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Abstract—Cuckoo hashing is widely used for its worst-case 

constant lookup performance even at very high load. However 

at high load, collision resolution will involve lots of probes on 

item relocation and may still fail in the end. To address the 

problem, we propose an efficient Cuckoo hashing scheme called 

Multi-copy Cuckoo or McCuckoo. Different from the blind 

kick-outs of standard Cuckoo hashing during a collision, we can 

foresee which way to successfully kick items by using multiple 

copies. Furthermore, with the knowledge of how many copies 

each item has in the table, we can identify impossible buckets 

and skip them during a lookup. In order to avoid expensive 

rehashing during insertion failures, McCuckoo also supports 

more efficient stash strategy that minimizes stash checking. 

McCuckoo uses simple logic and simple data structure, so it is 

suitable for both software and hardware implementation on 

platforms where intensive access to the slow and bandwidth 

limited off-chip external memory is the main bottleneck. 

Keywords—Cuckoo Hashing, Hashing algorithm, Multi-copy 

I. INTRODUCTION 

Hash tables [1] are basic data structures that are widely 
used in various fields such as database, networking, storage, 
security, etc. When working at low load, hash collisions rarely 
happen; but when load increases, collisions will happen 
frequently. Traditional solutions such as chaining methods 
and linear probing [2] need extra time and resource to resolve 
the collisions, affecting both insertion and lookup and losing 
the favorable performance bound. 

Unlike traditional hash structures that only provide one 
candidate location for each item, Cuckoo hashing [3] uses d 
hash functions to provide multiple candidate buckets for each 
item to choose so as to reduce collision. Most importantly, 
existing items can be “kicked out” and relocated to another 
candidate bucket if necessary to make room in search of an 
overall arrangement for all items to settle down in their own 
buckets. This flexibility provided by multiple hashing and 
relocation helps Cuckoo hashing achieve very high load ratio 
(more items under the same table size) while still keeping 
worst-case constant lookup, during which at most d buckets 
may need to be checked to find the item. Because of its 
capability to provide worst-case O(1) lookup at very high 
load, Cuckoo hashing has been the preferred hash technique 
in many fields such as storage systems[5], databases[6], 
privacy & security[4][7][14], networking[8][10], architecture 
[9][11], data processing [12][13], and so on. 

The favorable lookup performance comes at the cost of the 
hardship to resolve collisions during insertion. At high load 

ratios, the cost to resolve increased collisions inevitably 
becomes high, since now more item rearrangements may have 
to be probed before a working one can be finally found. This 
greatly affects the insertion delay, and the collision resolution 
may still fail even after the costly relocating effort. Generally 
there are three main factors that determine the performance of 
Cuckoo hashing. 

1) The recursive kick-outs during an insertion. At high 
load ratio, the probability of collision becomes high when a 
new item is inserted, and the probability of finding a solution 
only after a few round of kick-outs also decreases [9]. 
Moreover, because standard Cuckoo hashing cannot forsee 
which item has empty alternative buckets, it can only probe 
for one in BFS order or in a random fashion. The blindness 
in these trial-and-error probing approaches may take too 
much time to find a resolution or even end up in an endless 
loop [3], which is the main cause of insertion failures. A good 
strategy should find a solution fast if such solution exists. 

2) The cost to handle insertion/lookup failures. When a 
collision resolution cannot be reached during insertion, the 
traditional Cuckoo hashing suggests a costly rehashing 
solution, reading out all inserted items and using a different 
set of hash functions to put them into a bigger table, during 
which the hash table is completely unusable. A more practical 
remedy is to allocate some small additional space to store all 
the items that fail in insertion [22], but then if an item is not 
found in the main table during a lookup, the stash needs to be 
double checked. This extra checking not only affects lookup 
performance, but also limits the number of items it can hold 
to handle very high load. To maximize the benefit of a stash, 
we should minimize its search cost, improve its scalability 
and reduce unnecessary checkings. 

3) Multiple bucket checking for a single lookup. When 
looking up an item in a Cuckoo hash table, multiple buckets 
may need to be visited because the item can be in any of them. 
The additional visits affect the lookup performance and may 
be a big drawback when the table is too large and need to be 
put in slow and bandwidth limited off-chip external memory. 
If we can narrow down the subset of buckets that may contain 
the item beforehand and optimize the accessing pattern, we 
may increase the possibility of finding it with fewer visits and 
improve the lookup performance. 

For the first problem, normally a maxloop is defined to 
draw the insertion procedure out of an endless loop, but still 
time and resource so far are already wasted. Proposals such as 
SmartCuckoo [15] and Necklace [16] tried to identify loops 
beforehand, so we won’t run into an endless loop situation in 



the first place. MinCounter [17] tries to reduce repetitions in 
the recursive kick-out process, so more buckets will be 
searched and the possibility of finding an empty one will 
increase. Other work such as blocked Cuckoo hash tables 
(BCHT)[18][19][20][21]  allocate multiple slots within each 
bucket, and the set-associativeness among these slots provides 
another level of flexibility which help to reduce collisions and 
reach an even higher load ratio. As long as the whole bucket 
can be retrieved in one memory access [33], there will be no 
sacrifice on lookup performance.  

For the second problem, most stash-based solutions such 
as Cuckoo hashing with a stash (CHS)[22] propose to put the 
stash on-chip to minimize its impact on performance[7][23] 
[13][24]. When the stash itself is full, items stored in it will 
take a try to the main table until some space is freed. A small 
stash of size 4 is regarded as enough to achieve rather high 
load (for example 95% in [24]) with high probability. 

Checking multiple locations for every single lookup is 
more of a problem if accessing the table buckets is slow or 
expensive, which is the case when platforms with only limited 
fast on-chip memory need to handle very large lookup tables 
(for example the ASIC/FPGA/SOC based packet processing 
devices). A common practice is to use compact helping 
structures such as Bloom filters that can fit in the on-chip 
memory to do pre-screening, so as to minimize unnecessary 
visit to the main table in the slower off-chip memory, such as 
DEHT [25] and EMOMA [24]. 

In this paper, we propose a simple and effective Cuckoo 
hash mechanism to address all the three problems discussed 
above. The main idea is to store multiple copies of item in the 
table, so we don’t have to rashly choose one at insertion time 
when more candidate buckets are available, so as to keep the 
flexibility on placement as much and as long as possible. The 
level of redundancy provides explicit clue to the choice of 
replacement target during collisions, therefore not only 
accelerates the insertion speed but can also help avoid endless 
loop of kick-outs. On the contrary, in traditional single-copy 
Cuckoo hashing the placement flexibility is immediately 
consumed when the inserted item settles down, which not only 
might be sub-optimal and has to be corrected by relocation 
later on, the relation among candidate locations is also lost that 
adds to the blindness in the resultant kick-outs. Keeping 
copies in all the available candidate buckets will maintain the 
flexibility and avoid entering the sub-optimal situation early: 
the optimal placement will come out naturally later on when 
the other occupied buckets are appropriately given away as 
per request to new items, who turn out to be the better owners 
of these buckets in an overall optimal arrangement. 

