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ABSTRACT
Data stream processing is critical in streaming databases. Exist-

ing works pay a lot of attention to frequent items. To improve

the accuracy for frequent items, existing solutions focus on accu-

rately filtering infrequent items. While these solutions are effective,

they keep track of all infrequent items and require multiple hash

computations and memory accesses. This increases memory and

time overhead. To reduce this overhead, we propose LadderFilter,

which can discard infrequent items efficiently in terms of both mem-

ory and time. To achieve memory efficiency, LadderFilter discards

(approximately) infrequent items using multiple LRU queues. To

achieve time efficiency, we leverage SIMD instructions to imple-

ment LRU policy without timestamps. We apply LadderFilter to four

types of sketches. Our experimental results show that LadderFilter

improves the accuracy by up to 60.6×, and the throughput by up to

1.37×, and can maintain high accuracy with small memory usage.

All related code is provided open-source at Github.

1 INTRODUCTION
Data stream processing is very important in a variety of areas in

data science, such as intrusion detection [1, 2], recommendation

systems [3, 4], etc. [5–7]. Data streams are usually highly skewed [8–

10], i.e., a few items are very popular (called frequent items), while

the vast majority of items are unpopular (called infrequent items).

The research community so far has paid more attention to the

frequent items in the data stream. Many important measurement

tasks focus on frequent items, including finding top-𝑘 items [11, 12],

finding heavy changes [13, 14], finding super-spreaders [15, 16], etc.
[17–19]. In these tasks, the numerous infrequent items consume too

much memory, which degrades the accuracy. Sketch, as a kind of

compact data structure with small error, is promising in data stream

processing [8–10, 20, 21]. Its speed is constant: each insertion needs

several hash computations and memory accesses. To satisfy the

tasks favoring frequent items, a widely-acknowledged approach is

to filter infrequent items [10, 22].

Ideally, one would want to filter all infrequent items without

error. However, initially, every item is infrequent, and could become

frequent after a long enough period of time. The large volume and

high item arrival rate of data streams make it impractical to keep

the frequency of all items without error, with limited memory and

time. Therefore, our goal is to approximately filter infrequent items

while satisfying the following two requirements.

• Memory efficiency: A method consists in keeping approximate

frequency of all items. However, this method is still memory

inefficient because of the numerous infrequent items. In this

paper, we manage to discard infrequent items with small error.

• Time Efficiency: Achieving time efficiency is possible through

two types of methods. 1) We can reduce the number of hash com-

putations and memory accesses. These are the two bottlenecks

for the processing speed [23, 24]. 2) To further accelerate the

processing, we can leverage the full use of the new features of

CPU instructions or rely on hardware acceleration.

The most directly related works in filtering infrequent items are

ColdFilter [10] and LogLogFilter [22]. ColdFilter [10] uses a 2-layer

CU sketch
1
[8] to record the frequency of each item, and sets a

threshold to separate frequent items from infrequent items. When

inserting an item, ColdFilter first inserts it into the CU sketch and

queries its frequency. The items whose queried frequency exceeds a

pre-defined threshold will be reported as frequent items. To enlarge

the filter range of ColdFilter, LogLogFilter [22] replaces the CU

sketch with a LogLog structure [25].

ColdFilter keeps the frequency of all infrequent items, which

comes with unnecessary memory overhead. ColdFilter also requires

multiple hash computations and memory accesses (e.g., 6 or more),

resulting in considerable time overhead. LogLogFilter inherits the

previously mentioned limitations of ColdFilter. To the best of our

knowledge, no existing solution simultaneously meets the above

two requirements.
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Figure 1: Ratio of un-
promising items becoming
frequent. Different lines
represent different thresh-
olds of frequent items.

To accurately filter infre-

quent items with small mem-

ory and time overhead, we de-

sign a new probabilistic algo-

rithm, LadderFilter. The key

technique of LadderFilter is to

discard “unpromising” items

in time, based on our obser-

vation about which items are

not likely to become popular.

We also propose a SIMD-based

method to optimize LadderFil-

ter.

To better illustrate our ob-

servation, we first define ac-

tive, inactive, promising, and

unpromising items. If an item does not appear in the recent time

window, we call it an inactive item; otherwise, we call it an active
item. When an active item becomes inactive, 1) if its frequency is

small (e.g., < 5), we call it an unpromising item; 2) if its frequency

is moderate (e.g., 5 ∼ 30), we call it a promising item. Note that we

judge whether an item is promising/unpromising according to its

1
A CU sketch is a classic counter-based sketch (see more details in § 3.1).
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frequency only when it becomes inactive.
2
We study a number

of real datasets, and observe that an item that is unpromising for

a long time rarely becomes frequent afterwards. Figure 1 shows

the results on IP trace dataset (see § 4.1) [26]. Less than 6% of the

unpromising items become frequent items. In detail, we consider

an inactive item with frequency less than 5 as an unpromising item.

When the threshold of frequent item is 256, there are about 10.1k

frequent items. When the sliding window size is 10k items, there

are about 200k items that are unpromising till the end of the stream.

Among them, only 262 (0.1%) unpromising items grow into frequent

items. When the sliding window size exceeds 100k, the number

decreases to 0.

Filter

Queue 1

Queue 2

Queue 3

Dedicated sketch for frequent itemsFrequent item: 
Insert to sketch

Promising item:
Insert to next queue

Unpromising item:
Discard

e

Figure 2: LadderFilter workflow.
Based on the above observation, we design LadderFilter, whose

key technique is to discard the unpromising items in LadderFilter
as early as possible. The data structure of LadderFilter is similar

to a ladder consisting of multiple LRU queues
3
(see Figure 2). For

queue 𝑖 , it is associated with a low threshold 𝑇 𝑙𝑜𝑤
𝑖

and a common

high threshold 𝑇ℎ𝑖𝑔ℎ
. When an item is dequeued, if its frequency

exceeds 𝑇ℎ𝑖𝑔ℎ
, we consider it as a frequent item; if its frequency is

lower than𝑇 𝑙𝑜𝑤
𝑖

, we consider it as an unpromising item; otherwise,

we consider it as a promising item. Frequent items are sent to a

dedicated sketch designed to record frequent items; unpromising

items are simply discarded; promising items are inserted to the next

queue. In this way, we give the promising items another chance

to become frequent items. If the item grows fast in the next queue

and exceeds 𝑇ℎ𝑖𝑔ℎ
, it will become a frequent item; if it grows too

slowly (less than 𝑇 𝑙𝑜𝑤
𝑖+1 ), it will be considered as an unpromising

item and discarded; otherwise, it is still a promising item and will

enter queue 𝑖 + 2.
To achieve time efficiency, we propose an optimized version of

LadderFilter, using twomethods. The first method is to approximate

LRU queues with bucket arrays. Each LRU queue is replaced by

an LRU bucket array associated with a hash function, which maps

each item to one bucket (see § 2.2). The second method is SIMD
Acceleration. We leverage SIMD instructions in two ways. First, we

accelerate the ID match, similarly to previous work [9, 27]. Second,

we use SIMD instructions to sort the items. Through only two SIMD

instructions, we keep items in time order, and we implement the

LRU policy without recording any timestamp. To the best of our

knowledge, we are the first work to sort items in the context of

sketching algorithms.

