
Multi-copy Cuckoo Hashing

Dagang Li*†, Rong Du*

*SECE, Shenzhen Graduate School, Peking University

†Shenzhen Key Lab of Info. Theory&Future Net. Arch.

Shenzhen, China

dagang.li@ieee.org, duroong@163.com

Ziheng Liu, Tong Yang, Bin Cui

Department of Computer Science

Peking University

Beijing, China

liuziheng, yant.tong, bin.cui@pku.edu.cn

Abstract—Cuckoo hashing is widely used for its worst-case

constant lookup performance even at very high load. However

at high load, collision resolution will involve lots of probes on

item relocation and may still fail in the end. To address the

problem, we propose an efficient Cuckoo hashing scheme called

Multi-copy Cuckoo or McCuckoo. Different from the blind

kick-outs of standard Cuckoo hashing during a collision, we can

foresee which way to successfully kick items by using multiple

copies. Furthermore, with the knowledge of how many copies

each item has in the table, we can identify impossible buckets

and skip them during a lookup. In order to avoid expensive

rehashing during insertion failures, McCuckoo also supports

more efficient stash strategy that minimizes stash checking.

McCuckoo uses simple logic and simple data structure, so it is

suitable for both software and hardware implementation on

platforms where intensive access to the slow and bandwidth

limited off-chip external memory is the main bottleneck.

Keywords—Cuckoo Hashing, Hashing algorithm, Multi-copy

I. INTRODUCTION

Hash tables [1] are basic data structures that are widely
used in various fields such as database, networking, storage,
security, etc. When working at low load, hash collisions rarely
happen; but when load increases, collisions will happen
frequently. Traditional solutions such as chaining methods
and linear probing [2] need extra time and resource to resolve
the collisions, affecting both insertion and lookup and losing
the favorable performance bound.

Unlike traditional hash structures that only provide one
candidate location for each item, Cuckoo hashing [3] uses d
hash functions to provide multiple candidate buckets for each
item to choose so as to reduce collision. Most importantly,
existing items can be “kicked out” and relocated to another
candidate bucket if necessary to make room in search of an
overall arrangement for all items to settle down in their own
buckets. This flexibility provided by multiple hashing and
relocation helps Cuckoo hashing achieve very high load ratio
(more items under the same table size) while still keeping
worst-case constant lookup, during which at most d buckets
may need to be checked to find the item. Because of its
capability to provide worst-case O(1) lookup at very high
load, Cuckoo hashing has been the preferred hash technique
in many fields such as storage systems[5], databases[6],
privacy & security[4][7][14], networking[8][10], architecture
[9][11], data processing [12][13], and so on.

The favorable lookup performance comes at the cost of the
hardship to resolve collisions during insertion. At high load

ratios, the cost to resolve increased collisions inevitably
becomes high, since now more item rearrangements may have
to be probed before a working one can be finally found. This
greatly affects the insertion delay, and the collision resolution
may still fail even after the costly relocating effort. Generally
there are three main factors that determine the performance of
Cuckoo hashing.

1) The recursive kick-outs during an insertion. At high
load ratio, the probability of collision becomes high when a
new item is inserted, and the probability of finding a solution
only after a few round of kick-outs also decreases [9].
Moreover, because standard Cuckoo hashing cannot forsee
which item has empty alternative buckets, it can only probe
for one in BFS order or in a random fashion. The blindness
in these trial-and-error probing approaches may take too
much time to find a resolution or even end up in an endless
loop [3], which is the main cause of insertion failures. A good
strategy should find a solution fast if such solution exists.

2) The cost to handle insertion/lookup failures. When a
collision resolution cannot be reached during insertion, the
traditional Cuckoo hashing suggests a costly rehashing
solution, reading out all inserted items and using a different
set of hash functions to put them into a bigger table, during
which the hash table is completely unusable. A more practical
remedy is to allocate some small additional space to store all
the items that fail in insertion [22], but then if an item is not
found in the main table during a lookup, the stash needs to be
double checked. This extra checking not only affects lookup
performance, but also limits the number of items it can hold
to handle very high load. To maximize the benefit of a stash,
we should minimize its search cost, improve its scalability
and reduce unnecessary checkings.

3) Multiple bucket checking for a single lookup. When
looking up an item in a Cuckoo hash table, multiple buckets
may need to be visited because the item can be in any of them.
The additional visits affect the lookup performance and may
be a big drawback when the table is too large and need to be
put in slow and bandwidth limited off-chip external memory.
If we can narrow down the subset of buckets that may contain
the item beforehand and optimize the accessing pattern, we
may increase the possibility of finding it with fewer visits and
improve the lookup performance.

For the first problem, normally a maxloop is defined to
draw the insertion procedure out of an endless loop, but still
time and resource so far are already wasted. Proposals such as
SmartCuckoo [15] and Necklace [16] tried to identify loops
beforehand, so we won’t run into an endless loop situation in

the first place. MinCounter [17] tries to reduce repetitions in
the recursive kick-out process, so more buckets will be
searched and the possibility of finding an empty one will
increase. Other work such as blocked Cuckoo hash tables
(BCHT)[18][19][20][21] allocate multiple slots within each
bucket, and the set-associativeness among these slots provides
another level of flexibility which help to reduce collisions and
reach an even higher load ratio. As long as the whole bucket
can be retrieved in one memory access [33], there will be no
sacrifice on lookup performance.

For the second problem, most stash-based solutions such
as Cuckoo hashing with a stash (CHS)[22] propose to put the
stash on-chip to minimize its impact on performance[7][23]
[13][24]. When the stash itself is full, items stored in it will
take a try to the main table until some space is freed. A small
stash of size 4 is regarded as enough to achieve rather high
load (for example 95% in [24]) with high probability.

Checking multiple locations for every single lookup is
more of a problem if accessing the table buckets is slow or
expensive, which is the case when platforms with only limited
fast on-chip memory need to handle very large lookup tables
(for example the ASIC/FPGA/SOC based packet processing
devices). A common practice is to use compact helping
structures such as Bloom filters that can fit in the on-chip
memory to do pre-screening, so as to minimize unnecessary
visit to the main table in the slower off-chip memory, such as
DEHT [25] and EMOMA [24].

In this paper, we propose a simple and effective Cuckoo
hash mechanism to address all the three problems discussed
above. The main idea is to store multiple copies of item in the
table, so we don’t have to rashly choose one at insertion time
when more candidate buckets are available, so as to keep the
flexibility on placement as much and as long as possible. The
level of redundancy provides explicit clue to the choice of
replacement target during collisions, therefore not only
accelerates the insertion speed but can also help avoid endless
loop of kick-outs. On the contrary, in traditional single-copy
Cuckoo hashing the placement flexibility is immediately
consumed when the inserted item settles down, which not only
might be sub-optimal and has to be corrected by relocation
later on, the relation among candidate locations is also lost that
adds to the blindness in the resultant kick-outs. Keeping
copies in all the available candidate buckets will maintain the
flexibility and avoid entering the sub-optimal situation early:
the optimal placement will come out naturally later on when
the other occupied buckets are appropriately given away as
per request to new items, who turn out to be the better owners
of these buckets in an overall optimal arrangement.

McCuckoo assign a counter for each bucket and use them
to track the number of copies of the stored items. Buckets with
counter value larger than 1 can be readily overwritten when
necessary because we know the item still has other redundant
copies in the table. Since all the copies of the same item are
each others’ redundant, a table only containing multi-copy
items actually has the same bucket availability as an empty
table to accommodate new items anywhere in the table.

