
KeySight: Troubleshooting Programmable Switches
via Scalable High-coverage Behavior Tracking
Yu Zhou∗†‡, Jun Bi∗†‡, Tong Yang§, Kai Gao∗†‡, Cheng Zhang∗†‡, Jiamin Cao∗†‡, Yangyang Wang∗†‡

∗Institute for Network Sciences and Cyberspace, Tsinghua University
†Department of Computer Science, Tsinghua University

‡Beijing National Research Center for Information Science and Technology (BNRist)
§Peking University

Abstract—The rise of programmable switches and P4 brings
much flexibility to networks, but this flexibility comes with
increased risks of bugs. Diagnosing these bugs is essential for
network operation but is non-trivial. A potential approach is
to track packet behaviors through postcards, but existing tools
either generate substantial postcards (limited scalability) or only
track a small proportion of packet behaviors (low coverage). In
this paper, we present KeySight, a platform that troubleshoots
programmable switches with high scalability and high cover-
age. The key idea is based on the Packet Equivalence Class
(PEC) abstraction that aggregates packets with identical packet
behaviors and generates one postcard per behavior. The PEC
abstraction minimizes the number of postcards while tracking
all packet behaviors. We design novel algorithms to analyze
PECs of P4 programs and to implement the PEC abstraction
on programmable switches. We deploy KeySight on Tofino and
SmartNIC, and evaluate it against 80 P4 programs and real
packet traces of over 5TB. Results show that in the premise of
overseeing 99.9% packet behaviors, KeySight reduces the number
of postcards by one to two orders of magnitude when comparing
with NetSight.

I. INTRODUCTION

Programmable switches [1–3] and P4 oblige operators with
much flexibility to define novel data plane functions and
protocols, motivating fast innovations on networked systems.
Recent studies develop various P4 programs to enhance net-
works concerning performance [4, 5], measurement [6, 7], and
so on. Although providing flourish functions and significant
benefits, this flexibility comes at a price of increased chances
and diversity of subtle bugs [8–10], which potentially causes
severe performance degradation and network outages [11, 12].

Thus, detecting and locating bugs (e.g., P4 program bugs,
incorrect policies, and hardware faults) in programmable
switches are of great importance. A general approach is
to directly track packet behaviors through postcards [13].
Postcards are mirrored packets accommodating a set of fields
which faithfully record the changes taking place on output
ports, packet headers, and switch states (e.g., counters) when
a switch processes packets. These changes are often referred
to as packet behaviors. Packet behavior tracking can provide
visibility of how switches process packets and is very useful
in network troubleshooting.

However, troubleshooting programmable switches via
packet behavior tracking is non-trivial and should satisfy
two essential requirements. (1) High scalability denotes that
postcard load (i.e., the number of generated postcards) on
every switch should be considerably small. Otherwise, if

Packet Behavior Tracking

SubsetUniversal Set
(e.g., NDB, NetSight)

Behavior Level
(e.g., KeySight)

Flow Level
(e.g., NetFlow)

Coverage
Overseeing all

packet behaviors

Scalability
Small postcard load

on every switch

Packet Level
(e.g., EverFlow, P4DB)

Figure 1. KeySight vs. other troubleshooting techniques.

postcard load is close to normal traffic load, every switch has
to reserve a large amount of bandwidth and switching capacity
to transmit postcards, which compromises the feasibility. (2)
High coverage requires overseeing all packet behaviors to
detect abnormalities completely and to locate bugs quickly.
Otherwise, some abnormalities that bring severe network
outages may be left out, undermining the troubleshooting
accuracy.

No existing tool, to the best of our knowledge, can satisfy
the two requirements simultaneously that they have to make
different trade-off decisions. First, NetSight [13] generates
postcards for the universal set of packets to acquire all
packet behaviors in a network. NetSight has to generate
massive postcards and is not scalable. Second, some tools
generate postcards for a subset of packets. NetFlow [14]
samples packets periodically to report five-tuples and other
performance information at the flow level. EverFlow [15] and
P4DB [10] introduce a match-mirror design, i.e., employing a
Match-Action Table (MAT) to generate postcards at the packet
level. NetFlow, EverFlow, and P4DB inevitably encounter the
coverage issue, as they can only track a subset of packet be-
haviors. In summary, existing tools either sacrifice scalability
for overseeing all packet behaviors or sacrifice coverage for
keeping postcard load under control. A fundamental reason is
that they use inappropriate postcard generation granularities,
constrained by limited support in legacy switches.

To achieve efficient programmable switch troubleshoot-
ing, we present KeySight, a platform that supports scalable
high-coverage behavior tracking. KeySight is based on an
observation that in a switch, many packets have the same
behaviors, and the number of packet behaviors is relatively
predictable [16, 17] and much smaller than that of packets.
This observation identifies an opportunity that we can generate
postcards for a representative subset of packets to track all
packet behaviors. Unlike the state of the arts, KeySight takes

a different abstraction called Packet Equivalent Class (PEC)
to generate probes. The PEC abstraction aggregates packets
with identical behaviors and generates postcards at a new
granularity, namely the behavior level which generates one
postcard per packet behavior. With this abstraction, KeySight
remarkably decreases postcard load on each switch (by one
to two orders of magnitude). Moreover, postcard load of
KeySight increases linearly with the number of packet be-
haviors instead of packets, thus KeySight embraces higher
scalability than existing tools. Meanwhile, behaviors of PECs
can equivalently represent behaviors of all packets. Thus, this
abstraction does not undermine coverage. Note that VeriFlow
formally proposes PEC to optimize the efficiency of verifying
MAT rules issued by control planes, while KeySight employs
PEC to track packet behaviors on data planes. Moreover, to
make the PEC abstraction a reality, KeySight comes up with
the following two techniques.
D1: Automatic PEC Extraction from P4 Programs. As P4
enables operators to customize packet processing logic of
programmable switches, packets in switches configured with
different P4 programs expose different behaviors. We propose
to use PEC representations to model packet behaviors defined
by P4 programs, and the PEC representation identifies which
fields a postcard should carry. However, manually extracting
PEC representations of P4 programs comprising dozens of or
even hundreds of MATs (e.g., NetCache.P4 [18] has 96 MATs
and Switch.P4 [19] has 129 MATs) is cumbersome and error-
prone. Moreover, dependencies [20] between MATs further
increase this complexity. To this end, we design an analyzer
that performs static analysis on P4 programs and automatically
extracts PEC representations.
D2: Efficient PEC Implementation on Programmable
Switches. To generate postcards at the behavior level, the
PEC abstraction needs to store all packet behaviors and de-
duplicate postcards carrying identical behaviors, which re-
quires a large amount of memory space and complex filtering
operations. Thus, fully implementing the PEC abstraction on
programmable switches whose programmability and memory
are constrained is almost impossible. To bound the memory
usage and simplify filtering logic, we propose to conduct
approximate postcard de-duplication over recently-arrived
packets. This idea comes with issues of false positives (cannot
guarantee generating postcards for all behaviors) and false
negatives (repeatedly generate postcards for some behavior)
in postcard de-duplication. To implement the PEC abstraction
while keeping the overheads low, we design a new algorithm,
named Ring Bloom Filter (RBF). RBF is based on a ring com-
posed of multiple Bloom filters. The ring records the appeared
behaviors of recently-arrived packets, and RBF supports clear-
ing expired packet behaviors from the ring and reserving space
in the ring for new packet behaviors. Moreover, RBF is highly
compatible with P4 and can be entirely implemented on data
planes with bound memory usage. It is worth noting that RBF
could be flexibly tuned and has low false positive rates (less
than 0.1%) even when the available memory is limited.

In this paper, we make the following contributions:

• We propose KeySight which exploits the PEC abstraction
to troubleshoot programmable switches while satisfying
high scalability and high coverage simultaneously.

