
Longest Prefix Matching with Pruning

Lingtong Liu∗, Jun Hu∗, Yibo Yan†, Siang Gao†, Tong Yang†, Xiaoming Li†.
∗ School of Computer Science and Technology, Xidian University, China

† Department of Computer Secience, Peking University, China

Abstract—Nowadays, an explosive increase of the size of
Forwarding Information Base (FIB) in backbone router makes
IP lookup a challenging issue. An effective solution is to use
Bloom filter. Because of its false positive, to boost longest prefix
matching (LPM), sophisticated Bloom filter-based algorithms
were proposed, which makes FIB updating extremely difficult.
To address this issue, in this paper, we propose a novel IP lookup
algorithm which prunes unneeded prefix probes incurred by false
positive and supports FIB updating. Experimental results show
that our algorithm can save approximately 7 ∼ 24% on-chip
memory space than the well-known PBF (longest Prefix matching
using Bloom Filters) while keeping the same average number of
probes of 1.003 per IP lookup. In other words, given a limited
on-chip memory budget, our proposed algorithm can handle FIB
7 ∼ 24% bigger than PBF. The source code can be found in [1].

Index Terms—FIB, IP lookup, Bloom filter, pivot pushing

I. INTRODUCTION

With the popularity of the Internet, the size of FIBs on

backbone routers takes on an explosive growth, and has almost

met 700, 000 [2], making IP lookup a challenging issue. To

handle the problems caused by fast growth of FIB size, an

elegant IP lookup algorithm should achieve two goals at the

same time. On the one hand, IP lookup time, particularly

per packet cost, should catch up with the wire speed and

remain constant as FIB size grows. On the other hand, on-

chip memory usage should meet capacity constraints for the

current large FIBs. Compared with off-chip DRAM, access

speed of on-chip memory [3] (i.e., CPU cache and FPGA

block RAM) is much faster, but its capacity is much smaller

and it is much more expensive than DRAM. An IP lookup

algorithm not satisfying both of these two goals could hardly

be deployed in real routers by ISPs.

Benefiting small memory usage of Bloom filter, Dharma-

purikar et al. [4] proposed PBF algorithm, which, for the

first time, use on-chip Bloom filters to determine the longest

matching prefix (LMP, for short). Each Bloom filter encodes

sets of prefixes (from FIB records) of the same length and is

fitted into on-chip memory for fast membership query. Given

an incoming destination address a, not only the length of

LMP of a is matched, but also, due to false positive, higher

lengths may be returned by Bloom filters. Then, probing of

candidate prefixes is conducted in descending order of lengths

from hash tables (which stores prefixes of the same length

in off-chip memory) until a hit happened, returning the next

hop of founded LMP of a. Lim et al. [5] used one on-

chip bloom filter to achieve high-speed IP address lookup.

Using precomputation [6] or leaf-pushed trie, Mun et al. [7]

generated one on-chip bloom filter to find LMP in ascending

order of length. Greatly reduced number of probes boosts IP

lookup, but the sophisticated trie modification which is used to

program Bloom filters makes FIB updating extremely difficult.

In 2014, Yang et al. [8] proposed pivot pushing algorithm to

split prefixes of an expanded trie at a selected level which is

called pivot level, guaranteeing that a found internal node at

pivot level indicates the length of the LMP of a no less than

pivot level.

Inspired by the pivot pushing, we manage to reduce off-chip

memory consumption and update complexity by using a new

trie expansion method in initializing Bloom filters, and propose

an efficient IP lookup algorithm, longest prefix matching with

pruning (LPMP for short), reducing prefix probes and a fast

update algorithm. In a nutshell, we carry out revised pivot

pushing operation on the original trie constructed using FIB

to form an expanded trie which is used to initialize Bloom

filters for each prefix length. We also build, at the pivot level,

an additional Bloom filter for hollow nodes (internal nodes

having no next-hop, while solid nodes is any node that has

the next-hop as its tag) to reduce the number of candidate

prefixes. By carefully choosing the appropriate pivot level, our

algorithm can performs much better than PBF.

In summary, we make the following major contributions:

1) A revised pivot pushing method is proposed leading us

to fast IP lookup and update.

2) An efficient IP lookup algorithm (LPMP) and a fast

update algorithm are presented.

