
NDNBench: A Benchmark for Named Data 
Networking Lookup 

Ting Zhang, Yi Wang, Tong Yang, Jianyuan Lu and Bin Liu* 
Tsinghua National Laboratory for Information Science and Technology 

Department of Computer Science and Technology, Tsinghua University, Beijing, China  
Abstract—Content-centric Networking (CCN) and the later proposed 
Named Data Networking (NDN) have attracted wide attention in both 
academia and industry, as the clean slate future Internet architecture. 
Wire speed name lookup for packet forwarding is one of the most 
challenging tasks in CCN/NDN. As a promising technology, its fea-
sibilities including reachable speed, scalability, and update perfor-
mance are imperative to be deeply evaluated. However, CCN/NDN is 
currently on its initial stage and no actual network is deployed, which 
means no real name routing tables and NDN traffic are available. In 
order to fulfill performance comparisons among various innovative 
name lookup solutions and facilitate future name lookup researches, 
we present NDNBench, a publicly available platform for evaluation, 
comparison and experiments with different name lookup approaches. 
NDNBench can generate various Forwarding Information Bases 
(FIBs), traces with structure and size diversity to conduct the tests 
thoroughly by adjusting the parameters. NDNBench provides a simu-
lation package tool with flexibility to evaluate various name lookup 
approaches. Furthermore, in order to verify the effectiveness of 
NDNBench, we benchmark some existing name lookup schemes and 
the results are very supportive. NDNBench has been applied to recent 
work and is publicly available at the following site: http://s-
router.cs.tsinghua.edu.cn/~zhangting/. 

I. INTRODUCTION 

With the development of technology and popularization of 
information, Internet, whose original objective is in pursuit of 
hardware resource sharing by network interconnections, is un-
dergoing drastic changes in its main function. Customers trend 
to less concern about the location where the content is originat-
ed but more about the availability, quality and security of the 
content. Named Data Networking (NDN) [1], proposed as a 
clean slate future network architecture, has attracted great at-
tentions [1-3, 13-15]. NDN separates safety, accessibility and 
location of content from content itself. NDN operates based on 
the identity of contents and every distinct content/entity is ref-
erenced by a unique name. Consequently, this avoids the com-
plex mapping between contents and their locations and will 
potentially improve the data retrieval efficiency of future Inter-
net. 

Name lookup of packets forwarding is taken as the founda-
tion and one of the key technologies in NDN. When a request 
packet arrives at an NDN router, the name key will be abstract-
ed from this packet header and sent to the search engine  to 
execute longest prefix matching (LPM) against name prefixes 
in name table1 to obtain the outgoing port(s). Then this packet 

                                                           
*Corresponding author: liub@tsinghua.edu.cn. 
Others: { ting-zhang10, yiwang09, yang-t10, lu-jy11} @mails.tsinghua.edu.cn.  
This work is supported by 863 project (2013AA013502), NSFC(61073171, 
61202489), Tsinghua University Initiative Scientific Research Program 
(20121080068), the Specialized Research Fund for the Doctoral Program of 
Higher Education of China (20100002110051), 
1 In this paper, we use two terms --FIB and name table-- interchangeably. 

will be forwarded to the corresponding port(s). 

Name lookup in NDN forwarding plane is much more chal-
lenging than current IP lookup due to the following reasons: 1) 
Content names in NDN are more complex than IP addresses. 
An NDN name employs URL-like structure, and its length is 
variable (it could be composed of tens or even hundreds of 
characters) and no externally upper bound; 2) NDN name table 
could be much larger than the existing IP lookup table. It is 
anticipated that an NDN name table could swell to tens of mil-
lions of entries, even more, which will be orders of magnitude 
larger compared with an IP forwarding table; 3) NDN name 
table update frequency is expected to be much higher than to-
day’s Internet. This is because besides the regular network to-
pology/policy changes, content publishing/deletion can also 
trigger the update of NDN FIB, which could be more frequent. 
The above changes make NDN name lookup a very tough task 
and thus it is quite imperative for name lookup to be studied 
deeply. 

