
SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

MICO: Efficient Query Scheduling for Multi-Cloud
Deployed LLM Inference Service

Peizhuang Cong1, Tong Yang1*, Yuchao Zhang2*, Wendong Wang2 & Ke Xu3

1National Key Laboratory for Multimedia Information Processing,

School of Computer Science, Peking University, Beijing 100871, China;
2Beijing University of Posts and Telecommunications, Beijing 100876, China;

3Tsinghua University, Beijing 100084, China

Abstract Given the powerful capabilities of Large Language Models (LLMs), many tech companies make

LLM inference a service for users, which may be deployed in multiple clouds to provide better service. Com-

putational overhead and cloud workload are crucial metrics in cloud computing task scheduling. However, the

autoregressive nature of LLMs makes these metrics difficult to measure. Specifically, LLMs require multiple

iterations of computation to process a single query, and there is significant differentiation in the number of

iterations needed for different queries. Moreover, batch-wise model inference exacerbates the gap between

allocated and actual computational loads for each cloud due to these variations, ultimately affecting com-

putational resource utilization and the throughput of inference service query processing. To this end, we

propose Mico, which includes a query scheduling strategy based on response length prediction to achieve

token-granularity workload distribution across clouds, and an inference framework that supports the flexi-

ble insertion of queries into the processing batch, eliminating unnecessary computation introduced by the

iteration differentiation of queries in batch-wise inference. We conducted experiments based on two GPT

series models, and the results show that Mico can reduce KV-Cache resource consumption by 44.89% during

inference and increase the query processing throughput of the service system by up to 2.2×.

Keywords query scheduling, cloud computing, prediction, LLM inference, cloud service optimization

1 Introduction

Large Language Models (LLMs) [1–4] exhibit powerful capabilities for handling various tasks, including
text generation, summarization, question-answering, etc. Many technology companies, including OpenAI,
Microsoft, Google, Alibaba, and so on, have deployed their proprietary large language models (LLMs) on
cloud platforms, offering LLM inference as a service to users. Notable applications include ChatGPT1),
Copilot2), Gemini3), Qwen4), etc. To enhance response efficiency and reliability of service, LLM services
are typically deployed on more than one cloud platform globally, and each cloud is capable of providing
inference services independently. For example, Gemini is deployed in multiple Google Cloud locations
around the world [5]. Users’ queries will be forwarded to one of these clouds, where the LLM inference
engine processes them and returns the corresponding response [6].

Transformer-based LLMs differ significantly from traditional deep neural network (DNN) models in
terms of inference workflows. A DNN model requires only a single forward propagation computation
to obtain the final inference result. For example, in an image classification task, an input image can
be processed through one forward pass to produce a classification result [7]. This one-pass inference
inherently enables the efficient parallel processing of multiple images in a batch. Each forward propagation
of an LLM, also referred to as an iteration, produces only one token. The token is the fundamental unit
of the final response sequence, which, for convenience, can be understood as a word forming a sentence.

*Corresponding author (email: yangtong@pku.edu.cn, yczhang@bupt.edu.cn)

1) https://openai.com

2) https://copilot.microsoft.com

3) https://gemini.google.com

4) https://qianwen.aliyun.com



P. Cong, et al. Sci China Inf Sci 2

In each iteration, the intermediate state data, such as Keys and Values, will be cached (denoted as KV-
Cache), and the output token will be appended to the input, which is then re-input into the model for the
subsequent iteration. This process, known as autoregressive inference, continues until the model generates
a predefined end-of-sequence symbol (⟨EOS⟩) or when the cumulative tokens reach the predetermined
maximum limit. Once inference concludes, all output tokens are combined to construct the final response
sequence [8].

The response sequence lengths associated with different queries vary, affecting the batch-wise inference
efficiency of autoregressive LLMs. The inference of a batch continues until all queries satisfy the inference
end condition. In other words, the completion of a batch is decided by the query with the longest
response sequence length. The variation in response sequence lengths between different queries within a
batch leads to unnecessary idle computing. Specifically, although queries that finish inference early can
return the response, they will still occupy resources and iterate with other incomplete queries according to
current LLM inference frameworks [9–11]. According to the model’s configuration, once a query completes
inference, the LLM will output ⟨EOS⟩ for that query in subsequent iterations; these repeating ⟨EOS⟩ have
no actual contributions to the final response. Resources consumed by Keys and Values of a query could
be released directly upon completion of the inference. However, it diminishes the overall parallelism of the
batch-wise inference from the perspective of the service system. Additionally, replenishing a new query
into the processing batch to sustain high parallelism is challenging. This is because parallel computation
on the GPU requires the involved matrices to be aligned in the specified dimensions. Nevertheless, the
dimensions of the involved matrices change according to iterations, e.g., the length of KV-Cache in
seq length dimension.

The work [12] eliminates necessary alignment requirements of batch-wise inference by joining all queries’
vectors along the token dimension in linear computation layers, and by duplicating self-attention layers to
address the nonlinear computations for each query independently. Based on this work, [13,14] optimizes
the policy in choosing a more suitable query to insert into the processing batch. However, this series
of methods inherently suffers from resource underutilization, since duplicating all self-attention layers
introduces a large number of additional parameters, increasing resource consumption. And the additional
resource consumption scales up linearly with the set size of the processing batch. Moreover, the existing
works focus only on the optimization of single inference engine scenarios, and thus fail to meet the
requirements of practical multi-cloud deployed LLM services [12,13,15].

