
LETFramework: Let the Universal Sketch be
Accurate

Ruijie Miao, Xiangwei Deng, Zicang Xu, Ziyun Zhang, Tong Yang
Peking University, China

Abstract—Sketching algorithms are considered as promising
solutions for approximate query tasks on large volumes of
data streams. An ideal general-purpose data processing engine
requires a sketch to achieve (1) high genericness in supporting a
broad range of query tasks; (2) high fidelity in providing accuracy
guarantee; and (3) high performance in practice. Although
the universal sketch achieves high genericness and fidelity, its
accuracy falls short of expectations. In this paper, we propose
LETFramework (short for Lossless ExTraction Framework) to
optimize the performance of the universal sketch. With the key
technique of lossless extraction, LETFramework losslessly ex-
tracts the main body of the frequent items and stores the remain-
ing information in the universal sketch, thereby achieving higher
accuracy while maintaining high fidelity. We further introduce
a unified methodology to incorporate the substitution strategies
from top-k algorithms into LETFramework. Experiment results
show that, LETFramework outperforms the universal sketch,
achieving accuracy improvements ranging from 1 to 3 orders of
magnitude on most query tasks and up to 15.73 times higher
throughput. All the related source code is open-sourced and
available at Github.

Index Terms—Data Stream; Sketch; Top-k

I. INTRODUCTION

Processing large volume of data often incurs huge overhead
in terms of both memory and time. To mitigate this overhead, a
common approach is to trade the query accuracy for improved
memory efficiency and processing speed. Research community
has explored many approximate algorithms for various query
tasks, including frequency estimation [1], [2], [3], inner-
production estimation [4], [5], cardinality estimation [6], [7],
[8], and more [9], [10], [11], [12], [13], [14], [15], [16], [17].

Sketching algorithms are considered as promising solutions
for approximate query tasks, which provide accuracy guaran-
tees with sub-linear memory consumption. Sketches can be
classified into two categories based on the number of sup-
ported query tasks. The first category is the dedicated sketches
designed for specific query tasks. Most sketching algorithms
fall into this category, such as CU sketch [3] designed for
frequency estimation, HyperLogLog [7] designed for cardi-
nality estimation, Unbiased SpaceSaving [12] designed for
subset sum estimation, and more [1], [4], [5], [18], [19]. The
second category is the generic sketches designed for multiple
query tasks. Examples of generic sketches include DHS [11]
and Elastic sketch [10], which support a wide range of query
tasks including frequency estimation, entropy estimation and

The corresponding author: Tong Yang (yangtong@pku.edu.cn).
Ruijie Miao, Xiangwei Deng, Ziyun Zhang and Tong Yang are with School

of Computer Science, Peking University, Beijing, China.

heavy hitter detection. With the same memory usage, a generic
sketch may not outperform a dedicated sketch in terms of
accuracy on the specific task. However, for a general-purpose
data processing engine that aims to support multiple query
tasks, it should employ either one generic sketch or multiple
dedicated sketches designed for different tasks. If the total
memory consumption is the same, the generic sketch can
achieve higher accuracy. Additionally, the generic sketch is
also faster because multiple sketches require multiple passes
of the data.

The universal sketch [20], [21] is widely recognized as
one of the most generic sketches. It supports queries for the
aggregated sum of statistics over all items, where each statistic
is obtained by applying a function to the frequency of one
item. One of the significant advantages of the universal sketch
is its fidelity in providing accuracy guarantee for a broad range
of query tasks. In contrast, many other generic sketches do not
offer accuracy guarantee for all the query tasks they support.
However, the performance of the universal sketch in both
accuracy and processing speed is often unsatisfactory in real
world datasets [10], [22], which limits its practical application.
Ideally, a generic sketch should offer both high fidelity in
theory and high performance in practice.

In this paper, we propose LETFramework (short for Loss-
less ExTraction Framework), a framework which optimizes
the universal sketch, achieving practically high performance
and theoretically high fidelity. The key technique of the
LETFramework is named lossless extraction. By employing
lossless extraction, LETFramework losslessly records the main
body of the frequent items, while the remaining informa-
tion, including the small portion of frequent items and the
infrequent items, is recorded with the universal sketch with
error bounds. We propose a unified methodology to implement
lossless extraction with existing top-k algorithms, leveraging
their capability in identifying frequent items.

LETFramework consists of two parts: the Top-k part and
the USketch part. The purpose of the Top-k part is to extract
frequent items, and the USketch part is a universal sketch
for infrequent items. The lossless extraction technique is to
provide fully accurate estimation for those items inserted in
the Top-k part but not passed to the USketch part, in spite of
the substitution process. Logically, the whole data stream is
divided into two parts: items in the Top-k part, which are
accurately recorded, and items in the USketch part, which
are bounded with the universal sketch. It is noticeable that,

while we wish to extract all frequent items into the Top-
k part, it is infeasible due to limited memory. During the
data stream processing, when the data structure reaches its
capacity and needs to replace recorded items, a one-pass
algorithm cannot distinguish between the infrequent items
and the frequent items whose frequency counts is currently
low. Therefore, the Top-k part stores the main body of the
frequency counts for each frequent item, excluding the first δ
counts. The extraction of frequent items is beneficial to the
accuracy, considering the imbalanced data distribution in the
real world data [23], [24], [25], [26], [27]. One main reason is
that it enables more accurate estimation for frequent items,
which form the majority of the data stream. Additionally,
extracting frequent items results in a more balanced frequency
distribution, reducing the estimation variance of the universal
sketch which applies its sampling technique.

To efficiently extract the main body of the frequent items,
we leverage the advanced design of the substitution strategies
in state-of-the-art top-k algorithms. However, directly apply-
ing most top-k algorithms as the Top-k part is not feasible
due to their dual-purpose counters, which are used for both
counting and substitution. This dual-purpose nature prevents
achieving lossless extraction. Besides, the designs of the most
top-k algorithms do not consider passing information about
infrequent items. To address these challenges, we propose a
unified methodology to transform the top-k algorithms into the
Top-k part. The idea is to introduce a separate pure counter
(if not exist) to provide fully accurate estimations, while the
original counter solely serves the purpose of substitution. To
reduce the memory overhead caused by the increased number
of counters, we further propose a technique of substitution
counter sharing, which let multiple (ID, pure counter) pairs to
share a single substitution counter. We believe our method-
ology enables the transformation of most top-k algorithms
into the Top-k part. We provide case studies with four top-k
algorithms: SpaceSaving [28], frequent [29], HeavyGuardian
[9] and Elastic Sketch [10].

Prior works [30], [31] have pointed out a wide range
of query tasks that are supported by the universal sketch,
which are naturally supported by LETFramework. Besides,
we show that some query tasks on multiple data streams can
be supported, including the estimation of inner-production,
cosine similarity, and Jaccard similarity. We further show the
high fidelity of LETFramework by theoretical analysis, which
proves that LETFramework still provides accuracy guarantee
for a wide range of queries. We conduct rich experiments on
the performance of LETFramework. The results show that,
LETFramework outperforms the universal sketch, achieving
accuracy improvements 1 to 3 orders of magnitude on most
query tasks and up to 15.73 times higher throughput. Our
source code is publicly available at Github [32].

II. BACKGROUND AND RELATED WORK
A. Sketches

Sketches are compact data structures that support approx-
imate queries over large-scale data. Sketches are highly ef-
ficient in processing speed, as they only require single pass

of the data stream with simple operations. Moreover, sketches
provide fast query capabilities with accuracy guarantee. There-
fore, sketches are considered promising solutions for approx-
imate query processing. Typical sketches include CM sketch
[1], Count sketch (Fast-AGMS) [2], [5], CU sketch [3] and
more [7], [12], [18].

Sketches can be classified into two categories: dedicated
sketches for specific tasks and generic sketches for multiple
tasks. The example of dedicated sketches for specific tasks in-
clude CU sketches [3] for frequency estimation, HyperLogLog
[7] for cardinality estimation, Unbiased SpaceSaving [12] for
subset sum estimation, and more [1], [4], [5], [18], [19].
These sketches achieve high performance for their respective
supported tasks due to extensive optimization efforts. However,
when using a general-purpose data processing engine, multiple
dedicated sketches need to be constructed to support different
query tasks. This approach leads to reduced memory efficiency
and increased processing overhead.