McCuckoo assign a counter for each bucket and use them 
to track the number of copies of the stored items. Buckets with 
counter value larger than 1 can be readily overwritten when 
necessary because we know the item still has other redundant 
copies in the table. Since all the copies of the same item are 
each others’ redundant, a table only containing multi-copy 
items actually has the same bucket availability as an empty 
table to accommodate new items anywhere in the table. 

Regarding to lookups, since all buckets containing the 
same item should have the same counter value, this fact can 
also be used to tell which candidate buckets do not contain a 

an item for sure, so we can skip checking them during a 
lookup; and a counter value 0 from any candidate bucket can 
save us from checking the table at all (similar to a Bloom 
filter). Furthermore, because an item can always overwrite a 
redundant copy to settle down, if a lookup fails with any 
candidate bucket having counter value larger than 1, we know 
that item must have not been inserted before and skip checking 
the stash. These and other further observations on the behavior 
of the counters can enrich the operation rules to improve the 
effectiveness and performance of McCuckoo. 

McCuckoo is mostly suitable for platforms that have a 
hierarchical memory structure where the main table can only 
be put to the abundant but slower second layer memory due to 
the large size, so all the three problems mentioned earlier will 
become equally apparent and McCuckoo can handle them 
altogether in an unified framework. In order to maximize the 
benefit of the counters, the counters need to fit in the on-chip 
embedded memory that is order-of-magnitude faster. We 
propose a compact on-chip counter array and specifically 
designed counter operations that only involve very simple 
logic, so that McCuckoo can be easily implemented in both 
software and hardware. 

The contributions of this paper are as follows: 

1) Introducing the idea of multi-copy into Cuckoo-based 

hashing architecture, which helps minimize the blindness in 

item relocation and improve bucket availability, improving 

insertion speed and success rate. 

2) A new compact on-chip helping structure is proposed 

that can minimize unnecessary off-chip memory access with 

less on-chip memory cost than current solutions. 
3) An efficient  pre-screening mechanism is proposed to 

support a large off-chip stash by minimizing stash checking 
during failed lookups. 

The rest of the paper is organized as follows. In Section II 
we will discuss related work and background information. The 
design considerations as well as details and extensions of 
McCuckoo will be introduced in Section III. Experimental 
results are presented and analyzed in Section IV, and Section 
V concludes the paper. 

II. BACKGROUND AND RELATED WORK 

A. Standard Cuckoo hashing 

Cuckoo hashing was first proposed in [3] as a dynamic 
variation on multi-choice hashing dictionary. It contains d  
hash tables of length n (T1,T2,...,Td) and d hash functions 

h1,h2,h3,...,hd:S→{0,…,n-1}. Any item x∈U will be stored in 

one of its d candidate locations (called buckets) from these 
tables, which are h1(x) in T1, h2(x) in T2, ... hd(x) in Td as 
determined by the d hash functions, therefore when querying 
for an item we only need to check these d buckets. However 
if all the candidate buckets are already occupied during an 
insertion, we need to “kick” one of the occupants away to 
make room. The evicted item needs to check if some of its 
other candidate buckets is empty, or else the “kick-out” will 
continue until every item finds a bucket to settle down. The 
capability of kicking-out old items wins Cuckoo hashing its 



name as well as more flexibility to resolve collision than the 
other deterministic hashing algorithms. 

Three situations may happen during insertion of Cuckoo 
hashing. An example of a d=2 Cuckoo hash table is given in 
Fig.1, where items are represented by an arrow starting from 
the bucket it occupies pointing to its alternative bucket. Now 
let’s say item x is to be inserted and its 2 candidate buckets are 
T1[2] and T2[5]. Fig.1(a) through 1(c) demonstrate how these 
situations are handled by Cuckoo hashing. 

In Fig.1(a), item x is simply put to the empty candidate 
bucket T2[5] and the insertion is completed in O(1) time. If 
all candidate buckets are occupied, one of the existing items 
needs to be relocated to make room for x. In Fig. 1(b), item a 
is kicked out, who recursively kicks item b out and so on, until 
item d is relocated to T2[3]. The red letters in brackets show 
the final locations of each item. This situation will become 
more frequent when the table starts to fill up. We may run into 
a third situation in the recursive kick-out that no empty bucket 
can be found. In Fig. 1(c), the kick-outs form an loop and will 
never end. In practice a threshold called maxloop is used to 
quit from such situation and claim a failure [3]. The value of 
maxloop determines the trade-off between wasted kicking 
attempts and the possibility of a premature false alarm.  

B. Cuckoo hashing Variants 

Since Cuckoo hashing was first proposed, it has attracted 
much interests trying to improve it or make use of it in various 
applications. d-ary Cuckoo [27] and blocked Cuckoo [20] 
hash tables extend the original Cuckoo hashing from its 2-
hash one-item-per-bucket simple design to using d hash tables 
or storing l items in each bucket, so the achievable load ratio 
can be improved to more than 90%. Since the 2 approaches 
are both “multiplication” extensions for similar objectives, 
later work very often combine the two to be more flexible in 
the data structure to meet specific design considerations 
[18][19]. Furthermore, in order to alleviate the increased hash 
calculation, hardware solutions using GPU [31] or software 
solutions using double hashing [21] are also developed. 

To avoid being trapped in an endless loop, SmartCuckoo 
[15] uses directed pseudo forest to efficiently predetermine 
endless loops without paying the high cost of step-by-step 
probing, but it only works with 2 hash functions. Necklace 
[16] tries to maintain the relationship among alternative 
buckets in an auxiliary record to increase the chance of finding 
the minimum path during kick-outs, but the auxiliary record 
takes large space and visiting cost. MinCounter [17] allocates 
a 5-bit counter for each bucket to record the kick-out history 
of that bucket, and the bucket with minimum counter that is 
not so “hot” will be chosen during the kick-outs to reduce the 
total number of kick-outs in the long run. These mechanisms 
achieve good improvement over standard Cuckoo hashing but 
at the cost of additional space and more computations. 

Another approach called Random-walk[28][29][30][20] is 
also proposed in the literature to reduce the insertion time in 
case of collisions. The original breadth-first search (BFS) 
strategy is inefficient in practice and only has a polynomial 
upper bound on the insertion time that holds with high 
probability (whp). Random-walk requires no additional data 
structure and can achieve poly-logarithmic insertion time by 

randomly selecting an item to kick-out when all candidate 
buckets are occupied. However, the improvement is also 
limited comparing to those that keep additional records. 