To this end, in this paper, we propose an efficient query scheduling scheme for multi-cloud deployed
LLM services, named Mico. It mainly involves two components: (1) response length prediction-based
query granularity scheduling across multiple clouds, and (2) iteration granularity scheduling for LLM
inference. Specifically, Mico consists of three components, the response length Predictor, the Query
granularity scheduler, and the Iteration granularity scheduler, which are respectively responsible for the
following functions: 1) Predicting the length of the response sequence of each query to facilitate schedul-
ing; 2) Scheduling the queries to the most suitable cloud based on the predicted results, which considers
the inference characteristics of queries; 3) Scheduling queries at the iteration granularity in the inference
engine, enabling flexible query insertion into the processing batch. Finally, achieving efficient resource
utilization and high-throughput LLM inference services.

The contributions of this paper are summarized as follows:

• We developed a query scheduling scheme based on the prediction of response sequence length for
multi-cloud deployed LLM services, achieving token-level workload distribution across multiple
service clouds.

• We designed an inference framework that allows flexible query insertion into the processing batch,
enabling successive batch-wise inference at the query granularity.

• We conducted extensive experiments, demonstrating that Mico can improve resource utilization
and enhance the query processing throughput for LLM inference.

This paper is organized as follows. We review preliminaries and motivations in §2. In §3, we introduce
the overview and the details of Mico. We then conduct extensive evaluations and show the results in
§4. We review related work in §5. We conclude the paper and present the future work in §6.
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Figure 1 KV-Cache-enabled inference of text generation task

2 Preliminary and motivation

In this section, we first introduce the preliminaries about the workflow characteristics of transformer-
based LLMs and then present the motivation of this work based on research actuality and actual practice
demands.

2.1 Preliminary of LLMs inference

LLM inference workflow. Current commercial or open-source LLMs, e.g., GPT and Llama, are mainly
based on the transformer architecture or its variations [16, 17]. These architectures input a sequence of
tokens, where each token is a representation of a word or a phrase encoded by the model’s tokenizer. For
simplicity, it is possible to recognize the model’s input as a text that consists of a sequence of words.
Each forward propagation calculation of the model will generate a new token, which will then be added
at the end of the existing sequence and input to the model again for the next forward propagation. This
workflow demonstrates the autoregressive characteristic of the LLMs. The inference process continues
until generating an end-of-inference symbol, ⟨EOS⟩, or reaching the set maximum length. All tokens
will be decoded into text by the tokenizer, forming the final output of the inference. The process from
inputting tokens into the model to outputting a new token can be called an iteration. For example, if
the initial input for the first iteration is “Nice to” and the model outputs “meet”, then the input for the
next iteration is “Nice to meet” and the output is “you”. Similarly, the output “⟨EOS⟩” from the third
iteration indicates that the inference is finished.

KV-Cache mechanism. The attention mechanism is a fundamental component of the transformer
architecture [18], which focuses on computing a weighted average of selected tokens, ensuring that each
token in the sequence is contextually linked to every other token. It processes three input vectors: query,
key, and value. For a given token, the attention mechanism calculates the dot products between its
query and keys corresponding to the tokens of interest. These dot products are then normalized using
a Softmax function to obtain weights, which are used to perform a weighted average on the associated
values. Attention relies on accessing the keys and values from all previous tokens, recomputing keys
and values for all tokens in the sequence at each iteration of the naive stateless inference method is
highly inefficient. To this end, some studies suggest using incremental decoding, a technique that retains
previously computed keys and values for future iterations, which is called the KV-Cache mechanism [19].

Consequently, for inference utilizing the KV-Cache mechanism, it is only the first input that requires
the entire query tokens, and subsequent iterations take the new token generated in the last iteration
as model input. This is because the attention calculations for the existing tokens are repetitive, and
the results are already cached. For the instance above, using the KV-Cache will change the process, as
depicted in Figure 1, the first iteration inputs the full query tokens, the second iteration inputs “meet”,
and the third iteration inputs “you”, and so forth.

Batch-wise inference. Model inference in batch-wise is illustrated in Figure 2. Since the dimensions
of the calculated vectors need to be consistent, when the input queries are not uniform, i.e., with different
token lengths, the shorter ones will be padded with specific symbols. A 0-1 mask vector is generated to
distinguish between original tokens and padded tokens, allowing the model to ignore the padded tokens
during inference. After the first iteration of inference, each subsequent input uses the new token output
from the last iteration. If any query in the batch is completed, represented by the output of an ⟨EOS⟩, the
model will continue to generate an ⟨EOS⟩ for that query directly in subsequent inferences. This process
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Figure 2 Batch-wise inference of LLM

continues until all queries in the batch have finished the inference, thus completing the inference of this
batch.

Inference details. In the inference of a KV-Cache mechanism-enabled LLM model, each iteration
involves three primary variables: token vector, attention mask, and KV-Cache. The first iteration of
inference, also referred to as the profiling phase, differs from subsequent iterations, which are known as
the decoding phase. In the prefilling phase, the token vector contains all tokens from each query and
aligns them using padding operations. The original tokens and padding symbols will be distinguished
by a 0-1 vector, known as the attention mask, with dimensions of batch size× l, where l = max(queryi)
represents the number of tokens of the longest query within the batch. The initial KV-Cache is empty.
At the end of the first inference iteration, the KV-Cache is updated and the model outputs the latest
token for each query.