• We design an analyzer to extract PEC representations
from P4 programs (§III). We design a novel algorithm,
RBF, to implement the PEC abstraction on programmable
switches, and a suite of APIs to conduct troubleshooting
tasks specified by operators (§IV).

• We implement a prototype of KeySight on Tofino [3] and
SmartNIC [21], and publish the code at [22]. Evaluation
against 80 P4 programs and over 5TB packet traces shows
that in the premise of overseeing more than 99.9% packet
behaviors, KeySight can reduce postcard load by one to
two orders of magnitude (§V).

II. BACKGROUND AND OVERVIEW

A. Preliminary Knowledge of P4

As a language for programming switches, P4 offers a lot of
reconfigurable elements to implement rich packet processing
functions. (1) Operators can customize parsers to extract
headers with arbitrary protocol formats. (2) Operators can
construct compound actions with a variety of primitive actions
(e.g., modify filed). (3) Operators can specify match fields
(e.g., IPv4 destination address) with match types (e.g., exact
and range) and multiple compound actions in one Match-
Action Table (MAT). A MAT can execute specified actions on
packets according to the matching results of packet headers.
(4) Operators can organize multiple MATs as a consolidated
Directed Acyclic Graph with the control flow. (5) Operators
can declare variables (e.g., metadata) and stateful elements
(e.g., counters and registers) to store flow states transiently
or consistently. With above elements, operators can develop
various data plane functions with P4 programs efficiently.

The lifecycle of P4 programs is composed of two phases.
At compile time, the P4 compiler takes the responsibility of
compiling P4 programs to executable code and generating
control APIs. Then, at runtime, the P4 pipeline, which ac-
commodates parsers, MATs, and so on, is configured with
the executable code and processes packets according to P4
programs. Meanwhile, the centralized controller populates
MAT entries through the control API. Notably, a MAT entry
comprises match fields, the compound action to be executed,
and action parameters.

Regarding programmability, there are also some limitations
in P4 and programmable switches. For example, P4 does not
allow multiple reads to the same MAT by a packet. Some
programmable switches only support atomic access to stateful
elements in consideration of implementation complexity and
performance guarantee [23].

B. Design Overview

As is shown in Figure 2, KeySight comprises three compo-
nents that work in the two phases of the P4 program lifecycle.
(1) At compile time, KeyAnalyzer takes a P4 program as
input and generates the PEC representation. (2) The P4
compiler generates executable code for the P4 program and

Run Time

P4 Pipeline

Compile Time

P4 Pipeline

FORWARD

Match Action

MODIFY_IP

Match Action Match Action

READ_REGISTER KeyTracker
Pkts

KeyAnalyzerP4 Program

KeyVisorController

PostcardsPostcards

15

Compiler

PEC Representation

(1)

(2)

(3)

(4)

Troubleshooting Service API

KeySight
Applications

Check

Policy
Conformance

Network
Invariant

Forwarding
Path

Monitor

Packet
Loss

Wrong
Rule

Debug

P4 Program
Bug

Figure 2. Architectural overview of KeySight. KeySight is composed of
KeyAnalyzer (§III), KeyTracker (§IV-A), and KeyVisor (§IV-B).

deploys the code into the P4 pipeline. (3) At runtime, every
packet traversing the P4 pipeline gets a postcard according to
the PEC representation. Then, KeyTracker checks postcards
and determines whether to report the postcard based on the
following principle: Only report postcards that have never
been seen by KeyTracker before. (4) After collecting postcards
from every switch, KeyVisor conducts troubleshooting tasks
and makes the other components transparent to operators with
troubleshooting service APIs.

III. KEYANALYZER AT COMPILE TIME

In the context of programmable switches, P4 programs and
MAT entries jointly determine PEC. Especially, P4 programs
specify which fields are essential to represent PEC, and values
of these fields depend on MAT entries. Thus, as P4 programs
vary and may be too complicated to be manually analyzed,
an automatic tool to extract PEC representations from P4
programs is well needed.

A. Defining PEC in the Context of Programmable Switches

Previous tools [16, 17] have defined PEC for legacy
switches and apply it to accelerate network verification, but
there is no researching effort to model PEC of programmable
switches and to exploit PEC to track packet behaviors. We
propose a PEC definition in the context of programmable
switches, and the definition guides systematic extraction of
PEC representations. We concentrate on defining PEC for a
single switch, while we can easily deduce the network-wide
PEC definition [24].
Definition (Packet Equivalence Class) : In a programmable
switch, a Packet Equivalence Class is a set C of packets such
that any packet pkt1, pkt2 ∈ C satisfy:

• P1: pkt1 and pkt2 traverse the same MATs, and those
MATs compose a MAT set;

• P2: For each MAT in the MAT set, pkt1 and pkt2 hit
the identical MAT entry whose compound action is A;

• P3: For each primitive action invoked in A, pkt1 and
pkt2 have the same deterministic inputs and outputs.

This definition stresses on deterministic inputs and outputs
of every primitive action. P4 also has some non-deterministic
objects, such as time stamps and queue lengths, whose
values are determined by random variables [25]. The non-
determinacy in P4 programs can impact traversed MATs and
MAT entries of packets through conditional statements and
range matching. P1 and P2 can equivalently express how the
non-determinacy impacts packet behaviors. Thus, in this paper,
we only consider deterministic objects by default.

The above PEC definition differs from the previous PEC
definition for legacy switches in two perspectives. (1) For P1,
the previous one always assumes that packets only traverse
a single MAT in a switch, while the new PEC definition
should consider multiple MATs composing a MAT path in
the control flow. The MAT path introduces dependencies
between MATs, which needs careful treatment. (2) For P3,
operators construct a compound action with multiple primitive
actions. Thus, the correctness of compound actions relies
on not only the action parameters specified by MAT entries
but also the used primitive actions. Besides, P4 primitive
actions are more complicated than those supported by legacy
switches. Therefore, exiting tools based on the previous PEC
definition cannot fully model PEC in programmable switches.
We need a program-independent approach that can attain PEC
representations from different P4 programs.

B. KeyAnalyzer to Extract PEC Representations

To attain PEC of P4 programs based on the above definition,
we propose a notion called the PEC representation. A PEC
representation is a list of fields that identify inputs and outputs
of each MAT in a P4 program. Take a P4 program with a MAT
called ip forward as an example. The destination IPv4 address
(ipv4.dip) is the input of ip forward, and the egress port (port)
is the output. Thus, the PEC representation for this program
is [ipv4.dip, port]. The PEC representation correspondingly
identifies which fields postcards should include. After travers-
ing the P4 pipeline, each packet gets a postcard based on
the PEC representation. For the above example, a postcard
can be [’1.0.0.1’, 1]. Furthermore, the PEC representation and
postcards should satisfy that for any packet pkt1 and pkt2, they
belong to a PEC if and only if postcard p1 of pkt1 equals to
postcard p2 of pkt2.

To extract PEC representations, KeyAnalyzer should answer
three questions: (1) How to extract inputs and outputs of
compound actions comprising various primitive actions? (2)
How to extract inputs and outputs of MATs accommodating
various matching fields and multiple compound actions? (3)
How to extract inputs and outputs of the P4 pipeline while
tackling the complexity derived from MAT dependencies (i.e.,
match dependency, action dependency, and reversed-match
dependency [20])? To answer these questions, KeyAnalyzer
is designed with three steps which hierarchically analyze P4
programs. Figure 3 shows the basic workflow of KeyAnalyzer
based on a typical P4 program, Router.P4 [26].

38

 �� ��

 ��

Match Fields Compound Actions

ipv4.dip

set_nhop(nhop, port)

modify_field (meta.nhop, nhop);
modify_field (meta.port, port);
add_to_field (ipv4.ttl, -1);

 ��

_drop

��

��

��

A
ct

io
n

M
A

T
P

ip
el

in
e

Action-level Analysis

MAT-level Analysis

Pipeline-level Analysis

�� = ����_���� ∪ �_����

�� = ����_���� ∪ �_����

∪ [ipv4. dip]

����_���� =[meta.nhop,
meta.port,
ipv4.ttl]

����_���� =[]

set_nhop

� = ��, ��, ��, ��

� = �� → ��, … , �� → ��

��� = ��� �, �

Control Flow Graph of Router.P4

Figure 3. PEC representation extraction workflow of KeyAnalyzer.