2Example: Suppose that item 𝑒 arrives 30 times continuously, and then stops for a

relatively long time, which means it becomes inactive. Because 30 is moderate, we

recognize 𝑒 as a promising item.

3
The reason for using the LRU policy rather than LFU is that LFU is time-agnostic (see

more details in § 2.1).

We apply LadderFilter to four kinds of widely used sketches:

the CU sketch [8], SpaceSaving [11], FlowRadar [13], and Wav-

ingSketch [16]. Our experimental results show that LadderFilter

improves the accuracy by up to 60.6×, and the throughput by up to

1.37×. Also, LadderFilter can maintain high accuracy even with ex-

tremely limitedmemory, while the accuracy of prior works degrades

significantly as memory shrinks. All related code is open-sourced

at Github
4
.

Key Contributions:
• We propose a basic version of LadderFilter to discard infrequent

items with small memory overhead, based on the observation

that unpromising items rarely grow into frequent items.

• We propose an optimized version to accelerate LadderFilter. We

leverage SIMD instructions to implement the LRU policy.

• We implement LadderFilter and apply it to four kinds of fre-

quently used sketches on four typical data stream tasks. The

experimental results show that LadderFilter improves the accu-

racy and throughput by up to 60.6× and 1.37×, respectively, and
can maintain high accuracy even with limited memory.

2 LADDER FILTER
In this section, we present the data structure and operation of Lad-

derFilter. We first present the basic version of LadderFilter which

achieves memory efficiency. We then present an optimized version

of LadderFilter to enhance its time efficiency. After that, we present

a SIMD-based method to accelerate LadderFilter.

2.1 Basic Version

<e3,8,t2> 𝒬𝒬1

≥ T1^low = 8

e6

<e5,3,t5>

…

𝒬𝒬2
≤ T2^low = 20

…

… …𝒬𝒬4

𝒬𝒬3

<e2,10,t3>

<e4,75,t4><e1,16,t1>

Figure 3: An example of the basic version of LadderFilter.

Data structure: As shown in Figure 3, LadderFilter consists of

𝜆 LRU queues. The 𝑖𝑡ℎ queue Q𝑖 consists of 𝑙𝑖 cells. Each cell

records a distinct item with three fields: 𝐼𝐷 , 𝑓 𝑟𝑒𝑞, and 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ,

representing the ID, frequency, and the last arrival timestamp

of the item, respectively. Each queue is associated with a low

threshold 𝑇 𝑙𝑜𝑤
𝑖

and a common high threshold 𝑇ℎ𝑖𝑔ℎ
. All high

thresholds are equal, and the low thresholds are increasing, i.e.,
𝑇 𝑙𝑜𝑤
1

< 𝑇 𝑙𝑜𝑤
2

< · · · < 𝑇 𝑙𝑜𝑤
𝜆−1 < 𝑇 𝑙𝑜𝑤

𝜆
= 𝑇ℎ𝑖𝑔ℎ

.

Insertion: There are two cases when inserting an item 𝑒 .

Case 1: If 𝑒 has already been recorded in one of the queues, Lad-

derFilter increments its frequency by 1, and updates its last arrival

timestamp to the current timestamp. If its frequency exceeds the

high threshold 𝑇ℎ𝑖𝑔ℎ
, LadderFilter reports it as a frequent item.

Case 2: If 𝑒 is not recorded in LadderFilter, we enqueue it to the first
LRU queue Q1. If Q1 is not full, LadderFilter enqueues 𝑒 to Q1 with
frequency 1 and the current timestamp. Otherwise, LadderFilter

4
https://github.com/LadderFilterCode/LadderFilter
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dequeues the least recent item 𝑒𝐿𝑅𝑈 from Q1, and enqueues 𝑒 to

Q1. If the frequency of 𝑒𝐿𝑅𝑈 exceeds the low threshold 𝑇 𝑙𝑜𝑤
𝑖

, we

consider 𝑒𝐿𝑅𝑈 as a promising item, and enqueue it to the next queue

Q2. The enqueueing process is the same as for Q1, except that the
last queue Q𝜆 will discard the least recent item instead of trying to

enqueue it to another queue.

Algorithm 1: Insertion of LadderFilter.

Input: Item 𝑒

1 Function Enqueue(Q𝑖 , 𝑒 , 𝑓 𝑟𝑒𝑞, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝):
2 if 𝑄𝑖 is full then
3 𝑒𝐿𝑅𝑈 ← the least recent item in Q𝑖
4 if 𝑖 < 𝜆 and Q𝑖 [𝑒𝐿𝑅𝑈 ] .𝑓 𝑟𝑒𝑞 ⩾ 𝑇 𝑙𝑜𝑤

𝑖
then

5 Enqueue(Q𝑖+1, 𝑒𝐿𝑅𝑈 , Q𝑖 [𝑒𝐿𝑅𝑈 ] .𝑓 𝑟𝑒𝑞,
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

6 dequeue item 𝑒𝐿𝑅𝑈 from Q𝑖
7 enqueue item < 𝑒, 𝑓 𝑟𝑒𝑞, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 > to Q𝑖
8

9 for 𝑖 ∈ [1, 𝑘] do
10 if 𝑒 ∈ Q𝑖 then
11 Q𝑖 [𝑒] .𝑓 𝑟𝑒𝑞 ← Q𝑖 [𝑒] .𝑓 𝑟𝑒𝑞 + 1
12 Q𝑖 [𝑒] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

13 if Q𝑖 [𝑒] .𝑓 𝑟𝑒𝑞 ⩾ 𝑇ℎ𝑖𝑔ℎ then
14 report 𝑒 as a frequent item

15 return

16 Enqueue(Q1, 𝑒 , 1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

Example 1: Figure 3 shows an example of the basic version of

LadderFilter. The LadderFilter consists of 4 LRU queues Q1, Q2,
Q3, and Q4. Q1 is associated with a low threshold 𝑇 𝑙𝑜𝑤

1
= 8, Q2 is

associated with a low threshold 𝑇 𝑙𝑜𝑤
2

= 20, and Q3 is associated
with a low threshold 𝑇 𝑙𝑜𝑤

3
. All queues are associated with a high

threshold 𝑇ℎ𝑖𝑔ℎ
. Suppose we insert 𝑒6 at time 𝑡7. We find that 𝑒6 is

not recorded in LadderFilter, and we enqueue it to the first queue

Q1. Q1 is full, so we dequeue the least recent item 𝑒3 from Q1, and
record < 𝑒6, 1, 𝑡7 > in the cell. Then we compare the frequency

of 𝑒3 and Q1’s low threshold 𝑇 𝑙𝑜𝑤
1

. The frequency 8 exceeds the

threshold 8. Therefore, we enqueue 𝑒3 to Q2 with frequency 8 and

timestamp 𝑡7. Q2 is also full, so we dequeue the least recent item

𝑒1, and record < 𝑒3, 8, 𝑡7 > in the cell. 𝑒1’s frequency 16 does not

exceed 𝑇 𝑙𝑜𝑤
2

, so we discard 𝑒1.

