
2254 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Low Computational Cost Bloom Filters
Jianyuan Lu , Tong Yang , Member, IEEE, Yi Wang, Member, IEEE, Huichen Dai , Member, IEEE,

Xi Chen, Linxiao Jin, Haoyu Song , Senior Member, IEEE, and Bin Liu , Senior Member, IEEE

Abstract— Bloom filters (BFs) are widely used in many network
applications but the high computational cost limits the system
performance. In this paper, we introduce a low computational
cost Bloom filter named One-Hashing Bloom filter (OHBF) to
solve the problem. The OHBF requires only one base hash
function plus a few simple modulo operations to implement a
Bloom filter. While keeping nearly the same theoretical false
positive ratio as a Standard Bloom filter (SBF), the OHBF
significantly reduces the computational overhead of the hash
functions. We show that the practical false positive ratio of
an SBF implementation strongly relies on the selection of hash
functions, even if these hash functions are considered good.
In contrast, the practical false positive ratio of an OHBF
implementation is consistently close to its theoretical bound.
The stable false positive performance of the OHBF can be
precisely derived from a proved mathematical foundation. As the
OHBF has reduced computational overhead, it is ideal for high
throughput and low-latency applications. We use a case study to
show the advantages of the OHBF. In a BF-based FIB lookup
system, the lookup throughput of OHBF-based solution can
achieve twice as fast as the SBF-based solution.

Index Terms— Bloom filter, hash function, modulo operation.

I. INTRODUCTION

THE recent trends of Software-defined Networking (SDN)
and Network Function Virtualization (NFV) [1] increas-

ingly demand implementing and deploying network functions
in software appliance such as commodity servers for flexibility
and cost efficiency. Hash Table is an indispensable and pow-
erful tool to realize a wide range of network functions. Bloom
filter, as a memory efficient hashing scheme, has found its
applications in different layers of network stack [2]. Exten-
sive research has been conducted to improve this classical
data structure in the past few years. Various novel network
applications are made possible by the use of Bloom filter and
its variants [3]–[5].

While the memory efficiency is a given benefit, the suc-
cessful use of Bloom filter does come with a cost. A Bloom

Manuscript received December 17, 2016; revised September 24, 2017 and
May 8, 2018; accepted August 13, 2018; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor M. Li. Date of publication September 20,
2018; date of current version October 15, 2018. This work was supported in
part by the Huawei Innovation Research Program (HIRP); in part by the NSFC
under Grant 61373143, Grant 61432009, and Grant 61872213. (Corresponding
author: Bin Liu.)

J. Lu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and also with Alibaba Cloud,
Beijing 100102, China (e-mail: lu-jy11@mails.tsinghua.edu.cn).

T. Yang, Y. Wang, H. Dai, L. Jin, and B. Liu are with the Department
of Computer Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: liub@mail.tsinghua.edu.cn).

X. Chen is with the School of Information and Communication Engineering,
Beijing University of Posts and Telecommunications, Beijing 100876, China.

H. Song is with Network Research, Huawei Technologies, Santa Clara, CA
95050 USA.

Digital Object Identifier 10.1109/TNET.2018.2869851

filter needs to use a relatively large number of hash func-
tions (e.g., 35 as in [6]) and perform the same number of
memory accesses. For systems using multiple Bloom filters
(e.g., 32 Bloom filters are used in [3]), the required number
of hash functions can be prohibitively large. To achieve the
theoretical performance bound of a Bloom filter, these hash
functions need to be strong (i.e., presenting good randomness
and uniformity) and mutually independent. Unfortunately,
good hash functions (e.g., MD5 and SHA-1) are known to
be computation-intensive. While the memory access latency
can be hidden with the well established mechanisms such
as caching and banking, hash computations alone consume
a lot of CPU cycles and introduce excessive latency which
can become the system performance bottleneck. For example,
a moderate 10GE interface requires 15Mpps throughput. This
leaves less than 300 clock cycles for a state-of-the-art 4GHz
CPU to process a packet. This limited clock budget simply
cannot afford to compute a large number of independent and
strong hash functions. Therefore, it is a critical and essential
system requirement to reduce the cost of hash computation
while retaining the desired hashing properties. Although sim-
ple hash functions may be used to speed up the Bloom filter
query operations [7]–[9], we show that simple hash functions
can not pass the randomness and independence tests most
of the time, which causes a Bloom filter to significantly
deviate its false positive ratio from the theoretical bound. In
this paper, we address the hash computational cost issue by
introducing a novel algorithm that requires only one strong
hash function to realize a Bloom filter. To the best of our
knowledge, this is by far the most efficient approach with a
proved performance bound. The resulting data structure, called
One-Hashing Bloom Filter (OHBF), presents nearly the same
theoretical false positive ratio as a standard Bloom filter. Actu-
ally, we find that the practical false positive ratio of a standard
Bloom filter implementation strongly relies on the selection
of hash functions, even if these hash functions are considered
good. Our experiments show that OHBF outperforms many
existing practical Bloom filter implementations with more than
one strong hash function. To test the effectiveness of OHBF
in practical applications, we showcase a Bloom filter-based
FIB lookup system. In the system, the lookup throughput of
OHBF-based scheme is two times faster than the standard
Bloom filter-based scheme.

Strictly speaking, in OHBF, the hashing process still gen-
erates k hash values as if we have k independent hash
functions. The difference is, all the k hash values originate
from a single hash function plus a few simple modulo oper-
ations. It is proved that the generated k hash values are
pairwise independent. While the computational cost of a

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2502-8686
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0001-9171-9990
https://orcid.org/0000-0001-5377-6628
https://orcid.org/0000-0002-8588-8744


LU et al.: LOW COMPUTATIONAL COST BLOOM FILTERS 2255

modulo operation is relatively fixed in modern CPUs, the com-
putational cost of a hash function is proportional to the
element size [10]. As we replace hash function computation
with modulo computation in OHBF, the computational cost is
approximately reduced to 1/k. The gain is significant when the
element size is large. The tradeoff is that the OHBF consumes
more auxiliary memory and takes more time in Bloom filters’
construction process in order to reduce the hash computational
cost at runtime, i.e., in the element lookup process. Moreover,
in the construction process, OHBF uses some extra memory to
store a prime table, and implements more instructions than tra-
ditional Bloom filters to build a specified partitioned bit array.

While we leave finding an optimal partition algorithm as
future work, we extensively explore the design space covering
a wide range of realistic application scenarios. It shows our
algorithm, although simple, can satisfy all application require-
ments under different design constraints, such as memory size,
element set size, and target false positive ratio.

The remaining of the paper is organized as follows.
Section II surveys the related work. Section III details the
OHBF scheme and theoretical analysis. Section IV analyses
the performance of different practical Bloom filter imple-
mentations. Section V presents the experimental results for
performance comparison. Section VI shows a case study for a
Bloom filter-based FIB lookup system. Section VII concludes
the paper.

II. RELATED WORK

A. Standard Bloom Filter and Its Variants

A Standard Bloom Filter (SBF) [11] uses a bit vector of
size m to represent a set S of n elements. All the bits in the
Bloom filter are initialized to zero. When an element x∈S is
added to the Bloom filter, we use k different hash functions
hi(x), 1≤i≤k to map the element to k integer numbers in the
range [0, m − 1]. Then the corresponding bits are set to be
one. We repeat the above process for each element in set S.
After all the elements are hashed to the Bloom filter bit vector,
the Bloom filter has been successfully established.

A membership query determines whether an element y
belongs to the set S or not. If all the k corresponding bits
indexed by hi(y) are ones, then y ∈ S; otherwise, y /∈ S.
But the answer to the querying process can be false positive.
Suppose that y /∈ S, but all the k hashed bits happen to be
ones. In this case the query falsely concludes that y ∈ S. The
false positive ratio for SBF is

fs =
(
1− (1− 1/m)nk

)k ≈
(
1− e−

nk
m

)k

(1)

The false positive ratio decreases as the size of the Bloom
filter, m, increases. It increases as more elements, n, are added.
By taking the derivative of fs with respect to k and equalizing
it to zero, we can get the optimal k which minimizes the false
positive ratio for the given values of m and n.

kopt = (m/n)ln2 ≈ 9m/13n (2)

A Bloom filter can be optimized and enhanced in different
aspects:

1) Dynamic Updates. While SBF only supports element
insertions, Counting Bloom Filters [12] substitute each bit
by a small counter to support element deletions. Obviously,
this method increases the memory space cost. Other similar
dynamic update extensions of Bloom filter can be found
in [13]–[17].

