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Abstract
With the fast development of Internet, the size of routing table in the backbone router continues to grow rapidly. forwarding 
information base (FIB), which is derived from routing table, is stored in line-card to conduct routing lookup. Since the line-
card’s memory is limited, it would be worthwhile to compress the FIB for consuming less storage. Therefore, various FIB 
compression algorithms have been proposed. However, there is no well-presented mathematical support for the feasibility 
of the FIB compression solution, nor any mathematical derivation to prove the correctness of these algorithms. To address 
these problems, we propose a universal mathematical method based on the Group theory. By defining a Group representing 
the longest prefix matching rule, the bound of the worst case of FIB compression solution can be figured out. Furthermore, 
in order to guarantee the ultimate correctness of FIB compression algorithms, routing table equation test is proposed and 
implemented to verify the equivalence of the two routing tables before and after compression by traversing the 32-bit IP 
address space.

Keywords  FIB compression · Group · Trie-transformation · LPM · RTET

1  Introduction

The backbone routing table has been growing at an expo-
nential rate, driven mainly by multi-homing and the rapid 
development of mobile communication (Meng et al. 2005). 
The fast increasing routing table incurs fast increasing 
FIB. The line-card that holds the FIB usually adopts fast 
memory, which is expensive and difficult to scale, and it 
would be worthwhile to improve the memory efficiency 

by compressing the FIB. Besides, for the routing lookup 
schemes based on software (Waldvogel et al. 1997; Deger-
maerk et al. 1997; Nilsson et al. 1998), FIB compression can 
be used to reduce their memory requirements; for the rout-
ing lookup algorithms based on TCAM (Zheng et al. 2006; 
Lin et al. 2007; Yang et al. 2012), FIB compression can be 
used to reduce the hardware cost and power consumption. 
Furthermore, FIB compression is applicable to any longest 
matching prefix (LPM) database. Therefore, a variety of FIB 
compression algorithms are proposed (Draves et al. 1999; 
Cain 2002; Zhao et al. 2010; Li et al. 2011, 2013; Liu et al. 
2010; Yu 2010). These algorithms compress the routing 
table by transforming the binary trie1 structure.

In addition, as is known to all, routing table lookup 
adopts the longest prefix matching (LPM) rule because of 
the introduction of classless inter-domain routing (CIDR). 
Due to CIDR, the routing tables’ prefixes are overlapped, 
which means that some prefixes are a part of others. This 
brings many negative effects on the performance of routing 
lookup and incremental update (Yang et al. 2012). There are 
mainly two overlap elimination algorithms: Leaf-pushing 
(Srinivasan and Varghese 1999) and ONRTC (Yang et al. 
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1  Trie is a tree-based data structure allowing the organization of 
prefixes on a digital basis by using the bits of prefixes to direct the 
branching (Ruiz-Sánchez et al. 2001).
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2012) algorithm. They can totally eliminate the overlap also 
by transforming the binary trie.2

However, is FIB compression solution feasible? What’s 
the worst case of the FIB compression solution? How to 
guarantee the correctness of trie-transformation algorithms? 
Current FIB compression algorithms just compress the rout-
ing table, regardless of the size and structure of the routing 
table. In contrast, the feasibility, effectiveness and correct-
ness of FIB compression algorithms are emphasized and 
well-studied in this paper.

(a)	 Feasibility and effectiveness According to the informa-
tion theory, it is definite that the compressed routing 
table holds the information equivalent to the original 
one. Therefore, if and only if there is redundancy in the 
original routing table, the FIB compression solution is 
feasible. Then is there redundancy in the routing table? 
What’s the premise of the existence of redundancy? 
After a profound data mining of the routing tables, we 
find that although the routing table is rapidly grow-
ing (some backbone routers have more than 400 K FIB 
entries today), the port number of a router is extremely 
limited (ranging from 3 to 80) and almost static. This 
observation intuitionally gives a positive answer to the 
existence of redundancy. Fortunately, the redundancy 
caused by the almighty gap between the prefix number 
and port number in the routing table can be quantized 
by Pigeonhole Principle. Based on this observation, we 
also deduce the bound of the worst case of the FIB 
compression solution in this paper.

(b)	 Correctness After an in-depth study, we reveal that the 
LPM rule can be well expressed by the regular expres-
sion syntax. We also find that the LPM rule can be well 
expressed by the Group3 theory. Based on these two 
advancements, two basic equivalent atomic models are 
induced—election model and representative model. We 
insist that all the trie-transformation algorithms can be 
proven by these two fundamental atomic models.

Actually, FIB compression algorithm is a tough and error-
prone task during the algorithm design and implementation. 
In order to guarantee the ultimate correctness of FIB com-
pression algorithms, we propose routing table equation test 
(RTET) to verify the equivalence of the two routing tables 
before and after compression by traversing the 32-bit IP 
address space.