Both rehashing and stash-based mechanisms [7][13][22] 
[23][24] are used as the solution to insertion failures in various 
Cuckoo-based hash tables. When the table is loaded within the 
theoretical upper bound, a small stash of size s can improve 
the probability of rehashing from O(1/n) down to O(1/ns+1), 
therefore it is normally put on-chip because it is small in size 
but frequently visited during lookups. If a surge of insertion 
happens (which is possible in a very dynamic environment) 
that temporarily overruns the safe margin provided by the 
small stash, rehashing will still be inevitable. 

Another category of work focuses on very big Cuckoo 
tables that need to be put off-chip, so that checking many 
buckets becomes a problem as off-chip memory access is 
generally much more costly. DEHT [25] and EMOMA[24] 
chose to use some on-chip helping structure to identify the real 
location of each item to achieve one-access lookups. However, 
the on-chip structure is rather big in DEHT, and EMOMA 
sacrifices some placement flexibility in the main table to battle 
the false positive error of the on-chip Bloom filter. 

Latest advance on hash techniques in general such as 
AMAC[34] can also be incorporated in Cuckoo hashing to 
improve its lookup performance, but they are orthogonal to 
our work and out of the scope of this paper. 

III. DESIGN AND IMPLEMENTATION DETAILS 

A. General idea 

Comparing to all the existing Cuckoo based hash tables 
that try to optimize the arrangement of the sole copy of the 
inserted items, the biggest difference of McCuckoo is the idea 
of occupying all free candidate buckets with redundant copies, 
so as to circumvent the rash decision of picking a bucket in a 
hurry. Therefore existing methods can be generally regarded 
as reactive because they focus more on “kick-out” algorithms 
to resolve collisions caused by sub-optimal placement from 
the past; McCuckoo takes a proactive approach by keeping the 
decision on placement open until a more suitable item later on 
claims one of the buckets and replace the copy in it.  

If all the non-empty buckets are occupied by multi-copy 
items, new incoming items can choose any bucket at will 
without evicting existing items. As a result, although at the 
same load ratio (number of distinct items against table size) 
McCuckoo will be filled with more redundant copies, the 
effective “collision” that leads to costly item relocation is 
actually less frequent. In order to maximally maintain this 
high insertion efficiency, one design principle of McCuckoo 
is to keep redundancy over all items for as long as possible. 

 
(a)                                           (b)                                     (c) 

Figure 1.  Insertion to a Cuckoo hash table. 
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In order to make redundant copies traceable across table 
updates, each bucket has a counter to record the total number 
of copies its occupying item current has in the table. Although 
the value of the counters is associated with items not the 
buckets, for the ease of wording we will just say “bucket of 
value x” in the rest of the paper instead of “bucket whose 
associated counter has value x”. With the counters we can 
make sure that an item won’t be accidentally removed because 
all its copies are carelessly overwritten. Counter space are 
associated with buckets instead of items so we can have 
deterministic mapping and addressing which is good for easy 
logic implementation. Since the number of copies each item 
has cannot exceed d, only a few (2 in this paper when d=3) 
bits will be needed for each counter. And as d=3 is sufficient 
for a Cuckoo hash table to reach load ratio well over 90%, we 
won’t see much larger d in practice. 

When even more items are inserted to the table, sooner or 
later we may run into the situation that all the candidate 
buckets are occupied by items with only one copy left. At that 
time any existing collision resolving mechanisms such as 
random-walk or MinCounter can be used to start relocating 
items, and using these counters in each iteration to quickly 
find usable buckets (empty or occupied by redundant copy) or 
as tie breaker. In this paper random-walk is used as example. 

The counters maintained in the fast on-chip memory can 
be used for multiple purposes. With very simple logic we can 
decide which buckets to use or overwrite during an insertion 
before accessing them (because we know which buckets are 
empty or only contain redundant copies), exclude impossible 
buckets from checking during lookup (exploit the fact that 
valid candidate buckets should have the same counter value), 
and mark a deletion without actually removing the item from 
the table, so as to minimize unnecessary operations to the 
main table in the slow off-chip memory. 

B. Design Principles 

1) Insertion 
Unlike single-copy Cuckoo hashing that simply tries to 

find one empty bucket for the inserted item, McCuckoo needs 
to decide how many copies to store and to which candidate 
buckets. To maximize the placement flexibility provided by 
multi-copy, the strategy is to store as many copies as possible 
(or equivalently occupy as many buckets as possible) for each 
item and for all the items as a whole. This means that we also 
need to keep balance amongst copies from different items, so 
that when a random item is inserted, the probability of running 
into a collision is minimized. Only when all the candidate 
buckets contain the sole copy of other items, will we run into 
a real collision, so we want the number of copies decrease to 
1 as slow as possible for any item in the table. This actually 
postpone the first occasion of a real collision, so that the table 
can reach much higher load with minimal insertion time. 

The principles for insertion can then be summarized as 
below for a McCuckoo hash table with d hash functions.  

1) Occupy all the empty candidate buckets. 
2) Never overwrite buckets of value 1. 
3) Overwrite the rest in the decreasing order of their 

value, until the overwriting results in more copies for 
the inserted item than the overwritten one. 

The third principle is better explained with an example. 
Let’s say we have a candidate bucket of value 3 - meaning it 
currently holds an item B with 3 copies. If the inserted item A 
only has 1 copy in the table, we choose to overwrite B so both 
items now have 2 copies each. If item A already has 2 copies, 
overwriting will not happen because that only changes the 
number of copies from 2:3 to 3:2, which gains nothing with 
respect to the whole table. 

Theorem 1. The insertion principles above achieve the 
best overall redundancy and redundancy balance among the 
affected items. 

Proof. Let’s say the values of the d candidate buckets are 
V1,…,Vp,…,Vd in decreasing order, where only p of them are 
non-empty. If we evaluate redundancy by the number of item 

copies, then the total redundancy is ∑ 𝑉𝑡
𝑝
1  before the insertion. 

Because overwriting exist copies will not change the total 
redundancy, letting the inserted item A occupy all the empty 
buckets will increase the total redundancy to the maximal 

achievable value at  ∑ 𝑉𝑡
𝑝
1 + (𝑑 − 𝑝). 