2) Counting. When an SBF answers that an element belongs
to the set, we do not know the concrete frequencies of this item
in this set. This problem is amended in [12] and [18]–[20] at
the cost of more memory space or hashing computation.

3) Scalability. An SBF only supports static membership
queries. In case the set cardinality is unknown prior to the
Bloom filter construction, the Bloom filter variants in [21]
and [22] can scale its capacity dynamically based on current
set cardinality.

4) Multiple-set. [23], [24] extend SBF to support
multiple-set membership test, which groups elements to
different sets. In addition to false positive, classification
failure happens with a probability. More recent related work
can be found in [16], which uses novel coding techniques.

5) Cache Efficiency. A Bloom filter uses k hash functions
and performs the same number of memory accesses. In the
worst case, k cache misses happen in one element query.
Blocked Bloom Filter [25] improves the cache efficiency by
cutting the Bloom filter into blocks, each of which fits into
one cache line. However, it increases the space cost. A similar
work can be found in [26].

6) Generalization. [27], [28] introduce false negatives to
Bloom filters. A tradeoff between false positives and false
negatives makes the applications more flexible. The Bloomier
filter [29] generalizes the SBF to support arbitrary func-
tion queries. Reference [30] generalizes the SBF to support
approximate state machines.

7) Substitution. Cuckoo filters, proposed in [31], have lower
space overhead than space-optimized Bloom filters when n is
large and the target false positive ratio is very low. Cuckoo
filter does not have the basic Bloom filter structure. It is a
substitution of Bloom filters in many cases.

Different from the above studies, our work in this paper
improves the Bloom filters from another aspect, i.e., reduc-
ing the hash function computational cost. Several previous
works have attempted to achieve this goal. Kirsh and Mitzen-
macher use two base hash functions h1(x) and h2(x) to
construct additional hash functions in the form of gi(x) =
h1(x)+ih2(x) [32]. We call this scheme Less Hashing Bloom
Filter (LHBF). Since this technique cannot guarantee the inde-
pendence of the synthetic hash functions,1 the false positive
ratio in practice could be much higher than the theoretical
expectation [8]. Song et al. [33] introduce a simple method
to produce k hash values using O(log k) seed hash functions.
However, the paper does not analyze the correlation of the
k hash values. In [34], Skjegstad and Maseng also use one
hash function to implement Bloom filters for set reconciliation
between two nodes. Studies in [12], [26], and [35] propose the

1An example to illustrate the correlation of the simulated hash functions is:
consider g2(x) = h1(x)+2h2(x) and g4(x) = h1(x)+4h2(x); apparently,
g2(x) and g4(x) have the same parity.



2256 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

method that produces k hash values with a single hash function
by dividing the generated hash bits into k hash segments.
However, this method has several limitations. For example,
the length of a Bloom filter needs to be a power of two,
required by the hash segment’s range. Meanwhile, the sup-
ported number of hash functions is not scalable, restricted by
the Bloom filter’s length and the hash segment’s bit length.
Our work is different with it mainly in two aspects. First,
our proposed OHBF is an alternative to SBF and generalized
for wider application scenarios. Second, due to strict inde-
pendence of modulo operations, the OHBF has nearly the
same false positive probability as SBF with the same memory
constraint. More importantly, we formally analyze a hash value
generation process, and propose a Bloom filter construction
algorithm which results in nearly the same false positive ratio
as a standard Bloom filter.

B. Practical Hash Functions for Bloom Filter

A Bloom filter needs k uniform and independent hash
functions. If the hash function properties are compromised,
the actual false positive ratio can be much worse than the
theoretical analysis. The hash functions used for Bloom filters
mainly fall in three groups:

1) Cryptographic Hash Functions. Cryptographic hash func-
tions have good randomness assurance, so they are the popular
choices for implementing Bloom filters. For example, MD5 is
used in Bloom filter implementations [9], [12]. However,
the complexity of MD5 is high. The cost of MD5 is pro-
portional to key size. It requires 6.8 CPU cycles per byte on
average [10]. The cost on hashing long keys can be prohibitive
for some applications.

2) Non-cryptographic Hash Functions. Several relatively
simple hash functions, such as CRC32, FNV and BKDR,
are often used to implement Bloom filters [7]–[9]. Similarly,
the computational complexity of these hash functions is pro-
portional to the key size. While these hash functions are less
computation-intensive than the cryptographic hash functions,
their randomness is not as good, which translates to higher
Bloom filter false positive ratios.

3) Universal Hash Functions. Hash functions can be
selected from a family of hash functions with a certain
mathematical property [36]. The Bloom filter implementations
with these hash functions can approach the ideal false positive
ratio [37]. Since the universal hash functions need to be “ran-
domly” selected from a family, the practical implementation
still needs the aid of traditional hash functions (i.e., cryp-
tographic and non-cryptographic hash functions). Therefore,
in the latter part of this paper, we do not consider universal
hash functions when implementing Bloom filters.

III. DESIGN AND THEORETICAL ANALYSIS

In this section, we will first divide the hashing process into
two stages for ease of discussion. Second, we will describe
the One-Hashing Bloom Filter (OHBF) design. Then we will
prove that hashings in the modulo stage of OHBF are mutually
independent, which mathematically guarantees the OHBF’s
performance. The false positive probability of OHBF will

Fig. 1. A schematic view of SBF with two elements (n = 2). k = 3 hash
functions are used in the hash stage. The output of hash functions will modulo
the Bloom filter size in the modulo stage.

Fig. 2. A schematic view of OHBF with two elements (n = 2). Only one
base hash function is used in the hash stage. The output of the base hash
function will modulo k = 3 partition sizes in the modulo stage.

be analyzed and formulated. At last, we will introduce an
algorithm to determine the size of partitions for OHBF.

A. Two Stages of Bloom Filter Hashing

In a Bloom filter, hash functions are used to compute the
filter entry index. The hashing process is essentially a mapping
from U → V , where U is the space of elements and V is
the space of the Bloom filter. The hashing process is often
conducted in two stages:

1) Hash Stage: U → M, mapping U to a machine word
M (e.g., 32-bit or 64-bit), using a hash function h(x).

2) Modulo Stage: M → V , mapping M to target V ,
by modulo |V| (i.e., h(x) mod m). This is needed
because h(x) usually covers a larger space than the
Bloom filter size m.

Therefore, in our OHBF scheme, the hashing process
becomes U →M→ V . People usually treat the hash mapping
as an integral process and do not distinguish these two stages
explicitly. Because in most cases, the modulo stage will always
modulo the Bloom filter size. But we show that the two stage
separation of hash function can be taken advantage of to
significantly simplify the Bloom filter implementation. In the
latter part of this paper, we use the notation h(x) to represent
the hash stage, and h(x) mod m to represent the modulo stage.

B. One-Hashing Bloom Filter Design

Figure 2 shows the structure of OHBF. Instead of treating
the entire filter memory as one bit vector as in SBF (shown
in Figure 1), OHBF divides the bit vector into k partitions,
where k is the number of hash functions in SBF. Note that
SBF first uses different hash functions to get k machine words
and then uses these machine words to modulo the Bloom
filter size m. Each result can address the entire filter space.
In contrast, OHBF first uses just one base hash function to get



LU et al.: LOW COMPUTATIONAL COST BLOOM FILTERS 2257

a machine word and then uses it to modulo each partition’s
size. Each result can only address one bit in the corresponding
partition. Different from the previous even partitioning meth-
ods, the partitions in OHBF are purposely made uneven. The
reason is explained in Section III-C. We use an example to
illustrate the mechanism of OHBF. Let mi, 1≤i≤k denotes the
ith partition size of OHBF. We have m = Σk

i=1mi. Suppose
k = 3, m1 = 11, m2 = 13, and m3 = 15. When an element
e comes, we apply the base hash function h(·) and suppose
h(e) = 4201. As h(e) mod m1 = 10, h(e) mod m2 = 2, and
h(e) mod m3 = 1, the corresponding 10th, 2nd, and 1st bit
of each partition is set.