Specifically, the main contributions of this paper lie in 
the following aspects.

•	 We propose a universal mathematical method based on a 
new defined Group, and apply this method to four classi-
cal FIB compression algorithms.

•	 We compute the bound of the worst case of various FIB 
compression solutions.

•	 We propose and implement routing table equation test 
(RTET) for the first time, to verify the equivalence of 
the two tries before and after binary trie transformation 
by traversing the 32-bit IP address space. At the end, we 
implement and verify four classical algorithms by RTET.

The remaining parts of the paper are organized as follows. 
Section 2 surveys the related work. Section 3 elaborates on a 
novel mathematical method which can prove the correctness 
of trie-transformation algorithms. The bound of the worst 
case of FIB compression solution is analyzed in Sect. 4. 
Section 5 applies this mathematical proof to four classical 
FIB compression algorithms. The ultimate correctness of 
FIB compression algorithm is guaranteed by RTET, which 
is illustrated in Sect. 6. Finally, we conclude this paper in 
Sect. 7.

2 � Related work

IRTF RRG (2014) and IETF GROUP (2015) have been 
working on the issues about routing scalability for years. 
Forwarding Information Base4 (FIB) compression is a local 
solution and needs no change to the existing routing proto-
cols, and the representative papers are (Draves et al. 1999; 
Cain 2002; Zhao et al. 2010; Li et al. 2011, 2013).

Richard Draves et al. (1999) proposed the famous ORTC 
algorithm, which constructs optimal routing tables. How-
ever, ORTC algorithm has not been applied to real routers, 
for the reason that it is so complicated that it consumes a lot 
of time and memory, which is not conducive to incremental 
updates. The core operations of ORTC are ‘UNION’ and 
‘AND’, and thus the correctness of these two operations is 
proven in this paper.

In Cain (2002), a patent technology proposed a compres-
sion algorithm, which is simple and fast, but its compres-
sion ratio is not high. There is no mathematical proof in 
this patent. For convenience, it is called patent algorithm 
in this paper.

Xin Zhao et  al. (2010) proposed a 4-level algorithm. 
The first two levels are plain, and cannot achieve a high 

3  Group (mathematics) (Vvedensky 2005) is a set together with a 
binary operation satisfying certain algebraic conditions.

4  FIB is also known as forwarding table, which is stored in line-cards 
to forward data packets. Each entry of FIB stores a prefix and the cor-
responding next-hop, such as 200.45.65.0/24:40. It suggests that if an 
incoming IP address matched the prefix 200.45.65.0/24 by LPM, this 
packet should be forwarded to the interface 40 (40 is also related to a 
corresponding next-hop IP address).

2  Both FIB compression and overlap elimination algorithms trans-
form the binary trie, thus they are called trie-transformation algo-
rithms in this paper.
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compression ratio. Although the third and fourth levels can 
achieve high compression ratio, they can only deal with non-
routable space cases. The non-routable packets mean those 
that should be dropped, because no next-hop could be found, 
but they are forwarded anyway (weak correctness). It is called 
roaming garbage in this paper. Our real traffic trace shows that 
the amount of traffic caused by roaming garbage could be up 
to 0.31% of the total traffic and it covers 0.38% of the whole 
IP address space. There is no mathematical proof in that paper, 
either. The 4-level algorithm consists of four transformation 
models. The first two models with strong correctness as well 
as the other two with weak correctness are proved to be right 
in this paper.

Li et al. (2011, 2013) proposed the NSFIB compression 
algorithm, which can achieve a much better compression ratio 
than ORTC and 4-level by taking advantage of multiple next 
hops, the overhead is sometimes choosing the suboptimal rout-
ing path. The author also presented several practical choices 
to build the sets of alternative next hops for the prefixes, and 
developed an optimal online algorithm with constant running 
time. NSFIB algorithm is potentially applied to multicast net-
work (Li et al. 2011).

As a forementioned, there are mainly two algorithms to 
eliminate overlap: leaf-pushing (Srinivasan and Varghese 
1999) and ONRTC (Yang et al. 2012). In Srinivasan and Var-
ghese (1999), leaf-pushing algorithm is proposed to elimi-
nate overlap. This algorithm is simple, which just pushes the 
internal nodes to leaf nodes, inevitably causing the expansion 
of routing table size. The correctness of this algorithm isn’t 
proven theoretically, either. In order to reduce the routing table 
size of leaf-pushing, ONRTC algorithm in Yang et al. (2012) 
is proposed to construct optimal non-overlap routing tables, 
achieving 71% compression ratio according to the experimen-
tal results.