For generic sketches designed for multiple tasks, they
achieve good performance for a broader range of query tasks.
However, most of them show the feasibility on their sup-
ported tasks through experiments but fail to provide accuracy
guarantee, leading to low fidelity. Elastic sketch [10] and
DHS [11] support query tasks including frequency estimation,
heavy hitter detection, heavy change detection and entropy
estimation, but they only provide error bound analysis for the
frequency estimation task. On the other hand, the universal
sketch [20], [21] achieves high fidelity by providing accuracy
guarantee for a wide range of query tasks, but its accuracy
is not satisfactory on real world dataset [10], [22]. The main
focus of this paper is to develop a generic sketch that achieves
both high fidelity and high performance simultaneously.
B. Top-k Algorithms

Top-k items refer to the k most frequent items in the data
stream. Approximate algorithms for finding top-k items have
been widely studied. Existing top-k algorithms share a similar
algorithm design: they use a limited number of buckets, with
each bucket typically consisting of an ID field and a counter.
When a new item arrives, the algorithm first tries to update
the bucket that matches the ID of the incoming item. If such
a bucket does not exist, it then tries to insert the item into an
empty bucket. In the case where no empty bucket exists, it tries
to update the bucket with the smallest counter value. While
the main difference among different top-k algorithms lies in
their strategies to update the buckets and substitute items.

Popular top-k algorithms include SpaceSaving [28], fre-
quent [29], HeavyGuardian [9], and Elastic sketch [10]. Space-
Saving replaces the ID field by the incoming item, and
increments the counter by 1. Frequent decreases the counter
by 1. If the counter reaches 0, the ID is replaced by the
incoming item and the counter is set to 1. HeavyGuardian
decreases the counter by 1 with a probability of b−C , where
b is a constant and C is the value of the minimum counter.
If the counter reaches 0, the ID is replaced by the incoming
item and the counter is set to 1. In the Elastic sketch, each
bucket includes an additional field for negative votes. When

2

Algorithm 1: Insertion of the universal sketch
Input: An incoming item e

1 for i = 1 to L do
2 for j = 1 to di do
3 Mi[j][h

j
i (e)]←Mi[j][h

j
i (e)] + sji (e);

4 Freq ← median
(
{Mi[j][h

j
i (e)] · s

j
i (e)}j=1,··· ,d

)
5 if e appears in Ti then
6 Update the corresponding frequency to Freq

7 else if Ti has empty slot(s) then
8 Insert (e, Freq) to one empty slot
9 else

10 idxmin ← get slot index with minfreq(Ti)
11 if idxmin < Freq then
12 Ti[idxmin].ID ← e
13 Ti[idxmin].freq ← Freq

14 if Hi(e) == 0 then
15 return

Algorithm 2: Query of the universal sketch
Input: The queried item e; the G-sum function g(·)
Output: Estimated G-sum

∑
x g(fx)

1 G-sumL ← 0
2 for j = 1 to k do
3 if TL[j] is not empty then
4 G-sumL ← G-sumL + g(TL[j].freq)

5 for i = k − 1 to 1 do
6 G-sumi = 2 · G-sumi+1
7 for j = 1 to k do
8 G-sumi+ = (1−2Hi(Ti[j].ID)) ·g(Ti[j].freq)

9 return G-sum1

the incoming item updates the bucket with smallest counter,
it increases the negative vote field by 1. If the negative votes
exceed λ·C, where λ is a constant and the C is the value of the
counter, the ID is replaced by the incoming item, the counter
is set to 1 and the negative vote field is reset. In summary,
various top-k algorithms use different substitution strategies,
which can be incorporated into the design of the Top-k part
in the LETFramework. Since there is no theoretical analysis
indicating the superiority of one strategy over another, we be-
lieve different substitution strategies have different advantages.
Ideally, the LETFramework should support the use of different
substitution strategies from top-k algorithms.

III. THE UNIVERSAL SKETCH
A. Overview

Suppose the item x has frequency fx in the data stream.
Given a function g(·), we define the G-sum as the sum∑

x g(fx) over all items. The universal sketch uses one
sketch to address a broad range of G-sums with an accuracy
guarantee. Specifically, it supports arbitrary G-sum functions
that are monotonic, tractable, and upper bounded by O(f2).

We first present a high-level overview of the universal
sketch. It consists of multiple layers, and incoming items
are inserted layer by layer. Initially, each item is inserted
into the top layer. As an item progresses to the ith layer,

it has a 50% chance of passing through to the (i + 1)th

layer, or the insertion process terminates otherwise. In each
layer, the universal sketch employs a Count sketch to identify
top-k items from the sub-stream of the inserted data. When
querying for the G-sum

∑
x g(fx), the universal sketch utilizes

a recursive estimation approach. At a high level, the universal
sketch estimates the G-sum for the sub-stream inserted in each
layer, starting from the bottom layer and progressing upwards.
The final estimation is obtained from the G-sum calculated in
the topmost layer, since all items are inserted in the top layer.
B. The Data Structure

The universal sketch consists of L = log n layers, where
each layer is composed of a Count sketch [2] and a top-k
array. In the ith layer, the Count sketch is a di × wi counter
matrix Mi, and the top-k array is denoted as Ti. For the Count
sketch Mi, the jth row is associated with a hash function hj

i

that maps the ID of the item to one of the columns and a hash
function sji that maps the ID to either −1 or 1. Besides, all
layers except the bottom layer employs a hash function Hi

that maps the ID of the item to either 0 or 1, which is used
to decide whether an item can pass to the next layer.
C. Operations
Insertion: The pseudo code of the insertion is shown in
Algorithm 1. The incoming item e is initially inserted into the
Count sketch M1 of the top layer and its frequency is estimated
as f̂e (line 2 - 4). The pair (e, f̂e) is then used to update the top-
k array T1, which maintains the k most frequent items (line 5
- 13). Next, we compute H1(e) to determine whether the item
will be passed to the next layer (line 14 - 15). If H1(e) equals
1, indicating that e is sampled, it is passed to the next layer
and inserted following the same procedure. Otherwise, the
insertion of e terminates immediately. The insertion process
continues until e is not sampled for the next layer or it reaches
the bottom layer.
Query: The pseudo code of query is shown in Algorithm 2.
The first step is to estimate the G-sum on the bottom layer by
applying the G-sum function to the top-k items in the bottom
layer and calculating the sum (line 1 - 4). Then, to estimate
the G-sum on the ith layer, the universal sketch multiplies
the estimated G-sum of the (i + 1)th layer by 2, and adjusts
estimation based on top-k items in the ith layer (line 5 - 8).
For the top-k items that pass through to the (i + 1)th layer,
their contribution is subtracted from the estimated G-sum. For
the top-k items that are not sampled to the (i+1)th layer, their
contribution is added to the estimated G-sum. Finally, the G-
sum estimation on the top layer is computed and returned.
D. Advantages and Limitations

The universal sketch can use one sketch to support a broad
range of G-sum functions that are monotonic, tractable and
bounded by O(x2). Prior works [30], [31] have highlighted its
genericness in supporting many important approximate query
tasks. With g(x) = x0, it supports cardinality estimation [6],
[7]. With g(x) = x2, it supports second frequency moment
estimation [33], [34]. With g(x) = x log x, it supports entropy
estimation [11], [35]. Additionally, since the universal sketch
uses a Count sketch and a top-k array in the top layer where all

3

Fig. 1: Overview of the LETFramework.

items are inserted, it naturally supports frequency estimation
[1], [3] and heavy hitter detection [2], [10], [9].

However, the experiment results of prior works [10], [22]
have shown that the accuracy of the universal sketch is
not satisfactory on real world workloads. The key reason
is that, the design of the universal sketch is agnostic of
the data distribution. Prior research [23], [24], [25], [26],
[27] has highlighted the imbalanced nature of real world
data, which provides the opportunity to improve the accuracy
of the universal sketch. Since frequent items comprise the
main body of the data, achieving more accurate estimation
for these items will enhance the overall accuracy of the G-
sum estimation. Besides, extracting out frequent items leads
to a more balanced distribution of data being inserted into
the universal sketch, which helps to reduce the estimation
variance, as the estimation is based on a recursive sampling.