Discussions on replacement policies: We choose to use the

LRU policy. By using the LRU policy, we can distinguish between

active and inactive items. By recording frequency, we can further

distinguish between promising and unpromising items, and discard

the unpromising items. We do not use the LFU policy, because LFU

is time-agnostic, and thus we cannot distinguish promising items

and unpromising items without time information. Another possible

policy is LRFU. LRFU takes into account both arrival time and

frequency. However, LRFU requires more parameters and different

optimization strategies. We leave LRFU for future work.

2.2 Optimized Version
Rationale: There are mainly two methods to implement LRU

queues.

• Memory-oriented method: Using no additional data structure.

When looking for an item, we scan the whole queue. However,

the time complexity is O(queue len).

• Time-oriented method: Using a hash table to locate the incom-

ing items and a bidirectional linked list to maintain the arrival

order of items. However, this consumes a lot of extra memory.

In summary, the above two methods are either time consuming or

memory consuming. In contrast, our design goal is to implement

LRU queues in a method that optimizes both memory and time.

Our methodology is to achieve this design goal by approximately

implementing LRU. Fortunately, accurate LRU and approximate

LRU has little performance difference for LadderFilter. Therefore,

we choose to implement LRU queues in an approximate manner

and propose an optimized version of LadderFilter.

Data structure: The LRU queue Q𝑖 is replaced by an LRU bucket

array with𝑤𝑖 buckets. Let Q𝑖 [ 𝑗] denote the 𝑗𝑡ℎ bucket. Each bucket

contains 𝑐 cells (𝑤𝑖 × 𝑐 = 𝑙𝑖 ), where 𝑐 is usually small (e.g., 8). Q𝑖 is
also associated with a hash function ℎ𝑖 (.) (0 ⩽ ℎ𝑖 (.) < 𝑤𝑖 ), which
maps each item to one of the buckets.

Operations: Each bucket obeys LRU policy independently. When

enqueueing an item 𝑒 to Q𝑖 , LadderFilter first computes hash func-

tion ℎ𝑖 (𝑒) to locate one LRU bucket Q𝑖 [ℎ𝑖 (𝑒)]. Then LadderFilter

enqueues 𝑒 to the bucket in a process similar to the basic version. If

the bucket is full, LadderFilter dequeues the least recent item from

the bucket. The dequeueing operation works as follows: Ladder-

Filter scans the bucket, finds the least recent item, and dequeues

it. To sum up, both the enqueueing and dequeueing operations are

applied to only one hashed LRU bucket instead of the whole queue

in the basic version.

<e3,8,t2>

<e5,3,t5>

Bucket10

… …

𝒬𝒬1

<e6,1,t7>

e2 e6

<e3,8,t7>

≥ T1^low = 8

frequent item!

≥ T^high = 10

…

…

Bucket1
𝒬𝒬2

<e2,11,t6>

Bucket1
<e2,10,t3>

Bucket2
<e1,16,t1>

<e4,75,t4>

Figure 4: An example of the optimized version.
Example 2: Figure 4 shows an example of the optimized version

of LadderFilter. The LadderFilter consists of 2 LRU queues Q1 and
Q2. Q1 consists of 10 LRU buckets, and Q2 consists of 2 LRU buck-

ets. When inserting 𝑒2 at time 𝑡6, we first calculate the two hash

functions ℎ1 (𝑒2) = 1 and ℎ2 (𝑒2) = 1 to locate the corresponding

bucket in each queue. We find that 𝑒2 has already been recorded in

Q1. Therefore, we increment its frequency by 1 to 11, and update

its timestamp to 𝑡6. Then we compare the frequency of 𝑒2 and the

high threshold 𝑇ℎ𝑖𝑔ℎ
. The frequency exceeds the threshold, and

LadderFilter reports 𝑒2 as a frequent item.

Example 3: When inserting 𝑒6 at time 𝑡7, we first calculate the

two hash functions ℎ1 (𝑒6) = 10 and ℎ2 (𝑒2) = 2 to locate the corre-

sponding bucket in each queue. We find that 𝑒6 is not recorded in

3
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any corresponding bucket. Therefore, we enqueue 𝑒6 to bucket 10 in

Q1. We find that the bucket is full. Therefore, we dequeue the least

recent item 𝑒3, and record < 𝑒6, 1, 𝑡7 > in the cell. Then we compare

the frequency of 𝑒3 and Q1’s low threshold 𝑇 𝑙𝑜𝑤
1

. The frequency

exceeds the threshold, and we enqueue it to Q2 with frequency 8

and timestamp 𝑡7. We find that bucket 2 in Q2 is also full. Therefore,
we dequeue the least recent item 𝑒1, and record < 𝑒3, 8, 𝑡7 > in the

cell. Note that Q2 is the last queue in LadderFilter, therefore, 𝑒1 is

discarded.

Next, we show that the optimized version is similar to the basic

version in terms of dequeueing items.

Theorem 1. In both versions, the expectation of the dequeueing
interval 5 of an item 𝑒 is the same.

Proof. Let 𝐸𝑏𝑎𝑠𝑖𝑐 and 𝐸𝑜𝑝𝑡 be the expectation of the dequeueing

interval. Let𝑤 be the number of buckets, and 𝑐 be the number of

cells in each bucket in the optimized version. The number of cells

in the LRU queue in the basic version is𝑤 ·𝑐 . Suppose distinct items

arriving at a constant rate 𝑣 . In the basic version, the expectation

of the dequeueing interval

𝐸𝑏𝑎𝑠𝑖𝑐 =
𝑤 · 𝑐
𝑣

.

In the optimized version, according to the randomness of the

hash computation, an item is inserted to every bucket with equal

probability, i.e., 1

𝑤 . Therefore, the expectation of the time that a

distinct item inserted to a specific bucket 𝑏

𝐸𝑜𝑝𝑡 {1 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑖𝑡𝑒𝑚 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑} = 𝑤

𝑣
.

The expectation of the dequeueing interval

𝐸𝑜𝑝𝑡 = 𝑐 · 𝐸𝑜𝑝𝑡 {1 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑖𝑡𝑒𝑚 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑} = 𝑤 · 𝑐
𝑣

= 𝐸𝑏𝑎𝑠𝑖𝑐 .