There is another kind of FIB compression algorithm, and 
we call it entropy compression in this paper. Rétvári et al. 
(2013) and IRTF Routing Research Group (2014 applied the 
theory of information entropy to IP prefixes for the first time, 
and there are two successors (Rottenstreich et al. 2013; Korosi 
et al. 2014). This kind of compression algorithm transforms 
the FIB into new format other than prefixes, and thus can 
hardly work with TCAM or SRAM pipeline. The goal of this 
kind of algorithm is to approach the theory bound of informa-
tion entropy. The overhead of entropy compression is difficult 
to perform incremental update.

All these trie-transformation algorithms do not emphasize 
the mathematical analysis and proof. This motivates our work 
reported in this paper.

3 � Mathematic proof

In this section, a novel mathematical method, which can be 
used to prove the correctness of trie-transformation algo-
rithms, is proposed. Firstly, a new Group is defined, and 
its four conditions are proven. Secondly, two fundamental 
atomic models are proven to be right based on this new 
defined Group. We insist that all the trie-transformation 
algorithms can be proven by these two atomic models, and 
their applications are highlighted in Sect. 5. We insist that 
for all FIB compression algorithms, only those compressing 
the routing table by transforming the binary trie structure 
can use this proposed theory, and others cannot.

3.1 � Group definition

Prefixes are a series of bits. They can be well represented 
by regular expression syntax (http://www.regul​ar-expre​ssion​
s.info/refer​ence.html), and the symbols frequently used in 
this paper are defined below.

•	 A is a node in the trie, while (A) represents node A’s 
prefix. Solid nodes have next-hop, while hollow nodes 
have not.

•	 (AB) represents the bit string of the path between node 
A and B, while no solid nodes appear in the path.

•	 If A is an ancestor of B, then A ⊂ B.

•	 L(A) represents the prefix length of node A.
•	 P represents a trie, and (A) represents a prefix, then P(A) 

means the next-hop of prefix (A) in trie P.
•	 (Ã) represents a prefix with the same length of (A), but it 

is different from (A). P(Ã) ) means the next hop of prefix 
( ̃A ) in trie P.

•	 (A*) is a 32-bit prefix, and (A) is a part of (A*). P(A*) 
means the next hop of prefix (A*).

In mathematics, a Group (Vvedensky 2005) is a set of 
elements together with a binary composition law, which 
must satisfy four conditions: closure, associativity, identity, 
and invertibility.

Definition 1  LPM Group.
Let G be the LPM Group, and G = Z. The operation on 

LPM Group is XOR, which is illustrated as follows:

As shown in Fig. 1, the function � = �⊕ � is plotted in 
three-dimensional space.

∀x, y ∈ G

�⊕ � =

⎧⎪⎨⎪⎩

� + �, ��(� + �) = �

�, � > 0, y > 0

�����������, ����� ����

.

http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html
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Condition 1  Closure
Proof 

Therefore, LPM Group satisfies Closure.�  □

Condition 2  Associativity
Proof 

	 (1)	 If x = 0, (x⊕ y)⊕ z = y⊕ z, x⊕ (y⊕ z) = y⊕ z.

		    Therefore, 

		    Similarly, if y = 0 or z = 0, (x⊕ y)⊕ z = x⊕ (y⊕ z).

	 (2)	 x ≠ 0 and y ≠ 0 and z ≠ 0..
	(2.1)	 If x + y = 0 , in order to make (x⊕ y)⊕ z and 

x⊕ (y⊕ z) meaningful, y + z must be zero. Therefore, 

	(2.2)	 If x > 0, and y > 0

		    Therefore, LPM Group satisfies Associativity.

� □

∀x, y ∈ G, obviously, x⊕ y ∈ G.

∀x, y, z ∈ G

(x⊕ y)⊕ z = x⊕ (y⊕ z).

(x⊕ y)⊕ z = x⊕ (y⊕ z).

(x⊕ y)⊕ z = 0⊕ z = z,

x⊕ (y⊕ z) = x⊕ 0 = x = z,

∴ (x⊕ y)⊕ z = x⊕ (y⊕ z).

(x⊕ y)⊕ z = y⊕ z = z,

x⊕ (y⊕ z) = x⊕ z = z.

∴ (x⊕ y)⊕ z = x⊕ (y⊕ z).

Condition 3  Identity
Proof 

Therefore, LPM Group satisfies Identity.�  □

Condition 4  Invertibility
Proof 

Therefore, − x is the inverse of x.
According to the above four conditions, it can be con-

cluded that G is a Group.
LPM Group is used to describe the matching process and 

results of prefixes in this paper, and thus we define the next-
hop and induce Theorem 1 in the following. � □

Definition 2  P(R)
∀IP address R, R = [0,1]{32}, the match result of each 

bit is Si for IPv4, i = 1, 2,… , 32 ; for IPv6, i = 1, 2,… , 128 ; 
According to the longest prefix matching rule, the next-hop 
of R is P(R) = S1 ⊕ S2 ⊕ S3 ⊕… S32 = ⊕32

i=1
Si.