Now let’s look at redundancy balance. Because during the 
insertion V1,…,Vp  cannot increase but only decrease by 1 when 
the bucket is overwritten by the inserted item, therefore start 
overwriting from the largest V1 will always improve balance 
among V1,…,Vp . On the other hand, the inserted item A is the 
only one that can increase its redundancy during the insertion. 
When it overwrites one bucket of Vt, because all the other 
buckets are not involved, the overall balance is only affected 
by the decrease in Vt and the increase in VA. If we stop 
overwriting before the condition in principle 3 is met, that 
means there is at least one item among V1,…,Vp  that has at 
least 2 more copies than item A. Clearly replacing it by A will 
improve the redundancy balance. If we keep overwriting after 
the condition in principle 3 is met, we effectively push the 
following Vt and VA apart which decreases the redundancy 

balance. Therefore we should stop as principle 3 dictates. ■ 

Theorem 2. The total number of proactive redundant 

writes will not exceed 1+∑ 1/𝑡𝑑
3  times the size of the table. 

Proof. We follow a constructive approach to find the 
maximal number of proactive writes for redundant copies. 
Let’s say the McCuckoo table has S buckets in total. When a 
new item arrives, the maximal achievable redundancy would 
be d when it shares no buckets with any existing items. This 
can continue until all the S buckets are occupied, where S·(d-
1)/d writes are redundant ones. From then on, for each new 
inserted item the maximum achievable redundancy is reduced 
to (d-1) when (d-1) items from the first round give up one 
bucket to it. This can continue until all the S/d items each has 
one copy less, and the number of redundant writes is (S/d)·(d-
2)/(d-1). Similarly in the next round the number is S/(d-
1)·(d-3)/(d-2) and so on, until the second last round we have 
S/3·1/2. Before the last round all the existing items have 2 
copies each, so in the last round there will be no redundant 
writes. To sum up, in total we have at most 

S ∙
d−1

d
+

S

d
∙
d−2
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+⋯+

S

4
∙
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3
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3
∙
1

2
= S(

d−1

d
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In the case of d=3, the total number of redundant writes 
will never exceed 5/6 of the table size, which is not too 



excessive to trade for much faster insertion efficiency. This 
theorem also tells us that the majority of the redundant writing 
happens when the table is building up; when the table is 
loaded and in normal working condition, there will be much 
less overhead for redundancy. 

2) Lookup 
In McCuckoo, the on-chip counters are also used to 

minimize checking to the off-chip main table for lookups on 
both non-existing and existing items. 

First, they can help identify non-existing items. During an 
insertion, all candidate buckets will be filled, either by the 
item itself or some earlier items, resulting in non-zero value 
for all the corresponding on-chip counters. This behavior is 
very much like Bloom filter [32] that sets all hashed locations 
to 1 for each inserted item. Indeed, if we look at the on-chip 
counters as zero or non-zero, they actually form a standard 
Bloom filter and collectively they can answer if an item has 
been inserted to the table or not, with some false positive error 
but no false negative. This will avoid most wasted access to 
the off-chip table for queries on non-existing items, and even 
if such query passes the filtering with false positive, the main 
table will still return the correct answer. 

Second, they can also reduce memory access for existing 
items. For example, we can always skip a bucket of value 0 
because it is empty. Because the buckets containing the same 
item should always have the same value, we can also skip 
safely all the buckets that have a value that cannot be matched 
by the number of buckets. Furthermore, for the buckets that 
share a common matching value, checking just one of them is 
sufficient to return the right answer. 

For example, if there are less than 3 candidate buckets of 
value 3, all of them can be safely skipped, because there are 
not sufficient valid buckets to support so many copies. Those 
buckets should hold other items that have 2 more copies 
elsewhere in the table. On the other hand, if there are 3 
candidate buckets of value 2, we cannot exclude any one of 
them because if the item really has two copies in the table, 
they can be in any two out of the three of them. However, we 
only need to check up to two of them because statistically we 
should run into at least one of the copies in these two attempts; 
if we can’t find the item after these two attempts, it can’t be in 
the third bucket, either. Out of observations like these, simple 
but effective logic can be extracted to narrow down the 
checking scope and minimize unnecessary access to the off-
chip main table. In practice we can achieve zero or one access 
for a large portion of lookup queries, especially when the table 
is moderately loaded. 

To sum up, the principles for lookup to a McCuckoo hash 
table with d hash functions can be summarized as below.  

1) Skip all the buckets and return negative if any 
candidate bucket has a value 0. 

2) Partition the non-zero candidate buckets according to 
their value, and skip those partitions whose size is 
smaller than the associated value. 

3) For each of the remaining partitions, if the size is S and 
the associated value is V, check up to S-V+1 buckets in 
the partition. Return the queried item if it is found, 
otherwise return negative. 

Theorem 3. The lookup principles above can always 
narrow down the checking scope unless all candidate buckets 
are of value 1. 

Proof. All the buckets will land into the scope of one of 
the 3 principles. If any one of them lands into the first two, it 
can be skipped; if they fall into the last one, (V-1) buckets in 
each partition can be skipped. Only when all the buckets are 

together with V=1, none of them can be skipped.       ■ 
Theorem 3 tells us that before the table is extremely full, 

McCuckoo can always reduce checking effort during lookups. 

3) Deletion 
Deletion is very much like Lookup but now we need to 

visit all the buckets that contain a copy of the item and remove 
them all from the table. In order to further reduce access to the 
off-chip main table, after finding all the copies (actually we 
don’t have to visit all the candidate buckets because from the 
discussion in lookup we know that some buckets can be safely 
excluded, but still at least one of them need to be visited in 
case the item to be deleted is not in the table), we can choose 
not to physically remove them from the main table and just 
reset their corresponding counters to 0, which will save all the 
writes to the off-chip memory during a deletion. 

Resetting counters of the buckets holding the deleted item 
to 0 has consequences on lookup, because these buckets can 
be candidates buckets of other items, and resetting them to 0 
can bring false negative to these items when they are queried. 
One solution is to skip the first lookup principle when deletion 
functionality is required, while the remaining principles can 
still help in lookups. There is also a second solution that we 
do not reset these counters to 0 but mark them as “deleted”, 
which will be treated as zero for insertion but as non-zero for 
lookups. When those buckets are populated later on by new 
items, the mark will be naturally replaced by the correct 
counter value. One drawback about this solution is that non-
zero buckets will never return back to zero again, so when the 
table has worked for a long time with lots of insertions and 
deletions, the capability to filter out non-existing item will still 
gradually fade away. Therefore this second solution is more 
suitable for cases where deletions rarely happen. 

The principles for deletion to a McCuckoo hash table with 
d hash functions can be summarized as below. 

1) Skip all the buckets of value 0 or marked as “deleted”. 
2) Partition the non-zero candidate buckets according to 

their value, and skip those partitions whose size is 
smaller than the associated counter value. 

3) For each of the remaining partitions, if the size is S and 
the associated value is V, check up to S-V+1 buckets in 
the partition. If the to-be-deleted item is found, 
continue until all V copies are found, and reset or mark 
their counters; otherwise return negative. 