IV. THE LETFRAMEWORK

In this section we will introduce the data structure and the
interfaces. The main interfaces include:
• Initialize(Sketch)
• Insert(Sketch, Item)
• SingleStreamQuery(Sketch, Task)
• MultiStreamQuery(SketchA, SketchB, Task)

The interface of initializing is to simply reset all counters and
set IDs to null. We will introduce the data structure and other
interfaces in the follows.
A. The Data Structure
Data structure: As shown in Figure 1, LETFramework
comprises two components: the Top-k part and the USketch
part. The Top-k part is used to provide lossless extraction
for the main body of the frequent items. The USketch part
is a universal sketch that provides G-sum estimation for the
remaining data, each layer consisting of a Count sketch and a
top-k array. The construction of the Top-k part using existing
top-k algorithms will be discussed in §V. In this section the
Top-k part can be regarded as a black box that takes an
incoming item as input and optionally transfers information
about infrequent items to the USketch part. When the insertion
process is finished, the Top-k part provides a list of (ID,
frequency) pairs for the frequent items.
B. Basic Operations
Insertion: For an incoming item e, it is first inserted to the
Top-k part. The Top-k part decides whether the incoming item
should be maintained as a candidate of frequent items. If the
item e is identified as an infrequent item, the information of

(e, 1) is transferred to the USketch part. Otherwise, the item
e is decided as a candidate of frequent items and updates the
recorded items in the Top-k part. In the updating process it
may substitute an item that is already stored in the Top-k
part, and in such case the information of the substituted item
(e′, frequency) will be transferred to the USketch part. For
the information transferred to the USketch part, the insertion
follows the same process described in Algorithm 1. Initially
the item is inserted in the top layer. On each layer, the item has
a 50% chance to pass through to the next layer, or otherwise
the insertion terminates immediately. In each layer, the item
updates the Count sketch and uses the estimated frequency
from the Count sketch to update the top-k array.
Basic Query for G-sum: LETFramework supports query
for the G-sum

∑
x g(fx) where fx is the frequency of the

item x and g is the G-sum function. Note that the original
universal sketch requires the G-sum function to be tractable,
monotonic and upper bounded by O(x2). LETFramework
further requires the G-sum function g(·) to be differentiable,
and g′(x) should be bounded by rx for a constant r (see
§VI for details). The LETFramework narrows the range of
supported G-sum functions. Nonetheless, the supported G-sum
functions in the LETFramework still cover a wide range of
query tasks encountered in real world scenarios, including all
tasks discussed in prior works on the universal sketch [31],
[30]. The G-sum functions of x0, x log x, x2 are all supported.

Intuitively, in LETFramework, the frequent and infrequent
items are divided into the Top-k part and USketch part
respectively. Therefore, we calculate the G-sum separately for
items in the Top-k part and the USketch part, and combine the
results to obtain the final estimation. For items in the Top-k
part, the G-sum is estimated by applying the G-sum function
to all (ID, frequency) pairs. For the USketch part, the G-sum
is computed by following the query of the universal sketch,
as described in Algorithm 2. It will recursively estimate the
G-sum for the sub-stream of data inserted in each layer, and
output the estimation on the top layer as the final estimation.
C. Query on Multiple Data Streams

By supporting a wide range of G-sum functions, LETFrame-
work addresses various query tasks on a single data stream.
We extend the capabilities of LETFramework to support query
tasks on multiple data streams. In this section we discuss
three common query tasks: inner-production estimation, cosine
similarity estimation, and Jaccard similarity estimation.
Inner-production estimation: Suppose fA(x) is the fre-
quency of item x in the data stream A, and fB(x) is the
frequency of item x in the data stream B. The inner-production
is defined as

∑
x fA(x) · fB(x), which has wide applications

[4], [36], [37].
We aim to provide inner-production estimation with two

sketches, each built for one data stream. Note that,∑
x

fA(x) · fB(x) =
1

2
(
∑
x

(fA(x) + fB(x))
2

−
∑
x

f2
A(x)−

∑
x

f2
B(x)) (1)

4

Since LETFramework supports the function g(x) = x2, with
two sketches built for data stream A and B we can calculate∑

x f
2
A(x) and

∑
x f

2
B(x). The remaining problem is how to

estimate
∑

x(fA(x)+fB(x))
2. We enforce the two sketches to

use the same hash functions and parameters for the USketch
part. Then we merge the two sketches together to create a
new sketch for the merged data steam A+B, and perform G-
sum queries on the new sketch. Merging the USketch parts is
simple: as the USketch part provides a list of (ID, frequency)
pairs, we can merge the two lists together. If an ID appears in
both lists, we sum up their frequencies. For the USketch parts,
we merge them layer by layer. Since we use the same hash
functions and the same size of Count sketch, we can merge the
Count sketches by summing up each corresponding counters.
Then we can extract the set of items from both top-k arrays,
query the frequencies of these items again in the merged Count
sketch and select top-k items in the set.
Cosine similarity estimation: Suppose fA(x), fB(x) are the
frequencies of the item x in the data stream A and B,
respectively. The cosine similarity is defined as:

cos(A,B) =

∑
x fA(x) · fB(x)√

(
∑

x f
2
A(x)) · (

∑
x f

2
B(x))

We have discussed how to estimate
∑

x fA(x) · fB(x) above,
and estimating

∑
x f

2
A(x),

∑
x f

2
B(x) is already supported by

LETFramework. Therefore, cosine similarity estimation can
also be supported.
Jaccard similarity estimation: Let SA be the set of distinct
items in the data stream A, and SB be the set of distinct items
in the data stream B. The Jaccard similarity is defined as:
J(A,B) = |SA∩SB |

|SA∪SB | . SA∪SB is the same as the set of distinct
items in the merged data stream of A and B. We have already
discussed how to build a sketch for the merged data stream.
As LETFramework supports the G-sum function g(x) = x0,
the cardinality |SA ∪ SB | can be estimated. |SA ∩ SB | can be
estimated by the formula |SA|+ |SB |− |SA ∪ SB |. Therefore,
Jaccard similarity estimation can be supported.

V. LOSSLESS EXTRACTION

In this section, we discuss how to construct the Top-k
part using existing top-k algorithms while ensuring lossless
extraction of the main body of frequent items. We propose a
unified methodology that can transform existing top-k algo-
rithms into Top-k part structures. The key insight is that in
top-k algorithms, each ID is usually associated with a single
counter, which serves the dual purpose of counting and sub-
stitution of top-k items. This dual-purpose nature makes them
fail to provide fully accurate estimation. Lossless extraction
associate one ID with two counters: a pure counter and a
substitution counter. The pure counter provides fully accurate
estimation for the corresponding ID, while the substitution
counter serves the purpose of replacing for frequent items.
To address the low memory efficiency caused by increased
number of counters, we let multiple pairs of (ID, pure counter)
share a single substitution counter. Our solution achieves
lossless extraction at the cost of a little higher computation

and memory access overhead, as the insertion should access
and update two counters instead of one.
A. Methodology

Our methodology is as follows. We first transform the data
structure. As shown in Figure 2, the data structure consists
of a bucket array T with length L, and each bucket contains
a shared substitution counter and C cells of the (ID, pure
counter) pair. Then, we transform the insertion. We apply the
technique in the original top-k algorithm to locate the cell. If
the ID in the cell matches the incoming item, we only update
the pure counter. Otherwise, we update the shared substitution
counter and do substitution following the top-k algorithm’s
strategy. For example, the Frequent algorithm decreases the
counter for each unmatched item and replaces the ID when
the counter becomes zero. In the transformed version, we
increase the substitution counter, and do substitution when
the substitution counter is no less than the pure counter. We
believe our methodology works on most top-k algorithms.

We provide case studies on four well-known top-k algo-
rithms and construct four versions of the LETFramework: S-
LETSketch with SpaceSaving [28], F-LETSketch with Fre-
quent [29], H-LETSketch with HeavyGuardian [9], and E-
LETSketch with Elastic sketch. For the first three versions,
we need to apply the above methodology to transform them
accordingly. For the E-LETSketch, as the Elastic sketch al-
ready uses two types of counters, it can be applied to the
Top-k part with minimal modifications.
B. S-LETSketch

The Top-k part of the S-LETSketch is based on the Space-
Saving algorithm [28]. In the original SpaceSaving algorithm,
the counter represents the sum of frequencies of all the items
that are mapped to the bucket. When an incoming item has no
match in any bucket and there are no empty buckets, the bucket
with the minimum counter is updated. The ID is substituted by
the incoming item and the counter is incremented by 1. With
the transformation methodology, we use the pure counter to
record the fully accurate frequency of an item, and use the
shared sum counter as the substitution counter to represent
the frequency sum for the substitution purpose.