Theorem 1  If the match results of every section of two pre-
fixes are same, then the next-hops of the two prefixes are 
same.
Proof 

Suppose P1k = ⊕k
i=tx+1

Si,P2k = ⊕k
i=tx+1

Vi , then

Therefore, P1(R) = P2(R).
This theorem can be used to prove the equivalence of the 

next-hop of two tries section by section with regard to one 
IP address.� □

Theorem 2  Decision Theorem
The necessary and sufficient condition that two tries are 

equivalent is that the next-hops are equal in the two tries for 
any IP addresses by LPM rule.

Obviously, this Decision Theorem naturally holds. 
Combining Theorem  1 and Theorem  2, we can prove 
the equivalence of two tries (or two models) section by 

0⊕ y =

�
0, y = 0

y, y > 0
⇒ 0⊕ y = y

y⊕ 0 =

�
0, y = 0

y, y > 0
⇒ y⊕ 0 = y

⎫⎪⎬⎪⎭
⇒ 0 is the identity.

∀x ∈ G, x⊕ (−x) = (−x)⊕ x = 0.

P1(R) = ⊕32

i=1
S
i
= (⊕t1

i=1
S
i
)⊕ (⊕t2

i=t1+1
S
i
)⊕ (⊕t3

i=t2+1
S
i
)⊕…⊕ (⊕32

i=tn+1
S
i
)

P2(R) = ⊕32

i=1
V
i
= (⊕t1

i=1
V
i
)⊕ (⊕t2

i=t1+1
V
i
)⊕ (⊕t3

i=t2+1
V
i
)⊕…⊕ (⊕32

i=tn+1
V
i
).

P1(R) = P1t1 ⊕ P1t2 ⊕…⊕ P132

P2(R) = P2t1 ⊕ P2t2 ⊕…⊕ P232

P1k = P2k, k = t1, t2,… , 32.

Fig. 1   LPM group in three-dimensional space
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section. Above all, two basic models which are used to 
prove other models in this paper are illustrated below.

3.2 � An example of election and representative 
model

As shown in Fig. 2, each solid node represents a prefix, 
owning a next-hop, while the hollow nodes suggest that 
there is no prefix in this node, and we say their next-hops 
are 0. The next-hop is represented by the shape of the 
solid node. For convenience, four next-hops are intro-
duced: solid ellipse, solid rectangle, solid triangle, and 
solid diamond, representing the next-hop of 1, 2, 3, and 4, 
respectively. For example,  indicates its next-hop is 2, 
while  implies its next-hop is 0.

In essence, all the trie-transformation algorithms fol-
low a process that is similar to the election process of the 
democratic society. Each node has a next-hop, while each 
candidate has a vote (Dai et al. 2016a, b, 2018; Zhu et al. 
2017). Actually, any candidate’s next-hop can be selected 
as representative, resulting in different compression ratios. 
All the nodes which own the same next-hop with the rep-
resentative can be deleted.

To make a clearer picture of election and representative 
model, an intuitive example is given in Fig. 2. Figure 2a 
is the original trie, Fig. 2b is the trie after election, and 
Fig. 2c is the trie after representative.

Election Nodes A, B, C, and D are four ‘candidates’ nodes, 
participating in ‘election’. Obviously, hop 2 (rectangle B 
and D) should be elected as ‘representative’, and thus the 
next-hop of node E is set to 2.

Representative Node E executes its right of representative: 
keeping its voters silent, i.e., deleting its voters (node B 
and D).

3.3 � Election and representative models

We insist that all the trie-transformation algorithms can 
be proven by two basic transformation models: election 
model and representative model.

3.3.1 � Election model

Election model Two or more nodes elect their common 
ancestor node, and no solid node appears in the path from 
the candidate nodes to the common ancestor node. Any can-
didates can be elected as a representative, resulting in differ-
ent compression ratios.

Election models can work on both binary trie and multi-
bit trie. As shown in Fig. 3, the next-hop of Node Xi is Ni, 
the count of Ni is Ci. These candidate nodes must satisfy the 
following constraints.

•	 Node Xi is the elected representative, and it can own sub-
tree.

•	 A ⊂ Xi, i = 1, 2, 3,… , n.

•	 There is no solid node in the path between Xi and A.
•	 There is no missing node.

Election result If such t exists: ∀j! = t, Cj ≤ Ct holds, then 
Xt is the elected representative. If such t does not exist, elec-
tion fails. Then the common ancestor’s next-hop is set to 
NULL, and participates in the next round election. In this 
way, an optimal compression ratio can be achieved.