In contrast to the prefilling phase, where the keys and values for all tokens in the entire context need to
be computed during each inference iteration, the decoding phase, enabled by the KV-Cache mechanism,
only requires computing the key and value for the latest input token in each iteration. Consequently, the
KV-Cache is updated by appending the key and value of the input token after each iteration, facilitating
its use in subsequent inference iterations. Specifically, using the GPT or Llama series model as an example,
the structure of KV-Cache is as follows. KV-Cache is a multi-dimension tensor with [layer, 2, batch size,
mul head, seq length, embed length], where layer identifies the number of model’s transformer layers,
2 denotes the Keys and Values, mul head denotes the number of multi-head, seqlength refers to the
length of the processed sequence, i.e., the number of tokens for which the corresponding keys and values
have already been computed, and embed length denotes the embedding dimension. Among these, only
the length of seqlength increases with inferring iteration, while the other dimensions remain unchanged.
Therefore, for convenience in this paper, the length of the KV-Cache refers to seqlength specifically.

Similarly, the latest output token with dimensions of batch size × 1 will be treated as the new token
vector. Correspondingly, the attention mask is updated by appending a column of 1, increasing its
dimensions to batch size × (l + 1), where l represents the number of tokens already processed. Given
the role of the attention mask, the lengths of the three input variables to the model always satisfy the
condition that the length of the attention mask equals the sum of the lengths of the token vector and the
KV-Cache. The autoregressive iteration continues until the model outputs the ⟨EOS⟩ for a query.

2.2 Motivation

In contrast to traditional deep learning, the computational cost of the same model in inferring the same
type of task is constant, e.g., for an image classification task, it requires only one forward propagation
computation for different images as inputs to get the result. However, for LLMs, even for the same type
of task with the same model, there still are differences in inference for different inputs; that is, the number
of tokens of responses for different queries varies, resulting in different iterations of computations. For
example, in a question-and-answer system, the sentence lengths of answers vary for different questions.
Therefore, it is inappropriate to directly employ the query granularity scheduling policy that ignores the
iteration differences among queries for the LLM inference service.

Assuming that the number of inference iterations for each query is pre-estimated, the scheduling policy
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Figure 3 Mico overview

can no longer be limited to the network state, geographic location, query-granularity evaluated workload,
etc. To simplify the description, constraints such as network, load, etc, are not considered. In the query
granularity scheduling, balancing the number of queries that need to be processed by each inference
engine (i.e., cloud) can be achieved by round robin or hashing. However, such scheduling policies will
cause load differences at the token granularity (i.e., the actual counting) among different clouds. From the
system perspective, the imbalance of processed tokens among clouds will underutilize the computational
resources and reduce the system throughput.

When multiple queries are inferred in a batch, different queries may require different inference itera-
tions, which will cause computational idling for the earlier completed queries. That is, although the total
number of tokens to be processed by each cloud has been scheduled appropriately, traditional batch-wise
inference will still result in unnecessary idle computation. Despite returning inference results immediately
for completed queries and releasing the resources occupied by the corresponding KV-Cache, adding new
queries to the processed batch is still challenging, given the strict requirement of vector dimension con-
sistency in GPU matrix operations. Overall, the computational idling caused by the different iterations
among queries in batch-wise inferring affects the resource utilization and processing throughput.

For the three aforementioned issues of the existing multi-cloud deployed LLM services, we designed
Mico in this paper to improve the processing efficiency and throughput for the LLM inference system.

3 Mico design

In this section, we begin by providing an overview of the three components of Mico from a functional
perspective, followed by a detailed design of each function module.

3.1 Mico overview

As shown in Figure 3, the overview of Mico can be mainly divided into three workflows: sentence length
predicting, inter-cloud query granularity scheduling, and intra-cloud iteration granularity scheduling. The
functions of each workflow are as follows.

Sentence length predicting: Mico sets up a predictor for the scheduler as a precursor. In particular,
the predictor is responsible for predicting the sentence length of the corresponding answer for each query,
i.e., the predictor evaluates the iteration frequency of the performed autoregressive computations in the
model inference. The prediction result will be leveraged in calculating the scheduling policy for user
queries, which is demonstrated in the following.

Inter-cloud query granularity scheduling: Mico aims to balance token granularity loads among
different clouds. Moreover, for KV-Cache-enabled inference, the occupied GPU memory is proportional to
the total tokens of queries and corresponding responses. Therefore, if the total token number of all queries
in a batch is substantial, the inference process may lead to GPU memory overflow and, consequently,
inference failures. It is thus essential to balance queries with varying token lengths.

Intra-cloud iteration granularity scheduling: Mico facilitates the return of query results immedi-
ately after inference completion and enables the reuse of corresponding resources, allowing the insertion
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of new queries into the batch without impacting ongoing inference processes. Mico transitions the
scheduling from batch-by-batch to an iteration-based, query-by-query update. The specific scheme will
be detailed in the subsequent section.

3.2 Response length predictor

In the inference process of generative LLMs, a notable characteristic of models is the iterative computation
mechanism: for different queries, the model needs to perform varying iterations to generate the complete
response. Specifically, each iteration of the LLM generates one token of the response, so the length of the
response (i.e., the number of tokens) directly determines the number of computation iterations required.
Based on this property, the problem of predicting the number of computation iterations required for a
query can be transformed into predicting the token count of its corresponding response, which simplifies
the complexity of the problem, providing an important basis for optimizing query scheduling.