For an incoming item, if one cell has the matched ID, we
increment both the pure counter in the cell and the substitution
counter in the corresponding bucket by 1. If no cell has the
matching ID but an empty cell is found, we update the empty
cell with the ID of the incoming item, set the pure counter
to 1, and increment the corresponding substitution counter
by 1. Otherwise, we find the bucket with the minimum sum
counter, and select the cell with the minimum pure counter to
perform substitution. The recorded ID and the pure counter
in the bucket are passed to the USketch part. Then the ID is
replaced by the incoming item, the pure counter is reset to 1,
and the substitution counter is incremented by 1.
C. F-LETSketch

The Top-k part of the F-LETSketch is based on the Fre-
quent algorithm [29]. In the original Frequent algorithm, an
incoming item uses a hash function to locate a bucket, and
it only updates the cells in the hashed bucket. When there

5

Fig. 2: Overview of the Top-k part with substitution strategies from existing top-k algorithms. The shown example uses the
substitution strategies from the SpaceSaving algorithm.

is neither a matching bucket nor an empty bucket, the cell
with the minimum counter in the hashed bucket is selected,
and its counter is decreased by 1. If the counter reaches 0,
the ID is replaced by the incoming item, and the counter is
set to 1. With the transformation methodology, we use a pure
counter to record the fully accurate frequency of an item, and
let the substitution counter to track the decreased value. When
the pure counter is smaller than the substitution counter, it is
equivalent to the situation where the counter reaches a value
lower than zero, and the ID should be replaced.

For an incoming item, if one cell in the hashed bucket has
the matched ID, then we increment the pure counter in the
cell by 1. If no cell has matched ID but one cell is empty,
we update the empty cell with the ID of the incoming item,
and set the pure counter to 1. Otherwise, we increment the
substitution counter by 1. If the minimum pure counter in
the hashed bucket is smaller than the substitution counter, the
corresponding cell is replaced by the ID of the incoming item,
and the substitution counter is reset. The previously recorded
pair of the ID and the pure counter is passed to the USketch
part. Otherwise, the incoming item is passed to the USketch
part.
D. H-LETSketch

The Top-k part of the H-LETSketch is based on the
HeavyGuardian algorithm [29]. The original HeavyGuardian
algorithm is similar to the Frequent algorithm. The only
difference is that, for Frequent, the counter is decreased by
1 each time the ID of the cell does not match the incoming
item. In contrast, for HeavyGuardian, the counter is decreased
by 1 with a probability b−C , where b is a constant and C
is the value of the counter. Therefore, when there is neither
a matching cell nor an empty cell in the hashed bucket, H-
LETSketch calculates the value of C as the difference between
the minimum pure counter and the substitution counter. With
a probability of b−C , the substitution counter is incremented
by 1. If the substitution counter exceeds the pure counter, the
cell should be replaced by the incoming item, following the
same procedure as in the F-LETSketch.
E. E-LETSketch

The Top-k part of the E-LETSketch is based on the Elastic
algorithm [29]. In the original Elastic sketch, each bucket al-
ready contains two counters: one for pure frequency counting,

and the other for substitution counting. The updating strategy
in the Elastic sketch is that, if the ratio of the substitution
counter to the pure counter exceeds a pre-defined threshold
λ, the bucket will be replaced by the incoming item. The use
of two counters in the Elastic sketch aligns naturally with our
framework, and the design of flag bits in the Elastic sketch
can be discarded in the E-LETSketch since it is not relevant
to the goal of lossless extraction.

When there is neither a matching cell nor an empty cell in
the hashed bucket, we increases the substitution counter by 1.
If the ratio of the substitution counter to the minimum pure
counter in the hashed bucket exceeds λ, the corresponding
cell is replaced by the incoming item, and the previously
recorded pair of (ID, pure counter) is sent to the USketch
part. Otherwise, the incoming item is passed to the USketch
part.
F. Discussion

We provide principles for choosing among the above-
mentioned four versions the suitable one. The S-LETSketch
has the strongest guarantee for frequent items extraction but
is the slowest. For a data stream with A distinct items and
N total items, with min(|A| , N

ϵF) counters in the Top-k
part, the S-LETSketch ensures to monitor any items whose
frequency is above F [28]. The other three versions, due to
their probabilistic design, cannot provide fully guarantee.

The F-LETSketch is hardware-friendly. The H-LETSketch
and the E-LETSketch requires complex operations like multi-
plication, division, and exponentiation. The F-LETSketch uses
only the addition and comparison, and therefore is more suit-
able for hardware platforms such as programmable switches
[38] and FPGA.

For the H-LETSketch and the E-LETSketch, they both
requires parameter fine-tuning to achieve good performance.
In the H-LETSketch, when the items come in the bursty
patterns, the substitution counters are harder to increase due
to the negative exponential growth probability, while in the
E-LETSketch they can increase normally. Therefore, the H-
LETSketch is more suitable for bursty data stream, while the
E-LETSketch is more suitable for steady data stream.

For those situations that require switching between different
versions, the time-window-based setting is a common solution.
When it is needed to switch to a new version, we prepare

6

the new version of sketch for the next time window, while
the current time window runs on the old version. Once the
preparation finished, we wait until the current time window
ends and switch to the new version.

VI. MATHEMATICAL ANALYSIS

In this section, we first analyze the error bound of G-
sum estimation in §VI-A. Then in §VI-B we give the error
bounds for query tasks on multiple data streams, including the
estimation of inner-production, cosine similarity, and Jaccard
similarity.

A. Error Bounds for G-sum
We divide the data stream f into two sub-streams, namely

fH , fL. fH contains the items recorded in the Top-k part,
while fL comprises of the remaining items. We use T to
denote the set of IDs which are recorded in the Top-k part.
Then fH is a sub-stream of the items whose IDs are in T .

The USketch part provides accuracy guarantee for G-
sum estimation, and the top-k algorithms provide accuracy
guarantee for frequent items detection. Suppose USketch part
provides (1 ± ϵ1)-approximations for the G-sum w.p. more
than 1− δ1, and Top-k part provides (1± ϵ2)-approximations
for f(x) where x ∈ T w.p. more than 1 − δ2. We
consider

∑
x∈T g(f(x)) and

∑
x/∈T g(f(x)) separately. For∑

x/∈T g(f(x)), we use the query result in USketch part of
g(·). The USketch part provide (1 ± ϵ1)-approximation of∑

x/∈T g(f(x)) +
∑

x∈T g(fL(x)) w.p. more than 1 − δ1. As
for

∑
x∈T g(f(x)), we use Top-k part for estimation, which

is
∑

x∈T g(fH(x)).

Theorem 1. Suppose g(·) is a tractable, differentiable, and
non-decreasing function s.t. g′(t) is bounded by rt for any
t and constant r. Then w.p. at least 1 − δ1, LETFramework
provides estimation for

∑
x g(f(x)) with a relative error less

than

ϵ1+δ2+max{(1−δ2)(rϵ2
∑

x∈T f2(x)∑
x g(f(x))

),
(1− δ2)ϵ

3
2

∑
x∈T f3(x)∑

x g(f(x))
}

Proof. According to the analysis above, the estimation of∑
x g(f(x)) of LETFramework is

(1 + η)(
∑
x/∈T

g(f(x)) +
∑
x∈T

g(fL(x))) +
∑
x∈T

g(fH(x))

where |η| ≤ ϵ1 w.p. at least 1− δ1.
Then the relative error is less than

|η(
∑

x/∈T g(f(x)) +
∑

x∈T g(fL(x)))|∑
x g(f(x))

+
|
∑

x∈T (g(fL(x)) + g(fH(x))− g(f(x)))|∑
x g(f(x)))

(1)

Obviously, the first term of the expression above is less than
|η|. For the second term, we have g(fL(x)) ≤ g(f(x)) and
g(fH(x)) ≤ g(f(x)) since g(·) is a non-decreasing function.
Note that Top-k part provides (1 ± ϵ2)-approximations for
f(x) where x ∈ T w.p. more than 1 − δ2, and f(x) =

fL(x)+fH(x). Thus, f(x)−fH(x)
f(x) = fL(x)

f(x) ≤ ϵ2 for x ∈ T w.p.

at least 1− δ2. When fL(x)
f(x) ≤ ϵ2, 0 ≤ g(f(x))− g(fH(x)) =

g′(ξfH(x) + (1− ξ)f(x)) · (f(x)− fH(x)) ≤ rϵ2 · f2(x), i.e.
−g(fL(x)) ≤ g(f(x))− g(fL(x))− g(fH(x)) ≤ rϵ2f

2(x)−
g(fL(x)). When fL(x)

f(x) > ϵ2, −g(fL(x)) ≤ g(f(x)) −
g(fL(x))− g(fH(x)) ≤ g(f(x)). Thus,

E(g(f(x))−g(fL(x))− g(fH(x))) ≤
(1− δ2)(rϵ2f

2(x)− g(fL(x))) + δ2g(f(x))

Due to the Lyapunov Central Limit Theorem, w.p. approxi-
mately to 1,∑

x∈T (g(f(x))− g(fL(x))− g(fH(x)))∑
x g(f(x))

≈
E(

∑
x∈T (g(f(x))− g(fL(x))− g(fH(x))))∑

x g(f(x))