In the following subsections we will explain the data 
structure and discuss other aspects of McCuckoo in more 
details, based on the principles explained in this subsection. 
For the convenience of discussion, if necessary we choose 
d=3 as the example. The same principles can be easily 
instantiated and applied to other d values, but d=3 is actually 
sufficient for most practical scenarios. 



C. Data Structure 

The data structure of McCuckoo can be seen in Fig.2 for 
the case of d=3 hash functions, which contains an on-chip 
part and an off-chip part. The off-chip part is the main Cuckoo 
hash table that stores the real items in the three sub-tables, and 
the on-chip part contains the counters that are one-to-one 
mapped to the off-chip buckets. For the case of d = 3, each 
counter costs only 2 bits. The counter array is initialized to 0 
for an empty table. When the first item x is inserted, instead 
of choosing one out of the 3 candidate buckets to settle down, 
it will now occupy all 3 of them since they are all empty, and 
the corresponding counters will all be set to 3, as shown in the 
figure. Should one of the buckets be overwritten later on by 
some other item, the remaining buckets that still hold x will 
update their counters from 3 to 2 to reflex the change. The 
deterministic one-to-one mapping between on-chip counters 
and off-chip buckets makes it much easier and straightforward 
to determine the status of the buckets on-chip and execute the 
results from the counter logic off-chip. 

D. Collision Resolution 

When an inserted item finds all its candidate buckets are 
of value 1, collision occurs because it now cannot overwrite 
any of them, and a resolution routine should be followed to 
kick one occupying item out to make room. In McCuckoo any 
collision resolution algorithm can be used such as random-
walk or MinCounter, as long as the affected counters are all 
correctly updated. Here in this paper we choose random-walk 
since it is simpler and easy to explain. 

With random-walk, one bucket is selected at random and 
its current item will be kicked-out, who will re-check its 
alternative buckets to see if there is any counter that is bigger 
than 1 allowing an overwrite, or else another iteration of 
collision resolution routine is recursively called and another 
bucket is selected at random to evict. The whole procedure is 
actually equivalent to overwriting the selected bucket with the 
newly inserted item and then re-insert the evicted item back 
into the table. Comparing to the original random-walk, with 
the help of the counters we can pinpoint a solution right away 
in every round if one of the checked buckets has a counter 
larger than 1, whiles in the original case a new round of 
random kick-out will be carried out seeing all the candidate 
buckets occupied, risking missing the prompt resolution right 
there. Therefore in McCuckoo, the on-chip counters can help 
us find a collision resolution much faster. 

However when McCuckoo table is really heavily loaded, 
it is still possible that the kick-out continues to see buckets of 

value 1 all the way and no resolution can be found. Indeed, the 
counters can help us find a usable bucket much faster but 
cannot create one if none exists. If an insertion failure happens 
we will resort to a failure handling routine. In this paper a 
stash-based approach is used and we will see later that the 
counters can also help to achieve an efficient and more 
capable stash solution. 

E. Working with a Stash 

In McCuckoo we choose to use a stash-based approach to 
store the items from failed insertions to avoid the costly 
rehashing. The main problem of the stash-based approach is 
that we always need to check the stash if an item is not found 
in the main table. Because a stash will be frequently visited, 
existing solutions put it in the on-chip memory that limits its 
size to hold only a couple of items. Even if stash is kept on-
chip, keep checking it for any failed lookup to the main table 
is still a burden that costs time and CPU cycles, but adding 
another mechanism to filter out unnecessary checking on the 
stash may require additional on-chip space and calculation, so 
we may rather just check the small stash directly. 

In McCuckoo we can put the stash in the off-chip memory 
to support a much bigger stash that can handle more insertion 
failures and keep the main hash table in working condition for 
longer time at high load ratio. We will see that with a small 
off-chip helping structure we can do so without sacrificing any 
lookup performance comparing to the on-chip solutions. The 
helping structure is a 1-bit flag that we put aside from the 
space of each off-chip bucket, as shown in Fig.3. They are 
initially set to 0 and work in the fashion of a Bloom filter: 
when an item fails in an insertion and put to the stash, the flags 
of its candidate buckets are set to 1, so at a later time when we 
want to decide whether to check the stash, we will see first if 
all the flags of the associated buckets are 1, if not we know for 
sure it is not there without accessing the stash. 

This stash mechanism can be very efficient because of the 
following existing features of McCuckoo. First, the on-chip 
counters already filter out most lookups for non-existing 
items. These queries won’t make it to the main table, let alone 
bothering the stash. Second, if an item were put to the stash 
during insertion, it must have run into a collision seeing 
counter value 1 for all its candidate buckets, and the attempt 
to resolve the collision ended in failure. Since the counters in 
McCuckoo will never increase, when an item in stash is 
queried, it should still see counter value 1 for all its candidate 
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buckets, so for any failed lookup that involves counter value 
other than 1 we don’t need to check the stash. On the other 
hand, if a lookup does fail with all counters equal to 1, next 
we need to check the flags to decide whether to go on and 
check the stash or not. Fortunately for us, the flags should 
have already been retrieved from the off-chip memory, 
because the lookup routine requires visiting all the buckets 
with counter value 1, during which the flags are read back as 
part of the bucket content. Therefore there will be no extra off-
chip memory access dedicated to the stash filtering. 

By working with the on-chip counters that are already 
there and the 1-bit off-chip flags that are negligible with 
respect to the size of item-storing buckets, and no extra access 
to the off-chip memory, we will have a stash that is only 
visited when the possibility that an item is really there is really 
high. Furthermore, since there is comparably abundant space 
in the off-chip memory that a stash can use, we can use more 
advanced hash techniques to construct the stash, so that 
checking it can be finished with minimal access.  

F. Handle Deletion Aftermath 

Following the mentality of McCuckoo, we should try to 
refill the empty buckets resulting from deletion as fast as 
possible to maximize redundancy. However, finding an 
appropriate item to occupy the freed bucket right after the 
deletion is difficult because we don’t have that information 
even with the counters. We choose a casual update approach 
and probe (among originally empty ones) for newly freed 
buckets only during a later insertion. As soon as an empty 
bucket is found, either empty from the start or freed up later 
on, the inserted item will fill it up with a copy. This strategy 
is  light-weighted but results in a slightly lower utilization of 
empty buckets which should be acceptable as long as deletions 
are not frequent or much less frequent than insertions. 

Similar adaptation is also necessary to maintain the 
correctness when working with a stash. Because now buckets 
with value 0 might be from a deletion, and when that bucket 
is re-occupied the counter can be of any value, we cannot 
exclude the possibility of the item being stored in stash any 
more by exploring valid counter combinations. However, we 
can still check the flags that are already retrieved along with 
the items from the buckets during lookup (and neglect those 
skipped buckets) and decide not to check the stash if any of 
the flags is 0. Because the decision is now made with less 
flags, the possibility of false positive error may increase, but 
the false negative error will still be zero. Since comparing to 

the items in the main table, the number of items in the stash is 
very small and most flags will be 0, therefore depending on 
less flags will have a higher rate of false positive error but can 
still screen out most of unnecessary access to the stash. 