 ��: Replica for ��

 ��: Replica for ��

 ��

 ��

Direct FRA
��

��

��

Input Fields of ��Output Fields of �� Input Fields of �� Input Fields of ��

��

��

�� ��

��

Output of FRA

Figure 4. The HSA-style illustration for a MAT dependency example.
Field f1 triggers reversed-match dependency. Field f2 triggers action
dependency. Field f3 triggers match dependency.

S1: Action-level Analysis . The goal of S1 is to extract written
fields and read fields of every compound action. First, we have
thoroughly checked all 31 primitive actions supported by P4,
and we specify written fields and read fields of every primitive
action according to the P4 specification. For example, for
modify field(dst, src), the dst field is written by this primitive
action, while the src field is read. Notably, KeyAnalyzer cannot
analyze all primitive actions, because some primitive actions
could modify switch states that are opaque to P4 programs.
For example, the count primitive action could count packets
with a counter, while P4 programs cannot know the exact value
of the counter. There are five primitive actions that cannot be
fully analyzed, including push, pop, count, execute meter, and
generate digest. Second, we can get written and read fields
of a compound action by combining those of every primitive
action invoked in the compound action. For example, in Figure
3, set nhop has three written fields (Wset nhop) and has no
read field (Rset nhop).
S2: MAT-level Analysis . We design S2 to extract input fields
and output fields of every MAT. As packets exclusively execute
one compound action in every traversed MAT, we could attain
input fields and output fields of a MAT by merging the read
field set and the written field set of every compound action.
Further, as match fields are also read by the MAT, inputs of a
MAT should also include match fields.
S3: Pipeline-level Analysis. S3 aims at resolving complexity
derived for MAT dependencies and extracting PEC represen-
tations on the basis of S1 and S2. To illuminate this step,
we present a simple example composed of two MATs, i.e.,
T5 and T6, in Figure 4. We employ the geometric approach
of HSA [27] to demonstrate MAT dependencies as well as
the relevant problem. A box in the coordinate axis denotes a

Algorithm 1: Field Replication Algorithm
Input: A control flow graph G = (V , E)
Output: A PEC representation (pec)

1 pec← ∅ ;
2 V ∗ ← Reverse(TopologicalSort(V , E)) ;
3 foreach v in V ∗ do
4 foreach child vertex v′ of v do
5 Oc

v ← Oc
v ∪Oc

v′ ;
6 Rv ← Rv ∪ (Ov ∩Oc

v′) ;
7 Rv ← Rv ∪ (Ov ∩Ra

v′) ;
8 Ra

v ← Ra
v ∪Ra

v′ ;
9 end

10 Oc
v ← Oc

v ∪Ov ;
11 Ra

v ← (Ra
v \Rv) ∪ (Iv ∩Oc

v) ;
12 pec← pec ∪ Ov ∪ Iv ∪ {r| r is a replica of x, x ∈ Rv};
13 if v is the last of V ∗ then
14 pec ← pec ∪ {r| r is a replica of x, x ∈ Ra

v};
15 end
16 end
17 return pec;

particular field, such as TTL of IPv4. MAT dependencies cause
that input fields, and output fields of T6 overlap those of T5.
KeyTracker can only observe the field after T6. A strawman
approach is to directly use the existing fields to construct a
PEC representation for the program, but this approach does
not work well due to the following observations. f1 and f2
will be modified by T6, KeyTracker cannot get the value of
f1 and f2 when a packet is processed by T5. For f3 which
triggers the match dependency and is read by T6, KeyTracker
could receive its value got from T5 without any ambiguity. The
above statement implies that the reversed-match dependency
and action dependency could undermine the correctness of
attaining inputs and outputs of every MAT.

Based on the above analysis, we design a Field Replication
Algorithm (FRA), in Algorithm 1, to overcome the problem
caused by the dependencies. As is shown in Figure 4, the
key idea of FRA is to create replicas for fields triggering the
reversed-match dependency and action dependency. Besides,
FRA is able to identify the fields triggering dependencies as
well as to decide which fields to be replicated and which MAT
to conduct field replications.

FRA models the control flow of a P4 program as a directed
acyclic graph G. G has a set of vertices (V) that are MATs and
if-else expressions, and a set of directed edges (E) that denotes
execution sequences of vertices. A vertex v in G has five field
sets. First, Ov and Iv denote the inputs and outputs of v,
and are extracted at S2. Second, Oc

v denotes the accumulative
outputs of v and its children. Third, Rv denotes the fields that
should be replicated at v. Lastly, Ra

v denotes the fields that
should be replicated at some ancestor of v. Except for Ov and
Iv , the other three field sets are initialized as ∅ and will be
populated in FRA.

FRA executes the sort-of-reversed topological sort on G
to get V ∗ (line 2). Sequentially iterating through V ∗ could
guarantee that for a specific vertex, all of its children have been
processed at the time of processing itself. Then, FRA gets the
cumulative outputs (line 5) and checks action dependency (line
6). For Ra, FRA validates whether the vertex could perform

BFQ

………

������

Window for Recently-arrived Packets

…

��������

…

����������

…

����������

…

��������

��� ����������� ���

Dequeue Enqueue

N Packets

Clear

Network
Traffic

Expired Packets Recently-arrived Packets New Packets

……

...
...

...
……

C
el

ls
 (

M
)

Arrays (K)

ℎ� ℎ� ℎ� = ��(���������)

Hash Functions

����

�� �� …… ��

���������

Record

Figure 5. Process a packet with a BF.

BFQ

………

������

Window for Recently-arrived Packets

…

��������

…

����������

…

����������

…

��������

��� ����������� ���

Dequeue Enqueue

N Packets

Clear

Network
Traffic

Expired Packets Recently-arrived Packets New Packets

……

...
...

...
……

C
el

ls
 (

M
)

Arrays (K)

ℎ� ℎ� ℎ� = ��(���������)

Hash Functions

����

�� �� …… ��

���������

Record

Figure 6. BFQ design to track behaviors of recently-arrived packets.

field replication (line 7), and add the fields triggering reversed-
match dependency into Ra of its children (line 11). The PEC
representation pec, initialized as ∅ (line 1), comprises inputs,
outputs, and replicated fields of every vertex (line 12). Note
that as the starting vertex of G has no ancestor, fields in Ra

of the starting vertex should be replicated before packets enter
into G, so pec also includes these fields (line 14).

FRA specifies which fields should be replicated and which
MATs replicate these fields through R and Ra. To implement
R and Ra in a P4 program, KeyAnalyzer modifies original
compound actions to replicate the fields through modify field
and to store replicated fields in metadata.
Summary. We use NF to denote the number of header fields
and metadata fields in a P4 program. The time complexity of
FRA is O(NF (|V |+ |E|)). Further, S1, S2, and S3 work jointly
to extract PEC representations satisfying P1, P2, and P3. The
detailed complexity analysis and the proof for KeyAnalyzer
are listed at [24]. In P4, there are some special compo-
nents, such as action profile and field list calculation, which
should also be considered. Fortunately, the above methods
can support most of these components. After getting the PEC
representation, KeyAnalyzer automatically incorporates the
representation, replication actions, and the code of KeyTracker
into the original P4 program.

IV. KEYTRACKER AND KEYVISOR AT RUNTIME

In this section, we present how to track packet behaviors
with KeyTracker and how to provide troubleshooting services
based on postcards with KeyVisor.