Regarding to lookups, since all buckets containing the
same item should have the same counter value, this fact can
also be used to tell which candidate buckets do not contain a

an item for sure, so we can skip checking them during a
lookup; and a counter value 0 from any candidate bucket can
save us from checking the table at all (similar to a Bloom
filter). Furthermore, because an item can always overwrite a
redundant copy to settle down, if a lookup fails with any
candidate bucket having counter value larger than 1, we know
that item must have not been inserted before and skip checking
the stash. These and other further observations on the behavior
of the counters can enrich the operation rules to improve the
effectiveness and performance of McCuckoo.

McCuckoo is mostly suitable for platforms that have a
hierarchical memory structure where the main table can only
be put to the abundant but slower second layer memory due to
the large size, so all the three problems mentioned earlier will
become equally apparent and McCuckoo can handle them
altogether in an unified framework. In order to maximize the
benefit of the counters, the counters need to fit in the on-chip
embedded memory that is order-of-magnitude faster. We
propose a compact on-chip counter array and specifically
designed counter operations that only involve very simple
logic, so that McCuckoo can be easily implemented in both
software and hardware.

The contributions of this paper are as follows:

1) Introducing the idea of multi-copy into Cuckoo-based

hashing architecture, which helps minimize the blindness in

item relocation and improve bucket availability, improving

insertion speed and success rate.

2) A new compact on-chip helping structure is proposed

that can minimize unnecessary off-chip memory access with

less on-chip memory cost than current solutions.
3) An efficient pre-screening mechanism is proposed to

support a large off-chip stash by minimizing stash checking
during failed lookups.

The rest of the paper is organized as follows. In Section II
we will discuss related work and background information. The
design considerations as well as details and extensions of
McCuckoo will be introduced in Section III. Experimental
results are presented and analyzed in Section IV, and Section
V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Standard Cuckoo hashing

Cuckoo hashing was first proposed in [3] as a dynamic
variation on multi-choice hashing dictionary. It contains d
hash tables of length n (T1,T2,...,Td) and d hash functions

h1,h2,h3,...,hd:S→{0,…,n-1}. Any item x∈U will be stored in

one of its d candidate locations (called buckets) from these
tables, which are h1(x) in T1, h2(x) in T2, ... hd(x) in Td as
determined by the d hash functions, therefore when querying
for an item we only need to check these d buckets. However
if all the candidate buckets are already occupied during an
insertion, we need to “kick” one of the occupants away to
make room. The evicted item needs to check if some of its
other candidate buckets is empty, or else the “kick-out” will
continue until every item finds a bucket to settle down. The
capability of kicking-out old items wins Cuckoo hashing its

name as well as more flexibility to resolve collision than the
other deterministic hashing algorithms.

Three situations may happen during insertion of Cuckoo
hashing. An example of a d=2 Cuckoo hash table is given in
Fig.1, where items are represented by an arrow starting from
the bucket it occupies pointing to its alternative bucket. Now
let’s say item x is to be inserted and its 2 candidate buckets are
T1[2] and T2[5]. Fig.1(a) through 1(c) demonstrate how these
situations are handled by Cuckoo hashing.

In Fig.1(a), item x is simply put to the empty candidate
bucket T2[5] and the insertion is completed in O(1) time. If
all candidate buckets are occupied, one of the existing items
needs to be relocated to make room for x. In Fig. 1(b), item a
is kicked out, who recursively kicks item b out and so on, until
item d is relocated to T2[3]. The red letters in brackets show
the final locations of each item. This situation will become
more frequent when the table starts to fill up. We may run into
a third situation in the recursive kick-out that no empty bucket
can be found. In Fig. 1(c), the kick-outs form an loop and will
never end. In practice a threshold called maxloop is used to
quit from such situation and claim a failure [3]. The value of
maxloop determines the trade-off between wasted kicking
attempts and the possibility of a premature false alarm.

B. Cuckoo hashing Variants

Since Cuckoo hashing was first proposed, it has attracted
much interests trying to improve it or make use of it in various
applications. d-ary Cuckoo [27] and blocked Cuckoo [20]
hash tables extend the original Cuckoo hashing from its 2-
hash one-item-per-bucket simple design to using d hash tables
or storing l items in each bucket, so the achievable load ratio
can be improved to more than 90%. Since the 2 approaches
are both “multiplication” extensions for similar objectives,
later work very often combine the two to be more flexible in
the data structure to meet specific design considerations
[18][19]. Furthermore, in order to alleviate the increased hash
calculation, hardware solutions using GPU [31] or software
solutions using double hashing [21] are also developed.

To avoid being trapped in an endless loop, SmartCuckoo
[15] uses directed pseudo forest to efficiently predetermine
endless loops without paying the high cost of step-by-step
probing, but it only works with 2 hash functions. Necklace
[16] tries to maintain the relationship among alternative
buckets in an auxiliary record to increase the chance of finding
the minimum path during kick-outs, but the auxiliary record
takes large space and visiting cost. MinCounter [17] allocates
a 5-bit counter for each bucket to record the kick-out history
of that bucket, and the bucket with minimum counter that is
not so “hot” will be chosen during the kick-outs to reduce the
total number of kick-outs in the long run. These mechanisms
achieve good improvement over standard Cuckoo hashing but
at the cost of additional space and more computations.

Another approach called Random-walk[28][29][30][20] is
also proposed in the literature to reduce the insertion time in
case of collisions. The original breadth-first search (BFS)
strategy is inefficient in practice and only has a polynomial
upper bound on the insertion time that holds with high
probability (whp). Random-walk requires no additional data
structure and can achieve poly-logarithmic insertion time by

randomly selecting an item to kick-out when all candidate
buckets are occupied. However, the improvement is also
limited comparing to those that keep additional records.

Both rehashing and stash-based mechanisms [7][13][22]
[23][24] are used as the solution to insertion failures in various
Cuckoo-based hash tables. When the table is loaded within the
theoretical upper bound, a small stash of size s can improve
the probability of rehashing from O(1/n) down to O(1/ns+1),
therefore it is normally put on-chip because it is small in size
but frequently visited during lookups. If a surge of insertion
happens (which is possible in a very dynamic environment)
that temporarily overruns the safe margin provided by the
small stash, rehashing will still be inevitable.

Another category of work focuses on very big Cuckoo
tables that need to be put off-chip, so that checking many
buckets becomes a problem as off-chip memory access is
generally much more costly. DEHT [25] and EMOMA[24]
chose to use some on-chip helping structure to identify the real
location of each item to achieve one-access lookups. However,
the on-chip structure is rather big in DEHT, and EMOMA
sacrifices some placement flexibility in the main table to battle
the false positive error of the on-chip Bloom filter.

Latest advance on hash techniques in general such as
AMAC[34] can also be incorporated in Cuckoo hashing to
improve its lookup performance, but they are orthogonal to
our work and out of the scope of this paper.

III. DESIGN AND IMPLEMENTATION DETAILS

A. General idea

Comparing to all the existing Cuckoo based hash tables
that try to optimize the arrangement of the sole copy of the
inserted items, the biggest difference of McCuckoo is the idea
of occupying all free candidate buckets with redundant copies,
so as to circumvent the rash decision of picking a bucket in a
hurry. Therefore existing methods can be generally regarded
as reactive because they focus more on “kick-out” algorithms
to resolve collisions caused by sub-optimal placement from
the past; McCuckoo takes a proactive approach by keeping the
decision on placement open until a more suitable item later on
claims one of the buckets and replace the copy in it.