≤
(1− δ2)rϵ2

∑
x∈T f2(x)− (1− δ2)

∑
x∈T g(fL(x))∑

x g(f(x))

+
δ2

∑
x∈T g(f(x))∑
x g(f(x))

≤ δ2 + (1− δ2)(rϵ2

∑
x∈T f2(x)∑
x g(f(x))

)

And w.p. approximately to 1,∑
x∈T (g(f(x))− g(fL(x))− g(fH(x)))∑

x g(f(x))

≈
E(

∑
x∈T (g(f(x))− g(fL(x))− g(fH(x))))∑

x g(f(x))

≥ −
(1− δ2)

∑
x∈T g(ϵ2f(x)) + δ2

∑
x∈T g(f(x))∑

x g(f(x))

≥ −
(1− δ2)

∑
x∈T (ϵ2f(x))

3∑
x g(f(x))

− δ2

Above all, w.p. at least 1 − δ1, LETFramework provides
estimation for

∑
x g(f(x)) with a relative error less than

ϵ1+δ2+max{(1−δ2)rϵ2
∑

x∈T f2(x)∑
x g(f(x))

,
(1− δ2)ϵ

3
2

∑
x∈T f3(x)∑

x g(f(x))
}

B. Error Bound for queries on Multiple Data Streams
For the estimation of join size of two stream A,B,

we suppose that we provide (1 ± ϵ)-approximations for∑
x fA(x)

2,
∑

x fB(x)
2 and

∑
x(fA(x) + fB(x))

2, and errs
w.p. less than δ. We have the following theorem.

Theorem 2. Let S =
∑

x(fA(x)+fB(x))
2, T =

∑
x(fA(x)−

fB(x))
2, k = S/T , the relative error is less than 2ϵ(3k +

1)/(k − 1), and errs w.p. less than 3δ.

Proof. The probability that LETFramework fails to estimate
one of

∑
x fA(x)

2,
∑

x fB(x)
2 or

∑
x(fA(x)+ fB(x))

2 with
relative error smaller than ϵ is less than 3δ.
Consider the occasion that LETFramework provides (1 ± ϵ)-
approximations for

∑
x fA(x)

2,
∑

x fB(x)
2 and

∑
x(fA(x)+

fB(x))
2. The estimation of

∑
x fA(x) ·fB(x) is no more than

(1+ ϵ)
∑
x

(fA(x) + fB(x))
2− (1− ϵ)

∑
x

(fA(x)
2 + fB(x)

2)

7

In this case, the relative error is

2ϵ
∑

x(fA(x)
2 + fB(x)

2 + fA(x) · fB(x))∑
x fA(x) · fB(x)

=
2ϵ(34S + 1

4T)
1
4S + 1

4T
=

2ϵ(3k + 1)

k − 1

Note that k reflects the similarity between A and B. The more
similar A and B is, the larger k is.

Similar analysis can be applied to the lower bound of the
estimation. Above all, we have that, our estimation provides
(1 ± 2ϵ(3k+1)

k−1)-approximation of
∑

x fA(x) · fB(x), and errs
w.p. less than 3δ.

The cosine similarity estimation is closely related to the
the inner-production estimation. We can obtain the bound of

relative error
ϵ+

2ϵ(3k+1)
k−1

1−ϵ , which also have a probability less
than 3δ to fail.

Finally, we discuss the error bound of Jaccard similarity.

Theorem 3. Suppose that we provide (1± ϵ)-approximations
for |SA|, |SB | and |SA ∪ SB |, and errs w.p. less than δ. The
absolute error of the estimation for Jaccard similarity is less
than 4ϵ

1−ϵ , and errs w.p. at most 3δ.

Proof. The probability that LETFramework fail to estimate
one of |SA|, |SB | and |SA ∪ SB | with relative error smaller
than ϵ is less than 3δ.

Consider the occasion that LETFramework provide (1± ϵ)-
approximations for |SA|, |SB | and |SA∪SB |. The upper bound
of our estimation for |SA∩SB |

|SA∪SB | is

1 + ϵ

1− ϵ
· |SA|+ |SB |
|SA ∪ SB |

− 1

In this case, the absolute error is

2ϵ

1− ϵ
· |SA|+ |SB |
|SA ∪ SB |

<
4ϵ

1− ϵ

As for the lower bound of our estimation, the absolute error
is less than 4ϵ

1+ϵ .
Above all, the absolute error of the estimation for Jaccard

similarity is less than 4ϵ
1−ϵ , and errs w.p. less than 3δ.

C. Discussion

Although Theorem 1 provides a general bound for a large
group of the function g(·), some additional discussion and
comparison are desirable for specific functions with great
importance and typical features. Let us move back to the
initial expression of the relative error, Expression 1, in our
proof. It splits the error into two terms caused by the USketch
and Top-k parts, respectively. Note that the Top-k part only
needs to record relatively few frequent items. Thus, in a highly
skewed real-world data stream, the error of the Top-k part
can be nearly ignored compared with that of the USketch
part. Therefore, we delved into analyzing of the error caused
by the USketch part, which corresponds to the first term of
Expression 1.

We bounded the term by |η| to make the error bound
compatible for tasks such as cardinality estimation, which
uses function g(x) = x0 in calculating G-sum. In this case,∑

x/∈T g(f(x)) dominates
∑

x g(f(x)) for the reason that the
Top-K part only keeps a few frequent items. Therefore, the
error bound could not be better than just using a USketch
part. The experiment results also shows that LETFramework
performs worse than the USketch part in cardinality estimation
and Jaccard similarity estimation based on the former task.
However, when using other function g(·) with an order higher
than 0, such as x log x and x2, the error is much smaller
than proved in real-world data stream processing. In these
cases, we could suppose that ξ = max{ g(ϵt)g(t) } for a constant
small amount ϵ is also a small amount. Moreover, in real-
world data streams, a few frequent items make up a relatively
large proportion of the total frequency. Considering this, if we
suppose that

∑
x/∈T g(f(x))∑
x g(f(x)) = τ , then we have

|η(
∑

x/∈T g(f(x)) +
∑

x∈T g(fL(x)))|∑
x g(f(x))

≤ |η| · (
ξ(1− δ2)

∑
x∈T g(f(x)) + δ2

∑
x∈T g(f(x))∑

x g(f(x))

+

∑
x/∈T g(f(x))∑
x g(f(x))

)

≤ |η| · (ξ(1− δ2) + δ2 + τ)

≈ |η| · τ
≤ ϵ1 · τ

Thus, the error bound is multiplied by τ , which is smaller
for g(·) with a higher change rate and data stream with
higher skewness. The experiment results in §VII also verify
this point, which show a relatively more remarkable accuracy
improvement in second frequency moment estimation than in
entropy estimation.

VII. EVALUATION

We conduct experiments to answer the following questions:
• How does the LETFramework improve the accuracy and

processing speed of the universal sketch? (§VII-B, §VII-C)
• How does the LETFramework compare to the baseline

solution of using a collection of sketches to support multiple
query tasks? (§VII-D)

• How does the parameter setting influence the performance
of the LETFramework? (§VII-E)

A. Experimental Setup
Implementation: We implement in C++ the four versions
of the LETFramework. For the S-LETSketch, we use an
optimized implementation to improve the insertion speed. The
implementation uses an additional hash table to look up the
cells and a double-linked list to sort the buckets and quickly
locate the bucket with minimum value. We also deploy our
sketches on Spark [39]. Integrating our solution to existing
system is simple, which only requires to implement interfaces
listed in §IV. All the experiments are conducted on a machine

8

100 300 500 700 900
Memory (KB)

10
1

10
2

10
3

A
A

E
E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(a) Frequency

100 300 500 700 900
Memory (KB)

0.0

0.5

1.0

F1
 s

co
re

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(b) Heavy Hitter

100 300 500 700 900
Memory (KB)

10
4

10
2

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(c) Second Frequency Moment

100 300 500 700 900
Memory (KB)

0.0

0.1

0.2

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(d) Cardinality

100 300 500 700 900
Memory (KB)

10
3

10
2

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(e) Entropy

100 300 500 700 900
Memory (KB)

10
3

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(f) Inner-production

100 300 500 700 900
Memory (KB)

10
3

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(g) Cosine Similarity

100 300 500 700 900
Memory (KB)

0.0

0.1

0.2

0.3

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(h) Jaccard Similarity

Fig. 3: Accuracy comparison between LETFramework and the universal sketch on the IP Trace dataset.