A. KeyTracker Design to Track Packet Behaviors

After the P4 program is deployed on programmable
switches, the P4 pipeline processes packets as specified by
the original P4 program and produces postcards for every
incoming packet according to the PEC representation. In other
words, these postcards instantiate the PEC representation.
Then, KeyTracker takes postcards as input. Through checking
whether a postcard has been previously seen, KeyTracker de-
duplicates postcards with the same packet behavior.

Considering large quantities of packet behaviors [16], we ar-
gue that in terms of checking duplicated postcards, KeyTracker
should satisfy the following statement: KeyTracker should be
able to narrow the checking scope down to recently-arrived
packets. In other words, KeyTracker should only conduct

postcard de-duplication over recently-arrived packets, instead
of all packets. We use X to represent the above statement. As
storing all behaviors for infinite packets requires substantial
and unpredictable memory space, it is reasonable to bound
the required memory through shrinking the checking scope.

Specifically, the reasons that X holds for the troubleshooting
scenario are as follows. (1) Compared with past packets,
recently-arrived packets are more important for real-time trou-
bleshooting. (2) As switch configurations are dynamic (e.g.,
network updates), some packet behaviors may expire, and
some new ones will be enabled. Without X , expired behaviors
of old packets could take up an amount of memory space for a
long time, which inevitably increase the FPR and undermines
troubleshooting coverage. (3) As most flows have anticipated
duration, carefully removing recorded behaviors of completed
flows does not increase the number of generated postcards,
which has a small impact on scalability.

In this section, we first present a strawman solution that
satisfies X . Then, we demonstrate why this strawman solution
fails for network troubleshooting and come up with a novel
algorithm which is compatible with programmable switches
while satisfying X .
Bloom Filter Queue. We propose a strawman design, named
Bloom Filter Queue (BFQ), which is a FIFO queue composed
of multiple Bloom Filters (BF) and can satisfy X . BFQ is not
a practical algorithm for KeyTracker, as its implementation on
programmable switches introduces large overheads.

Before delving into the design of BFQ, we show how a BF
checks an individual packet. As is shown in Figure 5, a BF
comprises K arrays, each of which comprises M cells. Packet
pkti gets postcardi according to the PEC representation when
traversing the P4 program. Then, postcardi will be used to
generate K positions (h1, ..., hK) through K different hash
functions (H1, ...,HK). Afterwards, BFQ can get K cells for
pkti. In the BF, a cell contains only one bit. If all values of
the K cells are 1, the BF marks pkti as positive (the packet
behavior has been seen before). Otherwise, the BF marks pkti
as negative (i.e., the packet behavior has never been seen).

After presenting how a packet is statically checked, we
illuminate how packets sequentially traverse BFQ. As is shown
in Figure 6, BFQ is composed of S BFs. BFQ sequentially
divides packets into fixed-size blocks, each of which has N

packets. Each BF exclusively records postcards for a block
of packets. For example, BF1 records postcards of packets

in Blockx. To record postcards of a particular packet, the
attained cells via K hash functions in the corresponding BF
should be set to 1. Every packet queries recent S − 1 BFs
to check whether its postcard has been recorded. If all BFs
mark this packet as negative, BFQ has never seen the postcard
of the packet in recently-arrived packets. Then, BFQ marks
this packet as negative and report the postcard of this packet.
Otherwise, BFQ marks the packet as positive and does report
its postcard. Meanwhile, to prevent influences from expired
packets, BFQ should clear all cells in the dequeued BF, i.e.,
BF1. When all packets in the current block (Blockx+S−1)
complete, the new block (Blockx+S) will be shifted into the
window, and its BF (cleared BF1) will be enqueued at the
same time. Similar to the above procedure, BFQ dequeues
BF2 whose block becomes expired.

However, it is hard for programmable switches to entirely
implement BFQ due to the following concerns. (1) BFQ
needs to implement multiple BFs and requires many querying
operations, i.e., (S − 1)K per packet, which occupy many
resources (e.g., ALU and SRAM). (2) BFQ requires multiple
writes on registers to clear the dequeued BF, which is not
supported by P4 (§II-A). There is a workaround, i.e., exploiting
the controller to clear the dequeued BF. For every block, the
P4 pipeline can inform the controller to clear the dequeued BF
through the control channel. This approach imposes large load
between the controller and switches. Moreover, the latency
of the control channel leads to inconsistency between the
controller and switches, so it is hard to guarantee the BF to
be reset is the oldest one. Besides, there are some existing
algorithms [28, 29]) that can de-duplicate redundant elements
in an infinite stream, but they do not satisfy X and encounter
the same issues with BFQ.
Ring Bloom Filter. To overcome the practicality issue of BFQ
while satisfying X , we propose a novel algorithm, namely
Ring Bloom Filter (RBF). As is shown in Figure 7, RBF
improves BFQ with two aspects of design.

(1) Merging BFs into one special BF with multiple-bit cells.
First, assume that all BFs in BFQ use the same set of hash
functions. This assumption is fine for BFQ, as different BFs
independently record postcards of different packets. With this
assumption, the same postcard will be mapped to the same
position in different BFs. Then, we could merge BFs into a
new BF, the cell of which has S bits and constructs a bit ring.
More specifically, as is shown in the left part of Figure 7, we
merge the first bit arrays of BF1, ..., BFS to form the first ring
array of RBF. After that, RBF has K arrays, each of which has
M cells. Rings in RBF cells can record postcards for recently-
arrived packets, just like BFQ. This design reduces the number
of querying operations per packet to K.

(2) Clearing the dequeued BF entirely in programmable
switches. In a ring, we can reset the oldest bit (the bit from
the expired BF) to 0 at the same time of setting the current
bit (the bit from the current BF) to 1. A concern raises that
we cannot guarantee clearing all oldest bits in RBF, as the
packets could only clear the oldest bit in the same ring due to
limitations of P4 (§II-A). We make the improvement in two

…

……��� ������ �����

…

RBF Cell

....

BFQ

ℎ�
�

....
....

…

Reset to 0 Set to 1

…

�����

…

�����

…

������
��

Bits of ���
(Current Bits)

Bits of ���
(Oldest Bits)

Bits of ��� ,
…, �����

ℎ�
� = ��(��������) / B ℎ�

�� = ��(postcard) mod B

RBF
… …

Figure 7. Design of RBF: BF merging and BF clearing.

perspectives to alleviate this concern, as is shown in the right
part of Figure 7. First, we incorporate B (B > 1) rings into one
cell. We still need to map a packet to a ring, RBF attains the
ring position via two steps: The first one gets a cell position
by HK(postcard) / B. The second step gets a ring position
by HK(postcard) mod B. Second, packets will erase all oldest
bits of rings in the cell when setting the current bit to 1. RBF
could clear most oldest bits and can be fully implemented in
switches. Although RBF cannot guarantee clearing all oldest
bits, experiments show that the FNR and FPR of RBF are
close to BFQ (§V-C).

To show how RBF works, we present an example with
concrete numbers. Assume K = 3, S = 4, B = 4, M = 4, and
each block has 10 packets. For the 41st packet, we assume its
postcard is postcard41 and H1(postcard41) = 5. Thus, the
index of the corresponding cell is 5/B = 1, and the index of
the ring in the cell is 5 mod B = 1. We can get a ring for
postcard41 in the first array and record postcard41 in the 1st

bit of ring. If all bits except the 2nd bit in the ring are 0, the
first array does not record postcard41. Then, in the ring, we
need to set the 1st bit to 1 and set the 2nd bits of all rings in
the same cell to 0.
Postcard generation in programmable switches. Pro-
grammable switches have multiple choices to generate post-
cards. (1) We can efficiently implement the same postcard
generation function with EverFlow and NetSight in pro-
grammable switches through packet cloning actions, such as
clone ingress to egress. (2) Except for cloning actions, we
can also use the generate digest action to report postcards
through the control channel. Furthermore, we need to add a
MAT at the end of KeyTracker to execute the above actions.