However, existing IP-based lookup approaches cannot be 
directly applied to NDN scenario to achieve high performance 
due to the following two reasons. First, NDN names are hierar-
chical and composed of a series of components, while IP ad-
dresses can match a prefix at any bit position. Second, IP ad-
dresses are fixed length and 32 memory accesses are required 
in worst case when performing IP lookup, while NDN name 
lengths are variable. Several NDN name lookup solutions [1-3, 
13-15] have been proposed recently to address this issue.  Our 
goal is to evaluate various proposed solutions’ speed, memory 
occupation, scalability and update performance. However, 
CCN/NDN is in its initial stage of research, so practically no 
actual CCN/NDN network is deployed yet. Without real name 
route table and real-world NDN traffic, it is difficult to evaluate 
the above solutions on a reference basis. Moreover, without the 
public and fiducial reference FIBs, as well as corresponding 
traces (including name traces and update messages), the per-
formance comparison among various approaches is far from 
convincing. 

In pursuit of conquering these challenges, in this paper, we 
originally develop NDNBench, a publicly available platform 
for evaluation, comparison and experiments with different 
lookup approaches. NDNBench consists of four tools: seed 
FIB analyzer, FIB generator, name trace generator and 
updates generator. In particular, our main contributions in-
clude the following. 

1) According to our extensive experiments, we find that the 
characteristics of FIB and traces will greatly influence the per-
formance of NDN name lookup. Then we identify and refine 
these characteristics and form the concrete and quantitive pa-
rameters. More importantly, these parameters inspire research-
ers to develop new name lookup approaches which exploit 

Globecom 2013 - Next Generation Networking Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 2152



structure of  FIB and trace to accelerate lookup or update and 
reduce memory requirements. 

2) We design and implement a system to generate various 
FIBs, name traces and update messages. Two approaches are 
proposed to produce FIBs. Further, the system generates 
synthetic traces which contain a sequence of content names 
traces and update messages for a given NDN FIB, guided by 
the corresponding parameter settings. Users can also configure 
these parameters according to their requirements. 

3) Given the complexity of NDN update compared with IP 
update scenario, we make a comprehensive analysis of the 
composition and behavior of NDN update, which can guide 
users to generate rational update messages.  

To our best knowledge, this is the first effort to implement a 
benchmark for NDN name lookup and NDNBench has been 
applied to the recent work [2, 3, 13, 14]. We are committed to 
facilitate the name lookup solution and future NDN research 
agenda by quantifying the performance of lookup. We have 
released NDNBench in [12]. 

The remaining parts of this paper are organized as follows. 
Section II presents the workflow of NDNBench. All the sub-
modules are presented in Section III. In Section IV, 
NDNBench is applied to evaluate the performance of different 
name lookup solutions. Section V surveys the related work and 
finally we conclude our work in Section VI. 

II. THE WORKING FLOWCHART OF NDNBENCH  

 

Fig. 1. The framework of NDNBench. 

Figure 1 shows the working flowchart of NDNBench. We 
collected a 10-million name table from the current Internet with 
the URL-like style as a seed FIB. Based on this seed FIB, flex-
ible FIBs with size and characteristic diversity can be generated. 
Seed analyzer takes the seed FIB as input, summarizes the 
characteristics of FIB that influence the performance of name 
lookup and dumps the information into the parameter set. The-
se parameters are absorbed into FIB generator. Users can also 
modify these parameters according to their requirements. There 
are two approaches to generate synthetic FIB and users can 
choose either of them. Similarly, updates generator and name 
trace generator take FIB and corresponding parameter set as 
input. They produce traces composed of a sequence of name 
traces and update messages, to exercise the corresponding FIB. 
When conducting performance evaluation on different ap-
proaches, users can apply the same FIB and corresponding 

traces to them, enabling comparisons to verify the feasibility 
such as throughput, memory occupation and update perfor-
mance. They can also evaluate the scalability of various ap-
proaches by adjusting the relevant parameters of FIB and traces. 