Proof  ∀IP address R, obviously, L(R) = K,R = [0, n]{K}. 
Suppose R = [0, n]{L(A)}[0, n][0, n]{K − L(A) − 1}.

Step 1 Match [0, 1] {L(A)}

(a) (b) (c)

Fig. 2   An example of election and representative model (a) (b)

Fig. 3   Election model
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Step 2 Match [0, 1]

Step 3 Match [0, 1]{K − L(A) − 1}

According to Steps 1, 2, and 3,

∵Ps2 ≠ 0 , according to the associative law,

According to Theorems 1 and 2, P1 ⇔ P2.
If P2 is the election model of P1, we say P2 = Ele(P1) . 

Actually, any node can be elected as a representative, 

[0, 1]{L(A)} = (A) ⇒

�
P1([0, 1]{L(A)}) = P1(A)

P2([0, 1]{L(A)}) = P2(A)

[0, 1]{L(A)} ≠ (A) ⇒

�
P1([0, 1]{L(A)}) = P1(Ã)

P2([0, 1]{L(A)}) = P2(Ã)

P1(A) = P2(A)

P1(Ã) = P2(Ã)

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⇒

�
P1([0, 1]{L(A)}) = P1s1
P2([0, 1]{L(A)}) = P2s1

.

[0, 1] = i, i = 1, 2, 3,… , n ⇒

�
P1([0, 1]) = P1

�
Xi

�
P2([0, 1]) = P2

�
Xi

�
P1(Xi) = P2(Xi)

⎫
⎪⎬⎪⎭

⇒ P1([0, 1]) = P2([0, 1]) = Ps2 ≠ 0

.

[0, 1] = i, i = 1, 2,… , n

⇒

�
P1([0, n]{K − L(A) − 1}) = P1

�
Xi ∗

�
P2([0, n]{K − L(A) − 1}) = P2

�
Xi ∗

�
P1

�
Xi ∗

�
= P2

�
Xi ∗

�

⎫⎪⎬⎪⎭
⇒ P1([0, n]{K − L(A) − 1}) = P2([0, n]{K − L(A) − 1})

= Ps3

P1(R) = P1([0, n]{L(A)}[0, n][0, n]{K − L(A) − 1})

= P1([0, n]{L(A)})⊕ P1([0, n])⊕ P1([0, n]{K − L(A) − 1})

= P1s1 ⊕ Ps2 ⊕ Ps3,

P2(R) = P2([0, n]{L(A)}[0, n][0, n]{K − L(A) − 1})

= P2([0, n]{L(A)})⊕ P2([0, n])⊕ P2([0, n]{K − L(A) − 1})

= P2s1 ⊕ Ps2 ⊕ Ps3,

P1(R) = P1
s1
⊕ P

s2
⊕ P

s3
=
(
P1

s1
⊕ P

s2

)
⊕ P

s3
= P

s2
⊕ P

s3

P2(R) = P2
s1
⊕ P

s2
⊕ P

s3
=
(
P2

s1
⊕ P

s2

)
⊕ P

s3
= P

s2
⊕ P

s3

∴P1(R) = P2(R).

resulting in different compression ratios, and the proof 
method is similar.

3.3.2 � Representative model

Representative: after a successful election, the common 
ancestor will exercise the right of representative immedi-
ately: set the next-hop of its voters (those candidates which 
own the same next-hop with representative) to 0. As shown 
in Fig. 4, the next-hop of A and B is same, and A is the near-
est ancestor of B. In this case, B’s next-hop is set to zero.

Proof  ∀IP address R, obviously L(R) = 32, R = [0, 1]{32}. 
Suppose R = [0, 1]{L(A)}[0, 1]{L(AB)}[0, 1]{32 − L(B)},

Step 1 Match [0, 1]{L(A)}

Step 2 Match [0, 1]{L(AB)}

Step 3 Match [0, 1]{32 − L(B)}

[0, 1]{L(A)} = (A) ⇒

�
P1([0, 1]{L(A)}) = P1(A)

P2([0, 1]{L(A)}) = P2(A)

[0, 1]{L(A)} ≠ (A) ⇒

�
P1([0, 1]{L(A)}) = P1(Ã)

P2([0, 1]{L(A)}) = P2(Ã)

P1(A) = P2(A)

P1(Ã) = P2(ÃA)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

⇒ P1([0, 1]{L(A)}) = P2([0, 1]{L(A)}) = Ps1

.

[0, 1]{L(AB)} = (AB) ⇒

�
P1([0, 1]{L(AB)}) = P1(B)

P2([0, 1]{L(AB)}) = P2(A)

[0, 1]{L(AB)} ≠ (AB) ⇒

�
P1([0, 1]{L(AB)}) = P1(B̃)

P2([0, 1]{L(AB)}) = P2(B̃)

P1(B) = P2(A)

P1(B̃) = P2(B̃)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

⇒ P1([0, 1]{L(AB)}) = P2([0, 1]{L(AB)}) = Ps2

.