B. KeyVisor Design to Supply Troubleshooting Services

With the support of KeyAnalyzer and KeyTracker, KeyVisor
could get a real-time fine-grained view into programmable
switches, which helps solve various challenging problems,
such as stateful behavior verification and MAT-level bug loca-
tion. Firstly, we present a suite of APIs facilitating operators
to specify troubleshooting tasks. Then, we identify two note-
worthy features of KeyVisor and present sample applications
enabled by the features. We mainly focus on device-level
troubleshooting in this paper, while discussing network-wide
troubleshooting briefly in §VI.
Troubleshooting service API. KeyVisor provides three trou-
bleshooting service APIs which have the same input parame-
ters, i.e., a field-value list (FVL) and a position specification.
Figure 8 lists their syntax. An FVL comprises multiple field-

Syntax

fvl ::= “[” fv {, fv} “]”

fv ::= “<” name, value, op “>”

op ::= > | >= | == | <= | < | !=

pos ::= “<” sid, mid, aid, pt “>”

sid ::= Switch id | *

mid ::= MAT name | *

aid ::= Compound action name | *

pt ::= BEFORE | AFTER | *

Applications Troubleshooting Service API Description

Dynamic
ASSERT-P4

D1 = Assert([< std.egress_port, 0 , != >] , <*, *, Drop, AFTER>)
Implement an example of ASSET-P4 at run time. 0 is assumed
to be the default drop port.

Blackhole
Detector

L1 = Track([< std.egress_port, 0 , == >] , < *, LastMAT, *, AFTER >)
L2 = Track([< std.egress_port, 0 , != >] , < *, FirstMAT, *, BEFORE >)
L3 = Track([< std.egress_port, 0 , != >] , < *, LastMAT, *, AFTER >)
… // Detect blackholes in switches with L1
.. // Detect blackholes between switches with L2 and L3

Assume all switches maintain packet counters for ports. For
blackholes in switches, we could find postcards whose egress
post is 0. For blackholes between switches, we can calculate
counter differences of adjacent ports in different switches.

TCP State
Tracer

T1 = Query([< ipv4.dst, ’10.0.0.3’, == >, < ipv4.src, ’10.0.0.4’, == >,
< tcp.src, 1080, == >, < tcp.dst, 80, == >] , < S2, *, *, AFTER >)

… // Get the register index IDX from S1
T2 = Query([< state_reg.index, IDX, == >], < S2, *, *, AFTER>)

Assume S2 runs a connection tracking function. Get the index
IDX for a particular flow with T1. As the reversed flow (from
10.0.0.3:80 to 10.0.0.4:1080) also modifies the state, we get all
the postcards T2 of the register and trace state transitions.

Figure 8. Syntax and sample applications of the troubleshooting service API.

value tuples, each of which specifies the name of a field, its
value, and the operation between the field and the value. For
example, the FVL [< ipv4.src, ’1.0.0.1’, == >, < ipv4.dst,
’1.0.0.2’, != >] specifies the packets whose IPv4 source
address is ’1.0.0.1’ and destination address is not ’1.0.0.2’.
The second parameter is a four-tuple denoting a position to
monitor the FVL. The position type (pt) denotes the relative
position. All components in the position specification can be a
wild-card, i.e., *. For example, < s1, ip forward, *, AFTER>
denotes that the behavior should be monitored after ip forward
in the switch s1. We briefly introduce the APIs as follows.

• Track(fvl, pos) returns the postcards that satisfy fvl at
pos and are collected after this API is invoked.

• Assert(fvl, pos) returns the postcards that do not satisfy
fvl at pos and are collected after this API is invoked.

• Query(fvl, pos) returns the previously-collected post-
cards that satisfy fvl at pos.

Features and applications of KeyVisor. With the support of
KeyTracker and KeyAnalyzer, KeyVisor is able to supply two
features, i.e., fine-grained visibility and high coverage, which
are useful for various troubleshooting tasks. We will introduce
these features as well as three sample applications.

(1) Fine-grained visibility. For KeyVisor, the fine-grained
visibility denotes that operators can get the direct observation
on what happens to packets at each MAT of a switch. This
visibility comes with various benefits, such as finding more
hard-to-catch abnormalities and fast bug location. Based on the
visibility, we present two sample applications. The first one is a
general verification tool similar to ASSERT-P4 [9]. ASSERT-
P4 inserts assert annotations anywhere in P4 programs and
exploits Symbolic Execution [30] to conduct static verification
on P4 programs. The assertion-based approach is suitable for
detecting network misbehaviors. However, it is hard to use
ASSERT-P4 at runtime, as it cannot provide any visibility into
real switches. KeySight makes Dynamic ASSERT-P4 available,
which could attribute the success to the fine-grained visibility.
The second one, Blackhole Detector, tries to solve a wildly-
concerned problem, i.e., packet loss. KeyVisor can detect
the packets that are proactively and consistently dropped by
switches due to security policies or queue overflow, as Key-
Tracker also generates postcards for the lost packets. KeyVisor
is good at detecting packet loss that can be sensed by switches.
However, as KeyTracker does not generate postcards for every
packet. Thus it is hard for KeyVisor to detect transient silent
packet drops, which might be caused by faulty links and are

almost impossible to be sensed by switches.
(2) High coverage. KeyVisor could oversee almost all packet

behaviors. With this feature, KeyVisor can solve some long-
standing problems, such as stateful behavior verification. We
employ TCP State Tracer to exemplify this feature. As Key-
Tracker could generate postcards for packets that belong to the
same TCP flow but are processed under different connection
states, TCP State Tracer can faithfully record TCP connection
states in stateful packet processing functions, such as stateful
TCP firewall [31]. Then, the connection state records in
TCP State Tracer enable verifying the correctness of state
transitions.

V. EVALUATION

A. Evaluation Overview

Implementation. We implement KeyAnalyzer with HLIR [32]
which provides intermediate representations of P4 programs.
KeyAnalyzer has 1000 lines of python code and supports
both P414 and P416. KeyAnalyzer automatically generates P4
code for KeyTracker and postcard parsing code for KeyVisor.
We implement a simulation model of KeyTracker with 3000
lines of C code to facilitate testing KeyTracker. KeyVisor is
implemented with 3000 lines of C++ code.
Evaluation metrics and setup. We evaluate KeyAnalyzer and
KeyTracker with different metrics. (1) For KeyAnalyzer, we
measure postcard sizes and field replication actions of different
P4 programs. (2) For KeyTracker, we measure false positive
rates (FPR) and false negative rates (FNR) of RBF and other
algorithms. Then, we test KeyTracker in terms of coverage,
scalability, and performance overhead. We deploy KeyTracker
on a 3.2T Tofino switch and a P4 SmartNIC [21], and use
MoonGen [33] as the packet generator. We collect 80 open
source P4 programs from Github to test KeyAnalyzer. We
employ over 5 TB packet traces from CAIDA [34] and MAWI
[35] to show feasibility and generality of KeyTracker.

The code of KeySight, a list of tested P4 programs, and
relevant packet traces are published at [22].

B. Evaluation of KeyAnalyzer

KeyAnalyzer takes P4 programs as input and generates the
PEC representation as well as the modified P4 program (to
execute field replication). We evaluate KeyAnalyzer against
80 P4 programs that are open-sourced at GitHub and present
two outputs of KeyAnalyzer in Figure 9, i.e., postcard sizes
and field replication actions.

0 800 4000

0.0

0.2

0.4

0.6

0.8

1.0

0 800 4000

0.0

0.2

0.4

0.6

0.8

1.0

Router.P4

NetCache.P4 Switch.P4
C

D
F

Postcard Size (bytes)

C
D

F

Postcard Size (bytes)

(a) Postcard Size Distribution

0 100 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Router.P4

NetCache.P4
Switch.P4

C
D

F

Primitive Actions

(b) Replication Action Distribution

Figure 9. Distribution of postcard sizes and field replication action
numbers.