□

Analyses on worst cases: There are mainly two worst cases in

the optimized version.

• Hash collision: All items are hashed to the same bucket. This

will lead to low accuracy as many frequent items are discarded

since they are classified as unpromising. If this occurs, error is

large, and we can address this by replacing the hash function.

• Hash starving: Some buckets have no item hashed into. This

means the bucket array has a low loading rate, and it is memory

wasting.

Next, we derive the probability that the worst cases occur. Sup-

pose there are𝑤 buckets. Considering the randomness/uniformity

of hashing, for an arbitrary bucket Q[𝑖], the probability that an arbi-
trary item 𝑒 is located to Q[𝑖] is 1

𝑤 . Suppose the number of distinct

items is 𝑁 . Let 𝑁𝑖 be the number of distinct items located to Q[𝑖].
The expectation of𝑁𝑖 is 𝐸 (𝑁𝑖 ) = 𝑁

𝑤 . The variance𝐷 (𝑁𝑖 ) = 𝑁 (𝑤−1)
𝑤2

.

Therefore, for each arbitrary 𝜖 , by Chebyshev inequality,

𝑃{|𝑁𝑖 − 𝐸 (𝑁𝑖 ) | ⩾ 𝜖} ⩽ 𝑁 (𝑤 − 1)/𝑤2

𝜖2
.

Hash collision means 𝑁𝑖 ≫ 𝐸 (𝑁𝑖 ). Suppose 𝑎 is a constant that

satisfies 1 ⩽ 𝑎 ≪ 𝑤 . Therefore,

5
The interval between the last arrival time of an item and the time it is dequeued from

the bucket/queue.

𝑃{𝑁𝑖 ⩾
𝑁

𝑎
} ⩽ 𝑃{|𝑁𝑖 − 𝐸 (𝑁𝑖 ) | ⩾

𝑁

𝑎
− 𝑁

𝑤
}

⩽
𝑎2 (𝑤 − 1)
𝑁 (𝑤 − 𝑎)2

≈ 𝑎2

𝑁𝑤
.

Hash starving means 0 ≈ 𝑁𝑖 ≪ 𝐸 (𝑁𝑖 ). Suppose 𝑏 is a constant

that satisfies 1 ⩽ 𝑏 ≪ 𝐸 (𝑁𝑖 ) = 𝑁
𝑤 . Therefore,

𝑃{0 ⩽ 𝑁𝑖 ⩽ 𝑏} ⩽ 𝑃{|𝑁𝑖 − 𝐸 (𝑁𝑖 ) | ⩾
𝑁

𝑤
− 𝑏}

⩽
𝑁 (𝑤 − 1)
(𝑁 − 𝑏𝑤)2

≈ 𝑤

𝑁
.

Note that, 𝑁 and 𝑤 are large in data stream and deployment,

and𝑤 is usually several orders of magnitude smaller than 𝑁 (see

§ 4). Therefore, the probability of the two worst cases occurring is

very low.

Optimization – using fingerprints. As many existing works

[28, 29], LadderFilter also supports using fingerprints to replace the

IDs when the length of item ID is long (e.g., 104 bits in TCP packet

streams). Although using fingerprints may result in hash collision of

two distinct items, it can significantly reduce the memory usage. In

other words, it can achieve higher accuracy with the same memory.

Next, we show the probability of hash collision, and the expectation

of overestimation.

Lemma 2. In the optimized version, the probability of an item 𝑒

suffering from hash collisions

𝑃𝑟 {ℎ𝑎𝑠ℎ 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛} = 1 −
(
1 − 2−𝑙

)𝑛
,

where 𝑙 is the length of the fingerprint, and 𝑛 is the number of distinct
items inserted to the bucket when 𝑒 is in the bucket.

Lemma 3. The expectation of the overestimation of an item 𝑒 caused
by hash collisions

𝐸 {𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛} = 𝑛 · 2−𝑙 .

Table 1: The expectation of overestimation caused by hash
collisions.

Probability 𝑛 = 10 𝑛 = 100 𝑛 = 1000

𝑙 = 8 3.906 × 10−2 3.906 × 10−1 3.906 × 100
𝑙 = 16 1.526 × 10−4 1.526 × 10−3 1.526 × 10−2
𝑙 = 32 2.328 × 10−9 2.328 × 10−8 2.328 × 10−7

The expectation of the overestimation caused by hash collisions

is shown in Table 1. For an infrequent item, 𝑛 ⩽ Tℎ𝑖𝑔ℎ · 𝑐 . Suppose
Tℎ𝑖𝑔ℎ = 100 and 𝑐 = 8.𝑛 ⩽ 800. 𝐸 {𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛} ⩽ 1.526×10−2.
We recommend using 16-bit fingerprints.

2.3 SIMD Acceleration
The optimized version meets our requirement in terms of memory

and time efficiency. However, it still requires storing and comparing

timestamps, which still incurs a large memory and time overhead.

Motivated by this, we propose to accelerate the insertion of LRU

buckets with SIMD instructions. For each bucket, we maintain the

ID and frequency of each item, while removing the last arrival

timestamp. To locate the LRU item, we keep the items in time
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order. Unlike the basic version, when inserting an item 𝑒 to bucket

Q𝑖 [ℎ𝑖 (𝑒)], after inserting/updating a cell, we further sort the items

in the bucket according to time. Suppose 𝑒 is the 𝑗𝑡ℎ item in the

bucket. We move the ( 𝑗 + 1)𝑡ℎ items to the 𝑗𝑡ℎ cell, the ( 𝑗 + 2)𝑡ℎ
items to the ( 𝑗 + 1)𝑡ℎ cell, ..., the 𝑐𝑡ℎ items to the (𝑐 − 1)𝑡ℎ cell, and

𝑒 /the 𝑗𝑡ℎ item to the 𝑐𝑡ℎ cell. The 1
𝑠𝑡
, ..., ( 𝑗 − 1)𝑡ℎ items remain in

their original cells.

Algorithm 2: SIMD acceleration.

Input: The sequence of the arriving item 𝑖

1 uint16_t 𝑖𝑑 [8], 𝑓 𝑟𝑒𝑞[8];
2 __m128i 𝑖𝑛𝑑𝑒𝑥 [4] =

_𝑚𝑚_𝑠𝑒𝑡𝑟_𝑒𝑝𝑖8(8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15);
3 __m128i ∗𝑝_𝑖𝑑 = (__𝑚128𝑖∗)&𝑖𝑑 ;
4 𝑝_𝑖𝑑 [0] = _𝑚𝑚_𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒_𝑒𝑝𝑖8(𝑝_𝑖𝑑 [0], 𝑖𝑛𝑑𝑒𝑥 [𝑖]);

This version seems to require a lot of operations and thus be

slow. However, it is ideal for SIMD acceleration. For a better demon-

stration, we show the detailed implementation under the following

parameter settings: each bucket consists of 8 cells, and each cell

consists of a 16-bit ID/fingerprint and a 16-bit frequency. Algo-

rithm 2 shows the C++ code for the sorting of IDs. The opera-

tion on frequencies is the same as IDs. For lookup and update

operations, please refer to [9, 10, 30]. The idea is to use function

_mm_shuffle_epi8 to rearrange each byte in IDs into proper order.