If all the non-empty buckets are occupied by multi-copy
items, new incoming items can choose any bucket at will
without evicting existing items. As a result, although at the
same load ratio (number of distinct items against table size)
McCuckoo will be filled with more redundant copies, the
effective “collision” that leads to costly item relocation is
actually less frequent. In order to maximally maintain this
high insertion efficiency, one design principle of McCuckoo
is to keep redundancy over all items for as long as possible.

(a) (b) (c)

Figure 1. Insertion to a Cuckoo hash table.

·

a

b

(x)

item x

h1(x) h2(x)

Table 1 Table 2

a(x)

d(b)

b(a)

(d)

c

item x

h1(x) h2(x)

Table 1 Table 2

0

1

2

3

4

5

6

0

1

2

3

4

5

6

a

d

b

e

c

item x

h1(x) h2(x)

Table 1 Table 2

0

1

2

3

4

5

6

In order to make redundant copies traceable across table
updates, each bucket has a counter to record the total number
of copies its occupying item current has in the table. Although
the value of the counters is associated with items not the
buckets, for the ease of wording we will just say “bucket of
value x” in the rest of the paper instead of “bucket whose
associated counter has value x”. With the counters we can
make sure that an item won’t be accidentally removed because
all its copies are carelessly overwritten. Counter space are
associated with buckets instead of items so we can have
deterministic mapping and addressing which is good for easy
logic implementation. Since the number of copies each item
has cannot exceed d, only a few (2 in this paper when d=3)
bits will be needed for each counter. And as d=3 is sufficient
for a Cuckoo hash table to reach load ratio well over 90%, we
won’t see much larger d in practice.

When even more items are inserted to the table, sooner or
later we may run into the situation that all the candidate
buckets are occupied by items with only one copy left. At that
time any existing collision resolving mechanisms such as
random-walk or MinCounter can be used to start relocating
items, and using these counters in each iteration to quickly
find usable buckets (empty or occupied by redundant copy) or
as tie breaker. In this paper random-walk is used as example.

The counters maintained in the fast on-chip memory can
be used for multiple purposes. With very simple logic we can
decide which buckets to use or overwrite during an insertion
before accessing them (because we know which buckets are
empty or only contain redundant copies), exclude impossible
buckets from checking during lookup (exploit the fact that
valid candidate buckets should have the same counter value),
and mark a deletion without actually removing the item from
the table, so as to minimize unnecessary operations to the
main table in the slow off-chip memory.

B. Design Principles

1) Insertion
Unlike single-copy Cuckoo hashing that simply tries to

find one empty bucket for the inserted item, McCuckoo needs
to decide how many copies to store and to which candidate
buckets. To maximize the placement flexibility provided by
multi-copy, the strategy is to store as many copies as possible
(or equivalently occupy as many buckets as possible) for each
item and for all the items as a whole. This means that we also
need to keep balance amongst copies from different items, so
that when a random item is inserted, the probability of running
into a collision is minimized. Only when all the candidate
buckets contain the sole copy of other items, will we run into
a real collision, so we want the number of copies decrease to
1 as slow as possible for any item in the table. This actually
postpone the first occasion of a real collision, so that the table
can reach much higher load with minimal insertion time.

The principles for insertion can then be summarized as
below for a McCuckoo hash table with d hash functions.

1) Occupy all the empty candidate buckets.
2) Never overwrite buckets of value 1.
3) Overwrite the rest in the decreasing order of their

value, until the overwriting results in more copies for
the inserted item than the overwritten one.

The third principle is better explained with an example.
Let’s say we have a candidate bucket of value 3 - meaning it
currently holds an item B with 3 copies. If the inserted item A
only has 1 copy in the table, we choose to overwrite B so both
items now have 2 copies each. If item A already has 2 copies,
overwriting will not happen because that only changes the
number of copies from 2:3 to 3:2, which gains nothing with
respect to the whole table.

Theorem 1. The insertion principles above achieve the
best overall redundancy and redundancy balance among the
affected items.

Proof. Let’s say the values of the d candidate buckets are
V1,…,Vp,…,Vd in decreasing order, where only p of them are
non-empty. If we evaluate redundancy by the number of item

copies, then the total redundancy is ∑ 𝑉𝑡
𝑝
1 before the insertion.

Because overwriting exist copies will not change the total
redundancy, letting the inserted item A occupy all the empty
buckets will increase the total redundancy to the maximal

achievable value at ∑ 𝑉𝑡
𝑝
1 + (𝑑 − 𝑝).

Now let’s look at redundancy balance. Because during the
insertion V1,…,Vp cannot increase but only decrease by 1 when
the bucket is overwritten by the inserted item, therefore start
overwriting from the largest V1 will always improve balance
among V1,…,Vp . On the other hand, the inserted item A is the
only one that can increase its redundancy during the insertion.
When it overwrites one bucket of Vt, because all the other
buckets are not involved, the overall balance is only affected
by the decrease in Vt and the increase in VA. If we stop
overwriting before the condition in principle 3 is met, that
means there is at least one item among V1,…,Vp that has at
least 2 more copies than item A. Clearly replacing it by A will
improve the redundancy balance. If we keep overwriting after
the condition in principle 3 is met, we effectively push the
following Vt and VA apart which decreases the redundancy

balance. Therefore we should stop as principle 3 dictates. ■

Theorem 2. The total number of proactive redundant

writes will not exceed 1+∑ 1/𝑡𝑑
3 times the size of the table.

Proof. We follow a constructive approach to find the
maximal number of proactive writes for redundant copies.
Let’s say the McCuckoo table has S buckets in total. When a
new item arrives, the maximal achievable redundancy would
be d when it shares no buckets with any existing items. This
can continue until all the S buckets are occupied, where S·(d-
1)/d writes are redundant ones. From then on, for each new
inserted item the maximum achievable redundancy is reduced
to (d-1) when (d-1) items from the first round give up one
bucket to it. This can continue until all the S/d items each has
one copy less, and the number of redundant writes is (S/d)·(d-
2)/(d-1). Similarly in the next round the number is S/(d-
1)·(d-3)/(d-2) and so on, until the second last round we have
S/3·1/2. Before the last round all the existing items have 2
copies each, so in the last round there will be no redundant
writes. To sum up, in total we have at most

S ∙
d−1

d
+

S

d
∙
d−2

d−1
+⋯+

S

4
∙
2

3
+

S

3
∙
1

2
= S(

d−1

d
+∑

𝑡−2

𝑡(𝑡−1)
d
3)

< S +
S

d
+

S

d−1
+⋯+

S

4
+

S

3
= S ∙ (1 + ∑

1

𝑡

d
3) ■

In the case of d=3, the total number of redundant writes
will never exceed 5/6 of the table size, which is not too

excessive to trade for much faster insertion efficiency. This
theorem also tells us that the majority of the redundant writing
happens when the table is building up; when the table is
loaded and in normal working condition, there will be much
less overhead for redundancy.

2) Lookup
In McCuckoo, the on-chip counters are also used to

minimize checking to the off-chip main table for lookups on
both non-existing and existing items.

First, they can help identify non-existing items. During an
insertion, all candidate buckets will be filled, either by the
item itself or some earlier items, resulting in non-zero value
for all the corresponding on-chip counters. This behavior is
very much like Bloom filter [32] that sets all hashed locations
to 1 for each inserted item. Indeed, if we look at the on-chip
counters as zero or non-zero, they actually form a standard
Bloom filter and collectively they can answer if an item has
been inserted to the table or not, with some false positive error
but no false negative. This will avoid most wasted access to
the off-chip table for queries on non-existing items, and even
if such query passes the filtering with false positive, the main
table will still return the correct answer.