Postcard size. Figure 9(a) shows the cumulative distribution
function (CDF) of postcard sizes. Postcard sizes of over 90%
programs are smaller than 96 bytes. As is shown by the red
line, the largest postcard comes from Switch.P4 which is the
most complex P4 program in our knowledge, and the postcard
of Switch.P4 has 3937 bytes, while the second biggest one
only has 585 bytes. Along with the large postcard is the ability
of KeySight to finely monitor how each of the 129 MATs
processes packets in Switch.P4. The largest postcard can be
carried by jumbo frames (up to 9K bytes), which has been
widely supported by the state-of-the-art switches and NICs.
This implies that we do not need to care about fragmenting
postcards until now. Further, the postcard of Router.P4 has 35
bytes, and the postcard of NetCache.P4 has 476 bytes.
Field replication. Figure 9(b) shows the CDF of field repli-
cation actions that are added into original P4 programs. Field
replication actions require additional ALU resources and mod-
ification of P4 programs. Over 90% programs need no more
than nine field replication actions, and only three programs
need to add over one hundred actions. Switch.P4 needs 431
actions, while Switch.P4 itself has 1693 primitive actions.
These field replication actions bring about additional 25%
ALU resource usage. Further, KeyAnalyzer is implemented to
automate modification of P4 programs, which prevents field
replication actions to be a worry for operators.
Summary. KeySight encounters issues of flatted postcard
sizes, which inevitably increases postcard load between Key-
Tracker and KeyVisor. An efficient network troubleshooting
platform should not only tell which packets are wrongly
processed but also reveal what causes these faults. The two
goals are hard to achieve with little information of packet
behaviors, especially in programmable switches whose packet
processing logic is mutable and potentially complicated. There
is a trade-off between debugging information and postcard
load. We give preference to debugging information to handle
the complexity of programmable switches and to aim at
powerful network troubleshooting. Fortunately, postcard sizes
of most P4 programs are acceptable, and we optimize postcard
load via decreasing the numbers of postcards.

C. FNR and FPR of RBF

We compare RBF against BFQ and other four widely-
used algorithms, including SBF [28], RSBF, BSBFSD, and
RLBSBF [29]. Figure 10 shows the parameters of the six
algorithms. All algorithms are tested against the CAIDA trace
to attain distinct five-tuples (over a billion packets with about

Parameters BSBF/BSBFSD/RLBSBF SBF BFQ RBF

× # of BFs (S) 1 1 4 1

× # of Arrays per BF (K) 3 3 3 3

× # of Bits per Array (A) From 2�� to 2��

× # of Bits per Cell 1 2 1 64

✓ # of Rings per Cell (B) - - - 16

✓ # of Bits per Ring (S) - - - 4

× # of Cell per Array (M) A
A

2

A

S

A

B × S

✓ # of Packets per Block (N) - -
A

8

A

8

✓ # of Recently-arrived Packets - - N × (S − 1) N × (S − 1)

✓: Dynamically-reconfigurable ×: Not dynamically-reconfigurable

Figure 10. Parameters of different algorithms.

212 216 220 224

0.0

0.1

0.2

0.3

F
P

R

Memory size (bits, log-scale)

 BSBF BSBFSD

 RLBSBF SBF

 BFQ RBF

(a) Fasle Positive Rate

212 216 220 224

0.0

0.1

0.2

0.3

F
N

R

Memory size (bits, log-scale)

(b) Fasle Negative Rate

Figure 11. Comparison of different BF algorithms.

2% distinct five-tuples). We use the TCP five-tuples instead of
postcards generated by KeyAnalyzer to test the algorithms. In
the experiment, we vary the memory sizes occupied by these
algorithms through changing M .

FPR. Figure 11(a) shows that BFQ and RBF have much
smaller FPR than the other algorithms. Even for the smallest
memory size, the FPR of BFQ can be 5.9%, and the FPR of
RBF is smaller than 6.4%. This property is important for Key-
Tracker, because programmable switches have limited memory
space, and KeyTracker should reserve enough memory for
original P4 programs. As the memory size increases, FPRs
of RBF and BFQ can decrease to less than 0.1%. As RBF
cannot clear all oldest bits, RBF has a larger FPR than BFQ.
Furthermore, the other algorithms have larger FPRs, implying
that they might leave out a large ratio of packet behaviors
when the available memory is limited.

FNR. As is shown in Figure 11(b), FNRs of RBF and BFQ are
larger than the other algorithms, and RBF presents a smaller
FNR than BFQ. For the smallest memory size, the FNR of
BFQ can be 30.0%, and the FPR of RBF is about 29.8%.
FNRs of RBF and BFQ decrease fast with the memory size
increasing and are smaller than 1.63% which is close to FNRs
of other algorithms when the memory size is larger than
1.5Mb. As the packet block size (N) and the packet window
size (N×S−N) grow, more flows can complete in the window,
leading to smaller FNRs of BFQ and RBF.

Summary. As S, B, and N can be dynamically reconfigured
at runtime, RBF can be adjusted to have different FNRs and
FPRs. Among these algorithms, only RBF can entirely run on
programmable switches without additional overheads, and the
low FPR of RBF enables high coverage of packet behaviors.

0.0 2.0x108 4.0x108 6.0x108 8.0x108 1.0x109 1.2x109

0

1x105

2x105

3x105

4x105

P
os

tc
ar

ds
 p

er
 s

ec
on

d

of packets

 Ideal NetSight Sample EverFlow P4DB KeyTracker

1

0.0 0.1 0.2 0.9 1.0

0.0

0.5

1.0

C
D

F

0
.9

9
9
2

0
.9

9
9
6

1
.0

0
0
0

0.0

0.5

1.0

(a) Behavior Rates for Router
0.0 0.2 0.6 0.8 1.0

0.0

0.5

1.0

C
D

F

(b) Postcard Rates for Router

0.0 0.1 0.2 0.9 1.0

0.0

0.5

1.0

C
D

F

0
.9

9
9
2

0
.9

9
9
6

1
.0

0
0
0

0.0

0.5

1.0

(c) Behavior Rates for ECMP
0.0 0.1 0.2 0.9 1.0

0.0

0.5

1.0

C
D

F

(d) Postcard Rates for ECMP

0.0 0.1 0.2 0.9 1.0

0.0

0.5

1.0

C
D

F

0
.9

9
9
2

0
.9

9
9
6

1
.0

0
0
0

0.0

0.5

1.0

(e) Behavior Rates for TCPFW
0.0 0.1 0.2 0.9 1.0

0.0

0.5

1.0

C
D

F

(f) Postcard Rates for TCPFW

Figure 12. Behavior rates (larger is better) and postcard rates (smaller
is better) of different cases.

0.0 2.0x108 4.0x108 6.0x108 8.0x108 1.0x109 1.2x109

0

1x105

2x105

3x105

4x105

P
o

st
ca

rd
s

p
er

 s
ec

o
n

d

of packets

 Ideal NetSight Sample EverFlow P4DB KeyTracker

Figure 13. Postcard generation speed of the CAIDA packet trace.

D. Scalability and Coverage of KeyTracker

In this section, we measure postcard rates (# of postcards
of packets) and

behavior rates (# of tracked behaviors
of behaviors) with six cases. (1) The Ideal

baseline generates one postcard for every behavior and covers
all behaviors. (2) NetSight generates postcards for all packets.
(3) The Sample (stand for NetFlow) case randomly samples
all packets with a fixed period to generate postcards, and we
set the sampling period to 10 packets. (4) We set EverFlow to
randomly monitor 90% of behaviors. (5) Based on EverFlow,
P4DB further samples packets at the flow level to generate
postcards, and the sampling period is also set to 10 packets.
(6) KeySight occupies 600KB SRAM with K = 3, B = 32,
S = 2, and N = 65536, which is modest for programmable
switches owning dozens of MB SRAM. We respectively test
all the cases under three functions, i.e., Router, ECMP, and
Stateful TCP Firewall (TCPFW)1. Over 1K packet traces (each
has about tens of millions of packets) from MAWI are tested,
and we show CDFs for postcard rates and behavior rates of

1As we have no access to the data set of real P4 MAT entries, we
assume that packets with the same destination IPv4 address have same packet
behaviors for Router; packets with the same five-tuple have same behaviors
for ECMP; packets with the same five-tuple and TCP control flag have same
behaviors for TCPFW.