To ensure memory continuity, we record IDs and frequencies in two

arrays separately (see Line 1).We pre-set the order of each byte in re-

arrangement operations. Line 2 gives a example of the pre-set order

when the arriving item is the 4
𝑡ℎ

item in the bucket. Line 3 trans-

poses the ID array into a _m128i pointer. The compiler will load

all IDs into a 128-bit SIMD register. Line 4 uses SIMD instruction

_mm_shuffle_epi8 to rearrange bytes in the register in proper se-

quence. The IDs will then be stored to the proper cells (1 CPU cycle

[31]). In summary, we sort the items within 2 SIMD instructions (1

for IDs, and 1 for frequencies), i.e., 2 CPU cycles. We can also imple-

ment the operation over larger scale with _mm256_shuffle_epi8
and _mm512_shuffle_epi8. The sort can be done within 2 SIMD

instructions but requires more swap operations on integers.

Time complexity: Using multiple LRU buckets can accelerate the

operations without additional data structures. Each bucket con-

tains much fewer items than the whole queue, hence we scan much

fewer items during each operation. The optimized version reduces

the time complexity from O(queue len) to O(bucket size). Most im-

portantly, we use SIMD instructions to optimize enqueue/dequeue.

SIMD instructions can quickly rearrange cells in time order with

only 2 instructions, i.e., 2 CPU cycles.

Discussions on filter algorithm: The reviewer proposes to en-

queue the promising item again with an updated priority (i.e., mark

it as recently used) to the same queue. The idea is novel and in-

teresting but is incompatible with our SIMD acceleration. We will

study it in the future work.

3 LADDERFILTER DEPLOYMENT
In this section, we describe how to deploy LadderFilter on four

important tasks in data stream processing: estimating item fre-

quency, finding top-𝑘 items, finding heavy changes, and finding

super-spreaders. For each task, we first present the problem defini-

tion. Then we introduce popular prior solutions for the task. Finally,

we describe how to apply LadderFilter to these solutions.

3.1 Estimating Item Frequency
Problem definition: Given a data stream, reporting the frequency

of every item ID.

Prior solutions: The CU sketch [8] is an extension of the well-

known CM sketch [20] for estimating item frequency. A CU sketch

consists of𝑑 counter arrays, and each array is associated with a hash

function. When inserting item 𝑒 , the CU sketch first computes the

𝑑 hash functions to locate the 𝑑 mapped counters in each counter

array. Then, the CU sketch increments the minimum mapped coun-

ters by one, which is called the conservative update strategy. When

querying the frequency of item 𝑒 , the CU sketch computes the 𝑑

hash functions and locates the 𝑑 mapped counters. Then, the CU

sketch reports the minimum value among the mapped counters as

the frequency of item 𝑒 .

Applying LadderFilter:We build a LadderFilter to cooperate with

the CM sketch. LadderFilter will be used to prevent infrequent

items from being inserted into the CM sketch, since we consider

the accuracy of frequent items to be more important.

Insertion:When inserting item 𝑒 , we first insert 𝑒 into LadderFilter

as mentioned in § 2.2. If LadderFilter reports 𝑒 as a frequent item,

we further insert 𝑒 into the CM sketch. The insertion frequency

depends on whether 𝑒 is reported for the first time. If 𝑒 is reported

as a frequent item for the first time, we insert it with frequency

(𝑇ℎ𝑖𝑔ℎ
) to the CM sketch; otherwise, we insert 𝑒 with frequency

(one) to the CM sketch.

Query: There are two steps for a query. 1) We first query CM for

the frequency of item 𝑒 . If its frequency is not 0, it must exceed the

high threshold 𝑇ℎ𝑖𝑔ℎ
. Therefore, we consider it as a frequent item

and report the frequency from CM. 2) Otherwise, 𝑒 is an infrequent

item. We then check whether 𝑒 is in LadderFilter. If it is recorded in

LadderFilter, we report the frequency from LadderFilter; otherwise,

we report its frequency as 0.

3.2 Finding Top-𝑘 Items
Problem definition: Given a data stream and 𝑘 , reporting the 𝑘

items with the highest frequency.

Prior work: SpaceSaving [11] is the most well-known solution for

finding top-𝑘 items. SpaceSaving uses a data structure called Stream-

Summary to maintain frequent items. Stream-Summary achieves

updating and querying in linear time, while maintaining the or-

der of the items. When inserting item 𝑒 , if 𝑒 is already recorded

in Stream-Summary, or it is not full, SpaceSaving inserts 𝑒 into

Stream-Summary. Otherwise, SpaceSaving replaces the item with

the minimum frequency in Stream-Summary with item 𝑒 , and incre-

ments its frequency by 1. When querying top-𝑘 items, SpaceSaving

reports the 𝑘 items with the highest frequency in Stream-Summary.

Applying LadderFilter:We build a LadderFilter to cooperate with

SpaceSaving. LadderFilter will be used to prevent infrequent items

from being inserted into SpaceSaving. We do this because all top-𝑘

items must be frequent items, therefore, inserting infrequent items

to SpaceSaving will degrade accuracy.

Insertion:When inserting item 𝑒 , we first check whether 𝑒 is al-

ready recorded in SpaceSaving. If so, we insert it into SpaceSaving.
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Otherwise, we insert item 𝑒 into LadderFilter. If LadderFilter reports

item 𝑒 as a frequent item, we further insert it into SpaceSaving. Note

that similarly to estimating item frequency, we update SpaceSav-

ing with frequency depending on whether item 𝑒 is reported as a

frequent item for the first time.

Query:When querying top-𝑘 frequent items, we report the 𝑘 items

reported by SpaceSaving.

3.3 Finding Heavy Changes
Problem definition: Given a data stream, reporting all items that

experience a frequency change exceeding a threshold T𝛥 between

two consecutive time windows.

Prior work: FlowRadar [13] is a promising solution for finding

heavy changes. To find heavy changes, one FlowRadar is built for

each time window. The FlowRadar consists of a Bloom filter [32]

and a counting table. The bloom filter is used to identify whether

an inserting item is a new distinct item. The counting table is an

extended Invertible Bloom Lookup Table (IBLT) [33] used to encode

item IDs and their frequency. When inserting item 𝑒 , FlowRadar

first checks the bloom filter to identify whether item 𝑒 is a new item.

