
JoinSketch: A Sketch Algorithm for Accurate and Unbiased
Inner-Product Estimation

Feiyu Wang
Peking University

Qizhi Chen
Peking University

Yuanpeng Li
Peking University

Tong Yang
Peking University

Yaofeng Tu
ZTE Corporation

Lian Yu
Peking University

Bin Cui
Peking University

ABSTRACT
The inner-product estimation is the base of many important tasks
in various big data scenarios, including measuring the similarity of
streams in data stream processing, estimating join size in the data-
base, and analyzing cosine similarity in various applications. Sketch,
as a class of probabilistic algorithms, is promising in inner-product
estimation. However, existing sketch solutions suffer from low ac-
curacy due to neglecting the high skewness of real data. In this
paper, we design a new sketch algorithm for accurate and unbiased
inner-product estimation, namely JoinSketch. To improve accu-
racy, JoinSketch consists of multiple components and records items
with different frequencies in different components. We theoretically
prove that JoinSketch is unbiased and has lower variance than the
well-known AGMS and Fast-AGMS sketch. The experimental re-
sults show that JoinSketch improves the accuracy of inner-product
by 10 times on average while maintaining a comparable throughput.
All code is open-sourced at Github [1].

ACKNOWLEDGMENTS
The research was partially supported by the National Natural Sci-
ence Foundation of China (No. 61872011).

1 INTRODUCTION
In many big data scenarios, the data comes as a stream at high
speed. There is a growing interest in processing and analyzing
data streams in a single pass to offer statistic of the data stream,
including frequencies [2, 3], heavy hitters [4, 5], heavy changes
[6, 7], e.t.c. [8–11]. The inner-product of two data streams is an
important statistic for data stream analysis, which is defined as
the inner-product of their frequency vectors and the inner-product
is equal to the size of the join of two data streams (see details in
Section 2.1). We need to track the inner-product of two data streams
in many scenarios. First, in data stream scenarios, the inner-product
can be used to measure the similarity of two data streams, which is
important in network measurement and data mining applications.
For example, in data stream scenarios such as network flows in
routers and web clicks in servers, there is a need to track the inner-
product of different streams to help analyze the current running
situation of the network. Second, it is significant in database systems
to estimate the join size for the query optimizer[12–15]. In some
cases of database systems, we need to treat all attribute values from
a large table as a data stream[16] because the size of database tables
is too large that we can only process them in one pass. Third, the
cosine similarity of two data streams can be derived from the inner-
product and is helpful for some data analysis tasks. However, it is
impracticable and unnecessary to track the exact inner-product in

data stream scenarios because of the high time cost and space cost
to compute the exact statistic.

Researchers turn to probabilistic data structures for fast and accu-
rate inner-product estimation. However, designing an appropriate
algorithm is a great challenge because of the high speed and the
huge size of data streams. Meanwhile, unbiased estimation is re-
quired in some distributed scenarios because biased estimation will
lead to error accumulation and unbiased estimation is of theoretical
elegance. Hence, the ideal inner-product estimation algorithms are
supposed to meet three requirements. First, the algorithms have to
process the data in one pass, and the algorithms are supposed to be
very fast since the data stream comes at a rather high speed. Second,
the accuracy of inner-product estimation should be high enough
under small memory usage because the available memory in real
scenarios such as routers is very limited. Third, the estimation
provided by the algorithm is supposed to be unbiased.

Sketches are a class of hash-based probabilistic algorithms which
is appropriate for data stream processing. There are several works
focusing on sketch-based solutions for inner-product estimation,
including the AGMS sketch [17, 18], the Fast-AGMS sketch [19],
the Count-Min sketch [2], e.t.c. [20, 21].

The AGMS sketch [17, 18] uses a single counter to estimate
the item 1 frequency of a data stream. It increments/decrements
the counter with an equal probability when inserting an item. To
estimate the inner-product of two data streams, one can simply
multiply the AGMS sketch counters associated with the two data
streams. However, the AGMS sketch suffers from a big variance and
thus a high estimation error. To reduce the variance, researchers
use multiple counters and take the median number as the estima-
tion, at the cost of low throughput. Based on the AGMS sketch, the
Fast-AGMS sketch [19] uses multiple hash functions to locate the
counters to update, which significantly accelerates the insertion
operation. The Count-Min sketch consists of an array of counters
and is associated with multiple hash functions. It only increments
the hashed counters when inserting an item. The inner-product is
estimated by adding up the products of the corresponding coun-
ters of two Count-Min sketches. These algorithms are designed
as universal algorithms which are capable of the inner-product
estimation for data streams of various data distributions. However,
in the scenarios of real data, their accuracy is usually poor because
the real data often obeys unbalanced distribution. Real data usually
consists of a few frequent items and many infrequent items. Hash

1We use “item” to represent an element in a data stream. A data stream is made of
many items, and each item could appear more than once. For example, the item can be
a 5-tuple in network measurement or a value from a database table.