OHBF has a simple structure and is easy to be implemented.
OHBF uses extra modulo operations instead of traditional hash
functions in SBF. As CPU’s ALU has optimized modulo exe-
cution units, the modulo operation has smaller computational
cost than hash computing, which consumes considerable CPU
clock cycles per element. OHBF reduces the hash computa-
tional cost to nearly 1/k of SBF. However, to make OHBF
have the similar false positive probability with SBF, it has to
meet the following requirements:

• The partition algorithm needs to ensure the modulo
operation to generate independent values. This is proved
by theoretical analysis. With this property, we only need
to find one good base hash function. (Section III-C)

• The resulting false positive ratio of OHBF should be
close enough to the equivalent SBF. The false positive
ratio change due to partitions should be small enough.
(Section III-D)

• The sum of the partition sizes is close enough to the
filter memory constraint. As the final size probably has a
deviation from the target size, we expect the gap between
them is minor enough, without noticeably affecting the
target memory consumption. (Section III-E)

All these requirements can be satisfied by our scheme.
Actually, we expect the OHBF scheme to be a practical
substitute for SBF. All the parameters of OHBF should be
nearly the same as SBF. Thus, we could use OHBF, anywhere
Bloom filters are needed, to reduce the computational cost and
improve the system performance.

C. Proof of Hashing Independence in Modulo Stage

The uneven partitioning method in OHBF would produce
independent modulo results if partition sizes are pairwise
relatively prime. Let gi(x) = h(x) mod mi, 1 ≤ i ≤ k.
We claim that in the modulo stage of OHBF hashing,
g1(x), g2(x) . . . , gk(x) are pairwise independent if the size of
each partition satisfies:

(mi, mj) = 1, 1 ≤ i < j ≤ k (3)

where (mi, mj) means the greatest common divisor of two
integers mi and mj . Such mi and mj are also called relatively
prime.

Before we prove our claim, we need to prove two lemmas
first. To facilitate the proof, we borrow some notations from
Number Theory, as shown in Table I. The symbols a, b, q
represent non-negative integers.

TABLE I

NOTATIONS

Lemma 1: If two integers a, b ∈ [0, q − 1], where a �= b,
(p, q) = 1, then ap �≡ bp mod q.

Proof: [Proof by Contradiction] Suppose that ap ≡
bp mod q. Let us assume a < b. Then q|(bp−ap), which means
q|(b− a)p. By definition (p, q) = 1, we can derive q|(b − a).
But this is impossible because 1 ≤ b − a < q. Therefore,
the supposition does not hold and the statement is true. �

Lemma 2: Let Z denote a uniformly distributed
non-negative integer random variable over range [0, rpq− 1],
where r, p, q ∈ Z

+. Let X = (Z mod p) and Y = (Z mod q),
where (p, q) = 1. Then X , Y are mutually independent random
variables.

Proof: Obviously, X ∈ [0, p− 1], Y ∈ [0, q − 1]. Let us
assume X = a, a ∈ [0, p−1]. Then, by definition, Z = cp+a,
where c ∈ [0, rq − 1]. Let Za denote {Z|Z = cp + a, c ∈
[0, rq−1]}, Zd

a denote {Z|Z = cp+a, c ∈ [dq, dq+q−1], 0 ≤
d ≤ r − 1}. Then Za =

⋃r−1
d=0Zd

a .
We first consider c ∈ [0, q−1]. By Lemma 1, we know that

the q remainders Z0
a mod q are not equal to each other. Note

that the q remainders range in [0, q−1] and they are not equal
to each other, then we can say that Z0

a mod q is uniformly
distributed in the range [0, q − 1].

Then we consider c ∈ [dq, dq + q − 1], 1 ≤ d ≤ r − 1.
Because (cp + a) ≡ ((c mod q)p + a) mod q, so the q
remainders Zd

a mod q are equal to Z0
a mod q. Therefore,

Zd
a mod q are also uniformly distributed in the range [0, q−1].
Consequently, we can conclude that Za mod q are uni-

formly distributed in [0, q − 1]. That is, Pr(Y = b|X = a) =
Pr(Y = b) = 1/q, where a ∈ [0, p − 1], b ∈ [0, q − 1].
Similarly, we can obtain that Pr(X = a|Y = b) = Pr(X =
a) = 1/p. Successfully, we prove that X , Y are mutually
independent random variables. �

Theorem 1: Suppose that the machine word output, M =
h(x), is uniformly distributed over [0, rm1m2. . .mk−1]. If the
partition sizes m1, m2, . . . , mk are pairwise relatively prime,
then g1(x), g2(x), . . . , gk(x) are pairwise mutually indepen-
dent random variables.

Proof: Let us assume an arbitrary pair (i, j) which satisfies
that 1 ≤ i < j ≤ k. Let s = rm1m2. . .mk/mimj , then we
know that M is uniformly distributed over [0, smimj − 1].
Since (mi, mj) = 1 by definition, we get that gi(x) and
gj(x) are mutually independent random variables by Lemma 2.
As (i, j) is selected arbitrarily, we can conclude that the mod-
ulo stage results g1(x), g2(x), . . . , gk(x) are pairwise mutually
independent random variables. �

In Theorem 1, we assume that M covers a range which is
a multiple of the product m1m2. . .mk. However, in practice,
M usually covers the range a power of 2, i.e., |M| = 2L,
where L is the machine word bit width. The result that
|M| modulo m1m2. . .mk may not be zero, which makes
Theorem 1 inapplicable. There exists a simple method to solve



2258 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

the problem. We can discard the redundant numbers
by restricting the range to [0, c], where c = |M| −
|M|%(m1m2 . . . mk). This implies that |M| > m1m2 . . . mk.
If |M| is far greater than the product m1m2 . . . mk, i.e.,
|M| � m1m2 . . . mk, then the modulo part can be ignored in
practice.

We have proved that the outputs of the modulo stage are
mutually independent, on one condition that the partition sizes
are pairwise relatively prime. This result guarantees that we
eliminate the correlation of hash functions theoretically. With
this property, we only need to find one good base hash function
to implement OHBF.

If the partition sizes are not pairwise relatively prime,
the modulo results in the modulo stage would have some
degree of correlation. For example, assume the OHBF has
two partitions with length m1 = 2, m2 = 4, then we can
get g1(x) = 0 when g2(x) = 0 or 2, g1(x) = 1 when
g2(x) = 1 or 3. An extreme example is that when m1 =
m2 = · · · = mk, the OHBF would degrade to a Bloom filter
with effective length mi and only one effective hash function,
due to g1(x) = g2(x) = · · · = gk(x). Therefore, the correla-
tion of hashing results in the modulo stage leads to memory
waste and will degrade the Bloom filter’s performance. In the
following sections, we assume the partition sizes are pairwise
relative prime if not specifically defined.

D. False Positive Analysis

The false positive of OHBF is caused by two factors. The
first factor is the hashing collision in the hash stage, denoted as
event E . If the machine words collide, it will definitely cause
false positive. The second factor is the modulo collision in the
modulo stage. If the machine words from the hash stage do
not collide but all the modulo remainders happen to collide,
this will also cause false positive. Then the total false positive
probability is:

fo = Pr(F) = Pr(F|E)Pr(E) + Pr(F|¬E)Pr(¬E)
= Pr(E) + Pr(F|¬E)(1 − Pr(E)) (4)

Suppose the machine word has L bits and Le effective
bits, where Le = log2(2L − 2L%m1m2 . . . mk) according to
Theorem 1. A specific machine word will be selected with
probability 1

2Le , and not be selected with probability 1− 1
2Le .