Based on the above description, it can be concluded that pa-
rameters of FIB, name traces and update messages determine 
the structure and size diversity and will greatly influence the 
performance of name lookup, so they are the cornerstone of 
NDNBench.  

III. DESIGN OF NDNBENCH FUNCTIONAL MODULES 

As described in Figure 1, NDNBench consists of several 
functional modules, which co-work in a flow-chart manner to 
finally produce the required FIBs as well as the testing traces. 
This section will detail the design of each functional module 
including seed analyzer, FIB generator, updates generator and 
name trace generator sequentially. 

A. Seed Analyzer 

This module focuses on identifying and understanding the 
characteristics of FIB which largely influence the performance 
of lookup approaches. The input of this module is seed FIB. By 
analyzing the seed FIB, seed analyzer extracts the relevant sta-
tistics and outputs them into the parameter set. 

1) Data Preparation 

Above of all, we introduce the structure of NDN FIB and 
content name contained in the name trace. An NDN name is 
hierarchically structured and composed of many components. 
Between every two adjacent components, there exists a delim-
iter which is not a part of the name, usually “/”. For example, a 
webpage produced by PARC may have the name 
/com/parc/newsroom/new.html, where /com/parc is the website 
and /newsroom/new.html locates the resource on the server. 
Such hierarchical name structure enables LPM and aggregation, 
which are essential to the scalability of routing and forwarding 
mechanism, just the same as IP address. The basic aggregation 
unit is a component, while name lookup can be performed at 
character granularity.  

Each FIB entry is composed of a name prefix and the corre-
sponding outgoing port(s). Figure 1 shows a FIB which con-
tains 3 entries. The content name extracted from packet header 
will probe the FIB to get the next hop port(s) by LPM. Name 
prefixes in FIB are converted from Internet domain names. 
Seed FIBs are obtained through the following steps: 

Step I: Domain name collection. We implemented a web 
crawler to fetch URL in order to obtain domain names as many 
as possible. To achieve good geographic coverage, we installed 
our web crawlers in North America, Europe and Asia, respec-
tively. The program has kept running since October 1st, 2011. 
Then these fetched URLs are transformed into domain names. 
Moreover, we downloaded some existing domain names from 
NameJet [4]. So far, we have obtained about 80,000,000 non-
duplicate domain names in total.  

Step II: Name prefix transformation. These non-duplicate 
domain names are transformed into NDN name prefixes. For 
instance, www. google. com is transformed into 
/com/google/www. 

Seed 
Analyzer 

FIB 
Parameter 

FIB 
Generator 

FIB Name Trace
Generator

Name Trace 
Parameter 

NDN Name Trace

FIB

Prefix Port 
/ com/ avnono 1 

/com / parc /news 2 
/com /Blog /vandan /www 3 , 4

Seed FIB 

Updates 
Generator

NDN Update 
Messages

Parameter Parameter Update Behavior 
Parameter 

Globecom 2013 - Next Generation Networking Symposium

2153



Step III: Next hop port mapping. For each name prefix, we 
can get one or more IP addresses resolved by DNS. Each IP 
address performs LPM on an IP routing table downloaded from 
www. ripe.net and output a next hop port.  

Step IV: FIB entries generation. NDNBench maps the name 
prefix to its corresponding next hop port(s). Finally, an FIB 
entry is synthesized.  

In this paper, we generate a seed FIB by randomly selecting 
10 million entries from 80 million candidate entries and con-
duct extensive experiments based on it.  