If so, FlowRadar increments its frequency; otherwise, FlowRadar

further encodes the ID. When querying heavy changes, FlowRadar

first decodes its counting table to get an < 𝑖𝑡𝑒𝑚, 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 > set.

Then, FlowRadar compares the two sets in the two consecutive

time windows, and reports the heavy changes.

Applying LadderFilter:We build a LadderFilter to cooperate with

FlowRadar. LadderFilter will be used to prevent infrequent items

from being inserted into the Flowradar. The reason behind it is as

follows: if an item is a heavy change, it must be a frequent item

in at least one of the time window. Because LadderFilter can auto-

matically discard unpromising items, we build a single LadderFilter

and use it to filter infrequent items in all time windows.

Insertion: Similar to finding top-𝑘 items, when inserting an item,

we first check the Bloom filter to find whether the item is already

recorded in FlowRadar. If so, we insert the item to it. Otherwise, we

insert the item into LadderFilter. If LadderFilter reports the item as

a frequent item, we further insert it into FlowRadar.

Query:When querying the heavy changes, we first decode the two

corresponding FlowRadar for two consecutive time windows, and

get two < 𝑖𝑡𝑒𝑚, 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 > sets 𝑆1 and 𝑆2. Then we insert the

infrequent items recorded by LadderFilter into 𝑆2. We consider the

items in the two sets as potential heavy changes. After getting the

two sets, we calculate the frequency difference between the two

sets. Note that if an item is not recorded in one set, we consider its

frequency in the corresponding time window as zero. We report all

items whose frequency difference exceeds T𝛥 .

3.4 Finding Super-Spreaders
Problem definition:Given a data streamwith < 𝑠𝑟𝑐, 𝑑𝑠𝑡 > (source,

destination) pair, report all sources whose number of destinations

connected exceeds a threshold T .
Prior work:WavingSketch [16] is a recent solution for finding top-

𝑘 items, and can be extended to find super-spreaders. WavingSketch

is made of multiple buckets. Each bucket consists of a Waving

counter and a Heavy part. The Heavy part contains several cells,

recording ID, frequency, and error flags. During an insertion, if the

item is recorded in the Heavy Part with no error, or the Heavy Part

is not full, WavingSketch inserts it to the Heavy Part; otherwise,

WavingSketch additionally updates the Waving Counter with an

equal probability of +1/−1. To find super-spreaders, WavingSketch

cooperates with a Bloom filter (BF) [32] to remove duplicates. Given

an item < 𝑠𝑟𝑐, 𝑑𝑠𝑡 >, WavingSketch first checks the Bloom filter, to

find whether the item is a duplicate. If not, WavingSketch insert

< 𝑠𝑟𝑐, 𝑑𝑠𝑡 > to the Bloom filter, and insert 𝑠𝑟𝑐 to the sketch.

Applying LadderFilter: We build a LadderFilter between the

Bloom filter andWavingSketch. LadderFilter will be used to prevent

infrequent items from being inserted into the WavingSketch after
removing duplicates.
Insertion: When inserting an item < 𝑠𝑟𝑐, 𝑑𝑠𝑡 >, we first check the

Bloom filter, to find out whether the item is a duplicate. We discard

the duplicate. We then check whether 𝑠𝑟𝑐 is already recorded in

the Heavy Part of WavingSketch. If so, we insert the item to it.

Otherwise, we insert 𝑠𝑟𝑐 into LadderFilter. If LadderFilter reports

the item as a frequent item, we further insert it into WavingSketch.

Query: When querying super-spreaders, we report the frequent

items reported by WavingSketch.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Computation platform: We conduct all experiments on a CPU

server (Intel i9-10980XE). The CPU has three levels of caches: 64KB

L1 cache and 1MB L2 cache for each core, and 24.75MB L3 cache

shared by all cores. We set the CPU frequency to 4.2GHZ and the

memory frequency to 3200MHZ.

Implementation:We implement LadderFilter (Ours), ColdFilter

(CF) [10], and LogLogFilter (LLF) [22] in C++, and apply them to

the CU sketch [8], SpaceSaving (SS) [11], FlowRadar (FR) [13], and

WavingSketch (WS) [16].

Datasets: The datasets used for the evaluation are listed below.

• IP trace dataset: The IP trace dataset is an anonymized IP trace

streams collected from [26]. We use 𝑠𝑟𝑐𝐼𝑃 as the item ID in the

former three tasks. The dataset contains 27M items, with 250k

distinct items. We use a 10× longer dataset for finding super-

spreader, and use < 𝑠𝑟𝑐𝐼𝑃, 𝑑𝑠𝑡𝐼𝑃 > as the item ID.

• WebDocs dataset: The WebDocs dataset is a transactional dataset

built from a collection of web documents [34]. The dataset con-

tains 32M items, with 950k distinct items.

• Synthetic datasets: The two synthetic datasets are generated

following the Zipf distribution [35]. The skewness of the two

datasets are 0.5 and 1.0, respectively. Each dataset contains 32M

items, with 1.0M distinct items.

Metrics:Metrics used for evaluation are listed below.

• Average Absolute Error (AAE): 1

𝑁

∑𝑁
𝑖=1 |𝑓𝑖 − ˆ𝑓𝑖 |, where 𝑁 is the

number of distinct items, 𝑓𝑖 and ˆ𝑓𝑖 are the actual and estimated

frequency of the items respectively.

• F1 Score: 2·𝑃𝑅 ·𝑅𝑅
𝑃𝑅+𝑅𝑅 , where PR (Precision Rate) is the ratio of the

number of the correct items reported to the number of all items

reported, and RR (Recall Rate) is the ratio of the number of the

correct items reported to the number of all correct items.

• Throughput: The number of operations per second, in million

operation per second (Mops).

4.2 Parameter Settings
In this section, we first propose the parameter adjusting method.

Then, we show experiments on some important parameters.
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Figure 5: Impact of queue number and size.
4.2.1 Parameter Adjusting Method.
Methodology: When LadderFilter is cooperating with a sketch,

there are two sources of error: 1) the under-estimation error caused

by LadderFilter’s discarding some unpromising items; 2) the inher-

ent error caused by the sketch, which could be under-estimation,

over-estimation, or bidirectional. The parameters can affect both

of them at the same time. Our parameter setting methodology is
to balance the under-estimation error and the inherent error. Take
𝑇ℎ𝑖𝑔ℎ

as an example. If𝑇ℎ𝑖𝑔ℎ
is too large, it will lead LadderFilter to

discard too many items, and thus result in large under-estimation

error. If 𝑇ℎ𝑖𝑔ℎ
is too small, too many items will be inserted into

the sketch, resulting in large inherent error. Therefore, our method

for adjusting the parameters is to 1) analyze the nature of the two

sources of error, and 2) find a variableV that can reflect the overall

error and minimize it.