100 300 500 700 900
Memory (KB)

10
2

10
3

A
A

E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(a) Frequency

100 300 500 700 900
Memory (KB)

0.0

0.5

1.0

F1
 s

co
re

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(b) Heavy Hitter

100 300 500 700 900
Memory (KB)

10
3

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(c) Second Frequency Moment

100 300 500 700 900
Memory (KB)

0.0

0.2

0.4

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(d) Cardinality

100 300 500 700 900
Memory (KB)

10
3

10
2

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(e) Entropy

100 300 500 700 900
Memory (KB)

10
3

10
2

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(f) Inner-production

100 300 500 700 900
Memory (KB)

10
3

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(g) Cosine Similarity

100 300 500 700 900
Memory (KB)

0.0

0.1

0.2

0.3

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(h) Jaccard Similarity

Fig. 4: Accuracy comparison between LETFramework and the universal sketch on the WebDocs dataset.

with Intel Core i9-10980XE CPU @3.00GHz and 125GB
DRAM memory.
Datasets:
(1) IP Trace Dataset (CAIDA) [40]. The dataset consists of
one-hour-long IP traces collected anonymously in 2018. Each
item is identified by a 4-byte source IP. In our experiments we
use a one-minute part of the dataset which contains around
27M items and 85K distinct items.
(2) WebDocs Dataset [41]. The dataset is built from a
collection of web documents and uses the terms as the items.
It contains around 64M items and 33K distinct items, and each
item is 4 bytes long.
(3) Synthetic Dataset. The dataset is generated following
the Zipf distribution [42] with the skewness parameter 1.0.
It contains 32M items, and each item is 4 bytes long.
Metrics:
(1) Average Absolute Error (AAE): 1

|Ψ |
∑

ei∈Ψ |fi − f̂i|,

where fi is the true frequency of item ei and f̂i is the estimated
frequency. We use AAE to quantify the error on the frequency
estimation task.
(2) Relative Error (RE): |g−ĝ|

g , where g is the true value of
the query task and the ĝ is the estimated value. We use RE
to quantify the error on query tasks that estimate aggregated
statistics, such as entropy estimation and second frequency
moment estimation.
(3) F1 Score: 2·PR·RR

PR+RR , where PR (precision rate) represents
the ratio of the correctly reported items to the ground truth,
and RR (Recall rate) represents the proportion of the correctly
reported items among all the ground truth. We use F1 score
to quantify the error on the heavy hitter detection task.
(4) Throughput: The number of inserted items in million per
second (Mips).
Settings: For query tasks on multiple data streams (inner-
production, cosine similarity, Jaccard similarity), we divide the

9

100 300 500 700 900
Memory (KB)

10
2

10
3

A
A

E
E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(a) Frequency

100 300 500 700 900
Memory (KB)

0.0

0.5

1.0

F1
 s

co
re

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(b) Heavy Hitter

100 300 500 700 900
Memory (KB)

10
4

10
2

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(c) Second Frequency Moment

100 300 500 700 900
Memory (KB)

0.0

0.2

0.4

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(d) Cardinality

100 300 500 700 900
Memory (KB)

10
3

10
2

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(e) Entropy

100 300 500 700 900
Memory (KB)

10
3

10
1

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(f) Inner-production

100 300 500 700 900
Memory (KB)

10
4

10
2

10
0

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(g) Cosine Similarity

100 300 500 700 900
Memory (KB)

0.0

0.1

0.2

0.3

R
E

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(h) Jaccard Similarity

Fig. 5: Accuracy comparison between LETFramework and the universal sketch on the Synthetic dataset.

dataset into two parts with equal size as two data streams. By
default, for the LETFramework we set the memory size ratio of
the Top-k part to the USketch part as 6 : 4. In the USketch part
we set the memory size ratio of the Count sketches to the top-
k arrays as 9 : 1. We set the number of arrays d in the Count
sketches of the USketch part to be 1, which achieves both
good accuracy and throughput (see §VII-E). For the original
universal sketch, we set d = 5, because smaller d may lead
to severe hash collision and result in low accuracy. Besides,
d = 5 is also the parameter choice in prior work [10].
B. Accuracy Gain of the LETFramework

In this section, we evaluate how the LETFramework im-
proves the accuracy of the universal sketch. We compare
the accuracy between the original universal sketch and the
four versions of the LETFramework. We vary the memory
consumption from 100KB to 900KB and conduct comparison
experiments on eight different query tasks and three datasets.

Figure 3, 4, 5 show the experiment results on the IP Trace
dataset, the WebDocs dataset, and the Synthetic dataset, re-
spectively. For frequency estimation, LETFramework reduces
the AAE by up to 65.22×. For heavy hitter detection, with
300KB memory, LETFramework achieves F1 score higher
than 0.9976, while the F1 score of the universal sketch is
lower than 0.2205. For second frequency moment estimation,
LETFramework reduces the relative error by up to 1418.45×.
For entropy estimation, LETFramework improves the accuracy
by up to 31.70×. For inner-production estimation, LETFrame-
work reduces the relative error by up to 2330.39×. For cosine
similarity estimation, LETFramework improves the accuracy
by up to 3216.02×. For the query tasks of the cardinality
estimation and Jaccard similarity estimation, LETFramework
achieves slightly lower but comparable accuracy. With 300KB
memory, on the IP Trace dataset, the difference of the relative
error between LETFramework and the universal sketch is
less than 0.04 for cardinality estimation, and less than 0.06
for Jaccard estimation. The reason is that, LETFramework

provides accurate estimation for frequent items. For G-sum
functions such as x2, x log x, the estimation results are mainly
contributed by the frequent items, and LETFramework can
achieve higher accuracy. However, for query tasks such as
cardinality estimation and Jaccard similarity estimation, the
estimation is based on the G-sum function g(x) = x0. Using
additional memory to record the ID and the frequency of the
frequent items is not efficient for these tasks. However, the
accuracy gap is small. We also find that, four versions of
the LETFramework basically achieves comparable accuracy
of different tasks on all three datasets.

In summary, LETFramework achieves comparable accuracy
on cardinality estimation and Jaccard similarity estimation, and
much higher accuracy on all other tasks.
C. Throughput Gain of the LETFramework

In this section, we evaluate how the LETFramework im-
proves the insertion throughput of the universal sketch. We
vary the memory from 100KB to 900KB and compare the
insertion throughput on three datasets.

The experiment results are shown in Figure 6(a)-6(c). On
the IP Trace dataset, with 900KB, LETFramework achieves
insertion throughput up to 9.93Mips, while that of the univer-
sal sketch is 0.63Mips. On the WebDocs dataset, with 900KB,
LETFramework achieves insertion throughput up to 8.00Mips,
while that of the universal sketch is 0.63Mips. On the Syn-
thetic dataset, with 900KB, LETFramework achieves insertion
throughput up to 4.76Mips, while that of the universal sketch is
0.61Mips. The LETFramework achieves up to 15.73× higher
throughput compared with the universal sketch.

The insertion throughput is improved, because in the uni-
versal sketch, an item may go through multiple layers, which
means multiple times of hash computation and memory ac-
cesses and can slow down the insertion. For LETFramework,
it holds in the Top-k part the frequent items that usually
comprise the main body of the data. Therefore, most items
only reach the Top-k part and are quickly inserted, speeding up

10

100 300 500 700 900
Memory (KB)

0

5

10
Th

ro
ug

hp
ut

 (M
ip

s)
E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(a) IP Trace dataset

100 300 500 700 900
Memory (KB)

0

5

10

Th
ro

ug
hp

ut
 (M

ip
s)

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(b) WebDocs dataset

100 300 500 700 900
Memory (KB)

0

2

4

6

Th
ro

ug
hp

ut
 (M

ip
s)

E-LETSketch
H-LETSketch
S-LETSketch

F-LETSketch
Universal sketch

(c) Synthetic dataset

100 300 500 700 900
Memory (KB)

4

6

8

10

Th
ro

ug
hp

ut
 (M

ip
s)

E-LETSketch
H-LETSketch

S-LETSketch
F-LETSketch

(d) Spark

Fig. 6: Throughput experiments on LETFramework.

E-LET H-LET S-LET F-LETBaseline0

2

4

6

8

Th
ro

ug
hp

ut
 (M

ip
s)

(a) IP Trace dataset
E-LET H-LET S-LET F-LETBaseline0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (M

ip
s)

(b) WebDocs dataset
Fig. 7: Throughput comparison with the baseline solution.

the insertion. We also find that the S-LETSketch is the slowest
among four versions. This is because the S-LETSketch should
update among all cells, while other three versions only update
among the cells in the hashed bucket. Besides, we notice that
when the memory size grows, the insertion throughput of the
LETFramework increases. This is because we fix the memory
ratio of the Top-k part to the USketch part. When the total
memory size increases, the memory allocated to the Top-k
part increases, and thus more frequent items are hold in the
Top-k part, which is beneficial to the insertion throughput.