3) Extensive experiments are conducted to evaluate the

performance of LPMP with PBF.

The rest of this paper is organized as follows. Section II

reviews related works. Section III details revised pivot pushing

method, the IP lookup and update algorithms separately.

Experimental results on our LPMP and PBF are analyzed in

Section IV. Finally, we conclude the paper in Section V.

II. RELATED WORK

As a major bottleneck in packet forwarding of today’s

routers, IP address lookup and update are extensively studied

in recent years’ papers for better efficiency. Algorithms using a

trie to store FIB and handling IP lookup have some variations:

binary trie [9], path-compressed trie [10], k-stride multibit

trie [11], and full expansion/compression [12], etc. Linearly

search complexity on address length makes them inefficient.

Organizing prefixes into different tables based on their lengths,

binary search on lengths [6] were proposed using prefix

expansion. As prefix represents a contiguous address space,

disjoint ranges of addresses can be sorted for binary range

search [9], and multiway range tree [13], reducing test times

2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR)

978-1-7281-1686-0/19/$31.00 ©2019 IEEE

to some extend, while difficult for fast updating. Hardware

features such as parallel processing and memory hierarchy

can also be exploited to design IP lookup algorithms. Ternary

Content Addressable Memory (TCAM) can be used to query

all prefixes in parallel and is a good choice when designing

high-speed commercial routers. Due to very limited size and

high power consumption, some works [14], [15] managed to

reduce the power consumption while achieving faster lookup

speed. FPGA-based IP lookup algorithms need to address two

main problems: storing the whole FIB in on-chip memory

and constructing pipeline stages. Fadishei et al. [16] proposed

to store part of data structures to improve lookup speed.

Exchanging part of the prefixes or rotating some branches

[17], [18] adjusted the trie structure to balance stage sizes.

With the help of parallel processing capability of GPU, some

methods have been proposed to use GPU to improve IP lookup

[19], [20]. Fitting frequently searched prefixes of lengths less

then a threshold (mostly 24) in fast on-chip memory, [8], [21]

used two-level multibit trie to gain a constant off-chip memory

IP lookup speed. Using Bloom filters to test the existence of

all prefixes in on-chip memory, [4], [5], [7], [22] achieved

approximately one off-chip memory lookup speed.

III. LONGEST PREFIX MATCHING WITH PRUNING

In this section, the revised pivot pushing method, LPMP and

fast update algorithms are proposed. Before that, we introduce

the layout of core data structures used for IP lookup and

update. Symbols and terms used in the following paragraphs

are listed in Table I.
TABLE I

ACRONYMS AND SYMBOLS USED IN THIS PAPER.

Symbol Description
W the number of bits constructing an IP address
a a binary string denoting an IP address
ai the length-i prefix of a
pf a binary string denoting a prefix
pf [i] the i-th bit of pf

level i set of length-i prefixes in FIB, or the i-th level of a trie

BMi a 2i-long bitmap used to filter prefixes at level i
BFi a Bloom filter used to filter prefixes at level i
BFCi a counting Bloom filter assisting update at level i

b using b+ 1 bitmaps to filter prefixes at level 0 ∼ b
ni the number of length-i prefixes in FIB
mi the size of BFi

p choosing level p as pivot level
BFAp a Bloom filter used for pruning at pivot level
BFCAp a counting Bloom filter assisting update at pivot level

A. Layout of the Data Structures

As we know, to support packet forwarding, a router has

two planes: control plane hosting RIB (Routing Information

Base) generated during a routing protocol, and data plane

hosting FIB. In our setting, as expanded trie can be harnessed

guiding fast FIB update, we host it near the RIB in the

control plane and generate incremental update information

once a new updating requirement arrives. The immediate

update information is flowed from control plane to data plane

helping FIB updating. Taking advantage of the on-chip off-

chip memory hierarchy, we organize the core data structures

hosted in the data plane as shown in Figure 1. In on-chip

memory, {BMi | 0 � i � b} are used to filter prefixes

(indicating the existence of queried prefixes) at level 0 to

b. {BFi | b + 1 � i � W − 1} are used to filter prefixes

at level b + 1 to W − 1, while BFAp is used to decide

whether the length of LMP of a is greater than the pivot

level. In off-chip memory, key-value storage are used to store

FIB records (〈prefix, next–hop〉 pairs for simplicity) and

return next-hop for prefix query. Knowing that Bloom filter

alone can’t support deleting, we introduce counting Bloom

filters [23] ({BFCi | b+ 1 � i � W − 1} and BFCAp) to

assist updating for each Bloom filter and put them in off-chip

saving precious on-chip memory. As shown in Figure 1, those

data structures can be grouped into three functional areas,

which are candidate prefix collection, key(prefix)–value(next

hop) storage and probe, and assistant updating.