2) FIB Parameter Extraction 

It is especially important to identify the characteristics of 
FIB that affect the lookup performance. For instance, the aver-
age length of prefix varies among different FIBs, which proba-
bly has an impact on lookup. Furthermore, different approaches 
vary in the degree of sensitivity to specific parameters of FIB. 
Component-based approaches are sensitive to component num-
ber in each prefix, while not influenced by whether it is a letter 
or a digit in specific position. Therefore, it is necessary to lev-
erage FIB with the same characteristics for the performance 
comparison among different solutions.  

In this paper, NDN name lookup approaches are classified 
into two categories, namely, component-based and character-
based approaches. For each category of approaches, the param-
eters related to lookup are listed respectively. Meanwhile, we 
thoroughly conduct data mining on seed FIB based on the fol-
lowing metrics and the results are presented in experimental 
section.  

For component-based approaches, components are the 
atomic lookup unit. And such approaches are sensitive to the 
following metrics: 

a) The distribution of component number in each prefix. 
b) The distribution of component length in each level. 

For character-based approaches, characters are the atomic 
lookup unit. They are sensitive to the following metrics: 

a) Name prefix length distribution. 
b) The frequency of each character appearing in each po-

sition. 
We conduct modular design based on the fact that such pa-

rameters are independent of each other. When a new parameter 
that influences lookup performance is needed to be involved, it 
can be easily integrated into the seed analyzer, parameter set 
and FIB generator.  

B. FIB Generator 

FIB generator takes a parameter set as input and target FIB 
size to generate. Users can utilize the parameter set learned 
from seed FIB, and such parameters can be modified according 
to their requirements. We propose the following two approach-
es to generate new FIBs. The FIBs generated by these two ap-
proaches inherit the characteristics of parameter set. 

a) We select specified number of entries from seed FIB 
based on the parameters. So all the entries of the new FIB 
come from seed FIB. In this case, target FIB size cannot be 
larger than seed FIB.  

b) We generate new prefixes according to the parameters. 
This approach doesn’t need to take the seed FIB as the input 
and will generate more flexible prefixes that don’t exist in the 
seed FIB. 

The final step in generating synthetic FIB is filtering redun-
dant FIB entries. The naïve implementation is comparing each 
entry with others in the FIB, which makes execution time of the 
FIB generator prohibitively long. In order to accelerate this 
process, we construct component-trie, in which each node rep-
resents a component of name prefix. When generating a new 
prefix, we insert it into the component-trie to check whether 
this prefix already exists. In this way, the redundant entries are 
eliminated naturally. 

C. Updates Generator 

Update performance is one of the key metrics for routers’ 
packet processing. NDN update should be highly addressed due 
to its complexity and difference with update in IP scenario. In 
this section, we will analyze the composition and behavior of 
NDN update. They are the rationale of our updates generator. 
Then we extract the parameters that cover the characteristics of 
NDN update behavior and implement the updates generator. 

1) Composition of NDN Update 

Usually, an update message can be of three forms: 1) Modi-
fication, 2) Insertion and 3) Deletion. When an update message 
arrives, routing table needs to be recomputed and packet for-
warding will not proceed until the update message has been 
handled. This will even lead to packet loss when the lookup 
queue goes full during burst updates. In NDN scenario, this 
problem becomes aggravated. Besides network topology and 
policy changes, the following two situations may also incur the 
update of FIBs: a) the contents are published/deleted; b) the 
mobility of content provider. These are different from today’s 
routers and make FIB update more frequent than today’s Inter-
net. So the update performance of routing lookup rises to be an 
important concern and should be evaluated. 