However, due to the temperature parameter or random sampling settings of LLMs, the generated
responses exhibit inevitable randomness, making it difficult to precisely predict the exact token count.
Therefore, instead of predicting the exact token count, it is possible to predict the length range of the
response, which can also meet the scheduling requirements. Based on this consideration, we designed the
prediction task as a classification problem, where the response length is divided into discrete categories
(i.e., “buckets”) with each one corresponding to a specific range of token counts. For instance, responses
with fewer than 50 tokens are assigned to Bucket0, those with 50-100 tokens to Bucket1, and so forth.
This classification approach not only reduces the complexity of prediction but also improves the robustness
and practicality of the model. To achieve efficient prediction, we adopted DistilBERT as the base model,
which is a lightweight and efficient variant of BERT, specifically designed for sentence classification
tasks. It retains approximately 97% of BERT’s efficacy with only 60% of its parameters, while tripling
the inference speed.

Moreover, it is necessary to process the dataset for fine-tuning the base model. First, the label of each
item (i) in the initial dataset is switched to the number of sentence’s token (li), and then generating
the corresponding labeli mapped to bucketi based on labeli = ⌊ li

lmax/N
⌋, where lmax is the set maximum

sentence length of LLM and N is the set granularity of prediction. This restructured dataset is then
utilized to fine-tune the DistilBERT model. The illustrative example of fine-tuning the response sentence
length is shown in Figure 4.

Finally, in practical deployments, it is desirable to sample queries and collect the corresponding response
lengths to facilitate continuous updates of the prediction model, thereby enabling dynamic adaptation to
the evolving characteristics of real queries.

3.3 Query scheduler

In current cloud computing, task scheduling typically considers factors such as network conditions, lo-
cation, SLA, and the workload of cloud nodes. However, existing scheduling algorithms are not directly
applicable to LLM query scheduling due to the highly variable and non-explicitly known processing costs
associated with each query. To this end, we proposed the aforementioned Predictor, which can estimate
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the processing load of each query, i.e., predicting the number of response sequence tokens. Hence, based
on the Predictor, we designed the processing cost-aware query task scheduling for LLM inference service.
In the cloud computing environment, task scheduling is typically handled by a dedicated module, which
assigns an appropriate cloud to each received task based on the deployed scheduling algorithm. In this
work, we focus on the introduction of the scheduling algorithm.

In general, the optimization objective of the proposed scheduling algorithm is to leverage predicted
query load information to improve the query processing throughput of the entire inference service. It is
important to note that, on the one hand, since the GPU memory consumption of KV-Cache of inference
is proportional to the total length of the query and its response, the length of the query itself should
also be considered. It helps prevent allocating too many long-sequence queries to one cloud, which
may otherwise lead to GPU memory overflow during inference. On the other hand, given that the
predicted load information is represented as ranges, it is unnecessary to employ a highly sophisticated
and time-consuming method to achieve strict load balancing across clouds. Therefore, a simple yet
effective allocation method is as follows, which focuses on balancing the response length of queries while
considering the total processed tokens of each cloud.

First, assume that the predicted response length label of query Qi is Li, where Li represents a range
(x1, x2). At this point, the specific value of its response length li is designated as the median of the
range, expressed as li = x1+x2

2 . All queries are classified into different groups based on their response
length li, denoted as Gl. Then, queries will be distributed evenly group by group in descending order
of l of G across cloud C, meaning that queries with longer responses are assigned first. Meanwhile,
the sum of the distributed query token length of each Ck will be maintained, denoted as Mk. If strict
even distribution within a group is not possible, queries from the next group can be borrowed, thereby
ensuring flexibility rather than enforcing an overly rigid balancing constraint. The borrowed queries can
be allocated to different clouds using a round-robin approach, which can theoretically compensate for
load differences caused by the borrowing mechanism. The Mk is used to balance the processed tokens of
queries across all clouds as evenly as possible. The complexity of this scheduling algorithm is O(n) based
on the above description. If each cloud node has varying computing power or existing workloads, the
allocation proportions can be adjusted flexibly rather than being distributed evenly. The specifics will
not be elaborated further here.

Backoff solution for corner case: To address potential extreme cases caused by prediction inaccu-
racies, such as excessive workload allocation to a specific cloud node, resulting in resource imbalance and
increased overall query processing efficiency degradation, we present a backoff solution. Specifically, after
a cloud node completes its allocated queries, it can notify other cloud nodes. The cloud with pending
queries can offload some to this cloud. To prevent further load imbalance, the offloading policy can
be dynamically adjusted through inter-cloud negotiation; however, we do not elaborate on the specific
mechanisms here. Theoretically, it is preferable to estimate whether the transmission overhead is lower
than the queuing delay, which can be assessed based on both the query queue and the network con-
ditions. However, given that LLM inference is computationally intensive, inference latency is typically
much higher than transmission latency, making task offloading to idle devices a more effective strategy.

Discussion on integrating with network state: Based on the aforementioned query scheduling,
we provide a discussion on integrating network state considerations. Given that LLM inference is compu-
tationally intensive, the latency caused by computation significantly outweighs, by orders of magnitude,
the latency associated with data transmission. Therefore, for tasks aimed at minimizing query processing
time, the scheduling method proposed in this paper can be prioritized. For tasks with specific require-
ments, such as those focusing on the latency of the first token of the response, the cloud node with lower
end-to-end network transmission latency can be prioritized, and it is necessary to activate priority-enabled
query processing in the inference engine. Since this paper primarily focuses on computation load-oriented
scheduling, the integration with network states will be further studied as part of our future work.