B. Pivot Pushing Revised
Used to initialize Bloom filters and guide updating, the

expanded trie’s construction from the original one is crucial

in achieving memory saving and fast updating. Separating

prefixes into two disjoint groups by a given prefix length

can be obtained by various prefix transformation techniques.

Inspired by precomputation [6] and pivot pushing [8], we care-

fully choose prefixes for expansion, greatly reducing memory

consumption. In precomputation, for every prefix, each node in

the binary search sequence ended at that prefix is checked and

will be tagged by its nearest solid ancestor’s next-hop (thus, is

prefix expansion) if that node is a hollow. The newly tagged

node is entitled a marker guiding IP lookup correctly. Here,

in this paper, we borrow the notion of marker to denote the

same meaning for nodes only in pivot level. In pivot pushing,

each hollow node in the pivot level is regarded as a marker

ignoring the necessity of being one. In our observation, not

all the hollows must be a marker as a hidden prefix may be

derived by that node’s descendants. Specifically, considering

the situation that all the addresses from that hollow node have

LMPs been found in its solid descendants, in that case, we

don’t need to entitle that hollow (thus, is a hidden prefix).
Based on this observation, our revised pivot pushing can be

achieved in three steps. First, determine whether the hollow

node in the pivot level is a marker or not, then tag it with

its nearest solid ancestor’s next-hop if yes, and finally push

the tag of each internal solid node in the pivot level into its

children. To determine a marker, we recursively decide if the

currently accessed node is a hidden prefix. To be a hidden

prefix, the node must be a solid node or both children must

be hidden prefixes, while internal node’s any none exist child is

considered as not a hidden prefix. Once not a hidden prefix, it

is entitled a marker being tagged by its nearest solid ancestor’s

next-hop. The nearest solid ancestor is called an expander as

it expands the next-hop to the marker. Here, we proceed to

the last step. For any internal solid node with a tag in the

pivot level, being it an old one or a marker, we push the tag

to all the children without a tag, in which none exist child is

also considered as having no tag. Note that, after the above

pushing, the internal solid node becomes a hollow one and

no internal solid nodes will be found in the pivot level now.

2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR)

1

0 1

0 1 0 0

on-chip off-chip

Key-value storage
(hash tables)

Update assistant

Candidate prefix collection
BM0

BM1

BM2

BF3

BF5

BF4

BFA4

BF6

BFC3

BFC4

BFCA4

BFC6

BFC5

Next hop
query

Update

Level 4
as pivot

level

IP Lookup FIB Updateprune flag

probe vector

Fig. 1. Layout of the data structures.

prefix next-
hop

*/0 6
1*/1 4

001*/3 3

01*/2 2

FIB

11*/2 7

0011*/4 1
00100*/5 5
11100*/5 2

2

9

4

7

6level 0

B C D

001010*/6 8
F GE H

Trie

(a) (b)

O

(c)

1

0 1

1 0 1

BM

BFBFA4

level 1

level 2

level 3

level 4

level 5

level 6

EE
001010*/6 8

levele

level 6

level 4 as
pivot level

001011*/6 9

8

3

0

A is an expander

A

D is a marker

H is an inheritor

Fig. 2. Pivot pushing.

Any child that inherits the next-hop tag from its parent node

is called an inheritor. Those nouns, expander, marker, and

inheritor, are served as titles assigned to some nodes in the

expanded trie making a better understanding of our IP update

algorithm.