2) NDN Update Behavior Analysis  

Given no NDN network is deployed today, we analyze the 
NDN update behavior based on the current Internet. In order to 
understand network topology changes and routing policy modi-
fications, we conduct data mining on real routing tables and 
update messages and get the following observations: 

a) The incoming update messages do not always arrive 
uniformly and sometimes come as a bust. According to our 
experimental results, received update messages rate can reach 
nearly 35K/s in the peak while the average situation is only 
1.43/s. Similar results can also be found in [16]. Thereby 
routers should implement name lookup at wire speed while 
keep the ability to handle the update messages in busts.  

b) Most update messages only cause a small fraction of 
prefixes to be frequently updated. Our statistical results show 
that 4% of all the prefixes are affected by the updates while the 
others keep stable.  

c) We use binary trie to construct routing table and find 
the above affected prefixes are mostly leaf nodes. The 
explanation of this result is that leaf nodes in binary trie usually 
cover a small range of IP addresses and represent the edge 

Globecom 2013 - Next Generation Networking Symposium

2154



networks, which is unstable and suffer frequent update. Our 
results show that 86.7% updates occur in the leaf node. 

When the content is published or deleted, name prefix will 
be inserted or deleted in the FIB. This procedure is similar to 
DNS changes for domain names. We try to quantify the content 
publish/deletion by analyzing DNS changes. Figures released 
in [17] show that there are only a few tens of top-level domains 
updated per second and thus the content publish/deletion con-
tributes to a small proportion of updates. 

How mobility causes FIB update can be explained via the 
following example. Name prefix /com/google/learning 
/network.pdf and /com/google/learning/compiler.pdf can be 
aggregated to /com/google/learning/. Hierarchical name struc-
ture enables the prefix aggregation and eases the expansion of 
FIB size. But when content provider moves to the new network 
whose name prefix is /com/parc/resource/, the router where 
this publisher located before needs to delete the stale prefix and 
/com/google/learning /compiler.pdf cannot be aggregated any 
longer. The network where this publisher located now also 
needs to insert the prefix to the FIB. So mobility in NDN may 
have a serious effect on update. 

3)  Updates Generator Implementation 

Guided by the above analysis, we design an updates genera-
tor to simulate update behavior, and generate a sequence of 
update messages for a given FIB based on the parameters. We 
list the parameters of update messages in our updates generator. 

a) The Arrival Time Interval Distribution 
 The time interval of arriving update messages could follow 

different distributions. For example, the arrival of update mes-
sages can be consistent with the Poisson distribution. We inte-
grate some frequently-used distribution into updates generator, 
including Gaussian distribution and Uniform distribution. Us-
ers can easily select one of them and input the corresponding 
parameter(s).  

b) The Arrival Rate 
The arrival rate refers to the number of update messages ar-

rived per second, and it is an important factor that lookup algo-
rithms should pay attention. 

c) The Distribution of Updated Node  
Take FIB organized in character-trie as an example, intui-

tively, updating the leaf node spends more computational cost 
than the updating intermediate nodes as it increases the 
memory access times in order to locate the corresponding node. 
This judgment is in accord with our experimental results. 

D. Name Trace Generator 

Only a few metrics such as memory requirement can be 
evaluated when we only use FIB to benchmark a particular 
name lookup algorithm. In order to conduct a thorough bench-
mark including throughput and scalability, name traces can be 
employed to probe the FIB. Name trace generator produces 
name traces which contain a sequence of name requests with 
respect to a given FIB. Similar to updates generator, name trace 
generator also takes FIB and parameter set as input. The key of 
the generator is to find out the crucial parameters of name trace 
such as matching ratio, which can heavily affect the perfor-
mance of lookup algorithm. These parameters are listed as fol-

lows. 

1) Trace Number. It refers to the number of name requests 
in the trace.  

2) Hit Ratio. In NDN, some incoming name requests can’t 
find the entry of the FIB to match, which indicates that not all 
the requests will probe one of the entries in FIB. In order to 
simulate this scenario, we define hit ratio, as 
HR=Numused/Numtotal, where HR is hit ratio; Numused is number 
of requests to probe the FIB; Numtotal is the total number of 
incoming name requests. 

3) Hit Trace Distribution. In the process of LPM, different 
names will match prefixes with various lengths. Hit trace dis-
tribution indicates the length distribution exercised by the trac-
es. For example, for the FIB in Figure 1, if all the names exer-
cise the prefix “/com/avnono” which has two components, it 
will achieve better lookup speed compared with the situation 
when all the names exercise the prefix “/com/Blog/vandan 
/www” which has four components.  