(a) (b) (c)

Fig. 4   Representative model
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According to Steps 1, 2 and 3, Theorems 1 and 2, we 
can get P1(R) = P2(R) . Therefore, ∀R, P1(R) = P2(R) holds 
according to Theorem 2. ∴P1 ⇔ P2.� □

If P2 is the representative model of P1, we say 
P2 = Rep(P1) . We insist that all models can be proven by 
the combination of election model and representative model.

4 � The worst case of FIB compression 
solution

In this section, the bound of the worst case of FIB compres-
sion solution is computed, so as to prove the feasibility and 
effectiveness of FIB compression algorithms.

4.1 � Bound of the worst case for full IP address space

4.1.1 � Pigeonhole principle

In mathematics, the Pigeonhole Principle states that if n + 1 
objects are distributed into n boxes, then at least one box 
contains two or more of the objects (Brualdi 2009). This is 
a simple but very useful principle. For example, if there are 
five people from four countries, there are at least two people 
from the same country.

4.1.2 � The worst case for full IP address space5

For IPV4, the address space is 232. Suppose there are 31 
ports and 232 prefixes with the length of 32 (full IP address 
space) in a routing table. At level 32, every 32 nodes elect 
their common ancestor. At least two ports are the same 
according to the Pigeonhole Principle. Therefore, at least 
two nodes of 32 nodes can be compressed into one, and 
thus at least 232∕32 = 227 nodes are reduced. At level 27 
of the trie, there are 227 nodes. Similarly, 32 nodes select 
their common ancestor. According to the Pigeonhole Prin-
ciple, at least two nodes can be compressed into one, and 
227∕32 = 222 nodes are reduced. Therefore, the number of 
left nodes is at most

P1([0, 1]{32 − L(B)}) = P1(B ∗)

P2([0, 1]{32 − L(B)}) = P2(B ∗)

P1(B ∗) = P2(B ∗)

⎫
⎪⎬⎪⎭

⇒ P1([0, 1]{32 − L(B)}) = P2([0, 1]{32 − L(B)}) = Ps3

.

This worst case exists—if the preorder traverse results are 
Ni (i = 1, 2, 3…), and the next-hop of Ni is represented by 
P(Ni), which satisfies:

In this case, the number of compressed routing table by 
optimal algorithm is R in Eq. (1).

4.2 � The worst case for complete binary trie

From above, we can compute the bound of the worst case of 
FIB compression ratio of Full IP Address Space. However, 
this is not enough to evaluate the FIB compression ratio in 
general cases. A more aggressive and general conclusion 
needs to be drawn.

In order to follow the above method, the trie must be a 
complete binary trie. Therefore, the actual binary trie used 
to store routing table should be equally transformed into 
a complete trie firstly. Fortunately, there are already two 
algorithms can construct an equivalent complete trie: Leaf-
pushing (Srinivasan and Varghese 1999) and ONRTC (Yang 
et al. 2012) algorithm. These two algorithms are originally 
to eliminate overlap. Fortunately, the trie after overlap elimi-
nation is a complete trie which is equivalent to the original 
trie for packet forwarding.

In order to evaluate the performance of ONRTC and 
Leaf-pushing algorithm in an objective and complete way, 
the RIB packets at 8:00 on August 8 in 2011 from 12 routers 
at http://www.ripe.net (RIPE Network Coordination Centre) 
are selected. The results of these two algorithms are shown 
in Fig. 5. The x-axis of Fig. 5 means the router ID of the 
12 routers, and the y-axis means the FIB size of raw FIB, 

(1)R = 232 −
232

25×1
−

232

25×2
−

232

25×3
−⋯ −

232

25×6
.

P(Ni) = i mod(32).

Fig. 5   FIB size comparison using ONRTC and leaf-pushing

5  In this paper, Full IP Address Space refers to the binary trie whose 
internal nodes are all pushed to level 32.

http://www.ripe.net
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processed by Leaf-pushing and ONRTC. It can be observed 
that ONRTC can achieve a much smaller routing table size 
(Xiao et al. 2018a, b) than Leaf-pushing. ONRTC constructs 
non-overlap trie, and has been proven to be optimal. Experi-
mental results show that ONRTC can achieve 71% compres-
sion ratio in average.

Theorem 3  As long as the port number n is smaller than 
M (the prefix number of routing table after compressed by 
ONRTC), FIB compression solution is feasible, regardless 
of the distribution of nodes or ports.

Proof  According to the precondition, n < M, as well as the 
Pigeonhole Principle, at least two nodes in the trie after 
overlap elimination own the same next-hop. Therefore, at 
least two nodes can be compressed into one. In other words, 
FIB compression solution works. In conclusion, FIB com-
pression solution is feasible, as long as n < M.