LadderFilter+CU: LadderFilter only leads to under-estimation

error, while CU only leads to over-estimation error. Therefore,

the variable V that we choose to reflect the overall error is the

difference between the total under-estimation and the total over-

estimation of all items. When adjusting the parameters, for each

round, we build a LadderFilter+CU. After each round of inser-

tion, we calculate the total under-estimation and the total over-

estimation of all items, respectively. If the under-estimation and the

over-estimation are almost equal, we consider that we have obtained

an optimal parameter. If the under-estimation is smaller/larger than

the over-estimation, we adjust the threshold to a larger/smaller

value, respectively, and then proceed to the next round of parame-

ter adjustment.

LadderFilter+SS: Similar to CU, SS only leads to over-estimation

error. The parameter adjustment process of LadderFilter+SS is sim-

ilar to that of LadderFilter+CU, except that we only calculate the

under-/over-estimation of the items in SS.

LadderFilter+FR: FR can be considered as a zero-error hash table

when its loading rate (number of distinct item
6
: number of buck-

ets) is lower than a theoretical maximum value of around 80% [13].

When its loading rate exceeds the theoretical maximum value, it

can hardly be decoded, and thus all the items inserted into it be-

come error. Therefore, the only error is the under-estimation error

caused by LadderFilter when the loading rate of FR is lower than

the theoretical maximum value. We find that the fewer items are

filtered, the smaller the under-estimation error caused by Ladder-

Filter, meanwhile the higher the loading rate of FR. Therefore, the

variableV that we choose to reflect the overall error is the loading

6
The number of distinct items can be estimated quickly by linear counting [36].

rate of FR. To minimize the error, the loading rate of FR should be

as higher as possible while lower than the theoretical maximum

value. Therefore, when adjusting the parameters, for each round,

we compute the loading rate. If the loading rate is too small/large,

we adjust the threshold to a smaller/larger value, respectively.

LadderFilter+WS:We still choose the difference between the total

under-estimation and the total over-estimation of all items. Unlike

CU and SS, WS leads to bidirectional error. According to our many

experimental tests, we observe that when the under-estimation is

slightly larger than the over-estimation, the accuracy reaches the

optimal value.

4.2.2 Experiments on Parameter Settings.
Impact of queue number and size (Figure 5): We find that

when using multiple queues to find top-𝑘 items, the accuracy is

insensitive to different parameter settings. As shown in Figure 5(b),

under the near-optimal threshold (50 in the figure, the best observed

value of 𝑇ℎ𝑖𝑔ℎ
in our experiment), both single queue and multiple

queues achieve high accuracy; while under other thresholds (> 150

in the figure), the accuracy of using multiple queues, however, is

significantly higher than that of using a single queue. As shown in

Figure 5(a), when estimating item frequency, the trend is opposite.

We find that when using 2 queues and setting𝑀Q1 : 𝑀Q2 to 99 : 1,

LadderFilter achieves near optimal accuracy. Therefore, we recom-

mend using these parameters. Note that using 3 or more queues

may help to find frequent items in other datasets and scenarios,

and we remain this design.
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Figure 6: Impact of # cells
per bucket.

Impact of # cells per bucket
(Figure 6):We find that when

# cells per bucket exceeds 8,

the accuracy stops increasing.

The F1-score of 8 cells per

bucket is on average 1.35%

lower than more cells per

bucket. Therefore, we recom-

mend setting # cells per bucket

to 8 to balance the accuracy

and ease of deployment.

4.3 Experiments on
Estimating Item Frequency
In this section, we compare LadderFilter+CU with CU, CF+CU, and

LLF+CU. For Ours+CU, we set the memory of filter and sketch

𝑀𝑂𝑢𝑟𝑠 : 𝑀𝐶𝑈 = 1 : 9. We set parameters of the compared al-

gorithms to the recommended values referred to their respective

papers.

Accuracy (Figure 7):We find that LadderFilter reduces the error

of CU by up to 28.8 times. As shown in Figure 7, the AAE of Lad-

derFilter is on average 7.43, 15.2, and 7.29 times lower than that

of CU, CU+CF, and CU+LLF, respectively. Note that LadderFilter

achieves high accuracy under limited memory. For example, when

the memory is 100KB, the AAE of LadderFilter is on average 7.08,

5.95, 93.0, and 49.5 times lower than the compared algorithms on

each datasets, respectively. The reason is that LadderFilter approxi-

mately discards infrequent items from the filter, while CF and LLF

keep all infrequent items. Therefore, LadderFilter consumes less

memory, and can use it more efficiently.
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(c) Zipf 0.5.
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Figure 7: Accuracy on estimating item frequency.
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(a) IP trace.
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(b) WebDocs.
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(c) Zipf 0.5.
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Figure 8: Accuracy on Finding top-𝑘 items.
Throughput (Figure 11):Wefind that LadderFilter achieves higher

throughput compared to CF
7
and LLF. As shown in Figure 11, the

throughput of LadderFilter is 1.17 and 1.09 times higher than that

of CU+CF and CU+LLF, respectively.

Discussions on different datasets: The accuracy of LadderFilter

varies among different datasets. There are mainly two reasons.

First, the skewness varies among different datasets. The accuracy

of LadderFilter is related to the accuracy of the dedicated data

structure it cooperated with, and the accuracy of the dedicated data

structures is usually highly correlated with the skewness of the data

stream [9, 23, 37]. Therefore, LadderFilter has different accuracy on

datasets with different skewness. This feature is more evident in

synthetic datasets (see Figure 7(c)-(d) & 8(c)-(d)). Second, the arrival

pattern of items varies among different datasets. For example, in

synthetic datasets, items arrive in random order. In the IP trace

dataset, items arrive in the pattern of burst [17]. Therefore, the time

it takes an infrequent item to become a frequent item varies among

datasets. Our experiments have demonstrated that LadderFilter can

work well for different skewnesses and arrival patterns.

4.4 Experiments on Finding Top-𝑘 Items
In this section, we compare LadderFilter+SS with SS, CF+SS, and

LLF+SS. We set 𝑘 to 1000. For filter+SS, we set the number of items

in SS to 1.5 × 𝑘 . For the original SS, we additionally record

𝑀𝑓 𝑖𝑙𝑡𝑒𝑟

100𝐵

items for comparison fairness
8
.

Accuracy (Figure 8): We find that LadderFilter improves the accu-

racy of SS by up to 17.2 times. As shown in Figure 8, the F1 Score

of LadderFilter is on average 0.330, 0.130, and 0.310 higher than

the one of SS, SS+CF, and SS+LLF, respectively. Note that Ladder-

Filter achieves high accuracy even with very little memory. With

only 30KB, 20KB, 350KB, and 30KB of memory, the F1 Score of

LadderFilter exceeds 0.9 on each dataset, respectively.

7
The results do not include aggregate-and-report, because this optimization is orthog-

onal to the filter, and can be applied to any compared algorithm.