3.4 Iteration scheduler

Since the computations for queries within a batch are independent of each other, the values of the token
vector, attention mask, and KV-Cache corresponding to a completed query within the batch can be
overwritten or modified by a new one, which allows seamless replenishment of the processing batch. This
is the core of iteration granularity scheduling, primarily using padding and assigning negative infinity (-
inf) to align these three variables for a newly inserted query without affecting the execution of subsequent
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computations. Specifically, as shown in Figure 5, assuming the inference for queryc has completed, the
modification of token vector, attention mask, and KV-Cache for inserting queryn is conducted as described
below:

1) For token vector i+1, the next inference iteration is effectively the first iteration for queryn, meaning
that all tokens of queryn need to be input into the model. In contrast, for the incomplete queries
(querya and queryb), only their latest single tokens need to be processed. To this end, padding can
be applied to align the two single tokens of querya and queryb with the full sequence of queryn,
similar to the standard padding operation in batch-wise inference. Assuming the length of queryn
is ln, the dimension of the modified token vector i+1 becomes batch size× ln.

2) For attention mask i+1, the value corresponding to queryc is first set to 0, indicating that the existing
KV-Cache for queryc is invalid for queryn. In a normal iteration, a column of ones is appended to
the mask, indicating that each query’s input token in the next iteration is not a padding symbol. In
contrast, based on the padding modification of the tokenvector, a sub-attention mask of length ln
is appended instead. Specifically, the sub-attention mask vector for queryn is [1, . . . , 1], indicating
that none of its tokens are padding symbols, while the sub-attention mask vector for each incomplete
query is [1, 0, . . . , 0], indicating that all tokens except for the first one are padding symbols.

3) For KV-Cachei+1, the values corresponding to incomplete queries remain unchanged. In contrast,
the values associated with the completed queryc should not impact the computation of the new
queryn. To ensure the independence of queryn’s calculation, all Keys and Values of queryc are set
to −inf . Additionally, after this iteration, the KV-Cache will be appended to the latest Keys and
Values with a length of ln, as the length of the input token vector is ln, which is similar to the
process in the prefilling phase of inference.

When inserting a new query, the front modification parts of both the corresponding attention mask and
KV-Cache—essentially a form of padding—are uninfluential to the model inference result. Therefore,
after each position of the batch has been updated for a round, the resources occupied by these padding
parts of the KV-Cache and attention mask of each query overlap can be released. Since the positions in
the KV-Cache set to −inf align with the positions in the attention mask that are set to 0 during query
insertion, it is possible to find the longest prefix with a value of 0 of each vector in the attention mask,
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denoted as index. As illustrated in Figure 6, the attention mask [0 : index] and the KV-Cache[0 : index]
along the seq length dimension can then be released simultaneously. After the aforementioned operations,
when a new query is inserted into the current processing batch, the three variables involved in the inference
not only satisfy the model’s dimensional requirements but also ensure that the calculations for all queries
remain unaffected.

To provide further clarification, the operations mentioned above are not restricted to a specific model,
as the KV-Cache mechanism is universally supported by current mainstream open-source LLMs. For
example, the interfaces for models such as the GPT series, Llama series, and Qwen series remain consistent
in the Transformers framework. Moreover, regarding model accuracy, the computation of the next token
in the LLM primarily relies on the KV-Cache and the current input token. The iteration scheduler
of Mico does not modify the already cached Keys and Values, thereby preserving both the logical and
numerical consistency of the computations. This ensures that the inference process with the task iteration
scheduler maintains the same result in the generated responses as the inference without it.

3.5 Optimizations

3.5.1 Mitigating padding implications

Inserting a new query introduces additional padding for aligning to incomplete queries within the batch,
with the padding size of the new query’s length. To mitigate this issue, selecting shorter queries from the
query pool can reduce the padding overhead. A trade-off can be made between the remaining iterations
of incomplete queries and the padding introduced by the new query to decide whether to insert. It is
possible to further employ the prefilling and decoding phases decoupling scheme [21, 22]. Briefly, this
scheme first conducts the first inference iteration for the query, storing the attention mask, token vector,
and KV-Cache; then, it inserts the prefilled query into the processing batch. This allows the token vector
and KV-Cache to be aligned directly without introducing additional padding operations. This scheme
has performance gains in scenarios with very long queries.

3.5.2 Adaptive batch size

A small batch size will reduce the parallelism of inference. Since the volume of KV-Cache increases
gradually with the inference iterations, a larger batch size may cause GPU memory overflow, leading to
inference failure and affecting the system’s throughput. Given that the response length predictor, it is
possible to adjust the batch size adaptively according to the status of the resources, e.g., using the greedy
algorithm to select as many queries as possible to compose a batch, on the premise of ensuring that
there will be no resource overflow during inferring. In addition, in the context of iteration granularity
scheduling, the adjustment of batch size can also be executed during the inference process, i.e., when the
resource occupation reaches a set threshold, it allows storing the involved three variables of some being
inferred queries to RAM and releasing the occupied resource to downscale the batch size; Conversely, it
is also possible to add multiple queries to upscale the batch size to improve the parallelism of inference
when the occupied memory resources are released.

4 Evaluation

In this section, we introduce the experiment setting first, and exhibit the improvements of Mico by
comprehensive experimental results.