Another issue that needs to be taken care of is the deletion 
of stash items. Because the flags work in the fashion of a 
Bloom filter, they do not support deletion, either. In 
McCuckoo we choose not to update the flags when an item is 
deleted from the stash, so the false positive error rate will 
accumulate with each deletion of a stash item. But again, since 
the number of items in the stash is generally very small 
comparing to the number of items in the main table, the 
increased false positive is generally acceptable and the impact 
on screening performance is also small. After a series of 
deletions, we can choose to refresh the flags by resetting them 
to 0 and reinserting all the stashed items to the main table, so 
the status of the flags will be re-synchronized with the latest 
set of items in the stash. 

G. Extension to multi-slot Cuckoo structure 

One popular way to increase the load ratio even further is 
the blocked version of Cuckoo hashing that stores multiple 
items in one bucket that is divided into l slots. When the items 
are small in size and can be squeezed into the smaller slots, 
such “multi-slot” approach can achieve working load ratio not 
too far from 100%. The idea of McCuckoo can be extended to 
and benefit the multi-slot case as well. The example of 3-slot 
3-hash (d =3, l =3) McCuckoo is show in Fig. 5. To 
accommodate the same number of n items, now the length of 
each table is reduced to roughly one third of the size as before, 
which is m/3. The on-chip structure is also adapted 
accordingly, making sure that each item still has an 
corresponding counter (now one counter for each slot).  

However, because a new level of flexibility is introduced 
by the set-associativeness among slots from the same bucket, 
now there will be some more subtle details in item placement 
that cannot be fully tracked and described by just the counters. 
For example, with a “single-slot” McCuckoo, as one counter 
is associated with each bucket and the item stored in it, when 
we need to update the counter of a copy, we will know which 
exact counter to update solely on-chip as soon as we know the 
bucket. However in a multi-slot McCuckoo, knowing which 
bucket the copy sits in is not enough to identify the counter to 
update, because the copy can be in any slot of that bucket and 
we cannot track that placement details only with the on-chip 
structure we have. For the correctness we need to pay one 
access for each copy to read back the bucket and see in which 
slot it actually sits. One way to save those off-chip accesses is 
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to store which slot of bucket the other copies use along with 
the item itself in the off-chip main table as shown in Fig. 5, so 
when we want to update the copies of an item that we just 
retrieved from the main table, we know their slots in their 
other buckets as well. For a d-hash l-slot McCuckoo, the 
additional off-chip memory cost will be (d-1)·log(l) bits per 
slot without compression. 

There are also some other optimizations that work well 
with single-slot McCuckoo but cannot be simply extended to 
the multi-slot case, because for them adding full support to the 
set-associativeness requires the handling of some much more 
complicated details, for efficiency we choose not to handle all 
of them but the simpler ones. Although the improvement is 
more limited comparing to the simpler single-slot version that 
has been discussed extensively so far, the benefits of 
McCuckoo are still substantial considering the simplicity of 
the rules, especially for situations where the table is always 
moderately to highly loaded. Since the principles and 
considerations are basically the same as before, we will just 
show the full pseudo code here and discuss three of the more 
important changes in the multi-slot extension.  

First, in many rules we still treat the bucket as a whole to 
decide on the actions, in which counters of all the slots in that 
bucket are considered together, whose sum is used as the 
measure of the availability (higher the better) of the bucket. 
Only when we see all nine counters with value 1 will we run 
into a collision, so the multi-slot McCuckoo is capable of 
sustaining really high load without caring about collision 
resolution. However for lookups, since there can be multiple 
items in one bucket and the combination of their status is 
difficult to trace with just the counters, we can’t really exclude 
a full bucket solely on-chip, so the lookup routine is more like 
a traditional one that does not rely much on the counters. 
Third, the off-chip stash flags are still one-to-one assigned to 
each bucket not each slot, because we decide to do pre-
screening at bucket level in consideration of the small number 
of items in the stash (than those in the main table), and doing 
so at bucket level is much simpler and faster. 

H. Concurrency and multiset 

Standard Cuckoo hashing is sequential in nature and does 
not support concurrent read/write access to the table, because 
during the kick-outs, not only the next kicking depends on the 
result of the previous one, evicted items will also become 
temporary unavailable from the table that may cause lookup 
errors. Since in practice there will be much more lookups than 
insertions and deletions, instead of supporting full-fledge 
concurrency, one-writer-many-reader concurrency will be 
much light weighted but sufficient for most practical schemes 
that are read-heavy. MemC3 [9] introduced the concept of 
cuckoo path and developed two simple modifications to the 
insertion order to realize one-writer-many-reader concurrency 
based on cuckoo path, however it did not develop efficient 
method to quickly find one. McCuckoo is good at quickly 
finding short cuckoo path for insertion, therefore combining 
the two will give McCuckoo efficient concurrency support. 

McCuckoo can also support multiset, but not by 
distributing items of the same key among that key’s multiple 
copies, because those redundant copies should always be 
identical; instead it can act as an indexing structure pointing 
to the address where all those items are actually stored.  

IV. EXPERIMENTAL EVALUATION 

We have implemented McCuckoo in both d-ary and 
blocked form with an off-chip stash as the failure resolution 
method. We also implemented standard d-ary Cuckoo and the 
blocked Cuckoo Hash Table BCHT from [18] and used them 
as the baseline for comparison in the experiments. Since 
McCuckoo always tries to fill up all the empty candidate 
buckets, effectively it trades some earlier writes for less reads 
and writes during later kick-outs, and uses the additional 
copies to provide hints on the bucket status to the lookup and 
failure resolution procedure to minimize access to the slow 
external memory. We will show how such multi-copy strategy 

Algorithm 1 Insertion (item x) 

S ← candidate buckets of x 
for each from S do 
 if find one slot with counter=0  
  do store a copy to the slot 
       remove bucket from S 
if size(S) ≤ 1 return 
sort S by sum(all counters of the bucket) descending 
for each from sorted S do 
 if find one slot with counter=3  
  do store a copy to the slot 
       remove bucket from S 
  if size(S) = 1 return 
if size(S) ≤ 2 return 
for each from sorted S do 
 if find one slot with counter=2  
  do store a copy to the slot 
       return 
loop++ 
if loop ≤ maxloop do 
 store x to a randomly picked slot from S 
 Insertion (the evicted item y ) 
else do store x to stash 
        set flags of S to 1 

Fig. 6. Insertion  routine of 3-hash 3-slot McCuckoo 

Algorithm 2 lookup (item x) 

S ← candidate buckets of x 
for each from S do 
 if sum(all counters of the bucket)=0  
  do skip and remove bucket from S 
 else search the bucket for x 
 if found return x 
if all flags of S = 1 
 do check the stash 
      return x | not_exist 
else return not_exist 

Fig. 7. Lookup  routine of 3-hash 3-slot McCuckoo 

Algorithm 3 delete (item x) 

S ← candidate buckets of x 
for each from S do 
 if sum(all counters of the bucket)=0  
  do skip and remove bucket from S 
 else search the bucket for x 
 if found F←slot(x) 
if F ≠ Φ 
 do set counters from F to 0 
       return 
if all flags of S = 1 
 do check the stash 
      delete x 

Fig. 8. Deletion  routine of 3-hash 3-slot McCuckoo 



performs against their single-copy counterparts in different 
settings, especially under moderate to high load ratios. 