8
Existing works show that the memory usage of each item in SS is around 100B [10, 22].
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Figure 9: Accuracy on finding heavy changes.

Throughput (Figure 11): We find that LadderFilter improves the

throughput of SS. As shown in Figure 11, the throughput of Ladder-

Filter is 1.29, 1.67, and 2.73 times higher than the one of SS, SS+CF,

and SS+LLF, respectively.

4.5 Experiments on Finding Heavy Changes
In this section, we compare LadderFilter+FR with FR, CF+FR, and

LLF+FR. We set the threshold of heavy changes T𝛥 to 0.01% of total

item number. For filter+FR, we allocate 1MB memory for FR.

Accuracy (Figure 9): We find that LadderFilter with limited mem-

ory can filter the infrequent items inserted into FR, so that FR can

be decoded successfully. As shown in Figure 9, with only 20KB of

memory, the F1 Score of LadderFilter exceeds 0.9 on both datasets.

The required memory of filter is on average 4.0 and 14.5 times

lower than that of CF and LLF, respectively. Note that to success-

fully decode, FR requires more than 2.7MB and 9.6MB of memory,

respectively; FR+LLF requires more than 400KB of filter memory

on the Web page dataset.

Throughput (Figure 11): We find that LadderFilter improves the

throughput of FR. As shown in Figure 11, the insertion throughput

of LadderFilter is 1.37, 1.61, and 1.78 times higher than the one of

FR, FR+CF, and FR+LLF, respectively.
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Figure 10: Accuracy on finding super-spreaders.
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Figure 11: Throughput on four data stream tasks.
4.6 Experiments on Finding Super-Spreaders
In this section, we compare LadderFilter+WS with WS, CF+WS,

LLF+WS. We set the threshold of super-spreaders T to the number

of destinations connected to the 1500
𝑡ℎ

super-spreader. To remove

duplicates, we allocate 5MB for BF. For Ours+WS, we set the mem-

ory of filter and sketch𝑀𝑂𝑢𝑟𝑠 : 𝑀𝑊𝑆 = 3 : 7.

Accuracy (Figure 10): We find that LadderFilter improves the

accuracy of WS by up to 2.42 times. As shown in Figure 10, the F1

Score of LadderFilter is on average 0.191, 0.291, and 0.341 higher

than the one of WS, CF+WS, and LLF+WS, respectively. The AAE

of LadderFilter is on average 1.55, 3.41, and 30.4 times lower than

the one of WS, CF+WS, and LLF+WS, respectively.

Throughput (Figure 11): We find that LadderFilter achieves a

comparable throughput with WS, and higher throughput compared

with CF and LLF. As shown in Figure 11, the throughput of Lad-

derFilter is 1.26 and 1.23 times higher than the one of CF+WS and

LLF+WS, respectively.

5 RELATEDWORK
In this section, we first introduce existing solutions for filtering

infrequent items. Then we introduce existing solutions for four

typical tasks in data stream processing.

5.1 Filtering Infrequent Items
In skewed data streams, filtering infrequent items is an important

strategy to improve the accuracy of tasks favoring frequent items.

The most relevant works to LadderFilter are ColdFilter (CF) [10]

and LogLogFilter (LLF) [22]. ColdFilter uses an additional sketch

to filter infrequent items, and only inserts frequent items to the

dedicated sketch. ColdFilter relies on a 2-layer CU sketch [8] with

different-sized counters. The counter size of the first layer is small

(e.g., 4 bits), and the counter size of the second layer is large (e.g., 16
bits). For every incoming item, ColdFilter first inserts it to the first

layer. If all mapped counters in the first layer overflow, ColdFilter

then inserts it to the second layer. ColdFilter is also associated

with a threshold for identifying frequent items. If the frequency

of an item exceeds the threshold, ColdFilter reports the item as a

frequent item. By filtering the infrequent items, ColdFilter improves

the accuracy of frequent items. However, ColdFilter falls short in

terms of memory efficiency as it records the approximate frequency

of all items. Further, it requires multiple hash computations and

memory accesses, and thus is less time efficient.

LogLogFilter [22] replaces the CU sketch in ColdFilter by a

LogLog structure [25], so as to enlarge the filter range. LogLogFil-

ter is a register array associated with multiple hash functions and

a random generator. For every incoming item, LogLogFilter first

computes hash functions to locate the corresponding registers, and

decides whether the item is an infrequent item. If so, LogLogFilter

generates random numbers that follow a geometric distribution

and updates the corresponding registers. LogLogFilter inherits the

advantages and limitation of ColdFilter, and thus also falls short in

terms of both memory and time efficiency.

On top of the previous two works, many sketches record fre-

quent and infrequent items separately. Typical sketches include

ASketch [9], HeavyGuardian [28], ElasticSketch [27], NitroSketch

[24], SeqSketch [38], etc. [17, 23, 29, 39].
5.2 Data Stream Processing Tasks
Estimating item frequency: Classic solutions in estimating item

frequency include the CM (Count-Min) sketch [20], the CU (Conser-

vative Update) sketch [8], and the Count sketch [21]. A CM sketch

consists of multiple counter arrays and hash functions for mapping

items to counters in counter arrays. The CM sketch increments the

mapped counters by 1 during insertion, and reports the minimum

value of the mapped counters during query. The CU sketch applies

a conservative update strategy to the CM sketch, and thus improves

the accuracy. The Count sketch also consists of multiple counter

arrays and hash functions. It updates each counter with an equal

probability of +1/-1, and thus achieves unbiased estimation.

Finding top-𝑘 items: Typical solutions in finding top-𝑘 items

include SpaceSaving [11], Unbiased SpaceSaving [40], etc. [12, 16,
28, 41]. SpaceSaving maintains top-𝑘 items and their frequency

using a data structure called Stream-Summary, and guarantees no

underestimated error. Unbiased SpaceSaving applies a probabilistic

replacement strategy to SpaceSaving for unbiased estimation.

Finding heavy changes: A kind of solution in finding heavy

changes is to record all items in each time window, and then com-

pare the two consecutive time windows and report heavy changes.

Typical solutions include FlowRadar [13], k-ary [14], and the re-

versible sketch [42].

Finding super-spreaders: A kind of solution in finding super-

spreaders is to combine an existing sketch with a bitmap/Bloom

filter to remove duplicates. Typical solutions include OpenSketch

[43] and WavingSketch [16].

6 CONCLUSION
In this paper, we proposed LadderFilter, which filters infrequent

items with limited memory and time overhead. To achieve memory

efficiency, LadderFilter relies on multiple LRU queues to discard

unpromising items, instead of keeping all frequent and infrequent

items. To achieve time efficiency, we leverage SIMD instructions

to implement a LRU policy. LadderFilter can be applied to vari-

ous sketches, and can significantly improve their accuracy and

throughput. All related code is provided open-source at Github.
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