Applying revisited pivot pushing to the original trie, we can

get an expanded one. The construction of the original trie from

RIB is omitted, details can be found in [9]. Suppose we choose

level p = 4 as pivot level as in Figure 2(b) (the choosing

of an appropriate pivot level can be found in IV-B). For the

convenience of illustration, we break the affected whole circle

into left half and right half, representing the original node

before and the modified one after pivot pushing, separately. We

also draw a dotted left half circle in the place where no node

existed in the original trie but a new one is created because of

pivot pushing. As we can see, only nodes in the two levels,

the pivot level 4 and the next level 5, may be modified.

After pivot pushing, if the place at pivot level corresponding

to a has no node exist, the LMP of a can be found at some

level smaller than p; if has a solid node, it can be found at

level p; or has a hollow node, it can be found at a bigger level.

C. IP Lookup using Pruning
Representing a given set (such as FIB table), a Bloom filter

is an m-long bit-array with k independent hash functions.

When testing an element’s existence, k indexes are produced

by those k hash functions on it and only all 1’s in the bit-

array’s k positions indicate it is in the set. Using Bloom

filter(s) to separate prefix testing from FIB lookup, due to

its false positive, a nearly constant time complexity can be

achieved for IP lookup in the average case and Θ(W) in the

worst case.

False positive makes Bloom filter based approaches not so

efficient, and its probability f can be minimized [4] to f =
1/2k when k = (m/n) × ln2, given a set of n records and

a m-long bit-array. To guarantee the false positive probability

no worse than f , it is enough to allocate −2 ln f (m/n =
−ln f/(ln 2)2 ≈ −2 ln f) bits per record using Bloom filter.

To manage a set of ni prefixes of length i, if (−2 ln f ∗ni) <
2i, we can use Bloom filter with −2n ln f bits to program the

set saving on-chip memory, otherwise, 2i-long bitmap can be

used to represent the existence of each potential prefix since

2i is the maximum number of available prefixes of length i.

To further approaching the constant time and reducing worst

case complexity while supporting fast update, we use binary

search only at the pivot level. Though false positive problem

can’t be eliminated, pivot level pruning of candidate prefixes

can greatly reduce number of probes before a hit.

In on-chip memory, we use bitmap BMi for prefixes of

length i (0 � i � b, b can be decided using the criteria

mentioned above). Each bitmap is created to be all zero.

Set BMi[pf] = 1 for each tagged node pf of length i in

the expanded trie. We use Bloom filter BFi for each level i
(b+ 1 � i � W). Keeping the same false positive probability

f = (1/2)k with a fixed k, we allocate mi = −2nilnf bits

for each BFi. Set BFi[hj(pf)] = 1 for each j (1 � j � k,

hj(.) stands for the ith hash function) for each tagged node

pf of length i in the expanded trie. To support pruning at

pivot level p, an additional Bloom filter BFAp is needed.

BFAp represents the set of hollow nodes at level p in the

expanded trie. The pseudo code for an IP address lookup

is shown in Algorithm 1. In Stage 1, candidate prefixes are

collected by testing BFAp, {BFi | b+ 1 � i � W − 1} and

{BMi | 0 � i � b}, which can be done in parallel using GPU

or FPGA for further speed up. After testing, we get the prune

flag and a set of candidate prefixes {al1, al2, · · · , alc} (all the

positions ∈ {l1, l2, · · · , lc} in the probe vector are set to 1,

the others 0). If the prune flag is equal to 1, it indicates that

the length of LMP is bigger than p with some false positive

probability, so we probe for next-hop all the candidate prefixes

in a descending order of length and return immediately after

a hit. If the prune flag is equal to 0, it can be asserted that the

length of LMP is not bigger than p with no exception, so we

only probe the candidate prefixes of lengths � p.

Knowing that most of the IPv4 prefixes of FIB records are

at level 24, the situation that prune flag is equal to 0 occurs

more frequent, reducing the number of candidate prefixes for

probe and speeding up IPv4 lookup. This intuition can be used

to choose an appropriate pivot level not only for IPv4 but also

for IPv6 and the details can be found in IV-B.