1

Conference’17, July 2017, Washington, DC, USA Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

collisions involving frequent items worsen the accuracy of inner-
product estimation a lot. The Skimmed sketch [20] and the Red
sketch [21] propose to estimate the inner-product by estimating the
inner-product of frequent items and infrequent items separately.
However, they require extensive computation to find frequent items
before estimating the inner-product and need to get all item IDs
in advance, which means these solutions are not one-pass and not
practical consequently.

We propose JoinSketch to provide accurate, fast, and unbiased
inner-product estimation for data streams. JoinSketch is based on
a key observation that the real data often obeys unbalanced dis-
tribution such as Zipf [22, 23]. To take advantage of the natural
characteristic of real data, we design JoinSketch to distinguish fre-
quent items from the whole data and record them separately from
infrequent items to improve accuracy.

Real data often obeys unbalanced distribution and is high-skewed
in many scenarios. Most data items are infrequent, while only a
few data items are very frequent. The mixture of frequent items
and infrequent items is the key resource of the estimation error
because the error of the inner-product estimation will be huge if
hash collisions, especially the ones between frequent items and
hash collisions between frequent items and infrequent items oc-
cur. The hash collisions can be classified into 3 types, (a) hash
collisions between frequent items, (b) hash collisions between
frequent items and infrequent items, and (c) hash collisions be-
tween infrequent items. Different types of hash collisions account
for the inner-product estimation error to different extents. We il-
lustrate how different types of hash collisions affect the inner-
product estimation in Figure 1. Let’s consider a data stream 𝐹

and it consists of 6 distinct items. The frequency vector of 𝐹 is
𝑓 = (𝑓1, 𝑓2, ..., 𝑓6) = (1000, 1000, 1, 1, 1, 1) where 𝑓𝑖 represents the
frequency of 𝑖-th item 𝑒𝑖 . We take the Count-Min sketch with 5
counters and one hash function as an example. For brevity and
convenience, we consider inner-product between 𝐹 and itself. The
true value of the inner-product is 𝐽 = 𝑓 ⊙ 𝑓 = 2, 000, 004. As shown
in Figure 1(a), type (a) hash collisions lead to a large error, frequent
items 𝑒1 and 𝑒2 are over-estimated by 1000, and the inner-product
is 𝐽𝑎 = 4, 000, 004, which is about two times as the true value. As
shown in fig. 1(b), type (b) hash collisions bring big error to the fre-
quency estimation of the infrequent item 𝑒4 because 𝑒4 is hashed to
the same counter as the frequent item 𝑒2. The estimated frequency
of 𝑒4 is 1001, which is 1000 times larger than its true frequency. The
inner-product estimation is 𝐽𝑏 = 2, 002, 004. Figure 1(c) is an ideal
situation where there is only a type (c) hash collision between two
infrequent items 𝑒3 and 𝑒5. The estimated value of inner-product is
𝐽𝑐 = 2, 000, 006. Type (c) hash collisions lead to very small errors in
inner-product estimation, which is acceptable.

JoinSketch consists of three components: the frequent part, the
medium part and the infrequent part. The frequent part is a hash
table used to record frequent items accurately because the frequent
items are few yet important. The infrequent part is a Fast-AGMS
sketch used to record infrequent items. The infrequent part only
costs a small amount of memory since the frequency of items in in-
frequent part is so low that we can use small counters in infrequent
part. For example, we can use only 8-bit counters in the infrequent

part. The medium part is the key component of JoinSketch. It distin-
guishes frequent items on the basis of item frequency. JoinSketch
firstly inserts an item to the medium part temporarily. If it grows
up to exceed a predefined threshold 𝑇 , it will be recorded in the
frequent part as a frequent item. Otherwise, it is likely to be elim-
inated to the infrequent part as an infrequent item if there is no
room for new-come items in the medium part.

JoinSketch stores items separately in three components. For
every component of JoinSketch, we query the estimation of par-
tial inner-product between it and every component of another
JoinSketch which is constructed from another data stream. Thus,
the inner-product can be derived from nine pieces (see details in
Section 3.3). It is notable that the frequent part and the medium
part record the frequency with no error. The infrequent part is a
Fast-AGMS sketch and provides unbiased inner-product estimation.
Combining the above two characteristics, it can be proved that
JoinSketch provides unbiased inner-product estimation (see details
in Section 4.1).