Because the design goal of McCuckoo is very much to 
minimize the access to the slow off-chip memory, so for the 
first part of the evaluation we want to focus on showing how 
effective we are with regard to this goal through simulations. 
In order to evaluate the overhead of McCuckoo on counter 
manipulation and the additional logic on bucket selection, in 
the second part of the evaluation we also extend McCuckoo to 
a FPGA based platform to evaluate the insertion and lookup 
latency as well as throughput. 

A. Exparimental Environments 

1) Hardware Platform 
All the simulations were carried out on a machine with 4-

cores (8 threads, Intel Core i7@2.60 GHz) and with 8 GB of 
DRAM memory. The target platform is an Altera Stratix V 
GX FPGA from Intel with 4.5MB on-chip SRAM with 
support to external DDR3 SDRAM memory at 800Mhz. In 
our FPGA implementation, the logic runs at 333Mhz and the 
DDR3 memory controller runs at 200Mhz, respectively. 

2) Dataset and Implementation 

DocWordsa: This dataset includes five text collections in 

the form of bag-of-words and we choose the one collected 

from NYTimes news articles. It contains approximately 70 

million items in total. The DocID and WordID are combined 

to form the key of each item and inserted into the hash tables. 
All the hash schemes were implemented in C++. The hash 

functions used in the experiments are BOB Hashb. 
For the FPGA implementation, due to the limit space of the 

on-chip SRAM, we extract a 6 million subset from the 
DocWords dataset to use for the evaluation, and a much 
simpler hash implementation that only involves modulo and 
bit operations is used instead of BOB Hash. 

3) Experimental Settings 
In the experiments we always use 3 hash functions to 

calculate the candidate locations, and 3 slots per bucket in the 
blocked schemes. For the convenience of discussion, we will 
call the ternary Cuckoo and the 3-hash 3-slot BCHT schemes 
as Cuckoo and BCHT for short, and their multi-copy 
counterparts as McCuckoo & B-McCuckoo. Each experiment 
repeated 10 times and the average is used as the final results. 

B. Insertion Performance 

We compared the number of kick-outs generated for each 
insertion under different load ratios, as well as the involved 
reads and writes to the memory. These measures can be used 
to evaluate the capability to quickly find a location for the 

inserted item and the involved cost. Moreover, when a hash 
table is filling up with items, increased availability can defer 
the occurrence of collisions and insertion failure, therefore we 
also measured the load ratio when the first kick-out occurs and 
when the first insertion failure occurs. The results are shown 
in Fig. 9 through Fig. 11. 

From Fig. 9 we can see that at very low load ratio almost 
all insertions can finish without kick-outs. At higher load ratio, 
it becomes more difficult to find an empty bucket right away 
therefore more kick-outs will be experienced. As expected, 
multi-copy schemes can help resolve collisions and reduce the 
average number of kick-outs, for example by 59.3% for 
ternary Cuckoo at load ratio of 85% and 77.9% for 3-way 
BCHT at load ratio of 95%. 

 Because McCuckoo needs to handle multiple copies that 
may need additional memory accesses during the insertion, we 
also measured the average number of reads and writes at 
different load ratio. We can see from Fig. 10a that the number 
of reads is much reduced and can be as low as 0 at low load 
ratio for the multi-copy schemes because in many cases with 
the on-chip counters we can already see which buckets are 
free. Furthermore, the “multiplier effect” is more severe for 
the single-copy schemes if we compare Fig.10a with Fig. 9, 
because they need to read back each candidate bucket to know 

[a] “DocWords”: 

 http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/  

 [b] “bob hash website”: http://burtleburtle.net/bob/hash/evahash.html 
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if they are empty or not during the kick-outs, while the multi-
copy schemes can figure out the empty buckets with the on-
chip counters. 

The number of writes, on the other hand, is higher with the 
multi-copy schemes as shown in Fig.10b, but only at lower 
load ratio, because more copies are stored to the table during 
each insertion. At higher load ratio, the writes caused by 
writing multiple copies will decrease, while writes caused by 
kick-outs will increase. The cross-over happens at about half 
load for single-slot schemes and at a bit higher load for the 
multi-slot schemes, which means for the most likely working 
conditions of Cuckoo with the table moderately to heavily 
loaded, the number of writes is also lower with the multi-copy 
schemes. Since more reads will take place than writes during 
an insertion, the total number of accesses at higher load ratio 
is much reduced in the multi-copy schemes. 

McCuckoo can maintain collision-free status for much 
longer because more buckets are kept available when they are 
just occupied by item copies. Table I shows that the first 
collision happens at a much later time with the multi-copy 
schemes when the table is much more filled up. The first 
occurrence of insertion failure is even more crucial because 
from then on, more insertions will stop at maxloop which costs 
heavily for us. The load ratio when the first insertion failure 
occurs is shown in Fig. 11, where maxloop is set from 50 to 
500. Higher maxloop can help to reach higher load, but also 
induce heavier penalization if an insertion still fails after the 

lengthy trial. From the figure we can see that with multi-copy 
we can reach higher load ratio free of insertion failures with 
the same maxloop, or reach the same load ratio with smaller 
maxloop values than the single-copy schemes. 

TABLE I.  LOAD RATIO WHEN FIRST COLLISION OCCURS 

Cuckoo McCuckoo BCHT B-McCuckoo 

9.27% 23.20% 46.03% 61.42% 

C. Lookups for Existing and No-existing Items 

The performance for lookup is shown in Fig.12 & Fig.13 
for queries on existing and non-existing items respectively. 
Because with McCuckoo we can identify and skip the buckets 
that do not contain the target item for sure, the average 
memory access is lower than in the single-copy schemes.  