D. Fast FIB Updating

The FIB records may change frequently as routing protocols

report the network’s fast-changing topology. In order to cope

with highly dynamic situations, fast incremental IP update

algorithm is required. In our proposed setting, updates will

2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR)

Algorithm 1: IP Lookup

Input: Bitmaps: BM0, BM1, · · · , BMb

Input: Bloom filters: BFb+1, BFb+2, · · · , BFW

Input: additional Bloom filter for pivot level p: BFAp

Input: the IP destination address: a
Output: next-hop of the longest matching prefix of a

// getBF(em,BF): return whether or not
an element em is in the set stored
by the Bloom Filter BF

// GetNextHop(pf): return a next-hop
record from prefix-next hop storage
given a prefix pf

// pv: probe vector, pb: prune flag
(see Figure 1)

1 Stage 1 in the on-chip memory:

2 pb ← getBF(ap, BFAp);

3 if pb = 1 then tmp ← W else tmp ← p;

4 for i ← 0 to b do
5 pv [i]← BMi[ai];

6 for i ← b+1 to tmp do
7 pv [i]← getBF(ai, BFi);

8 Stage 2 in the off-chip memory:

9 for i ← tmp to b+ 1 do
10 if pv[i] = 1 then
11 nextHop ← GetNextHop(ai);

12 if nextHop is not NULL then
13 return nextHop;

14 for i ← b to 0 do
15 if pv[i] = 1 then
16 nextHop ← GetNextHop(ai);

17 return nextHop;

affect both control plane and data plane. Specifically, we first

update the control plane according to the routing protocol’s

update message and then use the control plane’s changing
information to guide data plane’s updating. Trivial updating in

the control plane can be done by first update the original trie,

and then construct a new expanded one by it, and the changing

information can be derived by comparing the two different

expanded tries. It is extremely time consuming since a wholly

new expanded trie is generated. Thus, incrementally updating

the expanded trie is critical in achieving fast update. Knowing

that update messages can be divided into two categories:

announcement in which a prefix with a next-hop should be

added, and withdrawal in which an already existed prefix

should be deleted, while each of those prefixes corresponds to

a position/node in the original trie. In this paper, we focus only

on prefixes in those messages and their impacts, and ignore

others. Recall that in forming an expanded trie, whether a node

at level p is a marker is determined only by its descendants,

and the node and its children may be modified iff it is a

marker. So we consider updating in the control plane in two

different situations: when the length of the updated prefix pf is

smaller than p which is the pivot level, and the others. In each

situation, we separately address the two update categories.

Before exploring IP update, to facilitate fast updating, we

introduce how to extend the expanded trie which was designed

only for Bloom filters’ initialization to an extended trie.

Specifically, we combine the original trie and the expanded

one into the extended trie keeping both information about

original prefixes and expanded ones. Besides attribution of a

next-hop old tag for each node, attributions of a new tag,

a title assigned from {expander,marker, inheritor}, a marker
list consisting of related markers, and an expander pointer
pointing to expander are augmented to that node. Note that

the value of all attributions is set to null at a node’s creation.

If a node has a prefix in the original trie, the next-hop of the

prefix is set to the old tag of it. When a node is a marker,

a pointer to its expander is set to the expander pointer of

it. For each marker, a pointer to it is added to the marker
list of its expander. When a node is an inheritor, set the new

tag of it by the next-hop (new tag or old tag) of its parent.

Only discovering a marker triggers trie’s modification, so the

extended trie is almost the same size as the expanded one.

When the length of pf is smaller than p: In this situation,

as update happens above level p, any marker title will not

be revoked and thus not be revoked the inheritor, but it may

cause the expander title’s hand over between different nodes

which affecting some inheritor’s next-hop tag.

• announcement. If pf is already in the original trie, we

call it renew, otherwise add.

To renew pf , first set the pf node’s old tag by the next-

hop of pf and then check if it is an expander. If yes,

do expander renew for pf node. Specifically, for each

marker in the marker list set the new tag of the marker’s

inheritor children by the expander’s next-hop old tag.

To add pf , first create a new node for pf in the trie if no

node in that position of pf , set the old tag of the pf node

by the next-hop of pf , and then up tracing its ancestors to

find an expander. Once been found, first extract markers

having prefix pf from the marker list and add them to

the marker list of the pf node which is now set to be

an expander, and then do expander renew for pf node.

Revoke the expander node’s title once the marker list
becomes null.