Second, they can also reduce memory access for existing
items. For example, we can always skip a bucket of value 0
because it is empty. Because the buckets containing the same
item should always have the same value, we can also skip
safely all the buckets that have a value that cannot be matched
by the number of buckets. Furthermore, for the buckets that
share a common matching value, checking just one of them is
sufficient to return the right answer.

For example, if there are less than 3 candidate buckets of
value 3, all of them can be safely skipped, because there are
not sufficient valid buckets to support so many copies. Those
buckets should hold other items that have 2 more copies
elsewhere in the table. On the other hand, if there are 3
candidate buckets of value 2, we cannot exclude any one of
them because if the item really has two copies in the table,
they can be in any two out of the three of them. However, we
only need to check up to two of them because statistically we
should run into at least one of the copies in these two attempts;
if we can’t find the item after these two attempts, it can’t be in
the third bucket, either. Out of observations like these, simple
but effective logic can be extracted to narrow down the
checking scope and minimize unnecessary access to the off-
chip main table. In practice we can achieve zero or one access
for a large portion of lookup queries, especially when the table
is moderately loaded.

To sum up, the principles for lookup to a McCuckoo hash
table with d hash functions can be summarized as below.

1) Skip all the buckets and return negative if any
candidate bucket has a value 0.

2) Partition the non-zero candidate buckets according to
their value, and skip those partitions whose size is
smaller than the associated value.

3) For each of the remaining partitions, if the size is S and
the associated value is V, check up to S-V+1 buckets in
the partition. Return the queried item if it is found,
otherwise return negative.

Theorem 3. The lookup principles above can always
narrow down the checking scope unless all candidate buckets
are of value 1.

Proof. All the buckets will land into the scope of one of
the 3 principles. If any one of them lands into the first two, it
can be skipped; if they fall into the last one, (V-1) buckets in
each partition can be skipped. Only when all the buckets are

together with V=1, none of them can be skipped. ■
Theorem 3 tells us that before the table is extremely full,

McCuckoo can always reduce checking effort during lookups.

3) Deletion
Deletion is very much like Lookup but now we need to

visit all the buckets that contain a copy of the item and remove
them all from the table. In order to further reduce access to the
off-chip main table, after finding all the copies (actually we
don’t have to visit all the candidate buckets because from the
discussion in lookup we know that some buckets can be safely
excluded, but still at least one of them need to be visited in
case the item to be deleted is not in the table), we can choose
not to physically remove them from the main table and just
reset their corresponding counters to 0, which will save all the
writes to the off-chip memory during a deletion.

Resetting counters of the buckets holding the deleted item
to 0 has consequences on lookup, because these buckets can
be candidates buckets of other items, and resetting them to 0
can bring false negative to these items when they are queried.
One solution is to skip the first lookup principle when deletion
functionality is required, while the remaining principles can
still help in lookups. There is also a second solution that we
do not reset these counters to 0 but mark them as “deleted”,
which will be treated as zero for insertion but as non-zero for
lookups. When those buckets are populated later on by new
items, the mark will be naturally replaced by the correct
counter value. One drawback about this solution is that non-
zero buckets will never return back to zero again, so when the
table has worked for a long time with lots of insertions and
deletions, the capability to filter out non-existing item will still
gradually fade away. Therefore this second solution is more
suitable for cases where deletions rarely happen.

The principles for deletion to a McCuckoo hash table with
d hash functions can be summarized as below.

1) Skip all the buckets of value 0 or marked as “deleted”.
2) Partition the non-zero candidate buckets according to

their value, and skip those partitions whose size is
smaller than the associated counter value.

3) For each of the remaining partitions, if the size is S and
the associated value is V, check up to S-V+1 buckets in
the partition. If the to-be-deleted item is found,
continue until all V copies are found, and reset or mark
their counters; otherwise return negative.

In the following subsections we will explain the data
structure and discuss other aspects of McCuckoo in more
details, based on the principles explained in this subsection.
For the convenience of discussion, if necessary we choose
d=3 as the example. The same principles can be easily
instantiated and applied to other d values, but d=3 is actually
sufficient for most practical scenarios.

C. Data Structure

The data structure of McCuckoo can be seen in Fig.2 for
the case of d=3 hash functions, which contains an on-chip
part and an off-chip part. The off-chip part is the main Cuckoo
hash table that stores the real items in the three sub-tables, and
the on-chip part contains the counters that are one-to-one
mapped to the off-chip buckets. For the case of d = 3, each
counter costs only 2 bits. The counter array is initialized to 0
for an empty table. When the first item x is inserted, instead
of choosing one out of the 3 candidate buckets to settle down,
it will now occupy all 3 of them since they are all empty, and
the corresponding counters will all be set to 3, as shown in the
figure. Should one of the buckets be overwritten later on by
some other item, the remaining buckets that still hold x will
update their counters from 3 to 2 to reflex the change. The
deterministic one-to-one mapping between on-chip counters
and off-chip buckets makes it much easier and straightforward
to determine the status of the buckets on-chip and execute the
results from the counter logic off-chip.

D. Collision Resolution

When an inserted item finds all its candidate buckets are
of value 1, collision occurs because it now cannot overwrite
any of them, and a resolution routine should be followed to
kick one occupying item out to make room. In McCuckoo any
collision resolution algorithm can be used such as random-
walk or MinCounter, as long as the affected counters are all
correctly updated. Here in this paper we choose random-walk
since it is simpler and easy to explain.

With random-walk, one bucket is selected at random and
its current item will be kicked-out, who will re-check its
alternative buckets to see if there is any counter that is bigger
than 1 allowing an overwrite, or else another iteration of
collision resolution routine is recursively called and another
bucket is selected at random to evict. The whole procedure is
actually equivalent to overwriting the selected bucket with the
newly inserted item and then re-insert the evicted item back
into the table. Comparing to the original random-walk, with
the help of the counters we can pinpoint a solution right away
in every round if one of the checked buckets has a counter
larger than 1, whiles in the original case a new round of
random kick-out will be carried out seeing all the candidate
buckets occupied, risking missing the prompt resolution right
there. Therefore in McCuckoo, the on-chip counters can help
us find a collision resolution much faster.

However when McCuckoo table is really heavily loaded,
it is still possible that the kick-out continues to see buckets of

value 1 all the way and no resolution can be found. Indeed, the
counters can help us find a usable bucket much faster but
cannot create one if none exists. If an insertion failure happens
we will resort to a failure handling routine. In this paper a
stash-based approach is used and we will see later that the
counters can also help to achieve an efficient and more
capable stash solution.

E. Working with a Stash

In McCuckoo we choose to use a stash-based approach to
store the items from failed insertions to avoid the costly
rehashing. The main problem of the stash-based approach is
that we always need to check the stash if an item is not found
in the main table. Because a stash will be frequently visited,
existing solutions put it in the on-chip memory that limits its
size to hold only a couple of items. Even if stash is kept on-
chip, keep checking it for any failed lookup to the main table
is still a burden that costs time and CPU cycles, but adding
another mechanism to filter out unnecessary checking on the
stash may require additional on-chip space and calculation, so
we may rather just check the small stash directly.

In McCuckoo we can put the stash in the off-chip memory
to support a much bigger stash that can handle more insertion
failures and keep the main hash table in working condition for
longer time at high load ratio. We will see that with a small
off-chip helping structure we can do so without sacrificing any
lookup performance comparing to the on-chip solutions. The
helping structure is a 1-bit flag that we put aside from the
space of each off-chip bucket, as shown in Fig.3. They are
initially set to 0 and work in the fashion of a Bloom filter:
when an item fails in an insertion and put to the stash, the flags
of its candidate buckets are set to 1, so at a later time when we
want to decide whether to check the stash, we will see first if
all the flags of the associated buckets are 1, if not we know for
sure it is not there without accessing the stash.