4.1 Experimental settings

4.1.1 Predictor settings

The Predictor’s base model employs the pre-trained DistilBERT [20], consisting of 66 million parameters.
The model employs a cross-entropy loss function as the training objective, uses the AdamW optimizer
with a linear learning rate decay strategy during training. The learning rate is 5× 10−5, batch size is 32,
and epoch is 3. And two datasets, Alpaca 5), and Math-Word-Problems 6), which respectively comprise

5) https://huggingface.co/datasets/tatsu-lab/alpaca

6) https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
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Figure 7 KV-Cache length of each cloud. (a) Could 1; (b) Could 2; (c) Could 3.

52k and 200k data items, are employed to fine-tune the prediction model. In terms of model output, we
set up 10 buckets for length classification.

4.1.2 Employed foundation LLMs

GPT-2 7) and GPT-Neo 8) are utilized as foundational service models, supporting maximum sequence
lengths of 1,024 and 2,048 tokens, respectively. Each inference engine employs an NVIDIA A6000 GPU,
which adequately satisfies the inference requirements to validate the performance of Mico and compared
methods.

4.1.3 Comparison methods description

Mico not only considers query scheduling based on predicted workloads rather than quantity, denoted
as Q for clarity, but also introduces scheduling at iteration granularity for inference processing (denoted
as I). Based on recent related studies, three comparative methods are employed.

a) Query quantity-based scheduling: As existing task scheduling strategies neglect the inference work-

load, they can all be grouped as quantity-based methods. This benchmark is denoted as QI, which
schedules queries as evenly as possible for service nodes;

b) Iteration granularity scheduling: As classical works on batch-wise inference optimization, Orca se-
ries works [12, 14] with the same tactic to improve the inference efficiency of a single service engine.
This comparative method employs quantity-based scheduling, while incorporating iteration granularity
scheduling during the inference processing, denoted as QI;

c) An ablation method: For comparison, this method conducts workload-based query scheduling ac-
cording to prediction results but excludes iteration granularity optimization, denoted as QI. For ease of
presentation, the comparative methods are represented by defined symbols in the evaluation.

In the experiments, a set of queries is randomly selected from the validation dataset of Alpaca and
processed using both Mico and the SOTA method. Moreover, to directly demonstrate the efficacy of the
proposed scheme, differences in network performance from the scheduler to each cloud and the processing
capabilities of all clouds were deliberately obscured, assuming uniformity in these metrics.

Note that since queries are randomly selected, their length distribution tends to be relatively balanced,
enabling the round-robin distribution scheme to provide a small variance in token load across clouds.
However, in practice, length distributions are often imbalanced, and it is infeasible to completely prevent
load imbalances issue. We conducted an informal experiment with manually configured imbalanced query
lengths, which demonstrated that Mico effectively balances the workload. Additionally, in alignment
with intuitive expectations, the extent of Mico’s relative improvement over existing methods is directly
related to the degree of imbalance. Due to the lack of real traces and for the sake of fairness, we eliminate
the above imbalance as much as possible by randomly selecting the query strategy in the evaluation
experiments.

7) https://huggingface.co/openai-community/gpt2

8) https://huggingface.co/EleutherAI/gpt-neo-2.7B
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(a) (b) (c)

Figure 8 Cumulative KV-Cache length of each cloud. (a) Cloud 1; (b) Cloud 2; (c) Cloud 3.
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Figure 9 Cumulative distributions of completed queries. (a) Cloud 1; (b) Cloud 2; (c) Cloud 3.

4.2 Results and analyses

4.2.1 Overall performances

In the experiments, we compared the performance of Mico and QI in terms of GPU memory consump-
tion, query completion time, and throughput of query processing, respectively. The experiment variables
involve the number of processed queries, the number of cloud nodes, and the batch size. The GPT-2
model supports a maximum sequence length of 1,024 tokens by default, and it will intercept the inference
when the sequence length over the threshold. In addition to fixed model parameters, KV-Cache is the
primary dynamic memory-consuming part during the model inferring [9], whose size linearly increases
with the number of inference iterations along the sequence length dimension. Therefore, it is reasonable
to use the length of KV-Cache in seq length dimension to evaluate the performance of memory consump-
tion for different methods. Empirical measurements demonstrate that the time overhead for each new
query insertion remains consistently below 1ms, a negligible computational cost when compared to the
substantial processing time of a single model iteration, which typically requires approximately 70ms—an
order of magnitude difference. Therefore, for simplicity, it is possible to leverage iteration as the metric
of the time dimension.

a) Individual cloud. Under the settings with queries of 200, batch size of 3, and cloud nodes of 3,
the multi-faceted performances of each cloud are as follows:

• Memory resource consumption. The KV-Cache lengths of Mico and QI are illustrated in
Figure 7. During the inference process, the KV-Cache length of QI exhibits a periodic sawtooth
pattern. This pattern emerges because the KV-Cache length for each query in the processing
batch incrementally increases per token from the beginning, until all resources are simultaneously
released upon the completion of the batch inference. However, the KV-Cache length of Mico can
be maintained relatively high; the reduction in length results from resource release following the
insertion of a new query. Additionally, the peak KV-Cache lengths of both methods are comparable,
yet Mico completes inference tasks earlier. This indicates that Mico can process the queries with
higher resource efficiency.
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Figure 10 Inference service system. (a)KV-Cache length; (b) Cumulative KV-Cache length; (c) Cumulative distribution of

completed queries.
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Figure 11 Improvement ratio of system throughput

Furthermore, cumulating the KV-Cache lengths of each iteration provides an insight into the mem-
ory resource consumption of the inference phase. The cumulative length distributions of three clouds
are illustrated in Figure 8, which demonstrates that Mico reduces memory resource consumption
by 41.54%, 39.45%, and 50.68% compared to QI, respectively.