64 128 256 512 1024 1280 1500
0

6

12

18

24

30 Mean w/o KeyTracker

 Mean w/ KeyTracker

 Outliers w/o KeyTracker

 Outliers w/ KeyTracker

 Range within 1.5IQR

Packet Size (bytes)

D
el

ay
 (

µ
s)

(a) Delay on SmartNIC

64 128 256 512 1024 1280 1500
0

2

4

6

8

10

Packet size (bytes)

D
el

ay
 (

µ
s)

(b) Delay on Tofino

Figure 14. Performance overhead introduced by KeyTracker.

all these traces. Further, we exploit a CAIDA packet trace to
test postcard generation speed of the six cases.
Coverage. We employ the rate of tracked behaviors to quantize
coverage. More tracked behaviors denote better coverage. As is
shown in Figure 12(a), 12(c), and 12(e), for Ideal and NetSight,
the coverage is 100%. For EverFlow and P4DB, the coverage
is 90%. In Router, behavior rates of all traces are larger than
99.915%. In the experiments of ECMP, KeyTracker keeps its
behavior rate larger than 99.933% for 99% packets traces. As
for Sample, behavior rates of all traces are lower than 20%,
which is far from satisfactory.
Scalability. We employ the rate of generated postcards to
quantize scalability, as more postcards require more servers
and take up more bandwidth. As is shown in Figure 12(b),
12(d), and 12(f), Ideal shows minimal numbers of generated
postcards to track all behaviors. NetSight needs to generate
postcards for all packets, thus is the least scalable. Postcard
rates of Sample can be subjectively adjusted, and are con-
stantly 10%. For EverFlow, postcard rates of most traces are
larger than 90%, which is close to NetSight. P4DB improves
the scalability of EverFlow. For most traces, KeyTracker poses
better scalability than the other cases, excluding the Ideal
baseline. Further, compared with KeyTracker, P4DB comes
with other significant overheads discussed in §VII.
Postcard generation speed. As is shown in Figure 13, we
measure the postcard generation speed (postcards per second)
of a long packet trace. The speed of NetSight stands for the
raw packet throughput in switches, i.e., about 0.3M packets
per second. While the postcard load produced by KeyTracker
is smaller than the other cases and can be less than 4% of
NetSight. Meanwhile, KeyTracker can keep tracking 99.9%
PECs during the experiment, which is much higher than those
of Sample, EverFlow, and P4DB.
Summary. Based on the above analysis, we can reasonably
argue that KeySight is closest to the Ideal baseline and
remarkably outperforms the other cases. Existing approaches
fail in either coverage or scalability, while KeyTracker could
achieve high scalability and high coverage simultaneously.

E. Performance Overhead of KeyTracker

As KeyTracker needs to add additional MATs at the end
of the P4 pipeline to generate postcards, it raises a concern
that KeyTracker could bring performance overheads. To this
end, we deploy KeyTracker on two P4 targets, i.e., Tofino and
SmartNIC, and we test the forwarding delay of ECMP with
(w/) or without (w/o) KeyTracker against packets of varied
sizes. Figure 14 shows the evaluation results. We present not

only mean delay but also interquartile range (IQR) and outliers
to show whether KeyTracker affects delay jitters.
Delay. As is shown in Figure 14(a), KeyTracker introduces a
modest delay increase on SmartNIC. For packets of all sizes,
the delay increases by about 2µs. In most cases, packets in a
network need to traverse NIC for two times, so KeyTracker,
if being deployed on SmartNIC, might increase the end-to-
end delay by about 4µs. We claim that this overhead is not
unacceptable, even for high-performance data center networks,
where the round-trip delay could be hundreds of µs to multiple
ms. As is shown in Figure 14(b), KeyTracker introduces a
minor delay increase of dozens of nanoseconds on Tofino.

VI. DISCUSSION

Network-wide KeySight. In this paper, we concentrate on
how KeySight performs troubleshooting tasks at the device
level, while a concern on network-wide troubleshooting may
raise. As postcards of KeySight take much more information
about packet behaviors than those of NetSight, KeySight can
adopt the similar approach to assemble network-wide packet
histories with NetSight. Another concern may be that false
positives of RBF could lead to incomplete network-wide
packet histories. First, we can tune RBF to have a low FPR,
which can mostly alleviate this concern. Further, we can also
introduce probing techniques [16, 36] to remove ambiguity
caused by false positives, which will be studied in the future.
Performance metrics. As KeySight generates postcards at
the behavior level, some performance metrics that require
monitoring packets continuously are not supported, e.g., end-
to-end packet-level delay. We argue that in terms of attaining
these metrics, it is less economical to consistently capture
every packet than other performance-centric approaches, such
as network telemetry [37]. Orthogonal to the measurement
tools, KeySight focuses on tracking packet behaviors and can
seamlessly cooperate with them.

VII. RELATED WORK

A. Network Troubleshooting

Network troubleshooting has long been a challenging task
drawing intensive researching interests. The researching works
that rely on passive packet behavior tracking, such as NetSight,
EverFlow, and NetFlow, have been briefly elaborated in the
previous section. Furthermore, ATPG sends test packets to
proactively detect network bugs. ATPG comes with overheads
of injecting massive probes into networks. The computation
time for probe generation in ATPG increases exponentially
with network sizes, and the coverage of ATPG is constrained
by the number of servers that inject and collect probes.

With the advance of programmable switches and P4, trou-
bleshooting programmable switches is vital for building re-
liable networks. Aiming at debugging programmable data
planes, P4DB is the closest work to KeySight, but there are
two main differences. (1) P4DB inserts debugging snippets
into P4 programs to enable on-the-fly debugging, but it re-
quires dynamic updating of P4 programs at runtime, which is
unpractical for most networks. KeyTracker is deployed with

the P4 programs and requires no further updating. (2) P4DB
relies on the match-mirror design to track packet behaviors and
uses flow-level counters to reduce the postcard load, which
triggers the coverage issue and requires a large amount of
memory, while KeySight intelligently tracks packet behaviors
with RBF whose memory usage is bounded.

B. Network Verification

Many tools perform verification on network beliefs based
on a snapshot of network states. SymNet [38] and HSA [27]
perform static verification over the network-wide configura-
tions. VeriFlow [17] and NetPlumber [39] achieve real-time
verification through various optimization approaches, such as
incremental updating. Most of these tools assume the functions
of switches are fixed and limited. Thus, it is hard for them
to model packet behaviors in programmable switches, which
disables them to verify programmable switches directly.

Recognizing challenges brought by P4, the research com-
munity proposes several dedicated tools to conduct verification
on P4 programs. These tools convert P4 programs to existing
models and exploit formal methods to check the correctness
of P4 programs at compile time. Nick et al. [40] propose to
automatically convert P4 programs to NoD [41] programs and
to verify reachability and packet well-formedness. ASSERT-
P4 [9] inserts assert annotations in P4 programs and generates
a C language model, then Symbolic Execution is used to
verify specified properties of P4 programs. P4Pktgen [8] also
uses Symbolic Execution to test P4 programs and tool-chains.
These tools symbolically run P4 programs on the dedicated
models and are unable to reveal how switches process packets.
Thus, they cannot deal with the bugs such as hardware failures
(e.g., bit flips [42]) and software bugs, which are also common
concerns in real networks [16]. KeySight brings fine-grained
visibility into the switches at runtime, posing a powerful ability
to diagnose bugs.