This stash mechanism can be very efficient because of the
following existing features of McCuckoo. First, the on-chip
counters already filter out most lookups for non-existing
items. These queries won’t make it to the main table, let alone
bothering the stash. Second, if an item were put to the stash
during insertion, it must have run into a collision seeing
counter value 1 for all its candidate buckets, and the attempt
to resolve the collision ended in failure. Since the counters in
McCuckoo will never increase, when an item in stash is
queried, it should still see counter value 1 for all its candidate

Fig. 3. Insertion routine with stash based collision resolution

1 a

Off-chip

Table 1

1 b

1 c

Flag Table 2Flag Table 3Flag

x

Stash

x
Figure 2. Item x inserted to a McCuckoo with 3 hash functions.

x3

x

On-chip Off-chip

3

3

Table 1 Table 2 Table 3counters

x

x

buckets, so for any failed lookup that involves counter value
other than 1 we don’t need to check the stash. On the other
hand, if a lookup does fail with all counters equal to 1, next
we need to check the flags to decide whether to go on and
check the stash or not. Fortunately for us, the flags should
have already been retrieved from the off-chip memory,
because the lookup routine requires visiting all the buckets
with counter value 1, during which the flags are read back as
part of the bucket content. Therefore there will be no extra off-
chip memory access dedicated to the stash filtering.

By working with the on-chip counters that are already
there and the 1-bit off-chip flags that are negligible with
respect to the size of item-storing buckets, and no extra access
to the off-chip memory, we will have a stash that is only
visited when the possibility that an item is really there is really
high. Furthermore, since there is comparably abundant space
in the off-chip memory that a stash can use, we can use more
advanced hash techniques to construct the stash, so that
checking it can be finished with minimal access.

F. Handle Deletion Aftermath

Following the mentality of McCuckoo, we should try to
refill the empty buckets resulting from deletion as fast as
possible to maximize redundancy. However, finding an
appropriate item to occupy the freed bucket right after the
deletion is difficult because we don’t have that information
even with the counters. We choose a casual update approach
and probe (among originally empty ones) for newly freed
buckets only during a later insertion. As soon as an empty
bucket is found, either empty from the start or freed up later
on, the inserted item will fill it up with a copy. This strategy
is light-weighted but results in a slightly lower utilization of
empty buckets which should be acceptable as long as deletions
are not frequent or much less frequent than insertions.

Similar adaptation is also necessary to maintain the
correctness when working with a stash. Because now buckets
with value 0 might be from a deletion, and when that bucket
is re-occupied the counter can be of any value, we cannot
exclude the possibility of the item being stored in stash any
more by exploring valid counter combinations. However, we
can still check the flags that are already retrieved along with
the items from the buckets during lookup (and neglect those
skipped buckets) and decide not to check the stash if any of
the flags is 0. Because the decision is now made with less
flags, the possibility of false positive error may increase, but
the false negative error will still be zero. Since comparing to

the items in the main table, the number of items in the stash is
very small and most flags will be 0, therefore depending on
less flags will have a higher rate of false positive error but can
still screen out most of unnecessary access to the stash.

Another issue that needs to be taken care of is the deletion
of stash items. Because the flags work in the fashion of a
Bloom filter, they do not support deletion, either. In
McCuckoo we choose not to update the flags when an item is
deleted from the stash, so the false positive error rate will
accumulate with each deletion of a stash item. But again, since
the number of items in the stash is generally very small
comparing to the number of items in the main table, the
increased false positive is generally acceptable and the impact
on screening performance is also small. After a series of
deletions, we can choose to refresh the flags by resetting them
to 0 and reinserting all the stashed items to the main table, so
the status of the flags will be re-synchronized with the latest
set of items in the stash.

G. Extension to multi-slot Cuckoo structure

One popular way to increase the load ratio even further is
the blocked version of Cuckoo hashing that stores multiple
items in one bucket that is divided into l slots. When the items
are small in size and can be squeezed into the smaller slots,
such “multi-slot” approach can achieve working load ratio not
too far from 100%. The idea of McCuckoo can be extended to
and benefit the multi-slot case as well. The example of 3-slot
3-hash (d =3, l =3) McCuckoo is show in Fig. 5. To
accommodate the same number of n items, now the length of
each table is reduced to roughly one third of the size as before,
which is m/3. The on-chip structure is also adapted
accordingly, making sure that each item still has an
corresponding counter (now one counter for each slot).

However, because a new level of flexibility is introduced
by the set-associativeness among slots from the same bucket,
now there will be some more subtle details in item placement
that cannot be fully tracked and described by just the counters.
For example, with a “single-slot” McCuckoo, as one counter
is associated with each bucket and the item stored in it, when
we need to update the counter of a copy, we will know which
exact counter to update solely on-chip as soon as we know the
bucket. However in a multi-slot McCuckoo, knowing which
bucket the copy sits in is not enough to identify the counter to
update, because the copy can be in any slot of that bucket and
we cannot track that placement details only with the on-chip
structure we have. For the correctness we need to pay one
access for each copy to read back the bucket and see in which
slot it actually sits. One way to save those off-chip accesses is

Fig. 5. Item x inserted to a d=3 l=3 multi-slot McCuckoo.

x3

On-chip Off-chip

Table 1 Table 2 Table 3counters

x

x

3

3

2 1 x

x

Fig. 4. Deletion routine with a stash

Found

item in the

main table

yes

Delete element x

no

return

no
Set counter=0

for all the

occupied

buckets

Check

stash and

delete

Has a

stash?

return

All

flags=1

?

Not foundyes

yes

no

to store which slot of bucket the other copies use along with
the item itself in the off-chip main table as shown in Fig. 5, so
when we want to update the copies of an item that we just
retrieved from the main table, we know their slots in their
other buckets as well. For a d-hash l-slot McCuckoo, the
additional off-chip memory cost will be (d-1)·log(l) bits per
slot without compression.

There are also some other optimizations that work well
with single-slot McCuckoo but cannot be simply extended to
the multi-slot case, because for them adding full support to the
set-associativeness requires the handling of some much more
complicated details, for efficiency we choose not to handle all
of them but the simpler ones. Although the improvement is
more limited comparing to the simpler single-slot version that
has been discussed extensively so far, the benefits of
McCuckoo are still substantial considering the simplicity of
the rules, especially for situations where the table is always
moderately to highly loaded. Since the principles and
considerations are basically the same as before, we will just
show the full pseudo code here and discuss three of the more
important changes in the multi-slot extension.

First, in many rules we still treat the bucket as a whole to
decide on the actions, in which counters of all the slots in that
bucket are considered together, whose sum is used as the
measure of the availability (higher the better) of the bucket.
Only when we see all nine counters with value 1 will we run
into a collision, so the multi-slot McCuckoo is capable of
sustaining really high load without caring about collision
resolution. However for lookups, since there can be multiple
items in one bucket and the combination of their status is
difficult to trace with just the counters, we can’t really exclude
a full bucket solely on-chip, so the lookup routine is more like
a traditional one that does not rely much on the counters.
Third, the off-chip stash flags are still one-to-one assigned to
each bucket not each slot, because we decide to do pre-
screening at bucket level in consideration of the small number
of items in the stash (than those in the main table), and doing
so at bucket level is much simpler and faster.