For the lookup on non-existing items, the single-copy 
schemes always need to check all the buckets to be sure the 
item is not in the table, but with the pre-screening capability 
of the on-chip counters, we can recognize the non-existing 
item much faster, sometimes even without accessing the main 
table at all at lower load ratio when more empty buckets and 
more copies exist. The average lookup access increases fast 
for B-McCuckoo because when more buckets start to contain 
items, in order to really differentiate items from the same 
bucket, the on-chip counters are not enough and you may need 
to read them out to be sure. This means that at very high load 
ratio, for blocked McCuckoo it may be a good idea just to do 
the lookup the old way, since almost all the slots are occupied 
by the sole copy of different items. 

D. Deletion 

The performance of deletion is shown in Fig.14. in terms 
of deletion. Because items may have multiple copies in the 
table, on average more read is required to confirm all the 
existing copies. Fortunately deletions are not frequently 
executed comparing to lookups and it still possesses the worst-
case constant bound guarantee. In the meantime we are still 
refining our algorithm to improve the performance. 

The number of writes during a deletion will always be one 
for the single-copy schemes and zero for the multi-copy 
schemes, because in the latter only the on-chip counters are 
updated (reset to 0), so we didn’t show them in a figure. 

E.  Stash at High Load Ratio 

Since McCuckoo is the first hash scheme that uses an off-
chip stash structure, we will not evaluate its performance 
through comparison; instead, we want to show the necessity 
of a bigger stash and the feasibility of putting one off-chip. 

Table II and Table III present the experimental results that 
simulate a McCuckoo table and a blocked McCuckoo table 
that works very close to the maximum load so the main table 
is really crowded. Each row shows five parameters, which are 
the current load ratio, the value of the threshold maxloop, the 
number of items in the stash, its percentage against all the 
inserted items, and the percentage of queries for non-existing 
items that evoke a visit to the stash. We can see from the 
results that unless we leave a sufficiently large margin in the 
table spare space to accommodate all the possible surges, a 
small wave of items inserted to an already crowded hash table 
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may very likely fail the insertion and land into the stash, unless 
otherwise we can also accept a rehash. A larger stash is more 
robust to such a situation, but in the traditional on-chip 
solutions, there is no space for a large stash. McCuckoo can 
support a large stash that is put to the comparably abundant 
off-chip memory. Furthermore, unlike the on-chip stash that 
will be visited every time an item is not found in the main 
table, the efficient pre-screening mechanism can avoid most 
unnecessary queries to the stash in McCuckoo, so the off-chip 
stash is capable of handling much more severe table overflow 
at very limited cost. 

TABLE II.  STASH PERFORMANCE FOR 3-HASH 1-SLOT MCCUCKOO 

Load 
max 

loop 

Stash Statistics 

number of items % in all items % visits in lookups 

88% 

200 107.8 0.0020% 0.0000% 

500 0.0 0.0000% 0.0000% 

89% 

200 788.2 0.0148% 0.0000% 

500 5.2 0.0001% 0.0000% 

90% 

200 4401.2 0.0815% 0.0000% 

500 201.4 0.0037% 0.0000% 

91% 

200 15989.2 0.2928% 0.0000% 

500 4441.2 0.0813% 0.0000% 

92% 

200 38702.0 0.7011% 0.0029% 

500 24648.6 0.4465% 0.0001% 

93% 

200 70060.4 1.2556% 0.0038% 

500 58443.8 1.0474% 0.0007% 

TABLE III.  STASH PERFORMANCE FOR 3-HASH 3-SLOT MCCUCKOO 

Load 
max 

loop 

Stash Statistics 

number of items % in all items % visits in lookups 

97.5% 

200 0.0 0.0000% 0.0000% 

500 0.0 0.0000% 0.0000% 

98% 

200 0.0 0.0000% 0.0000% 

500 0.0 0.0000% 0.0000% 

98.5% 

200 0.0 0.0000% 0.0000% 

500 0.0 0.0000% 0.0000% 

99% 

200 4.2 0.0001% 0.0000% 

500 0.0 0.0000% 0.0000% 

99.5% 

200 1117.2 0.0187% 0.0000% 

500 56.4 0.0009% 0.0000% 

100% 

200 18309.6 0.3052% 0.0000% 

500 16791.0 0.2799% 0.0000% 

F. Latency and Throughput 

The evaluation on latency and throughput is based on a 
Altera FPGA development board that can run the McCuckoo 
logic and access the on-chip SRAM at 333Mhz. Hash 
calculation and the logic is implemented in hardware that can 
be performed in 1CLK. The on-chip SRAM can be read in 
3CLK and written in 1CLK. For the off-chip DDR3 SDRAM, 
the controller is clocked at 200Mhz, and read costs about 
18CLK on average and write costs 1CLK. Due to the time 
limit, no parallelism or pipeline is implemented, so the write 
latency is much lower than the read latency because the logic 
can return to process the next instruction after writing to the 
memory controller but has to wait for the data back from the 
external memory during a read. Furthermore, when the record 
size is small, skip checking some buckets will not make much 
of a difference in read latency so the benefit of McCuckoo and 
B-McCuckoo is less significant, while the time to access the 
on-chip counters becomes relative large because they need to 
be checked all the time. Fig. 15 shows the average insertion 

latency with respect to different load ratios and the throughput 
at 50% load when the record size changes from 8 Bytes to 128 
Bytes. We can see improved throughput from the multi-copy 
schemes, but the latency of B-McCuckoo is a bit higher at 
moderate load because kicking-outs happen much less often 
in the multi-slot Cuckoos due to the added set-associativeness, 
so the time used for checking counters is not paid back. Fig. 
16 show lookup latency in (a)&(b) and throughput in (c)&(d) 
for existing items to the left and non-existing ones to the right. 
When the size of the item increases, checking less buckets will 
benefit the throughput as expected. The added lookup time is 
due to the checking on the counters, which is significant in this 
implementation comparing to the cost of reading more data 
from the external memory. In this case we can actually just 
skip checking the counters during the lookup to avoid the 
added latency, which in effect does not affect the correctness 
of the lookup results. Generally speaking, the end-to-end 
measurement is very much hardware specific, and McCuckoo 
demonstrates the expected behavior. 

V. CONCLUSIONS 

All existing Cuckoo-based hash tables only choose one 
bucket to store an inserted item even when more candidates 
are available. With no knowledge on the items that come in 
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later, such rash decisions are very often sub-optimal and need 
to be corrected by a series of item relocation. In this paper a 
multi-copy version of Cuckoo hashing is proposed to keep 
multiple copies of the items in all the available candidate 
buckets to circumvent the rash decision on location and 
improve the availability of the buckets. The number of copies 
each item has is tracked by counters, with which we can find 
a resolution faster for a collision, reduce the number of 
relocations, find an item with less memory accesses and 
identify and pre-screening queries for non-existing items. 
Experimental results show that the proposed McCuckoo 
achieves the expected performance in comparison with the  
existing single-copy Cuckoo mechanisms. 
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