After n elements are inserted, the probability that a specific
machine word has not been hashed is

(
1− 1

2Le

)n
, which

implies that the machine word collision probability is:

Pr(E) = 1−
(

1− 1
2Le

)n

(5)

The analysis of the second factor is similar to the machine
word collision analysis. We can conclude that the false positive
ratio caused by the second factor is:

Pr(F|¬E) =
∏k

i=1
(1− (1− 1/mi)

n) (6)

Typically the machine word range (e.g. 232 or 264) is far
greater than the size of Bloom filter, i.e., 2L � m. A collision
of machine word does not likely happen as long as the machine
word space is large enough, so Pr(E) in practice is nearly 0.

Therefore, the false positive probability of OHBF is simplified
to be:

Pr(F) ≈ Pr(F|¬E) =
∏k

i=1
(1− (1− 1/mi)

n) (7)

Because the function
(
1− (

1− 1
x

)n)
with respect to x is a

monotonically decreasing function, we have

(1− (1−M1)
n)k ≤ fo ≤ (1− (1−M2)

n)k (8)

where M1 = 1
maxi {mi} and M2 = 1

mini {mi} .
Further, we can obtain the following theorem.
Theorem 2: The false positive ratio of OHBF can be esti-

mated by the following inequality,

fo ≤
(

1−
(

k

√
∏k

i=1
(1− 1/mi)

)n)k

≈
(

1− k

√
∏k

i=1
e
− n

mi

)k

(9)

Proof: Making use of the well-known mathematical
property that the arithmetic mean is greater than or equal to
the geometric mean, we can derive:

fo =
∏k

i=1
(1− (1− 1/mi)

n)

≤
(

1
k

∑k

i=1
(1− (1− 1/mi)

n)
)k

=
(

1− 1
k

∑k

i=1
(1− 1/mi)

n

)k

≤
(

1− k

√
∏k

i=1
(1− 1/mi)

n

)k

=

(

1−
(

k

√
∏k

i=1
(1− 1/mi)

)n)k

≈
(

1− k

√
∏k

i=1
e
− n

mi

)k

�
fo has the similar form as SBF’s false positive probabil-

ity fs =
(
1− (

1− 1
m

)nk
)k

≈
(
1− e−

n
m/k

)k

. Note that

k

√∏k
i=1 e

− n
mi is the geometric mean of e

− n
mi . This suggests

that the partition sizes should be very close to each other. If the
distribution of mi is near m/k and m is large enough, fo will
be very close to fs.

Table II shows the theoretical false positive probability
comparison between SBF and OHBF. It can be seen that the
OHBF’s false positive ratio is very close to SBF’s. As OHBF’s
partition size must satisfy Equation 3, the total size of OHBF
may have a difference from the target filter size. If the
difference is minor enough, the OHBF mechanism still works.
Algorithm 1 described in the next subsection is used to divide
the partitions.



LU et al.: LOW COMPUTATIONAL COST BLOOM FILTERS 2259

Algorithm 1 Determine the Sizes of Partitions
Input: mp, k, pTable
Output: mf , partLen
1: scan pTable to find the prime closest to 	mp/k
 and

denote its index in pTable as pdex
2: sum← 0; mf ← 0
3: for i← pdex− k + 1 to pdex do
4: sum← sum + pTable[i]
5: end for
6: dif1← mp − sum; j ← pdex + 1
7: sum← sum + pTable[j]− pTable[j − k]
8: dif2← mp − sum
9: while dif2 < dif1 do

10: dif1← dif2; j ← j + 1
11: sum← sum + pTable[j]− pTable[j − k]
12: dif2← abs(sum−mp)
13: end while
14: for i← 1 to k do
15: partLen[i]← pTable[j − k + i]
16: mf ← mf + partLen[i]
17: end for

TABLE II

THEORETICAL FALSE POSITIVE PROBABILITY

COMPARISON BETWEEN SBF AND OHBF

E. Determine the Sizes of Partitions

From the previous analysis, we have known that the partition
algorithm should meet the following two requirements:

• The sizes of partitions must satisfy (mi, mj) = 1, 1 ≤
i < j ≤ k. Only by ensuring this, can we guarantee that
the outputs of the modulo stage in OHBF are mutually
independent.

• The sizes of partitions are close to each other with small
deviations. According to the false positive analysis of
OHBF, this has a direct impact to fo.

We provide a simple algorithm to satisfy these requirements:
just pick k consecutive primes as the size of the partitions.
We first build a prime table. The maximum prime in the table
can be determined by demand. Our experience shows that in
most cases it should be around m/k + δ, where δ < 300.
Note that taking consecutive primes as the partition sizes is
not necessary. We can find more simple partition method in
practice.

The sums of these consecutive primes are discrete. Given a
planned overall size mp for a Bloom filter, we usually cannot

Fig. 3. Standard deviation of the partition sizes when k = 32.

get k prime numbers to make their sum mf be exactly mp.
As long as the difference between mp and mf is small enough,
it neither causes any trouble for the software implementation
nor noticeably shifts the false positive ratio.

We refer to pTable as our prime table, and pTable[i] is
the ith prime number in pTable . The primes in pTable are
consecutive primes in ascending order. Refer k as the number
of hash functions in standard Bloom filter and refer partLen[i]
as the ith partition size. We determine the size of each partition
and the overall size by Algorithm 1.

Table III shows some partition examples using Algorithm 1.
It can be seen that the difference ( |mf−mp|

mp
) between the

planned size and the actual size is very small, and the size
of each partition is very close. We also scan the difference
between mp and mf when k = 32 and mp < 10, 000, 000,
the result shows that the biggest difference between them is
only 315. The standard deviation of OHBF partition sizes
when k = 32 is shown in Figure 3. These results illustrate
that our partition algorithm can meet all the OHBF design
requirements.

The partition sizes, as the metadata of OHBF, incur some
space cost, denoted as C. We can get:

C =
∑k

i=1
log mi ≈ k log

m

k
(10)

In general cases, the space cost of partition sizes is negligible,
compared to the Bloom filter space cost m. For example, as the
configurations in Table II, C = 12 when m = 10003, k = 3
and C = 100 when m = 10012, k = 10. Only if the space
cost of C is comparable to m, the false positive probability
of OHBF should be reconsidered.

IV. PRACTICAL BLOOM FILTER ANALYSIS

An SBF needs k hash functions, an LHBF needs 2 hash
functions, and an OHBF needs just one hash function. Through
the theoretical analysis of OHBF, people may get the impres-
sion that we reduce the number of hash functions at the cost
of higher false positive ratio. However, in practice, OHBF is
most likely to present lower false positive ratio than SBF and
LHBF. This can be explained by the fact that the practical hash
functions are far worse than truly random hash functions.

All the Bloom filter analysis is based on two main assump-
tions on the hash functions: 1) randomness, all the hash



2260 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

TABLE III

EXAMPLES OF PARTITIONS USING ALGORITHM 1

functions used in Bloom filters map data elements uniformly
to the range, and 2) independence, all the hash functions used
in Bloom filters map data elements to the range independently.
In this section, we test some representative practical hash
functions on their randomness and independence. The chi-
squared test, a well-known method in hypothesis testing, will
be used. The details of chi-squared test can be found in [38].
Next, we will model the randomness test and independence
test to their corresponding chi-squared test.

A. Randomness Test of Single Hash Function

The hash functions used in Bloom filters will first map
an element to a machine word of L bits. If we directly
evaluate whether the hash value is uniform distribution or not,
the sample space size will be 2L. The huge size sample
space will make the evaluation process complex. Alternatively,
to simplify the problem, we convert the hash value’s uniform
distribution test into the hash value bits sum’s binomial dis-
tribution test.

If a hash function is truly random, then each bit of the
hash value X should follow 0-1 distribution, i.e., Pr(xi = 0)
= 1/2, P r(xi = 1) = 1/2, 1 ≤ i ≤ L. And the sum of all
bits, HX =

∑L
i=1 xi, should follow binomial distribution. The

probability distribution of HX is:

Pr(HX = i) =
C(L, i)

2i
, 0 ≤ i ≤ L (11)

So the null hypothesis in this hypothesis test is:
H0: The sum of hash value bits, HX , follows a binomial

distribution, Pr(HX = i) = C(L,i)
2i

The test statistic SX in the randomness test is:

SX =
L∑

i=0

(
O(hi

X)− E(hi
X)

)2

E(hi
X)

(12)

where O(hi
X) is the observed frequency when HX = i,

E(hi
X) is the expected frequency when HX = i.