H. Concurrency and multiset

Standard Cuckoo hashing is sequential in nature and does
not support concurrent read/write access to the table, because
during the kick-outs, not only the next kicking depends on the
result of the previous one, evicted items will also become
temporary unavailable from the table that may cause lookup
errors. Since in practice there will be much more lookups than
insertions and deletions, instead of supporting full-fledge
concurrency, one-writer-many-reader concurrency will be
much light weighted but sufficient for most practical schemes
that are read-heavy. MemC3 [9] introduced the concept of
cuckoo path and developed two simple modifications to the
insertion order to realize one-writer-many-reader concurrency
based on cuckoo path, however it did not develop efficient
method to quickly find one. McCuckoo is good at quickly
finding short cuckoo path for insertion, therefore combining
the two will give McCuckoo efficient concurrency support.

McCuckoo can also support multiset, but not by
distributing items of the same key among that key’s multiple
copies, because those redundant copies should always be
identical; instead it can act as an indexing structure pointing
to the address where all those items are actually stored.

IV. EXPERIMENTAL EVALUATION

We have implemented McCuckoo in both d-ary and
blocked form with an off-chip stash as the failure resolution
method. We also implemented standard d-ary Cuckoo and the
blocked Cuckoo Hash Table BCHT from [18] and used them
as the baseline for comparison in the experiments. Since
McCuckoo always tries to fill up all the empty candidate
buckets, effectively it trades some earlier writes for less reads
and writes during later kick-outs, and uses the additional
copies to provide hints on the bucket status to the lookup and
failure resolution procedure to minimize access to the slow
external memory. We will show how such multi-copy strategy

Algorithm 1 Insertion (item x)

S ← candidate buckets of x
for each from S do
 if find one slot with counter=0
 do store a copy to the slot
 remove bucket from S
if size(S) ≤ 1 return
sort S by sum(all counters of the bucket) descending
for each from sorted S do
 if find one slot with counter=3
 do store a copy to the slot
 remove bucket from S
 if size(S) = 1 return
if size(S) ≤ 2 return
for each from sorted S do
 if find one slot with counter=2
 do store a copy to the slot
 return
loop++
if loop ≤ maxloop do
 store x to a randomly picked slot from S
 Insertion (the evicted item y)
else do store x to stash
 set flags of S to 1

Fig. 6. Insertion routine of 3-hash 3-slot McCuckoo

Algorithm 2 lookup (item x)

S ← candidate buckets of x
for each from S do
 if sum(all counters of the bucket)=0
 do skip and remove bucket from S
 else search the bucket for x
 if found return x
if all flags of S = 1
 do check the stash
 return x | not_exist
else return not_exist

Fig. 7. Lookup routine of 3-hash 3-slot McCuckoo

Algorithm 3 delete (item x)

S ← candidate buckets of x
for each from S do
 if sum(all counters of the bucket)=0
 do skip and remove bucket from S
 else search the bucket for x
 if found F←slot(x)
if F ≠ Φ
 do set counters from F to 0
 return
if all flags of S = 1
 do check the stash
 delete x

Fig. 8. Deletion routine of 3-hash 3-slot McCuckoo

performs against their single-copy counterparts in different
settings, especially under moderate to high load ratios.

Because the design goal of McCuckoo is very much to
minimize the access to the slow off-chip memory, so for the
first part of the evaluation we want to focus on showing how
effective we are with regard to this goal through simulations.
In order to evaluate the overhead of McCuckoo on counter
manipulation and the additional logic on bucket selection, in
the second part of the evaluation we also extend McCuckoo to
a FPGA based platform to evaluate the insertion and lookup
latency as well as throughput.

A. Exparimental Environments

1) Hardware Platform
All the simulations were carried out on a machine with 4-

cores (8 threads, Intel Core i7@2.60 GHz) and with 8 GB of
DRAM memory. The target platform is an Altera Stratix V
GX FPGA from Intel with 4.5MB on-chip SRAM with
support to external DDR3 SDRAM memory at 800Mhz. In
our FPGA implementation, the logic runs at 333Mhz and the
DDR3 memory controller runs at 200Mhz, respectively.

2) Dataset and Implementation

DocWordsa: This dataset includes five text collections in

the form of bag-of-words and we choose the one collected

from NYTimes news articles. It contains approximately 70

million items in total. The DocID and WordID are combined

to form the key of each item and inserted into the hash tables.
All the hash schemes were implemented in C++. The hash

functions used in the experiments are BOB Hashb.
For the FPGA implementation, due to the limit space of the

on-chip SRAM, we extract a 6 million subset from the
DocWords dataset to use for the evaluation, and a much
simpler hash implementation that only involves modulo and
bit operations is used instead of BOB Hash.

3) Experimental Settings
In the experiments we always use 3 hash functions to

calculate the candidate locations, and 3 slots per bucket in the
blocked schemes. For the convenience of discussion, we will
call the ternary Cuckoo and the 3-hash 3-slot BCHT schemes
as Cuckoo and BCHT for short, and their multi-copy
counterparts as McCuckoo & B-McCuckoo. Each experiment
repeated 10 times and the average is used as the final results.

B. Insertion Performance

We compared the number of kick-outs generated for each
insertion under different load ratios, as well as the involved
reads and writes to the memory. These measures can be used
to evaluate the capability to quickly find a location for the

inserted item and the involved cost. Moreover, when a hash
table is filling up with items, increased availability can defer
the occurrence of collisions and insertion failure, therefore we
also measured the load ratio when the first kick-out occurs and
when the first insertion failure occurs. The results are shown
in Fig. 9 through Fig. 11.

From Fig. 9 we can see that at very low load ratio almost
all insertions can finish without kick-outs. At higher load ratio,
it becomes more difficult to find an empty bucket right away
therefore more kick-outs will be experienced. As expected,
multi-copy schemes can help resolve collisions and reduce the
average number of kick-outs, for example by 59.3% for
ternary Cuckoo at load ratio of 85% and 77.9% for 3-way
BCHT at load ratio of 95%.

 Because McCuckoo needs to handle multiple copies that
may need additional memory accesses during the insertion, we
also measured the average number of reads and writes at
different load ratio. We can see from Fig. 10a that the number
of reads is much reduced and can be as low as 0 at low load
ratio for the multi-copy schemes because in many cases with
the on-chip counters we can already see which buckets are
free. Furthermore, the “multiplier effect” is more severe for
the single-copy schemes if we compare Fig.10a with Fig. 9,
because they need to read back each candidate bucket to know

[a] “DocWords”:

 http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

 [b] “bob hash website”: http://burtleburtle.net/bob/hash/evahash.html

Fig. 9. Number of kick-outs per insertion

(a)

(b)

Fig. 10. Memory access per insertion

Fig. 11. Load ratio at first insertion failure

http://burtleburtle.net/bob/hash/evahash.html

if they are empty or not during the kick-outs, while the multi-
copy schemes can figure out the empty buckets with the on-
chip counters.

The number of writes, on the other hand, is higher with the
multi-copy schemes as shown in Fig.10b, but only at lower
load ratio, because more copies are stored to the table during
each insertion. At higher load ratio, the writes caused by
writing multiple copies will decrease, while writes caused by
kick-outs will increase. The cross-over happens at about half
load for single-slot schemes and at a bit higher load for the
multi-slot schemes, which means for the most likely working
conditions of Cuckoo with the table moderately to heavily
loaded, the number of writes is also lower with the multi-copy
schemes. Since more reads will take place than writes during
an insertion, the total number of accesses at higher load ratio
is much reduced in the multi-copy schemes.