• withdrawal. To withdrawal pf , first set the old tag and

the title by null, delete the pf node if it is a leaf, and then

check if the pf node is an expander. If yes, up tracing

its ancestors to find a solid node. Once been found, first

extract each marker from the marker list of the pf node

and add them to the ancestor, and then set the ancestor

to be an expander if it is not and do expander renew for

the ancestor with those newly added markers.

When the length of pf is not smaller than p: As whether

a node at level p is a marker is determined only by its

descendants, in this situation, we inspect the marker title’s

changing at level p when updating a prefix of length � p.

2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR)

• announcement. To renew pf , just set the pf node’s old

tag by the next-hop of pf . To add pf , first create a new

node for pf if no node in that position of pf , set the

old tag of the pf node by the next-hop of pf , revoke the

inheritor title if the pf node was an inheritor before, and

then inspect the title’s changing of its ancestor at level p.

The procedure for determining if the ancestor after pf ’s

adding is a marker can be found in Subsection III-B.

Four cases may be happen, but only two of them need

be considered carefully. If the ancestor’s title stays still,

do nothing. If the ancestor is now changed to be a

marker, it must be that the ancestor’s position has no

node before pf ’s adding and a newly added leaf pf node

forces the hollow ancestor node’s creation, and obviously

the ancestor must be a marker. In this case, do marker
creation for the ancestor in the extended trie. Note that

marker creation is the same as revised pivot pushing’s

last two steps, so we omit it for space saving. If the title

of the ancestor is revoked, do marker revocation for it.

Specifically, delete the marker from the marker list of

the expander node pointed by the ancestor’s expander
pointer, revoke the expander node’s title once the marker
list becomes null, and then set the title of the ancestor

and its children by null and delete any child node if it is

a leaf and it’s old tag is null.

• withdrawal. To withdrawal pf , first set the old tag and

the title by null, delete the pf node if it is a leaf, and

then inspect the title’s changing of its ancestor at level

p. Like add pf , four cases may be happen, and only two

of them need rigorous treatment. If the ancestor’s title

stays still, do nothing. If the ancestor is now changed to

be a marker, do marker creation for it. If the title of the

ancestor is revoked, it must be that it has no next-hop old

tag and has only one descendant which is the pf node in

the original trie. Do marker revocation for that ancestor

and delete it.

IV. EXPERIMENTAL RESULTS

A. Data Sets
In our experiments, we focus on the LPM with IPv4 where

W = 32. We use IPv4 FIBs downloaded from 5 routers

provided by RIPE [24] in June 8 2014, and query for each

FIB by IP packet traffics containing approximately 5 million

IP packets. The total numbers of prefixes in the 5 FIBs are

498409, 518156, 457519, 500703, 548596, respectively. To

test the robustness and efficiency of our proposed IP lookup

algorithm, traffics generated meet one of the two patterns:

• random traffic: randomly generated IP addresses.

• prefix-based traffic: IP addresses generated obey the

prefix distribution of the corresponding FIB.

B. Pivot Level Choosing
Some consideration on how to choose an appropriate pivot

level is given before evaluating the performance of our pruning

algorithm.We calculate the proportion of prefixes at each level

to the total prefixes for each of the 5 FIBs [24] we collected

and get the mean and the standard deviation of those 5

0 3 6 9 12 15 18 21 24 27 30 33
0

10

20

30

40

50

60

di
st
rib
ut
io
n
(%

)

prefix length

Fig. 3. Mean and the standard devi-
ation of the prefix length distribution
for the 5 FIBs.

0 3 6 9 12 15 18 21 24 27 30 33
0

10

20

30

40

50

60

70

80

on
-c
hi
p
m
em

or
y
in
cr
em

en
t(
%
)

pivot level

Fig. 4. Mean and the standard devia-
tion of the on-chip memory increment
after pivot pushing for the 5 FIBs.

proportions at each level (as shown in Figure 3). As we can see

from Figure 3, length-24 prefixes take up more than half of the

total number and prefixes of length less than 8 hardly exists.