As the binomial distribution has L+1 values, the degrees of
freedom of χ2 distribution are L. Hence, the rejection region
in randomness test is:

SX ≥ χ2
α,L (13)

B. Independence Test Between Different Hash Functions

Now we test the independence between two hash functions.
We call every two hash functions a hash function pair.

Similar to the last subsection, we convert the independence
test into the binomial goodness-of-fit test. If a pair of hash

TABLE IV

COLLECTED HASH FUNCTIONS (REFERENCES [39]) AND THEIR NUMBER

functions are independent, then the corresponding hash values
X and Y would be independent. Therefore, the exclusive-
or operation result, Z = X ⊕ Y , would be a uniformly
distributed variable. So each bit of Z would be 0-1 distribution
with Pr(zi = 0) = 1/2, P r(zi = 1) = 1/2, where zi =
xi⊕yi, 1 ≤ i ≤ L. The sum of each bit of Z , HZ =

∑L
i=1 zi,

would follow the binomial distribution.

Pr(HZ = i) =
C(L, i)

2i
, 0 ≤ i ≤ L (14)

So the null hypothesis in this independence test is:
H0: The sum of all bits of Z , HZ , follows a binomial

distribution, Pr(HZ = i) = C(L,i)
2i

The test statistic SZ in the independence test is:

SZ =
L∑

i=0

(
O(hi

Z)− E(hi
Z)

)2

E(hi
Z)

(15)

And, the rejection region in independence test is:

SZ ≥ χ2
α,L (16)

C. Hash Function Collection and Test

We collect a total of 20 hash functions, consisting of 18 non-
cryptographic hash functions and 2 cryptographic hash func-
tions (MD5 and SHA-1). The hash functions are shown
in Table IV. The name and source of these hash functions
mainly refer to [39]. All the hash values are 32 bits, i.e., L =
32. As the standard MD5 and SHA-1 hash values are 128 and
160 bits respectively, we convert them to 32 bits by exclusive-
or the hash values every 32 bits. The significance level is set
to be α = 0.05. So the rejection region in both the randomness
test and the independence test is S ≥ χ2

0.05,32 = 46.194.
We use the real-world Internet traces, obtained from

CAIDA [40], to evaluate the hash functions. The trace
is extracted from an OC-192 link and lasts 60 minutes.
It contains 2G packets, 5M different destination IP addresses,



LU et al.: LOW COMPUTATIONAL COST BLOOM FILTERS 2261

TABLE V

RANDOMNESS TEST OF SINGLE HASH FUNCTION

TABLE VI

INDEPENDENCE TEST BETWEEN DIFFERENT HASH FUNCTIONS, THE UPPER TRIANGULAR MATRIX CORRESPONDING TO KEY_LEN=4, THE LOWER

TRIANGULAR MATRIX CORRESPONDING TO KEY_LEN=13

and 50M flows. Because the input key length can affect the
evaluation of hash functions, we use two kinds of keys to
evaluate these hash functions. The first kind of keys is the
4-byte destination IP address and the second kind of keys is
the 13-byte 5-tuple IP header.

Table V is the randomness test result of each single hash
function. The notation ‘+’ represents that we accept the
assumption and the notation ‘−’ represents that we reject the
assumption. We can see that most of the non-cryptographic
hash functions cannot pass through the chi-squared test, and
some hash functions, such as BKDR, FNV32 and OAAT,
perform better randomness property when the input keys are
longer. The two cryptographic hash functions present good
randomness property, just in accordance with our instinct.

Table VI is the independence test result of hash function
pairs. The notation ‘+’ and ‘−’ represent that we accept and
reject the assumption respectively. The notation ‘◦’ means
the test does not apply. It can be concluded that many
hash function pairs demonstrate some correlation relationship,
especially for two hash functions both with poor randomness
property. The correlation could result in large deviation from
desired false positive probability. It also makes the choice for
hash function combinations difficult.

D. Discussion

The hash functions used by Bloom filters are not truly
random in practice. First, many hash functions cannot be
regarded as uniformly distributed. Second, many hash function
pairs have some degree of correlation. Therefore, hash func-
tion selection when implementing a Bloom filter is difficult,
especially for large k. A poor selection may lead to big
false positive deviation from the theoretical value, just as

the statement in [37]. Although the same good hash function
with different initial seeds mostly show good independence
property, the use of hash functions in this way still incurs the
multiplied computational cost. On the contrary, OHBF requires
only one good base hash function to implement a Bloom filter.
The fewer practical hash functions we need, the easier we can
make the right selection. Moreover, the actual false positive
ratio would also be closer to the theoretical value since the
possible correlation of hash functions is eliminated in OHBF.

V. BLOOM FILTER EVALUATIONS

We evaluate the OHBF scheme from the following three
aspects: 1) the cost of modulo operation, 2) practical false
positive ratio and 3) querying time.

We compare different Bloom filter implementations on
a commodity server with an Intel Xeon CPU E5645×2
(6 cores×2 threads, 2.4GHz) and 48GB DDR3 (1,333MHz,
ECC) memory. The server runs an OS Linux 2.6.43 kernel
(x86_64). we use the C++ Programming Language to imple-
ment the programs. The experiments use the same real-world
trace as that used in Section IV-C. We use the well-known
Sieve of Eratosthenes algorithm to get the pTable(prime num-
ber table). The pTable takes 2.6 Mbytes.

A. The Cost of Modulo Operation

The cost of the modulo operation cannot be ignored.
However, it only applies on the (fixed-size) output of hash
function. We test the modulo operation on our server and find
each operation needs 7.3 clock cycles on average. In con-
trast, the cost of hash functions is directly proportional to
the element size. For example, CRC32, MD5, SHA-1 needs
6.9, 6.8, 11.4 clock cycles per byte, respectively [10].



2262 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 4. The cost comparison between fixed-size-input modulo operation and
variable-size-input hash functions.

TABLE VII

FALSE POSITIVE RATIO COMPARISON ON KEY_LEN= 4 bytes,

k = 3, n = 1000

The cost comparison between the (fixed-size-input) modulo
operation and the (variable-size-input) hash functions is shown
in Figure 4. Compared to common hash functions, one modulo
operation is fast enough. Intuitively, OHBF will have better
performance gain over SBF as the element size increases or the
number of hash functions increases. This is confirmed by our
experiments in the following subsections.

B. False Positive Evaluation

We compare three Bloom filter implementations: SBF,
LHBF, and OHBF. In the experiments, we set n = 1000. All
the hash functions are selected from Table IV, and their outputs
are 64 bits. We do not run the experiments on SBF but use
its ideal case as benchmark for comparison. LHBF employs
the extended double hashing cube scheme discussed in [32].
The two hash functions for LHBF are MD5 and SHA-1. The
base hash function for OHBF is MD5. We implement the
experiments on both destination IPs (key_len=4) and 5-tuple
flow identifiers (key_len=13).

The results are shown in Table VII to X. The ‘difference’ in
the tables means a difference ratio. For example, the ‘OHBF
theory’ column is calculated by |OHBF theory−SBF theory|

SBF theory .
From the four tables, we can see that both the theoretical
and practical false positive ratios of OHBF are very close
to SBF. The small instability of OHBF comes from the
high requirement of the base hash function. Since OHBF
heavily relies on the randomness of the base hash function,

TABLE VIII

FALSE POSITIVE RATIO COMPARISON ON KEY_LEN= 13 bytes,

k = 3, n = 1000

TABLE IX

FALSE POSITIVE RATIO COMPARISON ON KEY_LEN= 4 bytes,

k = 10, n = 1000

TABLE X

FALSE POSITIVE RATIO COMPARISON ON KEY_LEN= 13 bytes,

k = 10, n = 1000

the pseudo-random hash functions in practice would lead to
the jitter of false positive performance. In [32], LHBF is
claimed to have the same asymptotic false positive ratio as
SBF when m/n is constant and n→∞. However, in practice,
the false positive ratio difference between LHBF and SBF can
be significant. Table X shows that the practical false positive
ratio of LHBF is much higher than SBF’s theoretical false
positive ratio, especially when the theoretical false positive
probability is low. The reason for its poor false positive ratio
is twofold. First, the synthetic hash functions for LHBF have
some degree of correlation (discussed in Section II). Second,
the element number usually is not very large in practice
(e.g., n = 1000 in our settings).