McCuckoo can maintain collision-free status for much
longer because more buckets are kept available when they are
just occupied by item copies. Table I shows that the first
collision happens at a much later time with the multi-copy
schemes when the table is much more filled up. The first
occurrence of insertion failure is even more crucial because
from then on, more insertions will stop at maxloop which costs
heavily for us. The load ratio when the first insertion failure
occurs is shown in Fig. 11, where maxloop is set from 50 to
500. Higher maxloop can help to reach higher load, but also
induce heavier penalization if an insertion still fails after the

lengthy trial. From the figure we can see that with multi-copy
we can reach higher load ratio free of insertion failures with
the same maxloop, or reach the same load ratio with smaller
maxloop values than the single-copy schemes.

TABLE I. LOAD RATIO WHEN FIRST COLLISION OCCURS

Cuckoo McCuckoo BCHT B-McCuckoo

9.27% 23.20% 46.03% 61.42%

C. Lookups for Existing and No-existing Items

The performance for lookup is shown in Fig.12 & Fig.13
for queries on existing and non-existing items respectively.
Because with McCuckoo we can identify and skip the buckets
that do not contain the target item for sure, the average
memory access is lower than in the single-copy schemes.

For the lookup on non-existing items, the single-copy
schemes always need to check all the buckets to be sure the
item is not in the table, but with the pre-screening capability
of the on-chip counters, we can recognize the non-existing
item much faster, sometimes even without accessing the main
table at all at lower load ratio when more empty buckets and
more copies exist. The average lookup access increases fast
for B-McCuckoo because when more buckets start to contain
items, in order to really differentiate items from the same
bucket, the on-chip counters are not enough and you may need
to read them out to be sure. This means that at very high load
ratio, for blocked McCuckoo it may be a good idea just to do
the lookup the old way, since almost all the slots are occupied
by the sole copy of different items.

D. Deletion

The performance of deletion is shown in Fig.14. in terms
of deletion. Because items may have multiple copies in the
table, on average more read is required to confirm all the
existing copies. Fortunately deletions are not frequently
executed comparing to lookups and it still possesses the worst-
case constant bound guarantee. In the meantime we are still
refining our algorithm to improve the performance.

The number of writes during a deletion will always be one
for the single-copy schemes and zero for the multi-copy
schemes, because in the latter only the on-chip counters are
updated (reset to 0), so we didn’t show them in a figure.

E. Stash at High Load Ratio

Since McCuckoo is the first hash scheme that uses an off-
chip stash structure, we will not evaluate its performance
through comparison; instead, we want to show the necessity
of a bigger stash and the feasibility of putting one off-chip.

Table II and Table III present the experimental results that
simulate a McCuckoo table and a blocked McCuckoo table
that works very close to the maximum load so the main table
is really crowded. Each row shows five parameters, which are
the current load ratio, the value of the threshold maxloop, the
number of items in the stash, its percentage against all the
inserted items, and the percentage of queries for non-existing
items that evoke a visit to the stash. We can see from the
results that unless we leave a sufficiently large margin in the
table spare space to accommodate all the possible surges, a
small wave of items inserted to an already crowded hash table

Fig. 12. Memory access per lookup for existing items

Fig. 13. Memory access per lookup for non-existing items

Fig. 14. Memory access per deletion

may very likely fail the insertion and land into the stash, unless
otherwise we can also accept a rehash. A larger stash is more
robust to such a situation, but in the traditional on-chip
solutions, there is no space for a large stash. McCuckoo can
support a large stash that is put to the comparably abundant
off-chip memory. Furthermore, unlike the on-chip stash that
will be visited every time an item is not found in the main
table, the efficient pre-screening mechanism can avoid most
unnecessary queries to the stash in McCuckoo, so the off-chip
stash is capable of handling much more severe table overflow
at very limited cost.

TABLE II. STASH PERFORMANCE FOR 3-HASH 1-SLOT MCCUCKOO

Load
max

loop

Stash Statistics

number of items % in all items % visits in lookups

88%

200 107.8 0.0020% 0.0000%

500 0.0 0.0000% 0.0000%

89%

200 788.2 0.0148% 0.0000%

500 5.2 0.0001% 0.0000%

90%

200 4401.2 0.0815% 0.0000%

500 201.4 0.0037% 0.0000%

91%

200 15989.2 0.2928% 0.0000%

500 4441.2 0.0813% 0.0000%

92%

200 38702.0 0.7011% 0.0029%

500 24648.6 0.4465% 0.0001%

93%

200 70060.4 1.2556% 0.0038%

500 58443.8 1.0474% 0.0007%

TABLE III. STASH PERFORMANCE FOR 3-HASH 3-SLOT MCCUCKOO

Load
max

loop

Stash Statistics

number of items % in all items % visits in lookups

97.5%

200 0.0 0.0000% 0.0000%

500 0.0 0.0000% 0.0000%

98%

200 0.0 0.0000% 0.0000%

500 0.0 0.0000% 0.0000%

98.5%

200 0.0 0.0000% 0.0000%

500 0.0 0.0000% 0.0000%

99%

200 4.2 0.0001% 0.0000%

500 0.0 0.0000% 0.0000%

99.5%

200 1117.2 0.0187% 0.0000%

500 56.4 0.0009% 0.0000%

100%

200 18309.6 0.3052% 0.0000%

500 16791.0 0.2799% 0.0000%

F. Latency and Throughput

The evaluation on latency and throughput is based on a
Altera FPGA development board that can run the McCuckoo
logic and access the on-chip SRAM at 333Mhz. Hash
calculation and the logic is implemented in hardware that can
be performed in 1CLK. The on-chip SRAM can be read in
3CLK and written in 1CLK. For the off-chip DDR3 SDRAM,
the controller is clocked at 200Mhz, and read costs about
18CLK on average and write costs 1CLK. Due to the time
limit, no parallelism or pipeline is implemented, so the write
latency is much lower than the read latency because the logic
can return to process the next instruction after writing to the
memory controller but has to wait for the data back from the
external memory during a read. Furthermore, when the record
size is small, skip checking some buckets will not make much
of a difference in read latency so the benefit of McCuckoo and
B-McCuckoo is less significant, while the time to access the
on-chip counters becomes relative large because they need to
be checked all the time. Fig. 15 shows the average insertion

latency with respect to different load ratios and the throughput
at 50% load when the record size changes from 8 Bytes to 128
Bytes. We can see improved throughput from the multi-copy
schemes, but the latency of B-McCuckoo is a bit higher at
moderate load because kicking-outs happen much less often
in the multi-slot Cuckoos due to the added set-associativeness,
so the time used for checking counters is not paid back. Fig.
16 show lookup latency in (a)&(b) and throughput in (c)&(d)
for existing items to the left and non-existing ones to the right.
When the size of the item increases, checking less buckets will
benefit the throughput as expected. The added lookup time is
due to the checking on the counters, which is significant in this
implementation comparing to the cost of reading more data
from the external memory. In this case we can actually just
skip checking the counters during the lookup to avoid the
added latency, which in effect does not affect the correctness
of the lookup results. Generally speaking, the end-to-end
measurement is very much hardware specific, and McCuckoo
demonstrates the expected behavior.

V. CONCLUSIONS

All existing Cuckoo-based hash tables only choose one
bucket to store an inserted item even when more candidates
are available. With no knowledge on the items that come in

Fig. 15. Latency and throughput for insertion

(a) (b)

(c) (d)

Fig. 16. Latency and throughput for lookup

Cuckoo McCuckoo BCHT B-McCuckoo

later, such rash decisions are very often sub-optimal and need
to be corrected by a series of item relocation. In this paper a
multi-copy version of Cuckoo hashing is proposed to keep
multiple copies of the items in all the available candidate
buckets to circumvent the rash decision on location and
improve the availability of the buckets. The number of copies
each item has is tracked by counters, with which we can find
a resolution faster for a collision, reduce the number of
relocations, find an item with less memory accesses and
identify and pre-screening queries for non-existing items.
Experimental results show that the proposed McCuckoo
achieves the expected performance in comparison with the
existing single-copy Cuckoo mechanisms.