Considering that pivot pushing may change the number of

prefixes at level p and p+1 and our LPMP uses an additional

Bloom filter BFAp for pruning, to keep the false positive

probability unchanged, additional on-chip memory should be

allocated after pivot pushing. Figure 4 shows the additional on-

chip memory needed at some level if using pivot pushing at

that level. If choosing level 24 as pivot level, from Figure 3 and

4, pivot pushing will need 0.9% additional on-chip memory

while 52.3% of the prefixes are at this level. More prefixes at

some level, with higher probability the LPM is at that level;

Less increment in on-chip memory, less pressure for on-chip

memory usage. So level 24 is the best choice to meet the two

requirement at the same time.

To test the performance for different pivot levels, we fix the

on-chip memory space of 6.144Mbit, calculate the average

number of probes after pivot pushing at different levels for

the two traffic patterns, and plot the two curves in Figure 5. It

shows that different pivot level can affect the average number

of probes. For prefix based traffic, we get the least three

average number of probes of 1.011, 1.008, 1.004 at level 26,

25 and 24 respectively; for random traffic, 1.051, 1.045, 1.046

at level 24, 13, and 12. Choosing level 24 as pivot level can

always get the least average number of probes for the two

traffic patterns. Below we choose level 24 as our pivot level

for performance evaluation.

0 3 6 9 12 15 18 21 24 27 300.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60

PB
random

pivot level

av
er

ag
e

pr
ob

e
tim

es

Fig. 5. Avg. #probes after pivot pushing for the two traffic patterns.

C. Evaluation Results
We evaluated our IP lookup algorithm by taking into con-

sideration the relationship between number of probes per IP

lookup and the total on-chip memory consumption. As our

work is an extension of the well-know IP lookup algorithm —

PBF who first introduce Bloom filter to assist longest prefix

2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR)

matching, we compared the two algorithms using the 5 FIBs

with random traffics and prefix-based traffics, separately.

2 4 6 8 10 120.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

PBF
Pruning

on-chip memory (Mbits)

av
er

ag
e

#
pr

ob
es

Fig. 6. Avg. #probes vs. memory
sizes using random traffics.

2 4 6 8 10 12

1.0

1.5

2.0

2.5

3.0

3.5
PBF
Pruning

on-chip memory (Mbits)
av

er
ag

e
#

pr
ob

es

Fig. 7. Avg. #probes vs. memory
sizes using prefix-based traffics.

Average # probes using random traffics: Experimental
results show that for random traffics, to meet an average #
probes less than 1.003, our algorithm saves 7.2% on-chip
memory space than PBF. As approximately 30% IPs in the

traffic didn’t hit prefixes in FIB, on-chip memory saving is

not obvious. If the number of none matching IP packets is

relatively high, more on-chip memory is needed to keep the

average # probes unchanged or average # probes will be large.

Using random traffics, Figure 6 reports the mean of the 5

experiment’s average # probes given different on-chip memory

space. As we can see, the average # probes for our algorithm

are always lower than that of PBF. To achieve an average #

probes less than 1.003, our algorithm needs 8.715 Mbits while

PBF needs 9.391 Mbits to represent FIB of approximately 500

thousand prefix records.

Average # probes using prefix-based traffics: Experimental
results show that for prefix-based traffics, to meet an average
probes less than 1.003, our algorithm saves 24.7% on-chip
memory space than PBF. Using prefix-based traffics, Figure 7

plots the mean of the 5 experiment’s average # probes given

different on-chip memory space. As we can see, the average

probes for our algorithm are always lower than that of PBF

and our algorithm converges to an average # probes equals 1

sharply. To achieve an average # probes less than 1.003, our

algorithm needs 6.495 Mbits while PBF needs 8.628 Mbits to

represent FIB of approximately 500 thousand prefix records.

V. CONCLUSION

IP lookup is a classic but still a hot issue nowadays [8], [25]

due to the explosive growth of backbone FIBs. In this paper,

we propose a novel IP lookup algorithm, named Longest Prefix

Matching with Pruning. Our algorithm uses prefix Bloom

filters [4] to represent the trie after applying revised pivot

pushing. The key improvement of our paper is that we build a

Bloom filter for the hollow nodes at the pivot level to reduce

#probes. While achieving the same average #probes of 1.003

as that of PBF, 7%−24% on-chip memory space can be saved.

ACKNOWLEDGMENT

This research was supported in part by the National

Key Research and Development Program of China No.

2017YFB1400700, and the National Natural Science Foun-

dation of China under Grant 61672061, 61571352 and

U1736216.