According to the analysis of hashing independence in
Section III-D, we know that the hash function needs at least
38, 40, 109, and 115 hash bits for experiments corresponding



LU et al.: LOW COMPUTATIONAL COST BLOOM FILTERS 2263

Fig. 5. Querying time of the three Bloom filters, with n = 1000, the size m varying in each subfigure. Each point in this figure is the mean
of 1,000 experiments. We implement 1,000,000 queries in each experiment. (a) key_len = 4 bytes, k = 3. (b) key_len = 13 bytes, k = 3. (c) key_len =
4 bytes, k = 10. (d) key_len = 13 bytes, k = 10.

Fig. 6. Querying time of the three Bloom filters, with m = 16000, n = 1000, the percentage of member elements varying in each subfigure. Each point
in this figure is the mean of 1,000 experiments. We implement 1,000,000 queries in each experiment. (a) key_len = 4 bytes, k = 3. (b) key_len = 13 bytes,
k = 3. (c) key_len = 4 bytes, k = 10. (d) key_len = 13 bytes, k = 10.

to Table {VII, VIII, IX, X} respectively for OHBF. Note that
the hash outputs are all set to be 64 bits, which means that
the latter two experiments (Table {IX, X}) do not strictly
satisfy the independence requirement for OHBF. The results
in Table {IX, X} show that the practical false positive ratios
of OHBF are still very close to their theoretical value. Despite
the lack of theoretical analysis, these results tell us that OHBF
has good scalability for large k, where large number of hash
bits are needed.

C. Querying Time Evaluation

In this subsection, we evaluate the querying speed of differ-
ent Bloom filter implementations. To give a fair comparison for
different Bloom filter implementations, all the hash functions
are BOB-based hash function with different seeds. In the
following discussion, a member element represents that the
element is in the programmed element set, and a non-member
element represents the opposite.

Figure 5 shows the querying time comparison when the size
of Bloom filters varies. The search elements are composed of
50% member elements and 50% non-member elements. We
can see from the four figures that OHBF takes the least time for
querying. As the key length increases, the querying time gap
between OHBF and SBF (or LHBF) increases. This is because
when the key becomes longer, more time is consumed for hash
function computation in SBF (or LHBF). As the hash function
number k increases, the querying time gap between OHBF and
LHBF increases slowly, but the querying time gap between
OHBF and SBF increases quickly. The reason is that LHBF
reduces the hash computational cost to (approximate) 2/k, and
OHBF reduces the hash computational cost to (approximate)
1/k. As the Bloom filter size m increases, the querying time

of the same Bloom filter presents a slightly decreasing trend.
This is because the non-member elements tend to terminate
the search earlier when the false positive ratio is lower.

Note that not all the hash functions are needed when
querying a non-member element. If the current querying bit is
0, we do not need to query the subsequent bits. Therefore,
the composition of the querying elements will affect the
querying time. Figure 6 shows the querying time comparison
when the composition percentage of member elements varies.
It can be concluded that the querying time of OHBF increases
slower than SBF (or LHBF) as the percentage of member
elements increases. Moreover, the longer the keys are or the
larger the hash function number is, the less querying time
OHBF spends.

VI. CASE STUDY

In this section, we use a representative network application
to test the actual performance of OHBF. In addition to reducing
hash computation for Bloom filters, OHBF can achieve other
benefits in practical implementations. We choose the Forward
Information Base (FIB) lookup, which is a key performance
bottleneck in backbone networks, as our case study. We will
guide how to use and configure OHBF in this application.

Song et al. [4] propose using Bloom filters (SBFs) to accel-
erate FIB lookups. Essentially, FIB lookup is a Longest Prefix
Matching (LPM) problem. Dharmapurikar et al. decompose
the LPM to several Exact Matchings (EMs). While each
EM can be easily accomplished by using hash table with
just 1 (> 1 if hash collision happens) off-chip memory
access per lookup, n EMs need n off-chip memory accesses.
To avoid many high-latency off-chip memory accesses, they
use low-latency on-chip SBFs to filter out unnecessary



2264 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 7. FIB lookup with Bloom filters.

invalid off-chip hash probes. Although the SBFs are pro-
posed to use hardware-based implementation, we show that a
software-based implementation with our optimization is also
viable to accelerate the FIB lookup. The on-chip SBFs with
a large number of hash functions (e.g., more than 100 hash
functions in [3]) consume too much CPU cycles. If we replace
SBF with OHBF, two times speedup can be achieved.

A. Bloom Filter-Based FIB Lookup

The proposed approach in [3] is shown in Figure 7. Before
we describe the FIB lookup process, we need to introduce
the construction process of the system. First, the prefixes (or
<prefix, next-hop> pairs) of a FIB are grouped into W sets
according to prefix length. Then, the system builds W Bloom
Filters (BFs) and W Hash Tables (HTs). Each BF is associated
with one set. All the prefixes in one set are inserted into an
associate BF. Similarly, each HT is associated with one set.
All the <prefix, next-hop> pairs in one set are inserted into an
associate HT. The input of a BF is a prefix, and the output of a
BF is 1-bit 0 (negative) or 1 (positive). The input of an HT is
a prefix. If matched, the output is a next-hop; if not, the output
is NULL. The W outputs of BFs form the inputs of Priority
Encoder, which determines the search order of HTs. Note that
BFs are stored in on-chip SRAM memory and HTs are stored
in off-chip DRAM (or SRAM) memory. The placement policy
implies that the BFs must be small enough to reside in on-die
on-chip memory.

Now we describe the FIB lookup process. After an IP
address arrives at the search engine, all the possible W prefixes
are extracted from the destination IP address. Then these
prefixes are tested in BFs. Note that each BF is used to test
the membership of a fixed-length prefix. Due to the false
positive effect of BFs, the positive output of a BF implies
that the associate HT may contain the lookup prefix with high
probability. As BFs do not have false negative, the negative
output of a BF means that the associate HT does not contain
the lookup prefix definitely. Therefore, positive output of a
BF needs (at least) one off-chip hash probe to make sure
whether the associate HT contains the lookup prefix or not. i
positive outputs of BFs need (at most) i off-chip hash probes.
Since the primary goal of the system is to minimize the
number of high-latency off-chip hash probes, we need to probe
HTs in an optimized order. The Priority Encoder tells the
Hash Table Interface the probe order of off-chip HTs. Due
to the LPM rule in FIB lookup, the probe order is from the

TABLE XI

COLLECTED TRACES FROM CAIDA

TABLE XII

COLLECTED FIBS FROM ROUTEVIEWS

longest prefix length to the lowest one. For example, if {BF(8),
BF(16), BF(24)} show positive outputs, the probe order of
HTs is <24, 16, 8>. Once an HT returns a valid next-hop,
the probe process terminates. If all the possible HTs return
NULL, a default next-hop may be used (the packet will be
discarded if a default next-hop does not exist).

B. Experimental Settings and Basic Configuration

We use a software method to simulate the Bloom
filter-based FIB lookup approach. Note that, in the experi-
ments, we emphasize the FIB lookup performance comparison
with different Bloom filter implementations (SBF, LHBF and
OHBF). The configurations of our experiments are as follows.

Platform: We implement the experiments on a commodity
server with an Intel CPU Core i7-4790 (4 cores × 2 threads,
3.6 GHz) and 16GB DDR3 (800 MHz) memory. Each core
of the CPU has independent an L1 D-Cache (32 KBytes),
an L1 I-Cache (32 KBytes), and an L2 Cache (256 KBytes).
The 4 cores share an L3 Cache (8 MBytes). In total, This
server has more than 64 Mbits on-chip cache. The cache line
size is 64-byte.