4) Trace Length Distribution. The performance of some 
implementations, for example, solution which batches a certain 
capacity of name requests and then transfers them to the lookup 
engine, is influenced by this metric. Given a certain memory, 
the longer the traces are, the less entries stored in the container 
will be.  

5) Locality. In IP network, routing cache is employed to 
store the most frequently used prefixes and traffic to accelerate 
the lookup speed by reducing average memory access times. 
They can also be applied to NDN and we name them as FIB 
locality and name trace locality, respectively. Experiment 
shows the cache hit rate can easily achieve 96.2% with 256 
cache entries by caching prefixes [11]. 

IV. EXPERIMENTS ON NDNBENCH 

NDNBench has been used in recent work [2, 3, 13, 14]. In 
this section, we utilize it to evaluate NDN name lookup solu-
tions in terms of lookup throughput, memory occupation, 
scalability, and update performance.  

A. Experimental Settings 

We implement and compare the lookup solutions on a 
commodity PC installed with a 6-core CPU (Xeon E5645 ×2), 
2.4GHz clock frequency and DDR3 48GB (1333MHz) 
memory. The PC runs Linux operating system version 
2.6.41.9-1.fc15.x8664.  

B. Data Mininig on NDN FIB and Name Traces 

We leverage the seed FIB mentioned in Section III. Based 
on 10M seed FIB, we generate other 9 FIBs which have the 
same characteristics with the seed FIB and the sizes are ranging 
from 1M to 9M, respectively. First we conduct data mining on 
the seed FIB and list the relevant parameters in Table I, II and 
Figure 2.  

TABLE I.  THE DISTRIBUTION OF COMPONENT NUMBER IN SEED FIB 

Cmp. Num in 
Per Prefix 

2 3 4 5 6 >=7 

Frequency 58.98% 34.85% 5.64% 0.46% 0.01% 0.06%
 

From the above results, we can conclude that nearly 94% of 

Globecom 2013 - Next Generation Networking Symposium

2155



prefixes have two or three levels. In each level, components 
with three characters account for the majority. In addition more 
than 90% of the prefixes’ length is between 10 and 29. 

Name traces contain a sequence of name requests formed 
by concatenating a name prefix from the FIB with generated 
suffixes. We generate two types of name traces for each FIB. 
Parameters of each type are listed as follows.  

TABLE II.  PREFIX LENGTH DISTRIBUTION2  

Length interval 1~9 10~15 16~19 20~29 >=30 

Frequency 2.18% 30.09% 28.77% 34.00% 4.96% 
 

 
Fig. 2. The distribution of component length in each level in seed FIB. 

a) Average Workload. The name requests in this set ran-
domly exercise entries in the FIB. Every entry will have the 
same probability to be visited. We name this type as average 
workload. 

b) Heavy Workload. For hit trace distribution, the name 
requests exercise the top 10% longest prefixes in the FIB. We 
name this type as heavy workload.  

These two types both have the following parameters: trace 
number = 50M, hit ratio = 100%. And the length distribution of 
these two types is illustrated in Figure 3.  

 
Fig. 3. Trace Length distribution3. 

                                                           
2 1~9 means prefix length ranges from 1 to 9. 

C. Performance Evaluation on Name Lookup Approaches 

We implement character-trie and component-trie approach-
es and compare them with NCE [3]. It turns out that NCE is an 
effective name lookup solution since it encodes components to 
improve the throughput and reduce memory overhead.  

1) Throughput  

 

Fig. 4. The throughput of three approaches on different FIB sizes (average 
workload). 

Figure 4 and Figure 5 illustrate the throughput of the three 
approaches with different sets of FIBs and corresponding name 
traces. We notice that the throughput of them exhibits down-
ward trend along with the increasing size of FIBs. Especially, 
when the FIB size is 10M, the lookup speed of character-trie 
solution degrades dramatically due to the increasing memory 
access time. 

