innovations

Armor 1 (Fig. 2): Our first Armor layer is an improved Arbitration strategy for in-bucket
competition, focusing on two key parameters. The assignment of vote+new determines the initial
frequency count for a new flow during replacement. We have vote+new ≤ vote−, with equality
possible only when two flows compete within a single cell. Therefore, we set vote+new to vote−

instead of 0 to ensure that any flow recorded in the bucket is not underestimated.
The parameter λ governs flow eviction criteria. To preserve flow order relationships, λ

must not be less than the smallest bucket, ensuring only keys with higher frequency counts
in the bucket are recorded (i.e., λ ≥ 1). We set λ to the boundary value of 1 as it allows for
quick incorporation of potential heavy hitters when vote− grows rapidly to [minindex].vote

+,
indicating the presence of keys with large frequencies that don’t match multiple cells. Elastic’s
more lenient judgment on this point is due to its ability to count potentially evicted large
flows in its Light Part, making it less sensitive to λ variations at the cost of relatively larger
errors for heavy hitters.
Armor 2 (Fig. 2): Our second Armor layer implements a cross-bucket conflict Avoidance
hashing scheme. This approach is founded on two key observations:
1. When memory is constrained, hash imbalances and limited bucket numbers can lead to

disproportionate flow mappings, resulting in some buckets exceeding their cell capacity
while others remain underutilized. This issue cannot be resolved through the first Armor
layer’s arbitration strategy alone.

2. The vote+new value from the arbitration strategy allows us to assess the degree of conflict
within a bucket. Throughout the insertion process, vote+new does not decrease in the
replacements, causing the corresponding [minindex].vote

+ to consistently increase. This
metric effectively gauges the intensity of multi-cell conflicts within a bucket.

We recommend the threshold Θ0 between 0.4Θ ∼ 0.8Θ. When [minindex].vote
+ exceeds

this threshold, we employ an alternative hash function to redirect to a backup bucket, thereby
achieving conflict avoidance.
Examples (Fig. 2): We use three examples to show the differences between the standard
Elastic and our 2FA Sketch in terms of the insertion operation. Given an incoming packet
with flow key f1, the hash function h(f1) is calculated and the hashed bucket is found. Since
flow f1 is not stored in the bucket and [minindex].vote

+ > Θ0 (Θ0 sets to Θ
2 here), we rehash

to another bucket. At this time, it matches one cell luckily and the corresponding vote+

increases by 1.
For another incoming packet with flow key f8, we calculate the hash function and find the

hashed bucket. Since f8 is not stored in the bucket, vote−(= 6) is incremented by one. We
then find the flow with the smallest size, f1, and find that vote− is not larger than vote+(= 11)
of f1. Therefore, f8 is discarded and nothing else is changed.

For another flow f9, we calculate the hash function and find the hashed bucket. We find
flow f6, the flow with the smallest value in the bucket. Because vote−(= 12 = 11+1) is larger
than vote+(= 11) of f6, f6 is replaced by f9, and the size of f9 is set to vote− (12, i.e., vote+
of f6 plus 1). Flow f6 is discarded and vote− is set to zero.

4 Experimental Results

We present experimental results comparing 2FA Sketch with state-of-the-art heavy hitter
detection algorithms. Section 4.1 describes the experimental setup, followed by performance
and parameter evaluations in Section 4.2 and Section 4.3.
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4.1 Experimental Setup

Datasets: We have employed two datasets for our study.
CAIDA Dataset: We use the public traffic trace datasets collected in Equinix-Chicago
monitor from CAIDA [2]. In our experiments, each packet is identified by its source IP address
(4 bytes). There are about 25 millions packets in total.
Synthetic Dataset: We generate synthetic datasets with 30 millions packets each, following
the Zipf distribution p(x) = x−α

ζ(α) , with varying α values ranging from 0.4 to 1.2 with a step
of 0.2. Zipf’s law, an empirical observation, describes the distribution in phenomena such as
the frequency of web page visits. The different α values represent varying levels of skewness,
allowing us to simulate data streams with diverse characteristics.
Implementation: We compare six heavy hitter detection approaches: SpaceSaving (SS) [22],
Count/CM Sketch [5, 6] with a min-heap (CountHeap/CMHeap), Elastic Sketch [28], Chain
Sketch (Chain) [11] and 2FA Sketch. All algorithms are implemented in C++ with 100KB
default memory size and 0.01% heavy hitter threshold in every experiment. For Elastic and
Chain Sketch, we use the parameters in the open-sourced code. For both Elastic and 2FA
Sketch, we store 7 flows and one vote− in each bucket of the Heavy Part. Elastic uses a 3:1
Heavy to Light Part ratio. The variant of 2FA Sketch employing solely Armor 1 is designated
as 1FA. In the implementation of Armor 2, the ratio Θ0