In summary, LETFramework achieves up to 15.73× higher
throughput compared with the universal sketch. Among the
four versions, S-LETSketch is the slowest, while the through-
put of the other three versions are close.
D. Comparison with the Baseline

For the eight query tasks that LETFramework supports, a
baseline solution is to use a collection of several existing state-
of-the-art (SOTA) sketches to address all these tasks. In this
section, we use the collection of the following three sketches
as the baseline to address the eight query tasks:
• Elastic sketch [10]: frequency estimation, heavy hitter de-

tection, cardinality estimation, and entropy estimation.
• JoinSketch [4]: second frequency moment estimation, inner-

production estimation, and cosine similarity estimation.
• MaxLogOPH [43]: Jaccard similarity estimation.

We compare the four versions of the LETFramework with
the baseline solution. We fix the total memory to be the
300KB, and for the baseline solution each sketch in the col-
lection uses 100KB of the memory. We conduct experiments
on the two real world datasets, and compare the accuracy and
the insertion throughput.

Table I and Table II show the accuracy comparison on the
IP Trace dataset and the WebDocs dataset, respectively. On
the IP Trace dataset, the LETFramework achieves compa-
rable accuracy on the frequency estimation and the Jaccard

similarity estimation and higher accuracy on all other tasks.
For the heavy hitter detection, LETFramework can achieve
the F1 score of 0.9987, while that of the baseline solution
is 0.8277. Compared with the baseline solution, LETFrame-
work achieves up to 95.19×, 41.89×, 47.86×, 2.83×, 3.41×
lower RE on the estimation of second frequency moment,
cardinality, entropy, inner-production and cosine similarity. On
the WebDocs dataset, the LETFramework achieves comparable
accuracy on the frequency estimation and higher accuracy on
all other tasks. For the heavy hitter detection, LETFramework
can achieve the F1 score of 0.9986, while that of the baseline
solution is 0.8454. Compared with the baseline solution,
LETFramework achieves up to 431.77×, 38.00×, 66.98×,
2.43×, 3.54×, 1.43× lower RE on the estimation of second
frequency moment, cardinality, entropy, inner-production, co-
sine similarity and Jaccard similarity.

Figure 7 shows the comparison of the insertion through-
put. The experimental results show that, except for the S-
LETSketch, all the other three versions of the LETFramework
have faster processing speed. The F-LETSketch is the fastest,
which is 2.26× faster on the IP Trace dataset and 1.94× faster
on the WebDocs dataset.

In summary, compared with a collection of SOTA dedicated
sketches, LETFramework achieves better accuracy on most
tasks.
E. Parameter Setting

In this section, we analyze the impact of two parameters:
the memory ratio of the Top-k part, and the number of arrays d
of the Count sketches in the USketch part. We conduct exper-
iments on the IP Trace dataset with 1MB memory. Due to the
space constraints, we only present the influence of accuracy on
two query tasks: cardinality estimation and second frequency
moment estimation. We believe the cardinality estimation and
the second frequency moment estimation are representative
tasks because they rely on the two extreme cases of the G-
sum function (x0 and x2). We believe the findings on these
two tasks provide valuable insights to the overall behavior of
the LETFramework for other query tasks as well.

Figure 8(a) - 8(c) show the effect of the memory ratio of the
Top-k part. As the memory ratio of the Top-k part increases
from 0.1 to 0.9, the RE of the cardinality estimation increases,
and the RE of the second frequency estimation decreases.
This shows that, on the IP Trace dataset, the cardinality
estimation mainly relies on the USketch part, while the second
frequency moment estimation mainly relies on the Top-k part.

11

TABLE I: Accuracy comparison with the baseline solution on the IP Trace dataset.
Query Frequency Heavy Hitter Second Frequency Cardinality Entropy Inner-production Cosine Jaccard
Tasks Estimation Detection Moment Estimation Estimation Estimation Estimation Similarity Similarity

(Metric) (AAE) (F1 score) (RE) (RE) (RE) (RE) (RE) (RE)
Baseline 75.43 0.8277 7.84× 10−3 0.71 0.133 2.12× 10−3 7.10× 10−4 0.028

S-LETSketch 112.68 0.9987 8.65× 10−5 0.017 2.79× 10−3 9.57× 10−4 5.09× 10−4 0.082
F-LETSketch 104.16 0.9986 8.24× 10−5 0.061 2.91× 10−3 7.53× 10−4 2.08× 10−4 0.043
H-LETSketch 128.61 0.9441 3.85× 10−4 0.037 3.85× 10−3 3.42× 10−3 5.19× 10−3 0.091
E-LETSketch 109.15 0.9784 4.14× 10−4 0.020 4.24× 10−3 1.80× 10−3 6.12× 10−4 0.070

TABLE II: Accuracy comparison with the baseline solution on the WebDocs dataset.
Query Frequency Heavy Hitter Second Frequency Cardinality Entropy Inner-production Cosine Jaccard
Tasks Estimation Detection Moment Estimation Estimation Estimation Estimation Similarity Similarity

(Metric) (AAE) (F1 score) (RE) (RE) (RE) (RE) (RE) (RE)
Baseline 94.50 0.8454 0.0176 0.92 0.114 3.51× 10−3 5.19× 10−3 0.063

S-LETSketch 167.82 0.9986 1.81× 10−4 0.024 4.84× 10−3 1.52× 10−3 1.47× 10−3 0.071
F-LETSketch 151.34 0.9837 1.06× 10−4 0.029 1.70× 10−3 2.92× 10−3 2.21× 10−3 0.047
H-LETSketch 143.79 0.9792 4.09× 10−5 0.025 6.70× 10−3 1.44× 10−3 2.79× 10−3 0.095
E-LETSketch 133.15 0.9939 4.11× 10−4 0.062 5.07× 10−3 1.84× 10−3 2.09× 10−3 0.044

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Top-k part ratio

0.00

0.05

0.10

0.15

R
E

E-LETSketch
H-LETSketch

S-LETSketch
F-LETSketch

(a) Cardinality v.s. Top-k part ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Top-k part ratio

10
5

10
4

10
3

R
E

E-LETSketch
H-LETSketch

S-LETSketch
F-LETSketch

(b) Second frequency moment v.s.
Top-k part ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Top-k part ratio

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

ip
s)

E-LETSketch
H-LETSketch

S-LETSketch
F-LETSketch

(c) Throughput v.s. Top-k part ratio

1 2 3 4 5 6 7 8 9 10
d

0.00

0.05

0.10

0.15

0.20

R
E

E-LETSketch
H-LETSketch

S-LETSketch
F-LETSketch

(d) Cardinality v.s. d

1 2 3 4 5 6 7 8 9 10
d

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

R
E

E-LETSketch
H-LETSketch

S-LETSketch
F-LETSketch

(e) Second frequency moment v.s. d

1 2 3 4 5 6 7 8 9 10
d

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

ip
s)

E-LETSketch
H-LETSketch

S-LETSketch
F-LETSketch

(f) Throughput v.s. d

Fig. 8: Parameter settings in the LETFramework.

The throughput of the S-LETSketch remains consistently low
for different memory ratios. For the other three versions of the
LETFramework, the throughput increases as the memory of
the Top-k part grows. This indicates that for the three versions
of the LETFramework, the Top-k part has higher processing
speed than the USketch part. We choose the memory ratio
of the Top-k part to 0.6, which strikes a good balance for
accuracy over different query tasks and throughput.

Figure 8(d) - 8(f) show the effect of the number of arrays d
of the Count sketches in the USketch part. The results show
that, the choice of d has little impact on the accuracy of

the LETFramework. This is because the frequent items have
been extracted out, and the Count sketches can achieve high
accuracy with small d. The throughput decreases when the d
grows. Therefore, we choose d = 1 for LETFramework.

In summary, the impact of the top-k part ratio on the
algorithm efficiency on different tasks is relatively complex,
and we select 0.6 from an experimental perspective. The
parameter d has low impact on accuracy, and higher d lead to
lower throughput, therefore we choose d = 1.
F. Spark

In this section, we evaluate the performance of LETFrame-
work on Spark with IP Trace dataset. Figure 6(d) shows
the throughput of four versions of LETSketch. Basically,
LETSketch achieves higher throughput when more memory is
allocated, following the similar trend on CPU. With 900KB,
LETSketch achieves up to 9.67 MIPS, showing that LETS-
ketch can be efficiently implemented on the Spark platform.