Theorem 4  To be general, suppose the original routing table 
size is N. After overlap elimination, the number of leaf nodes 
is M, suppose M = 2m and the port number is n. Suppose 
n = 2k − b, 0 ≤ b < 2k − 2k−1, and m = ck + s, 0 ≤ s < k. 
Then

This equation suggests that given the number of routing 
table size N (or M ≈ 0.71N ) and the port number, FIB com-
pression solution can achieve a result of R. The mathemati-
cal derivation process is similar with Eq. (1).

To be specific, for example, the size of routing table 
of RRC 07, which is located in Amsterdam, is 379,685 
at 8:00 on August 8 in 2011. After overlap elimination 
using ONRTC, the size is reduced to 266,338. It means 
that N = 379,685 and M = 266,338, thus m ≈ 18.02 . The 
next-hop number of RRC 07 is 14, indicating n = 14. Fur-
thermore, according to n = 2k − b, 0 ≤ b < 2k − 2k−1 and 
m = ck + s, 0 ≤ s < k , We can get k = 4, c = 4, and finally,

(2)R = 2m −
2m

2k×1
−

2m

2k×2
−

2m

2k×3
−⋯ −

2m

2k×c
.

This result suggests that FIB algorithm can achieve a 
compressed routing table size of 248,582 for RRC 07 regard-
less of the distribution of nodes and next-hop.

5 � Application to FIB compression 
algorithms

We insist that our group theory can be used to prove the 
correctness of most FIB compression algorithms. To verify 
this claim, we apply our group theory to four classic FIB 
compression algorithms: Leaf-pushing algorithm, ORTC 
algorithm, patent algorithm, and 4-level algorithm in this 
section as follows.

5.1 � Application to leaf‑pushing algorithm

In Srinivasan and Varghese (1999), leaf-pushing algorithm 
is proposed to eliminate overlap based on binary trie, but 
isn’t described by models. We map the principle Leaf-push-
ing algorithm into the following model (see Fig. 6). P1 is 
the original trie, while P2 is the processed trie using Leaf-
pushing, and PP is an auxiliary trie.

Proof

� □

R = 2m −
2m

2k×1
−

2m

2k×2
−

2m

2k×3
−⋯ −

2m

2k×c

= 266338 ∗
(
1 −

1

24
−

1

24×2
−

1

24×3
−

1

24×4

)

≈ 248582.

∵P1 = Rep(PP), ∴P1 ⇔ PP;

∵PP = Ele(P2), ∴PP ⇔ P2;

∴P1 ⇔ P2.

(a) (b) (c)

Fig. 6   The model of Leaf-pushing
(a) (b) (c) (d)

Fig. 7   The model of ‘UNION’ operation
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5.2 � Application to ORTC algorithm

ORTC algorithm consists of three Passes. The first Pass 1 
is the same as the Leaf-pushing algorithm. The third pass 
is to delete redundant next hops. The core operations of the 
ORTC algorithm are the ‘UNION’ and ‘AND’ operations 
during the Pass 2. Therefore, the correctness of ‘UNION’ 
and ‘AND’ is proven in this paper.

Specifically, given two next hop set A and B, if A and 
B have no next section, then A#B is the union of A and B; 
otherwise, A#B is the intersection of A and B.

5.2.1 � Union (∪)

Proof  As shown in Fig. 7, P1 is the original trie, while P2 
is the processed trie using ‘UNION’. PA and PB are two 
auxiliary tries:

A#B =

{
A ∪ B, if A ∩ B ≠ �

A ∪ B, if A ∩ B = �
.

∵PA = Ele(P1), ∴PA ⇔ P1;

∵PB = Ele(P1), ∴PB ⇔ P1;

∴P1 ⇔ PA or PB ⇔ P2;

∴P1 ⇔ P2.

5.2.2 � And (‘∩’)

Proof  As shown in Fig. 8, P1 is the original trie, while P2 is 
the processed trie using ‘AND’:

5.3 � Application to patent algorithm

In Cain (2002), the patent algorithm is proposed. The origi-
nal implementation of this algorithm uses character match-
ing, which is a waste of time. We map the principle of this 
algorithm into the following model (see Fig. 9), which 
achieves the fastest compression speed among all compres-
sion algorithms.

Proof  As shown in Fig. 9, P1 is the original trie, while P2 
is the compression result using patent algorithm, and PP is 
an auxiliary trie:

∵P2 = Ele(P1)

∴P1 ⇔ P2.