VIII. CONCLUSION

This paper presents KeySight, an efficient troubleshooting
platform based on packet behavior tracking. KeySight employs
the PEC abstraction to generate postcards at the behavior level,
which brings a remarkable decrease of postcard load while
keeping high coverage of packet behaviors. KeySight provides
an automatic analyzer to extract PEC representations from P4
programs and RBF to implement the PEC abstraction entirely
on programmable switches. Evaluation with real packet traces
and P4 programs shows that KeySight can keep overseeing
over 99.9% packet behaviors and reduces postcard load by
one to two orders of magnitude.

ACKNOWLEDGEMENT
This research is supported by National Key R&D Program

of China (2017YFB0801701) and the National Science Foun-
dation of China (No.61472213). Jun Bi is the corresponding
author. We thank Chen Sun, Zhilong Zheng, Yiran Zhang,
Yunsenxiao Lin, and Heng Yu for their insightful suggestions.
We gratefully thank our shepherd, Prof. Xin Jin, and all
anonymous reviewers for their constructive comments.

REFERENCES

[1] P. Bosshart et al., “Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for sdn,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, ser. SIGCOMM ’13. New York, NY, USA: ACM,
2013, pp. 99–110.

[2] Intel, “Intel flexpipe,” Website, https://goo.gl/oJjkki.
[3] Barefoot Networks, “Barefoot tofino switch,” Website, https:

//barefootnetworks.com/technology/.
[4] X. Jin et al., “Netchain: Scale-free sub-rtt coordination,” in

15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), Renton, WA, 2018, pp. 35–49.

[5] X. Jin et al., “Netcache: Balancing key-value stores with fast
in-network caching,” in Proceedings of the 26th Symposium on
Operating Systems Principles, ser. SOSP ’17. New York, NY,
USA: ACM, 2017, pp. 121–136.

[6] S. Narayana et al., “Language-directed hardware design for
network performance monitoring,” in Proceedings of the Con-
ference of the ACM Special Interest Group on Data Commu-
nication, ser. SIGCOMM ’17. New York, NY, USA: ACM,
2017, pp. 85–98.

[7] A. Gupta et al., “Sonata: Query-driven network telemetry,” in
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’18, 2018.

[8] A. Nötzli et al., “P4pktgen: Automated test case generation
for p4 programs,” in Proceedings of the Symposium on SDN
Research, ser. SOSR ’18. New York, NY, USA: ACM, 2018,
pp. 5:1–5:7.

[9] L. Freire et al., “Uncovering bugs in p4 programs with assertion-
based verification,” in Proceedings of the Symposium on SDN
Research, ser. SOSR ’18. New York, NY, USA: ACM, 2018,
pp. 4:1–4:7.

[10] C. Zhang et al., “P4db: On-the-fly debugging of the pro-
grammable data plane,” in 2017 IEEE 25th International Con-
ference on Network Protocols (ICNP), Oct. 2017, pp. 1–10.

[11] Google, “Google compute engine incident no.16007. connectiv-
ity issues in all regions,” Website, https://goo.gl/rNW5Mr.

[12] A. Roy et al., “Inside the social network’s (datacenter) network,”
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 123–137,
Aug. 2015.

[13] N. Handigol et al., “I know what your packet did last hop: Using
packet histories to troubleshoot networks,” in 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 14). Seattle, WA: USENIX Association, 2014.

[14] B. Claise, “Cisco systems netflow services export version 9,”
Website, http://www.rfc-editor.org/rfc/rfc3954.txt.

[15] Y. Zhu et al., “Packet-level telemetry in large datacenter net-
works,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp.
479–491, Aug. 2015.

[16] H. Zeng et al., “Automatic test packet generation,” IEEE/ACM
Trans. Netw., vol. 22, no. 2, pp. 554–566, Apr. 2014.

[17] A. Khurshid et al., “Veriflow: Verifying network-wide invariants
in real time,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 49–54.

[18] X. Jin, “Netcache in p4,” Website, https://github.com/netx-repo/
netcache-p4.

[19] The P4 Language Consortium, “Consolidated switch repo (api,
sai and nettlink),” Website, https://github.com/p4lang/switch.

[20] L. Jose et al., “Compiling packet programs to reconfigurable
switches,” in Usenix Conference on Networked Systems Design
and Implementation, 2015, pp. 103–115.

[21] Netronome., “Agilio cx 2x10gbe,” Website, https://www.
netronome.com/products/agilio-cx/.

[22] “The code of keysight,” Website, https://github.com/
KeySight-P4.

[23] V. Sivaraman et al., “Heavy-hitter detection entirely in the data
plane,” in Proceedings of the Symposium on SDN Research, ser.
SOSR ’17. New York, NY, USA: ACM, 2017, pp. 164–176.

[24] “A technique report for keysight,” Website, https://github.com/
KeySight-P4/keysight-report.

[25] S. Luo et al., “Swing state: Consistent updates for stateful and
programmable data planes,” in Proceedings of the Symposium
on SDN Research, ser. SOSR ’17. New York, NY, USA: ACM,
2017, pp. 115–121.

[26] The P4 Language Consortium, “Router in p4,” Website,
https://github.com/p4lang/behavioral-model/tree/master/targets/
simple router.

[27] P. Kazemian et al., “Header space analysis: Static checking for
networks,” in Presented as part of the 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12).
San Jose, CA: USENIX, 2012, pp. 113–126.

[28] F. Deng et al., “Approximately detecting duplicates for stream-
ing data using stable bloom filters,” in Proceedings of the 2006
ACM SIGMOD international conference on Management of
data. New York, USA: ACM Press, 2006, p. 25.

[29] S. K. Bera et al., “Advanced bloom filter based algorithms for
efficient approximate data de-duplication in streams,” CoRR,
vol. abs/1212.3, p. 41, dec 2012.

[30] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.

[31] C. Sun et al., “Sdpa: Toward a stateful data plane in software-
defined networking,” IEEE/ACM Transactions on Networking,
vol. 25, no. 6, pp. 3294–3308, Dec 2017.

[32] The P4 Language Consortium, “P4 high level intermediate
representation,” Website, https://github.com/p4lang/p4-hlir.git.

[33] P. Emmerich et al., “Moongen: A scriptable high-speed packet
generator,” in Proceedings of the 2015 Internet Measurement
Conference, ser. IMC ’15. New York, NY, USA: ACM, 2015,
pp. 275–287.

[34] “The caida ucsd anonymized internet traces - chicago 2014-03-
20,” Website, http://www.caida.org/data/passive/passive 2014
dataset.xml.

[35] WIDE Project, “Mawi working group traffic archive,” Website,
http://mawi.wide.ad.jp/mawi/.

[36] F. Aubry et al., “Scmon: Leveraging segment routing to improve
network monitoring,” in IEEE INFOCOM 2016 - the IEEE
International Conference on Computer Communications, 2016,
pp. 1–9.

[37] C. Kim et al., “In-band network telemetry via programmable
dataplanes,” in Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research, ser. SOSR
’15, 2015, pp. 2–3.

[38] R. Stoenescu et al., “Symnet: Scalable symbolic execution for
modern networks,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16. New York, NY, USA: ACM,
2016, pp. 314–327.

[39] P. Kazemian et al., “Real time network policy checking using
header space analysis,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation,
ser. nsdi’13. Berkeley, CA, USA: USENIX Association, 2013,
pp. 99–112.

[40] N. Mckeown et al., “Automatically verifying reachability and
well-formedness in p4 networks,” 2016.

[41] N. P. Lopes et al., “Checking beliefs in dynamic networks,”
in 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). Oakland, CA: USENIX
Association, 2015, pp. 499–512.

[42] C. Guo et al., “Pingmesh: A large-scale system for data center
network latency measurement and analysis,” in Proceedings of
the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. New York, NY, USA:
ACM, 2015, pp. 139–152.