On the other hand, compared with the average workload, 
the lookup speed of heavy workload degrades since more in-
coming names match longer prefixes. It indicates that the per-
formance of lookup solution heavily relies on characteristics of 
the name traces, especially hit trace distribution. In addition, 
Figure 4 demonstrates NCE is superior in name lookup with 
better scalability than the other two.  

 
Fig. 5. The throughput of the approaches on different FIB sizes ( heavy 

workload).  

                                                                                                      
3 Due to the lack of space, we only list six sets’ results. “a_1M.trace” means 
the average workload to exercise 1M FIB and “w_1M.trace” means the heavy 
workload to exercise 1M FIB. 

0 25 50 75 100 125 150
0

1

2

3

4

5

F
re

qu
en

cy
 (

%
)

Name Trace Length

 a_1M.trace    w_1M.trace
 a_9M.trace    w_9M.trace
 a_10M.trace  w_10M.trace

2M 4M 6M 8M 10M
0.10

0.15

0.20

0.25

0.30

T
h
ro

ug
h
pu

t (
M

S
P

S
)

FIB Size

 CharacterTrie
 ComponentTrie
 NCE

2M 4M 6M 8M 10M

0.10

0.15

0.20

0.25

0.30

T
h

ro
u

gh
pu

t (
M

S
P

S
)

FIB Size

 CharacterTrie
 ComponentTrie
 NCE

Globecom 2013 - Next Generation Networking Symposium

2156



2) Update Performance 

In order to evaluate the update performance of name lookup 
solutions accurately and objectively, we define the metric Up-
date Period (UP), which represents time interval between the 
point when an update message is received and the point when 
update operation is accomplished. It indicates a router’s sensi-
tivity to the changes of network. We measure the performance 
of these solutions and Figure 6 shows insertion results.  

 

Fig. 6. The update period of insertion of the approaches on different FIB 
sizes. 

3) Memory Occupation 

The memory occupation of these three solutions is illustrat-
ed in Figure 7. To 10M FIB, character-trie needs 936MB 
memory and component-trie needs 1126 MB while NCE only 
needs 695MB. Their memory requirement is approximately 
linear to the FIB size.  

 

Fig. 7. The memory requirement of the approaches on different FIB sizes. 

V. RELATED WORK 

Extensive efforts [5-10] have been published in developing 
benchmarks for IP packet processing. The Benchmarking 
Methodology Working Group defined a general framework for 
particular metrics [5]. ClassBench in [6] presented a suite of 
tools for benchmarking 5-field packet classification algorithms 
and devices. FRuG was proposed as benchmarking tool for 
evaluating future packet forwarding algorithms. Moreover, Mei 
Wang in [9] and Kai Zheng in [10] both initiated benchmarking 
efforts on IPv6 routing table engine. However, such efforts 

can’t be directly applied to NDN benchmarking due to the dif-
ferent structures and characteristics of FIBs. Through literature 
investigation, we have found no publication related to NDN 
FIB by now. Our proposed NDNBench first provides a simula-
tion platform for evaluation and comparison between different 
NDN name lookup approaches. 

VI. CONCLUSION 

Name-based routing lookup is one of the fundamental func-
tions in NDN. However, benchmarking for different lookup 
solutions has been lacking. In this paper, we develop a scalable 
platform for evaluation and comparison between different 
name-based routing lookup approaches. We hope this work can 
serve for the name lookup solutions by quantifying the perfor-
mance of lookup and initiate the discussion on NDN bench-
marking methodology.  

REFERENCES 

[1] L. Zhang, D. Estrin, V. Jacobson, and B. Zhang, Named data networking 
(ndn) project, in Technical Report, NDN-0001 , 2010. 