REFERENCES

[1] “Source code of Longest Prefix Matching with Pruning,”
https://github.com/hu-jun/LPMwithPruning.

[2] “BGP routing table analysis reports,” http://bgp.potaroo.net/.
[3] F. Wang and M. Hamdi, “Matching the speed gap between sram and

dram,” in High Performance Switching and Routing, 2008. International
Conference on. IEEE, 2008, pp. 104–109.

[4] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” in Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications. ACM, 2003, pp. 201–212.

[5] H. Lim, K. Lim, N. Lee, and K.-H. Park, “On adding bloom filters to
longest prefix matching algorithms,” Computers, IEEE Transactions on,
vol. 63, no. 2, pp. 411–423, 2014.

[6] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, Scalable high
speed IP routing lookups. ACM, 1997, vol. 27, no. 4.

[7] J. H. Mun and H. Lim, “New approach for efficient ip address lookup
using a bloom filter in trie-based algorithms,” IEEE Transactions on
Computers, vol. 65, no. 5, pp. 1558–1565, 2016.

[8] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy, “Guar-
antee IP lookup performance with FIB explosion,” in ACM SIGCOMM
Computer Communication Review, vol. 44, 2014, pp. 39–50.

[9] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and
taxonomy of ip address lookup algorithms,” Network, IEEE, vol. 15,
no. 2, pp. 8–23, 2001.

[10] K. Sklower, “A tree-based packet routing table for berkeley unix.” in
USENIX Winter, vol. 1991, 1991, pp. 93–99.

[11] V. Srinivasan and G. Varghese, “Fast address lookups using controlled
prefix expansion,” ACM Transactions on Computer Systems (TOCS),
vol. 17, no. 1, pp. 1–40, 1999.

[12] P. Crescenzi, L. Dardini, and R. Grossi, “Ip address lookupmade fast
and simple,” in Algorithms-ESA99. Springer, 1999, pp. 65–76.

[13] S. Suri, G. Varghese, and P. R. Warkhede, “Multiway range trees:
Scalable ip lookup with fast updates,” in Global Telecommunications
Conference, 2001. GLOBECOM’01. IEEE, vol. 3, 2001, pp. 1610–1614.

[14] F. Zane, G. Narlikar, and A. Basu, “Coolcams: Power-efficient tcams
for forwarding engines,” in IEEE INFOCOM 2003., vol. 1, pp. 42–52.

[15] K. Zheng, C. Hu, H. Lu, and B. Liu, “A tcam-based distributed parallel
ip lookup scheme and performance analysis,” IEEE/ACM Transactions
on Networking (TON), vol. 14, no. 4, pp. 863–875, 2006.

[16] H. Fadishei, M. S. Zamani, and M. Sabaei, “A novel reconfigurable
hardware architecture for ip address lookup,” in Proceedings of the 2005
ACM symposium on Architecture for networking and communications
systems, pp. 81–90.

[17] H. Le, W. Jiang, and V. K. Prasanna, “A sram-based architecture for
trie-based ip lookup using fpga,” in IEEE Field-Programmable Custom
Computing Machines, 2008. 16th International Symposium on, pp. 33–
42.

[18] D. Pao, Z. Lu, and Y. H. Poon, “Ip address lookup using bit-shuffled
trie,” Computer Communications, vol. 47, pp. 51–64, 2014.

[19] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 195–206, 2011.

[20] J. Zhao, X. Zhang, X. Wang, and X. Xue, “Achieving o (1) ip lookup
on gpu-based software routers,” ACM SIGCOMM Computer Communi-
cation Review, vol. 40, no. 4, pp. 429–430, 2010.

[21] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in Proc. IEEE INFOCOM’98, pp. 1240–1247.

[22] A. Lucchesi, A. C. Drummond, and G. Teodoro, “High-performance IP
lookup using intel xeon phi: a bloom filters based approach,” J. Internet
Services and Applications, vol. 9, no. 1, pp. 3:1–3:18, 2018.

[23] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 3, pp. 281–293, 2000.

[24] “RIPE Network Coordination Centre,” https://www.ripe.net/.
[25] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population count

for fast and scalable software IP routing table lookup,” in Proc. ACM
SIGCOMM, 2015.

2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR)