(a) (b)

Fig. 8   The model of ‘AND’ operation

(a) (b) (c)

Fig. 9   The model of patent algorithm

(a) (b)

Fig. 10   The level 1 model of 4-level algorithm

(a) (b) (c)

Fig. 11   The level 3 model of 4-level algorithm

(a) (b) (c)

Fig. 12   The level 4 model of 4-level algorithm
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5.4 � Application to 4‑level Algorithm

The 4-level algorithm consists of four transformation mod-
els. In order to maintain consistence, the four models are 
modified to Figs. 10, 11 and 12, but the principle and com-
pression results do not change.

5.4.1 � Level 1

Proof  As shown in Fig. 10, P1 is the original trie, while P2 
is the compression result using Level 1. This compression 
means that when a prefix node e has the same next hop as its 
parent or nearest ancestor prefix nodes, node e can be deleted 
or set to be empty.

5.4.2 � Level 2

The model of Level 2 is exactly the same as the patent 
model, and thus the mathematical proof is omitted.

5.4.3 � Level 3

Proof  As shown in Fig. 11, P1 is the original trie, while P2 
is the compressed result using level 3, and PP is an auxil-
iary trie. Note that those nodes (such as B and C) originally 
have no next hop, and when they are matched, the pack-
ets are usually dropped (Li et al. 2018a, b). To improve the 
compression ratio, this level compression lets these nodes 
inherit the next hop of their nearest ancestor nodes. Because 
in this way, the forwarding behavior of routers is changed, 
thus such modification is called weak correctness. In the 
model of Fig. 11, the next-hop of node B and C is changed 
from 0 to 1. It is regarded as non-routable space by 4-level 
algorithm. If node B and C are not taken into consideration, 
indicating this only satisfies weak correctness, then

This proves that level 3 compression satisfies the weak 
correctness.

∵PP = Ele(P1), ∴PP ⇔ P1;

∵P2 = Rep(PP), ∴P2 ⇔ PP;

∴P1 ⇔ P2.

∵P2 = Rep(P1),

∴P1 ⇔ P2.

∵PP = Ele(P1), ∴PP ⇔ P1;

∵P2 = Rep(PP), ∴P2 ⇔ PP;

∴P1 ⇔ P2.

5.4.4 � Level 4

Proof  As shown in Fig. 12, P1 is the original trie, while P2 
is the compressed result using level 4, and PP is an auxiliary 
trie. This level compression is similar to level 3 compres-
sion. Obviously, the next-hop of node C is changed from 0 to 
1. It is regarded as non-routable space by 4-level algorithm. 
If node C is not taken into consideration, indicating this only 
satisfies weak correctness, then

This proves that level 4 compression satisfies the weak 
correctness. For 4-level algorithm, if the root node is not 
NULL, i.e., the next-hop of the root node is nonzero, then 
the Level 3 and Level 4 models achieve no compression. The 
root node prefix stands for default routing, and thus if and 
only if there is no default routing in a routing table, Levels 
3 and 4 work.

6 � Routing table equation test

The mathematical proof method has been elaborated above, 
but there might be flaws in the process of mathematical deri-
vation and coding. How to guarantee the ultimate correct-
ness of these algorithms? The ultimate correctness refers to 
that for any IP address, the compressed routing table tells the 
same next-hop with the original table. Therefore, we propose 
routing table equation test (RTET) to judge the equivalence 
of the two routing tables. RTET firstly builds two tries, then 
traverses 32-bit IP address space, and compares the next-hop 
of two tries by using the same IP address. If and only if all 
are equal, the two routing tables are equivalent. Otherwise, 
RTET stops and tells the prefix and the different next-hop of 
the two tries. One comparison of two routing tables by using 
RTET takes about 16 min. The algorithms (Draves et al. 
1999; Cain 2002; Zhao et al. 2010; Li et al. 2011) are all 
implemented and verified by RTET, using the routing tables 
downloaded from RIPE Network Coordination Centre.

7 � Conclusions

FIB compression has been a hot topic of scientific research 
for years. There are many FIB compression and overlap 
elimination algorithms, but there isn’t a formal and universal 
mathematical method to guarantee their correctness. There-
fore, we firstly propose a universal mathematical method 
for trie-transformation algorithms based on a new defined 

∵PP = Ele(P1), ∴PP ⇔ P1;

∵P2 = Rep(PP), ∴P2 ⇔ PP;

∴P1 ⇔ P2.
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Group. Secondly, this mathematical proof is applied to sev-
eral classical trie-transformation algorithms. Furthermore, 
the following conclusions can be drawn.

•	 Leaf-pushing algorithm can totally eliminate overlap, but 
inevitably causing the increase of routing table size.

•	 Patent algorithm only compresses the two sibling nodes 
which own the same next-hop, and thus the compression 
efficiency is less than ORTC and 4-level algorithm.

•	 4-level algorithm can achieve a good compression, if and 
only if the root node is NULL.

•	 If the NULL root node is considered, ORTC algorithm 
can achieve a better compression.
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