Traces: We use 8 real-world Internet traffic traces, shown
in Table XI. These traces were collected by CAIDA [40] on
backbone 10 Gbps links, with monitors located in Chicago.
Each trace lasts 60 minutes.

FIBs: We collect 8 BGP FIBs from routeviews.org [41],
as shown in Table XII. The collection time is
2016/08/01.00:00 UTC. The FIB size ranges from 600K to
650K.

System Settings: The false positive probability of Bloom
filters is minimized to f =

(
1
2

)k
, when the number of hash

functions k satisfies k = m
n ln2. That is to say, if k is not the

optimized value, we need to sacrifice more memory to lower
the false positive probability. Due to limited on-chip memory,
we always use the optimized number of hash functions to
reduce the on-chip memory requirement. In implementation,
all BFs and all HTs are implemented on one Bloom filter



LU et al.: LOW COMPUTATIONAL COST BLOOM FILTERS 2265

Fig. 8. Lookup speed with basic configuration. (a) Different Traces with
fib1. (b) Different FIBs with tr1.

and one hash table respectively. We extend all prefixes to
32-bit keys by filling up zero in high bits. Thus all keys
have the same length. A prefix’s length is recorded in the
corresponding hash table entry. This simplifies the system
parameter settings. n is the total prefix number, m is the total
Bloom filter bit vector size.

According to [3], the expected number of hash probes per
FIB lookup is:

Eexp = Wf + 1 = W

(
1
2

)k

+ 1 (17)

In our BGP IPv4 FIBs, W = 25, as the minimum length
of prefixes in actual IPv4 FIBs is 8. We set k = 10 in our
system. Then we can get Eexp = 1.02, which is small enough
for expected off-chip hash probes.

As the previous settings, for a 650K-prefix FIB (n = 650K),
we need m = 9.4 Mbits on-chip memory (cache). The memory
cost for partition sizes C is 200 bits, which is negligible for the
overall Bloom filter’s space cost. Because the size of all the
FIBs in Table XII is smaller than 650K, our platform satisfies
the on-chip memory requirement (the platform has more than
64 Mbits cache).

C. Evaluations

1) Basic Configuration: Section VI-B describes the basic
configuration of our system. Because the commodity server
does not provide the interface to operate the on-chip memory
(cache), we need a warm-up stage for the Bloom filters. The
warm-up stage reads the Bloom filters 100 times to ensure
them stored in cache as much as possible, before we start to
measure the FIB lookup performance.

As shown in Figure 8, in the basic configuration, the OHBF-
based system shows consistently better performance than the
LHBF and SBF-based systems, either using different traces
to query one FIB (Figure 8(a)) or using one trace to query
different FIBs (Figure 8(b)). In this figure, we find that
the OHBF-based system does not improve the lookup speed
manyfold, although OHBF reduces the hash computational
cost to nearly 1/k of SBF. The reason is twofold. First, it is
the off-chip hash table probes, rather than the on-chip BF tests,
that dominate the system lookup speed. Second, not all BFs
in the system are tested. The lookup process terminates when
a BF returns a positive output and the associate HT returns

Fig. 9. Lookup speed with optimized configuration. (a) Different Traces with
fib1. (b) Different FIBs with tr1.

a valid next-hop, which results in a smaller fraction of hash
computation in Bloom filters for most lookups.

2) Optimized Configuration: In the worst case, we need to
check on-chip BFs and probe off-chip HTs 25 times with
the basic configuration. In this section, we use a technique,
called leaf-pushing [42], to optimize the worst case. In the
new scheme, only prefixes with length {8, 16, 24, 32} are
reserved. Other prefixes are pushed to the four levels according
to algorithms introduced in [42]. After leaf-pushing, we only
need 4 on-chip BFs, thus reducing the on-chip checking
overhead. Another optimization is that we can use IP address
as the hash value in OHBF. Note that IP address has 32-bit
and our OHBF only needs one hash value. Then the hash
computation in OHBF only needs several CPU div instructions
to perform. This advantage comes from the reduced hash
function requirement of OHBF.

As shown in Figure 9, in the optimized configuration,
OHBF-based system also shows consistently better perfor-
mance than LHBF and SBF-based system, either using differ-
ent traces to query one FIB (Figure 9(a)) or using one trace to
query different FIBs (Figure 9(b)). Compared to the basic con-
figuration (Figure 8), the optimized configuration with three
different Bloom filter implementations all have more than two
times lookup speed improvement. The performance improve-
ment comes from a decreased number of BF tests. We can also
find that, in the optimized configuration, OHBF-based system
has two times faster lookup speed than SBF-based system.
However, in the basic configuration, it is only (approximate)
1.6 times faster. The reason is twofold. First, it has less BF
tests on average in the optimized configuration, as the total BF
number decreases significantly. Second, OHBF uses IP address
as the only hash value, which reduces hash computational
overhead.

D. Discussion

In this section, we realize a Bloom filter-accelerated FIB
lookup system. The system employs three different Bloom
filter implementations for performance comparison. Appar-
ently, the OHBF-based system has better lookup performance
than the LHBF and SBF-based systems. This is because the
hash computation cost is high in such systems and the OHBF
reduces it to a large extent. Note that the system needs tens
of Bloom filters, and each Bloom filter needs multiple hash
functions. In the basic configuration, 250 hash functions are



2266 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

needed for Bloom filters in total. Hash computation in Bloom
filters becomes a system performance bottleneck as shown in
our case study. The reduced hash computational cost in OHBF
results in considerable system performance improvement.

VII. CONCLUSIONS

OHBF requires only one base hash function and a set of
k consecutive prime numbers as modulo operands. The com-
posite hash functions have the strength of the desired property
of k strong and independent hash functions, yet the overall
computational complexity is limited to the base hash function.
The Bloom filter vector is conditioned to the selected prime
numbers and each hash value addresses one of the partitions
respectively. With proved false positive performance, OHBF
is ideal for applications which need both low latency and
high throughput. Both performance evaluations and the case
study show that OHBF outperforms standard Bloom filters
and other Bloom filter variants with faster implementing speed
and practical lower false positive ratio. The proposed OHBF
is a fundamental optimization for Bloom filters and retains
its generality. Therefore, we can easily extend the OHBF
technique to other Bloom filter variants, such as Counting
Bloom Filter [12], One Memory Access Bloom Filter [26],
and Space-Code Bloom Filter [19].

REFERENCES

[1] M. Chiosi, “Network functions virtualisation—Introductory white
paper,” in Proc. SDN OpenFlow World Congr., 2012, pp. 1–16.

[2] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

[3] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest pre-
fix matching using Bloom filters,” in Proc. ACM SIGCOMM, 2003,
pp. 201–212.

[4] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended Bloom filter: An aid to network processing,” in
Proc. ACM SIGCOMM, 2005, pp. 181–192.

[5] M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO: Bloom filter forward-
ing architecture for large organizations,” in Proc. ACM CoNEXT, 2009,
pp. 313–324.

[6] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood,
“Deep packet inspection using parallel Bloom filters,” IEEE Micro,
vol. 24, no. 1, pp. 52–61, Jan. 2004.

[7] F. Hao, M. Kodialam, and T. Lakshman, “Building high accuracy Bloom
filters using partitioned hashing,” in Proc. ACM SIGMETRICS, 2007,
pp. 277–288.

[8] A. A. Iqbal, M. Ott, and A. Seneviratne, “Simplistic hashing for building
a better Bloom filter on randomized data,” in Proc. 13th Int. Conf. Netw.-
Based Inf. Syst. (NBiS), Sep. 2010, pp. 325–331.

[9] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131–155, 1st Quart., 2012.

[10] Crypto++ 5.6.0 Benchmarks. Accessed: Apr. 24, 2015. [Online]. Avail-
able: http://www.cryptopp.com/benchmarks.html

[11] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[12] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area Web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[13] F. Deng and D. Rafiei, “Approximately detecting duplicates for stream-
ing data using stable Bloom filters,” in Proc. ACM SIGMOD, 2006,
pp. 25–36.