Θ is configured to 0.5. For CountHeap /
CMHeap, we use 3 hash functions for the sketch and set the heap capacity to 4096 nodes [28].
Computation Platform: we conducted all the experiments on a machine with one 4-core
processor (4 threads, AMD EPYC 7662@2.0GHz) and 15.4 GB DRAM memory. To accelerate
the processing speed, we use SIMD (Single Instruction Multiple Data) instructions for both
Elastic and 2FA Sketch. With the AVX2 instruction set, we can find the minimum counter
and its index among 8 counters in a single comparison instruction. Also, we can compare 8
32-bit integers with another set of 8 32-bit integers in a single instruction.
Metrics: We use the following seven metrics to evaluate the performance of compared algo-
rithms.
1) AAE (Average Absolute Error): 1

|Φ|
∑

ei∈Φ |fi − f̂i|, where Φ is the query set of heavy

flows and fi and f̂i are the actual and estimated flow sizes of flow fi, respectively.
2) ARE (Average Relative Error): 1

|Φ|
∑

ei∈Φ
|fi−f̂i|

fi
, where Φ, fi, and f̂i are defined

above.
3) PR (Precision Rate): Ratio of the number of correctly reported flows to the number of
reported flows.
4) RR (Recall Rate): Ratio of the number of correctly reported flows to the number of
true flows.
5) F1 score: 2×PR×RR

PR+RR , where PR and RR are defined above.
6) Rehashing Ratio: The proportion of non-matching packets that are rehashed to alter-
native buckets.
7) Throughput: million packets per second (Mpps). We use it to evaluate the processing
speed of different sketches. The experiments on processing speed are repeated 100 times to
minimize accidental errors.

4.2 Evaluation on Accuracy and Processing Speed

Accuracy evaluation on CAIDA (Figure 3a-3d): With memory sizes of 100KB-500KB,
2FA Sketch outperforms Chain and Elastic in accuracy. 2FA Sketch achieves 7.3 ∼ 8.1 times



2FA Sketch: ... Accurate and Efficient Heavy Hitter Detection ... 9

lower AAE and 5.7 ∼ 7.5 times lower ARE than Elastic on CAIDA. 2FA Sketch, Elastic, and
Chainsketch maintain nearly 100% PR and RR even at 100KB memory. The other methods,
requiring additional memory for min-heap or stream summary structures, perform poorly
here but are more suited for top-k elephant flow detection. Subsequently, we evaluate with
further reduced memory for 2FA Sketch, Elastic and Chainsketch.
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Fig. 3: Heavy Hitter Detection Accuracy Comparison: CAIDA Dataset (3a and 3b share the
same legend as the others)
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Accuracy evaluation on CAIDA under memory constraints (Figure 4a-4d): The
2FA Sketch outperforms other methods across all metrics, even with limited memory sizes
ranging from 16KB to 80KB. Notably, it achieves an F1 score of approximately 85% with only
16KB of memory. This performance can be attributed to the significant improvement (over
10%) of Armor 2 over Armor 1, which was achieved without compromising the ARE and PR
for detected flows.
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Throughput (Figure 5): Our experiments show that 2FA Sketch significantly outperforms
five other algorithms on our CPU platform. It achieves nearly 140 Mpps with SIMD op-
timization, about 1.03 times faster than Elastic and over 9 times faster than conventional
algorithms limited to 15 Mpps. Notably, Armor 2’s rehashing, triggered only during intense
conflicts, reduces throughput by just 6.5% compared to 1FA.

4.3 Evaluation on Parameter Settings

Accuracy evaluation on 2FA Sketch with different skewness α (Figure 6a-6d): Our
results demonstrate that 2FA Sketch maintains an F1 Score above 85% with only 8KB of
memory, but exhibits reduced performance at 4KB. Data streams with moderate skewness
prove more challenging, characterized by a high number of flows and intense competition
between large and small flows.
AAE and ARE comparison of 2FA Sketch with different λ (Figure 7a-7b): Our
experimental results show that 2FA Sketch achieves highest accuracy at λ = 1, with perfor-
mance improving as λ decreases. While Elastic outperforms 2FA Sketch at λ = 8, it fails to
improve at λ = 1, where 2FA Sketch excels. At λ = 1, 2FA Sketch achieves 4.4 ∼ 8.2 times
smaller AAE and 4.4 ∼ 6.9 times smaller ARE compared to Elastic. These experiments were
conducted with memory sizes ranging from 100KB to 500KB.
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Fig. 6: Performance Analysis of 2FA Sketch with Varying Skewness α on Synthetic Dataset
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Fig. 7: Performance Analysis of 2FA Sketch with Varying λ and Θ0

Θ Ratios on CAIDA Dataset

RR evaluation with different threshold ratios(Figure 7c-7d): Given Armor 2’s signif-
icant improvement in RR shown in Figure 4d, we assessed the impact of varying Θ0

Θ on RR.
Optimal RR is achieved with threshold ratios between 0.4 and 0.8, with a more pronounced
effect under memory constraints. Considering the threshold ratio’s influence on throughput,
we also evaluated the rehashing ratio, observing a substantial decrease within the 0.4-0.8
range.
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5 Conclusion

This paper introduced the Two-Factor Armor (2FA) Sketch, a novel data structure designed
to enhance heavy hitter detection in high-throughput network environments. By addressing
key limitations in existing Comparative Counter Voting approaches, 2FA Sketch provides
dual-layer protection for improved accuracy and efficiency. The first layer, an improved Ar-
bitration strategy, optimizes in-bucket competition through a theoretically derived optimal λ
parameter and a redesigned vote+new as a conflict indicator. The second layer, a cross-bucket
conflict Avoidance hashing scheme, further enhances heavy hitter detection by mitigating
recall rate degradation caused by flow congestion. Experimental results demonstrate the sig-
nificant performance improvements of 2FA Sketch over the standard Elastic Sketch, with error
rates reduced by 2.5 to 19.7 times and processing speed increased by 1.03 times.
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