• Query processing throughput. For the same set of queries, we respectively measured the query
completion times of Mico and QI. For QI, the completion of a query is indicated by generating
the ⟨EOS⟩ symbol, rather than uniformly obtaining results at the end of the batch inference. The
cumulative distributions of completed queries for three clouds are shown in Figure 9. The step-like
feature of QI is more pronounced than that of Mico, as its batch inference begins synchronously.
Conversely, Mico can promptly replenish the batch with new queries to replace those completed,
thereby achieving throughput accelerations of 1.79×, 1.78×, and 1.75× for each cloud, respectively.

b) Inference service system. Under the settings above, we illustrated the inference service system
in terms of the KV-Cache length (minimum, mean, and maximum of all clouds), cumulative KV-Cache
length, and the cumulative distribution of completed queried in (a), (b), and (c) of Figure 10, respectively.
It can be observed that the predictor of Mico can further balance the actual processing token load among
all clouds, even under relatively balanced query length distribution, thereby mitigating the issue that the
processing efficiency of the entire system may be hindered by a single cloud. Overall, compared to QI,
Mico reduces memory resource consumption by 44.89% and accelerates query processing throughput by
1.79×.

Additionally, to further evaluate the outperformance of Mico compared to QI, we conducted the
following experiments under various batch sizes and numbers of cloud nodes.

• Different batch size. To evaluate the impact of batch size on throughput performance, we
conducted experiments with batch sizes ranging from 2 to 10 and queries of 200, 500, 800, and
1,000 settings, respectively. As displayed in Figure 11, compared to QI, Mico accelerates the
query processing throughput of the entire service system by 1.69-2.17×.
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Table 1 Throughput improvement ratio under different numbers of clouds

Number Batch size

of clouds 2 3 4 5 6 7 8 9 10

2 1.67 1.88 1.98 2.05 2.08 2.10 2.10 2.22 2.17

3 1.70 1.91 2.01 2.04 2.06 2.14 2.10 2.16 2.16

6 1.79 1.94 2.00 2.04 2.07 2.10 2.10 2.09 2.02

9 1.77 1.89 1.98 2.08 2.03 2.02 2.07 2.11 2.14

� � 	 
 � � 
 � ��
��������!�

�


��

����

�
��

����

��
��
� 

��
��

���
���

�

������������
���������
��
���������
��
�������������

� � 	 
 � � 
 � ��
��������!�

�


��

����

�
��

����

�
��

��
��
� 

��
��

���
���

�

������������
���������
��
���������
��
�������������

� � � �
�!�����������!��

�

	��


��

����

����

��
��

�"
��

��
 ��

� �
�

	�
 	
� 
��

	��	
�

���� ��
�

�	�
��	


��

����

���

���	

�	��

����

���


�!����������
�!�������
��

�!�������
��
�!�����������

(a) (b) (c)

Figure 12 Throughput gains from Query granularity scheduling (Q). (a) QI vs. QI; (b) QI vs. QI; (c) QI vs. QI under

different number of clouds.

• Number of clouds. To measure the outperformance of Mico over QI under the different number
of clouds, we set the cloud nodes to 2, 3, 6, and 9, the batch size to 2 to 10, and queries of 800,
respectively. As shown in Table 1, Mico accelerates the system throughput by 1.67-2.22× under
the above settings. To explain here, due to the random character of query selection, it is reasonable
to expect a slight difference in results with the same parameter settings.

4.2.2 Ablation evaluations

a) Predictor: The fine-tuned predictor model achieved 85.37% and 80.69% accuracy on Alpaca and
Math-Word-Problems, respectively, with verification sets randomly sampled. The average prediction
latency for each query is about 4.5ms. To verify the model’s adaptability, we selected about 200 items
from the training set of a new dataset 9) to fine-tune the prediction model, and the model achieved 82.5%
prediction accuracy in the corresponding validation set, while decreasing the accuracy by about 0.9% on
the original dataset. Moreover, we found that the items that are not correctly classified were divided into
neighboring buckets with a high probability, which means that the prediction accuracy can be further
improved by reducing the number of classification buckets. It is unnecessary to pursue an extremely
high accuracy of the Predictor due to the parameters setting of top-k/top-p and temperature for token
selecting of LLM will lead to the output results with a certain degree of randomness [23]. Therefore, we
demonstrate the superiority of Mico by the comparative performance results with existing methods.

b) Prediction-based query scheduling (Q): In this series of experiments, we concentrate on eval-
uating the performance of the prediction-based query scheduling Q. Specifically, we compare the system
query processing throughput both with and without Q across various query quantities and batch sizes.
For the inference engine, queries are randomly selected from the query pool in the initial batch composi-
tion and subsequent insertion. To mitigate the effect of randomness, we present the average results from
10 independent experiments.

Firstly, as illustrated in Figure 12 (a) and (b), regardless of whether I is used or not, Q exhibits
performance improvements in system throughput compared to Q. These gains diminish with increasing
batch sizes because, given a constant total number of queries, the overall completion time decreases as
the batch size scales up.