[14] H. Shen and Y. Zhang, “Improved approximate detection of duplicates
for data streams over sliding windows,” J. Comput. Sci. Technol., vol. 23,
no. 6, pp. 973–987, 2008.

[15] C. E. Rothenberg, C. A. B. Macapuna, F. L. Verdi, and M. F. Magalhaes,
“The deletable Bloom filter: A new member of the Bloom family,” IEEE
Commun. Lett., vol. 14, no. 6, pp. 557–559, Jun. 2010.

[16] H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li, “Noisy Bloom filters
for multi-set membership testing,” in Proc. ACM SIGMETRICS, 2016,
pp. 139–151.

[17] H. Dai, L. Meng, and A. X. Liu, “Finding persistent items in distributed
datasets,” in Proc. IEEE INFOCOM, Apr. 2018, pp. 1–9.

[18] S. Cohen and Y. Matias, “Spectral Bloom filters,” in Proc. ACM
SIGMOD, 2003, pp. 241–252.

[19] K. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-code
Bloom filter for efficient per-flow traffic measurement,” in Proc. IEEE
INFOCOM, Mar. 2004, pp. 1762–1773.

[20] Y. Matsumoto, H. Hazeyama, and Y. Kadobayashi, “Adaptive Bloom
filter: A space-efficient counting algorithm for unpredictable network
traffic,” IEICE Trans. Inf. Syst., vol. 91, no. 5, pp. 1292–1299,
2008.

[21] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scal-
able Bloom filters,” Inf. Process. Lett., vol. 101, no. 6, pp. 255–261,
2007.

[22] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic Bloom
filters,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 120–133,
Jan. 2010.

[23] F. Hao, M. S. Kodialam, T. V. Lakshman, and H. Song, “Fast dynamic
multiple-set membership testing using combinatorial Bloom filters,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 295–304, Feb. 2012.

[24] M. K. Yoon, J. Son, and S.-H. Shin, “Bloom tree: A search tree based
on Bloom filters for multiple-set membership testing,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 1429–1437.

[25] F. Putze, P. Sanders, and J. Singler, “Cache-, hash- and space-efficient
Bloom filters,” in Proc. Int. Workshop Exp. Efficient Algorithms, 2007,
pp. 108–121.

[26] Y. Qiao, T. Li, and S. Chen, “One memory access Bloom fil-
ters and their generalization,” in Proc. IEEE INFOCOM, Apr. 2011,
pp. 1745–1753.

[27] B. Donnet, B. Baynat, and T. Friedman, “Retouched Bloom filters:
Allowing networked applications to trade off selected false positives
against false negatives,” in Proc. ACM CoNEXT, 2006, p. 13.

[28] R. P. Laufer et al., “Towards stateless single-packet IP traceback,” in
Proc. IEEE LCN, Oct. 2007, pp. 548–555.

[29] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter:
An efficient data structure for static support lookup tables,” in Proc.
ACM SODA, 2004, pp. 30–39.

[30] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese,
“Beyond Bloom filters: From approximate membership checks to
approximate state machines,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 4, pp. 315–326, 2006.

[31] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than Bloom,” in Proc. ACM CoNEXT,
2014, pp. 75–88.

[32] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” Random Struct. Algorithms, vol. 33,
no. 2, pp. 187–218, Sep. 2008.

[33] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 lookups
using distributed and load balanced Bloom filters for 100 Gbps
core router line cards,” in Proc. IEEE INFOCOM, Apr. 2009,
pp. 2518–2526.

[34] M. Skjegstad and T. Maseng, “Low complexity set reconciliation using
Bloom filters,” in Proc. ACM FOMC, 2011, pp. 33–41.

[35] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 3,
pp. 52–66, Jul. 2015.

[36] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, Apr. 1979.

[37] M. Ramakrishna, “Practical performance of Bloom filters and parallel
free-text searching,” Commun. ACM, vol. 32, no. 10, pp. 1237–1239,
1989.

[38] J. L. Devore, Probability and Statistics for Engineering and the Sciences.
North Scituate, MA, USA: Duxbury Press, 2012.

[39] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of hash
functions for multipoint measurements,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 3, pp. 39–50, 2008.

[40] C. Walsworth, E. Aben, K. Claffy, and D. Andersen. (2016). The
CAIDA Anonymized Internet Traces. [Online]. Available: http://www.
caida.org/data

[41] University of Oregon. (2016). Route Views Project. [Online]. Available:
http://www.routeviews.org/

[42] V. Srinivasan and G. Varghese, “Fast address lookups using controlled
prefix expansion,” ACM Trans. Comput. Syst., vol. 17, no. 1, pp. 1–40,
1999.



LU et al.: LOW COMPUTATIONAL COST BLOOM FILTERS 2267

Jianyuan Lu received the B.S. degree in informa-
tion and computing science from the Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China, in 2011, and the Ph.D. degree from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, in 2017.

He is currently a joint Postdoctoral Research
Fellow with Tsinghua University and Alibaba
Cloud. His research interests include cloud comput-
ing, software-defined networking, network measure-
ments, high-performance network algorithm, and
power-proportional network design.

Tong Yang received the Ph.D. degree in computer
science from Tsinghua University in 2013.

He visited the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, China, from
2013 to 2014. He is currently a Research Assis-
tant Professor with the Computer Science Depart-
ment, Peking University. He published papers
in SIGCOMM, SIGKDD, SIGMOD, SIGCOMM
CCR, VLDB, ATC, ToN, ICDE, and INFOCOM.
His research interests include network measure-
ments, sketches, IP lookups, Bloom filters, sketches,
and KV stores.

Yi Wang received the Ph.D. degree in computer
science and technology from Tsinghua University
in 2013.

He is currently a Research Associate Professor
with the SUSTech Institute of Future Networks,
Southern University of Science and Technology,
Shenzhen, China. His research interests include
router architecture design and implementation,
software-defined networks, greening the Internet,
fast packet forwarding, information-centric network-
ing, and time-sensitive networks.

Huichen Dai received the B.S. degree from the Xian
University of Electronic Science and Technology,
Xi’an, China, in 2010, and the Ph.D. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2016.

He was a Post-Doctoral Research Fellow with the
Department of Computer Science and Technology,
Tsinghua University. He is currently a Senior Engi-
neer at Huawei Technologies Co., Ltd, where he is
currently working on congestion control algorithms
for RDMA. He used to be interested in research

topics in computer networks, including router architecture, fast packet process-
ing, and future Internet architecture, such as named-data networking and
software-defined networking.

Xi Chen received the B.S. degree from the School of
Information and Communication Engineering, Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2016.

His research interests include routing, network
security, and software-defined networking.

Linxiao Jin received the B.S. degree from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 2014.

He is currently a Software Engineer at Oracle
Public Cloud. His research interests include routing,
network security, and software-defined networking.

Haoyu Song received the B.E. degree in electron-
ics engineering from Tsinghua University, Beijing,
China, in 1997, and the M.S. and D.Sc. degrees in
computer engineering from Washington University
in St. Louis, St. Louis, MO, USA, in 2003 and 2006,
respectively.

He was an MTS Researcher with Bell Labs,
Alcatel-Lucent, Holmdel, NJ, USA, and a Research
Assistant with the Applied Research Laboratory,
Washington University in St. Louis. He is currently
a Senior Principal Network Architect with Huawei

Technologies, Santa Clara, CA, USA. He has published over 30 peer-reviewed
papers and has filed over 20 patents for his work on network algorithm
and architecture. His research interests include network virtualization and
cloud computing, high-performance networks, algorithms for network packet
processing and security, network chip architecture, and ASIC/FPGA design
and verification.

Bin Liu received the M.S. and Ph.D. degrees in com-
puter science and engineering from Northwestern
Polytechnical University, Xi’an, China, in 1988 and
1993, respectively.

He is currently a Full Professor with the
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China. His
current research areas include high-performance
switches/routers, network processors, high-speed
network security, and greening the Internet. He has
received numerous awards from China, including the

Distinguished Young Scholar of China and the inaugural Applied Network
Research Prize sponsored by ISOC and IRTF in 2011.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