VIII. CONCLUSION
In this paper, we propose the LETFramework to optimize

the universal sketch. With the key technique of lossless ex-
traction, LETFramework achieves high performance in prac-
tice while maintaining high fidelity. We introduce a unified
methodology to transform existing top-k algorithms into the
Top-k part of the LETFramework, and provide case studies
on four top-k algorithms. We also extend the supported query
tasks of the LETFramework by discussing how to support
queries on multiple data streams, including inner-production
estimation, cosine similarity estimation, and Jaccard similarity
estimation. We conduct rich experiments, and the results show
LETFramework outperforms both the universal sketch and a
baseline solution that uses a collection of SOTA sketches to
address multiple query tasks.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their help in improv-

ing this paper. This work was supported in part by the National
Key R&D Program of China (No. 2024YFB2906603), and
in part by the National Natural Science Foundation of China
(NSFC) (No. U20A20179, 62372009), research grant No. SH-
2024JK29, and High Performance Computing Platform of
Peking University.

12

REFERENCES

[1] Graham Cormode and S. Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[2] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding fre-
quent items in data streams. In Automata, Languages and Programming.
Springer, 2002.

[3] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting. In Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 323–336, 2002.

[4] Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu,
Lian Yu, and Bin Cui. Joinsketch: A sketch algorithm for accurate
and unbiased inner-product estimation. Proceedings of the ACM on
Management of Data, 1(1):1–26, 2023.

[5] Graham Cormode and Minos Garofalakis. Sketching streams through
the net: Distributed approximate query tracking. In Proceedings of the
31st international conference on Very large data bases, pages 13–24,
2005.

[6] Hazar Harmouch and Felix Naumann. Cardinality estimation: An
experimental survey. Proceedings of the VLDB Endowment, 11(4):499–
512, 2017.

[7] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
Hyperloglog: the analysis of a near-optimal cardinality estimation al-
gorithm. In Discrete Mathematics and Theoretical Computer Science,
pages 137–156. Discrete Mathematics and Theoretical Computer Sci-
ence, 2007.

[8] Renzhi Wu, Bolin Ding, Xu Chu, Zhewei Wei, Xiening Dai, Tao Guan,
and Jingren Zhou. Learning to be a statistician: learned estimator for
number of distinct values. arXiv preprint arXiv:2202.02800, 2022.

[9] Tong Yang, Junzhi Gong, Haowei Zhang, and etal. Heavyguardian:
Separate and guard hot items in data streams. In SIGKDD, 2018.

[10] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and
fast network-wide measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, pages 561–
575, 2018.

[11] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. Dhs:
Adaptive memory layout organization of sketch slots for fast and
accurate data stream processing. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages
2285–2293, 2021.

[12] Daniel Ting. Data sketches for disaggregated subset sum and frequent
item estimation. In Proceedings of the 2018 International Conference
on Management of Data, pages 1129–1140, 2018.

[13] Chi Wang and Bailu Ding. Fast approximation of empirical entropy via
subsampling. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 658–667,
2019.

[14] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss.
How to summarize the universe: Dynamic maintenance of quantiles. In
Proc. VLDB, pages 454–465. VLDB Endowment, 2002.

[15] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and
quantiles over sliding windows. In Proceedings of the twenty-third
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 286–296, 2004.

[16] Rana Shahout, Roy Friedman, and Ran Ben Basat. Together is better:
Heavy hitters quantile estimation. Proceedings of the ACM on Manage-
ment of Data, 1(1):1–25, 2023.

[17] Graham Cormode, Minos Garofalakis, Shanmugavelayutham Muthukr-
ishnan, and Rajeev Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. In Proceedings of the
2005 ACM SIGMOD international conference on Management of data,
pages 25–36, 2005.

[18] Charles Masson, Jee E Rim, and Homin K. Lee. Ddsketch: A fast and
fully-mergeable quantile sketch with relative-error guarantees. Proceed-
ings of the VLDB Endowment, 12(12):2195–2205, 2019.

[19] Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and
streaming entropy via approximation theory. In 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, pages 489–498. IEEE,
2008.

[20] Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws.
In Proceedings of the forty-second ACM symposium on Theory of
computing, pages 281–290, 2010.

[21] Vladimir Braverman and Rafail Ostrovsky. Generalizing the layering
method of indyk and woodruff: Recursive sketches for frequency-
based vectors on streams. In International Workshop on Approximation
Algorithms for Combinatorial Optimization, pages 58–70. Springer,
2013.

[22] Tong Yang, Yang Zhou, Hao Jin, , and etal. Pyramid sketch: A sketch
framework for frequency estimation of data streams. VLDB Endowment,
2017.

[23] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch:
Faster and more accurate stream processing. In Proceedings of the 2016
International Conference on Management of Data, pages 1449–1463,
2016.

[24] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

[25] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich.
Flash crowds and denial of service attacks: Characterization and impli-
cations for cdns and web sites. In Proceedings of the 11th international
conference on World Wide Web, pages 293–304, 2002.

[26] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A Freedman,
Ken Birman, and Robbert van Renesse. Characterizing load imbalance in
real-world networked caches. In Proceedings of the 13th ACM Workshop
on Hot Topics in Networks, pages 1–7, 2014.

[27] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154, 2010.

[28] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. In ICDT,
2005.

[29] G. Lukasz, D. David, D. Erik D, L. Alejandro, and M. J Ian. Identifying
frequent items in sliding windows over on-line packet streams. In IMC,
2003.

[30] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. One sketch to rule them all: Rethinking network
flow monitoring with univmon. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 101–114, 2016.

[31] Antonis Manousis, Zhuo Cheng, Ran Ben Basat, Zaoxing Liu, and
Vyas Sekar. Enabling efficient and general subpopulation analytics in
multidimensional data streams. Proceedings of the VLDB Endowment,
15(11):3249–3262, 2022.

[32] Source code related to letframework. https://github.com/LETFramework/
LETFramework/, 2023.

[33] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity
of approximating the frequency moments. In Proc. ACM symposium on
Theory of computing, 1996.

[34] Piotr Indyk and David Woodruff. Optimal approximations of the
frequency moments of data streams. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 202–208, 2005.

[35] Dina Thomas, Rajesh Bordawekar, Charu C Aggarwal, and S Yu Philip.
On efficient query processing of stream counts on the cell processor. In
Data Engineering, 2009. ICDE’09. IEEE 25th International Conference
on, pages 748–759. IEEE, 2009.

[36] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to
practice: Efficient join query evaluation in a parallel database system.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 63–78, 2015.

[37] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. How good are query optimizers, really?
Proceedings of the VLDB Endowment, 9(3):204–215, 2015.

[38] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick
McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz. For-
warding metamorphosis: Fast programmable match-action processing in
hardware for sdn. ACM SIGCOMM Computer Communication Review,
43(4):99–110, 2013.

[39] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A {Fault-Tolerant} abstraction
for {In-Memory} cluster computing. In 9th USENIX symposium on
networked systems design and implementation (NSDI 12), pages 15–28,
2012.

13

https://github.com/LETFramework/LETFramework/
https://github.com/LETFramework/LETFramework/

[40] Anonymized internet traces 2018. https://catalog.caida.org/details/
dataset/passive 2018 pcap. Accessed: 2022-6-29.

[41] Real-life transactional dataset. http://fimi.ua.ac.be/data/, 2004.
[42] David MW Powers. Applications and explanations of zipf’s law. In New

methods in language processing and computational natural language

learning, 1998.
[43] Pinghui Wang, Yiyan Qi, Yuanming Zhang, and etal. A memory-efficient

sketch method for estimating high similarities in streaming sets. In
SIGKDD, 2019.

14

https://catalog.caida.org/details/dataset/passive_2018_pcap
https://catalog.caida.org/details/dataset/passive_2018_pcap
http://fimi.ua.ac.be/data/

	Introduction
	Background and Related Work
	Sketches
	Top-k Algorithms

	The Universal Sketch
	Overview
	The Data Structure
	Operations
	Advantages and Limitations

	The LETFramework
	The Data Structure
	Basic Operations
	Query on Multiple Data Streams

	Lossless extraction
	Methodology
	S-LETSketch
	F-LETSketch
	H-LETSketch
	E-LETSketch
	Discussion

	Mathematical Analysis
	Error Bounds for G-sum
	Error Bound for queries on Multiple Data Streams
	Discussion

	Evaluation
	Experimental Setup
	Accuracy Gain of the LETFramework
	Throughput Gain of the LETFramework
	Comparison with the Baseline
	Parameter Setting
	Spark

	Conclusion
	References