ACKNOWLEDGMENT

The authors thank all the reviewers for their time and
precious comments. We would also like to thank Tao Li and
Qiang Zeng for the FPGA implementation based on FAST
platform [35]. This work was supported by Shenzhen Peacock
Project (app. No. 201803233000214), Shenzhen Key Lab
Project (ZDSYS201703031405137), the Shenzhen Municipal
Development and Reform Commission (Disciplinary
Development Program for Data Science and Intelligent
Computing), National Engineering Laboratory for Video
Technology - Shenzhen Division, and NSFC (61672061).
Dagang Li and Rong Du are co-primary authors. Rong Du
finished this work under the guidance of her supervisor
Dagang Li. Tong Yang is the corresponding author with email
yangtongemail@gmail.com.

REFERENCES

[1] Knuth, Donald (1998). 'The Art of Computer Programming'. 3: Sorting
and Searching (2nd ed.). Addison-Wesley. pp. 513–558.

[2] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford (2001). "Chapter 11: Hash Tables". Introduction to
Algorithms (2nd ed.). MIT Press and McGraw-Hill. pp. 221–252.

[3] R. Pagh, F. F. Rodler, Cuckoo hashing, Journal of Algorithms 51 (2)
(2004) 122–144.

[4] M. Naor, G. Segev, and U. Wieder, “History-Independent Cuckoo
Hashing,” in ICALP 2008, vol. 5126, pp. 631–642.

[5] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding Up Inline
Storage Deduplication Using Flash Memory,” in USENIX ATC 2010,
Berkeley, CA, USA, 2010, pp. 16–16.

[6] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “SILT: a memory-
efficient, high-performance key-value store,” in SOSP ’11, Cascais,
Portugal, 2011, pp. 1–13.

[7] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving Group Data Access via Stateless Oblivious RAM
Simulation,” in SODA ’12, Philadelphia, PA, USA, 2012, pp. 157–167.

[8] P. Bosshart et al., “Forwarding metamorphosis: fast programmable
match-action processing in hardware for SDN,” in ACM
SIGCOMM ’13, Hong Kong, China, 2013, p. 99.

[9] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing,”
in USENIX NSDI 2013, Lombard, IL, 2013, pp. 371–384.

[10] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
high performance ethernet forwarding with CuckooSwitch,” in
CoNEXT ’13, Santa Barbara, CA, 2013, pp. 97–108.

[11] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman,
“Algorithmic improvements for fast concurrent Cuckoo hashing,” in
EuroSys ’14, Amsterdam, The Netherlands, 2014, pp. 1–14.

[12] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo Filter: Practically Better Than Bloom,” in CoNEXT ’14, 2014,
pp. 75–88.

[13] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private
Set Intersection Using Permutation-based Hashing,” in USENIX
SEC’15, Berkeley, CA, USA, 2015, pp. 515–530.

[14] D. Cash, A. Küpçü, and D. Wichs, “Dynamic Proofs of Retrievability
Via Oblivious RAM,” Journal of Cryptology, vol. 30, no. 1, pp. 22–57,
Jan. 2017.

[15] Y. Sun, Y. Hua, S. Jiang, Q. Li, S. Cao, and P. Zuo, “SmartCuckoo: A
Fast and Cost-Efficient Hashing Index Scheme for Cloud Storage
Systems,” in USENIX ATC 17, Santa Clara, CA, 2017, pp. 553–565.

[16] Q. Li, Y. Hua, W. He, D. Feng, Z. Nie, and Y. Sun, “Necklace: An
efficient cuckoo hashing scheme for cloud storage services,” in IEEE
IWQoS 2014, Hong Kong, 2014, pp. 153–158.

[17] Y. Sun, Y. Hua, D. Feng, L. Yang, P. Zuo, and S. Cao, “MinCounter:
An efficient cuckoo hashing scheme for cloud storage systems,” in
MSST 2015, Santa Clara, CA, USA, 2015, pp. 1–7.

[18] U. Erlingsson, M. Manasse, and F. Mcsherry, “A Cool and Practical
Alternative to Traditional Hash Tables,” in WDAS 2006, 2006.

[19] K. A. Ross, “[19]s on Modern Processors,” in IEEE ICDE 2007,
Istanbul, Turkey, 2007, pp. 1297–1301.

[20] M. Dietzfelbinger and C. Weidling, “Balanced allocation and
dictionaries with tightly packed constant size bins,” Theoretical
Computer Science, vol. 380, no. 1–2, pp. 47–68, Jun. 2007.

[21] M. Mitzenmacher, K. Panagiotou, and S. Walzer, “Load Thresholds for
Cuckoo Hashing with Double Hashing,” in SWAT 2018, 2018, pp.
29:1-29:9.

[22] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More Robust Hashing:
Cuckoo Hashing with a Stash,” SIAM Journal on Computing, vol. 39,
no. 4, pp. 1543–1561, Jan. 2010.

[23] M. Aumüller, M. Dietzfelbinger, and P. Woelfel, “Explicit and
Efficient Hash Families Suffice for Cuckoo Hashing with a Stash,”
Algorithmica, vol. 70, no. 3, pp. 428–456, Nov. 2014.

[24] S. Pontarelli, P. Reviriego, and M. Mitzenmacher, “EMOMA: Exact
Match in One Memory Access,” IEEE TKDE, pp. 1–1, 2018.

[25] D. Li, J. Li, and Z. Du, “Deterministic and Efficient Hash Table
Lookup Using Discriminated Vectors,” in Globecom 2016,
Washington D.C., 2016, pp. 1–6.

[26] K. Huang, G. Xie, R. Li, and S. Xiong, “Fast and deterministic hash
table lookup using discriminative bloom filters,” Journal of Network
and Computer Applications, vol. 36, no. 2, pp. 657–666, Mar. 2013.

[27] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space Efficient Hash
Tables with Worst Case Constant Access Time,” Theory of Computing
Systems, vol. 38, no. 2, pp. 229–248, Feb. 2005.

[28] A. Frieze, P. Melsted, and M. Mitzenmacher, “An Analysis of
Random-Walk Cuckoo Hashing,” SIAM Journal on Computing, vol.
40, no. 2, pp. 291–308, Jan. 2011.

[29] N. Fountoulakis, K. Panagiotou, and A. Steger, “On the Insertion Time
of Cuckoo Hashing,” SIAM Journal on Computing, vol. 42, no. 6, pp.
2156–2181, Jan. 2013.

[30] A. Frieze and T. Johansson, “On the insertion time of random walk
cuckoo hashing,” in SODA 2017, 2017, pp. 1497–1502.

[31] D. A. Alcantara et al., “Real-time parallel hashing on the GPU”, ACM
Transactions on Graphics, vol. 28, no. 5, p. 1, Dec. 2009.

[32] Bloom, H. Burton, "Space/Time Trade-offs in Hash Coding with
Allowable Errors", Communications of the ACM, vol. 13, no. 7, pp.
422–426, 1970.

[33] P. Zou, Y. Hua, J. Wu, “Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory”, in OSDI 2018.

[34] O. Kocberber, B. Falsafi, and B. Grot, “Asynchronous memory access
chaining,” Proceedings of the VLDB Endowment, vol. 9, no. 4, pp.
252–263, Dec. 2015.

[35] FAST platform website. http://www.fastswitch.org.