Secondly, with a batch size of 3, we varied the number of cloud nodes (2, 3, 6, and 9) and the
number of queries (200, 500, 800, and 1000). The throughput improvement achieved by Q compared

9) https://huggingface.co/datasets/Vineeshsuiii/Software Engineering interview datasets
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Figure 13 Throughput gains from Iteration granularity scheduling (I). (a) QI vs. QI; (b) QI vs. QI; (c) QI vs. QI under

different number of clouds.
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Figure 14 Improvement on GPT-neo model

to Q is illustrated in Figure 12 (c). It can be noted that the performance enhancement becomes more
pronounced as the number of queries increases. This is primarily due to the system throughput decreasing
when queries are distributed unevenly across cloud nodes, especially those involving a large number of
tokens.

c) Iteration scheduling (I): This set of experiments is specifically designed to evaluate the perfor-
mance of the iteration scheduling I. Similarly, we compare the system query processing throughput both
with and without I across various query quantities and batch sizes. As shown in Figure 13 (a) and (b),
the experimental results demonstrate that I enhances system throughput compared to I, regardless of
whether Q is implemented or not. Furthermore, as illustrated in Figure 13 (c), I also improves system
throughput across different numbers of clouds.

From the entire ablation experiments, employing either Q or I independently can enhance system
throughput across various query quantities, batch sizes, and numbers of cloud nodes. However, the
degree of performance improvement is less than when both strategies are employed jointly, which is the
scheme proposed in this paper, Mico.

4.2.3 Different service models

We conducted the experiments on the GPT-neo model, whose maximum sequence length is 2,048 tokens,
i.e., the inference process ends once the total token count reaches 2,048 even if ⟨EOS⟩ has not been
generated. We performed 10 independent experiments for different batch sizes and query scales with 3
cloud nodes. As shown in Figure 14, the results indicate that Mico provides a 1.22-1.75× improvement
in throughput compared to QI. This finding is consistent with the aforementioned experimental results.

5 Related work

LLM as-a-service. Recently, the landscape of LLMs has experienced a surge in technological ad-
vancements [24–26]. These models have been progressively fine-tuned by adaptive instruction tuning to
better align with complex human tasks and are available as services to users now [27]. Some well-known
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examples include GPT, Llama10), PaLM11), ERNIE, and Qwen, which have been efficiently implemented
in cloud platforms to facilitate a vast number of LLM-based services12). These services efficiently manage
millions of daily query inferences, making them integral to modern computational infrastructure. In
this rapidly evolving field, improving service quality and significantly reducing inference overhead have
become key focuses of current research [12,15].

High-efficiency model inference. LLM inference services providers can use high-efficiency model in-
ference schemes to provide better quality of service to their users and also reduce operational costs [28,29].
The technologies involved can be categorized as follows: a) Kernel Customization. [30] designs a hardware-
friendly matrix multiplication based on tiled singular value decomposition, which can further utilize GPU
resources. [31] divides the softmax layer into multiple layers and modifies the data access mode, which
improves the computational efficiency of softmax. [32] reduces the need for large contiguous memory by
segmenting the input vector and calculating the attention weights for each segment independently. b)
Parallel Computing [33–37]. The pipeline, tensor, and 3D parallelism methods can improve the efficiency
of model inference in multi-GPU scenarios. c) Quantization is also an essential technology that can op-
timize inference processes [38,39]. d) Some studies try to enhance batch-wise inference [40,41], e.g., [42]
selects queries with similar length for variable length input situations of transformer-based models. e)
Distributed inference [43]. [44] introduces a novel approach that partitions and deploys LLM across
distributed edge devices and cloud servers in a collaborative edge computing environment, addressing
challenges like device heterogeneity, bandwidth limitations, and model complexity through adaptive de-
vice selection and model partitioning. Similarly, [45] leverages the Internet to orchestrate geographically
distributed devices to run LLMs. PD disaggregation can be regarded as a distributed inference tech-
nique [21, 46], which decouples the computationally demanding Prefill phase from the memory-intensive
Decode phase during inference. This separation allows these phases to be assigned to different devices or
clusters, optimizing resource utilization and enhancing throughput.

However, the aforementioned works, whether focusing on centralized or distributed inference, are ded-
icated to improving the inference efficiency for a single query. In contrast, our work focuses on allocating
queries for multiple inference service-deployed clouds to enhance overall efficiency. In other words, our
approach is orthogonal to existing works.

Prediction of response length. Existing works on response length prediction primarily focus on
the tasks of non-autoregressive models, where the entire response can be generated in one forward cal-
culation [47]. For example, some straightforward approaches use the length distribution of datasets or
predict the number of tokens translated from the input tokens [47,48], and some studies incorporate spe-
cial symbols into the encoder or pre-predict the encoder’s output to predict the response length [49, 50].
However, such ways are only applicable to translation tasks where there is a strong correlation between
the lengths of input and output vectors. [15] utilizes the LLM itself by adding a specific prompter to get
the length of the corresponding response before outputting it, but such a method requires completing the
profiling phase and a certain number of autoregressive iterations in the inference engine. In this work, we
aim to predict the response length of autoregressive LLMs before scheduling the queries, and the methods
used will be detailed below.

6 Conclusion

In this paper, we proposedMico for multi-cloud deployed LLM services, which consists of the token-aware
query scheduling scheme based on response length prediction, and the flexible model inference architecture
that supports the early return of inference result and dynamic query insertion for being inferred batch.
The experimental results show that Mico reduces the resource consumption of KV-Cache by 44.89%,
and accelerates the query processing throughput by up to 2.22×.

In future work, we will further conduct more experiments to validate the effectiveness of Mico in
other series LLMs and integrate attributes such as network state, computing power heterogeneity of
cloud nodes, etc., into the scheduling policy to improve the practical deployability of Mico.
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