[2] WANG, Y., DAI, H., JIANG, J., HE, K., MENG, W., AND LIU, B. 
Parallel name lookup for named data networking, in IEEE Global 
Telecommunications Conference (GLOBECOM) (Dec. 2011), pp. 1 –5. 

[3] WANG, Y., HE, K., DAI, H., MENG, W., JIANG, J., LIU, B., AND 
CHEN, Y. Scalable name lookup in ndn using effective name 
component encoding, In IEEE 32nd International Conference on 
Distributed Computing Systems (ICDCS) (June 2012), pp.688–697. 

[4] NameJet. [Online]. Available: www. namejet.com. 

[5] V. Paxson, G. Almes, J. Mahdavi andM. Mathis, Framework for ip 
performance metrics, RFC2330, May1998. 

[6] D.E. Taylor and J.S. Turner, Classbench: A Packet Classification 
Benchmark, IEEE/ACM Trans. Networking, vol. 15, no. 3, pp. 499-511, 
June 2007. 

[7] T. Ganegedara, W. Jiang, and V. Prasanna. Frug: A benchmark for 
packet forwarding in future networks, In IPCCC ’10: Proceedings of 
IEEE IPCCC 2010, 2010. 

[8] M. Castelino, R. Gunturi, V. Filauro, G. Vlantis, M. Campmas, A. 
Coppola, A. Benchmark for IP forwarding tables. In Proceedings of the 
IEEE International Conference on Performance, Computing, and 
Communications (2004), IEEE, pp. 123–130. 

[9] M. Wang, S. Deering, T. Hain, and L. Dunn, Non-Random Generator for 
IPv6 Tables, in 12th Annual IEEE Symposium on High Performance 
Interconnects, Stanford University, CA, Aug. 2004.  

[10] Kai Zheng and Bin Liu,A Scalable IPv6 Prefix Generator for Route 
Lookup Algorithm, Advanced Information Networking and Applications, 
2006. AINA, 18-20 April 2006 Volume: 1. 

[11] Mohammad J. Akhbarizadeh and Mehrdad Nourani, Efficient Prefix 
Cache for Network Processors, High Performance Interconnects 2004, 
pp.41-46, August 2004. 

[12] NDNBench Website. [Online]. Available: http://s-
router.cs.tsinghua.edu.cn/~zhangting/. 

[13] Yi Wang, Yuan Zu, Ting Zhang, KunyangPeng, Qunfeng Dong, Bin Liu, 
Wei Meng, Huichen Dai, XinTian, ZhonghuXu, Hao Wu, Di Yang, Wire 
Speed Name Lookup: A GPU-based Approach, Proceedings of the 10th 
USENIX Symposium on Networked Systems Design and 
Implementation (NSDI '13), April 2-5, 2013, Lombard, IL USA. 

[14] Yi Wang, Tian Pan, ZhianMi, Huichen Dai, XiaoyuGuo, Ting Zhang, 
Bin Liu and Qunfeng Dong, NameFilter: Achieving fast name lookup 
with lowmemory cost via applying two-stage Bloom filters, Proceedings 
of INFOCOM2013, Mini-confernce, April 14-19, 2013,Turin, Italy. 

[15] CCNx project，www .ccnx.org. 

[16] The BGP Instability Report. Available: 
http://bgpupdates.potaroo.net/instability/bgpupd.html. 

[17] Internet Statistics, www.whois.sc/internet-statistics/. 

2M 4M 6M 8M 10M

1

2

3

4

5

6

7

U
pd

at
e 

P
e
rio

d
 o

f I
ns

er
tio

n
 (
m

ic
ro

se
co

n
d
)

FIB size

 CharacterTrie
 ComponentTrie
 NCE

2M 4M 6M 8M 10M
0

200

400

600

800

1000

1200

M
em

or
y 

(M
B

yt
e

)

FIB Size

 CharacterTrie
 ComponentTrie
 NCE

Globecom 2013 - Next Generation Networking Symposium

2157