The advantages of JoinSketch over existing solutions are twofold.
On the one hand, by separating frequent items and infrequent items,
we improve the accuracy by reducing hash collisions. To be spe-
cific, we totally eliminate type (a) hash collisions and type (b) hash
collisions because frequent items are recorded in the frequent part.
On the other hand, since the frequencies of items in the infrequent
part are small, we can use smaller counters than existing sketches,
which means more counters under the same memory usage. More
counters lead to fewer type (c) hash collisions between infrequent
items. To sum up, JoinSketch improves accuracy by reducing all of
the 3 types of hash collisions simultaneously.

The experimental results show that JoinSketch maintains un-
biasedness, and the error is 10 times on average smaller than the
state-of-the-art on high-skewed datasets. Even on datasets with lit-
tle skewness, JoinSketch can still do better than existing algorithms.
All code is open-sourced at Github [1].
Key Contributions:
• We propose JoinSketch based on separating frequent items and
infrequent items to the accuracy of the inner-product estimation.
• We theoretically prove that the estimation given by JoinSketch
is unbiased. And we give a mathematical analysis of the variance
of the estimation.
• We conduct extensive experiments to evaluate the performance
of JoinSketch on various synthetic and real-world datasets. The
results show that on high-skewed datasets, the error of JoinSketch
is 10 times on average smaller than the state-of-the-art.

2 BACKGROUND
In this section, we first present the definition of the inner-product
estimation, then introduce the well-known AGMS and Fast-AGMS
sketch, which are the basis of our JoinSketch.

2.1 Problem Definition
Let 𝐹 be a data stream with 𝑆 items and 𝐺 be another data stream.
We use 𝑒𝑖 to represent a data item in a data stream. Assume 𝐷

is the domain of all items. |𝐷 | = 𝑁 and 𝐷 = {𝑒𝛽1 , ..., 𝑒𝛽𝑖 , ..., 𝑒𝛽𝑁 }.
𝐹 = [𝑒1, ..., 𝑒𝑖 , ..., 𝑒𝑆], where each item 𝑒𝑖 belongs to 𝐷 . Note that
items in 𝐷 are distinct, and items in 𝐹 or 𝐺 may not be. For the
data stream 𝐹 , we define the frequency vector 𝑓 = (𝑓1, ..., 𝑓𝑖 , ..., 𝑓𝑁)

2

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation Conference’17, July 2017, Washington, DC, USA

𝒆𝒆𝟏𝟏:1𝐾𝐾 𝒆𝒆𝟐𝟐:1𝐾𝐾 𝒆𝒆𝟑𝟑: 1

𝒆𝒆𝟒𝟒: 1 𝒆𝒆𝟔𝟔: 1𝒆𝒆𝟓𝟓: 1

2𝐾𝐾 1 1 1 1

(a) Hash collisions between frequent items lead to great
error.

𝒆𝒆𝟏𝟏:1𝐾𝐾 𝒆𝒆𝟐𝟐:1𝐾𝐾 𝒆𝒆𝟑𝟑: 1

𝒆𝒆𝟒𝟒: 1 𝒆𝒆𝟔𝟔: 1𝒆𝒆𝟓𝟓: 1

1𝐾𝐾 1 1 11001

(b) Hash collisions between frequent items and infre-
quent items lead to relatively big error.

𝒆𝒆𝟏𝟏:1𝐾𝐾 𝒆𝒆𝟐𝟐:1𝐾𝐾 𝒆𝒆𝟑𝟑: 1

𝒆𝒆𝟒𝟒: 1 𝒆𝒆𝟔𝟔: 1𝒆𝒆𝟓𝟓: 1

1𝐾𝐾 1𝐾𝐾 2 1 1

(c) Hash collisions between infrequent items lead to
small error, which is acceptable.

Figure 1: Types of Hash Collisions.

where 𝑓𝑖 represents the frequency of the item 𝑒𝛽𝑖 . Similarly, we
have the frequency vector of 𝐺 , and 𝑔 = (𝑔1, ..., 𝑔𝑖 , ..., 𝑔𝑁). The
inner-product of two data streams 𝐹 and 𝐺 is defined as

𝐽 = 𝑓 ⊙ 𝑔 =

𝑁∑︁
𝑖=1

𝑓𝑖 · 𝑔𝑖 . (1)

Join predicate between 𝐹 and 𝐺 outputs all tuples (𝑒𝑖 , 𝑒 𝑗) where
𝑒𝑖 = 𝑒 𝑗 and 𝑒𝑖 ∈ 𝐹, 𝑒 𝑗 ∈ 𝐺 . The inner-product is equivalent to the
join size.

2.2 Sketch-Based Inner-product Estimation
Sketches are a variety of probabilistic data structures to approximate
some statistical characteristics of big data. Sketch algorithms are
widely used in big data scenarios, especially in high-speed data
stream processing and analyzing. The AGMS sketch[17, 18] and
Fast-AGMS sketch [19] are typical sketch algorithms for the task
of inner-product estimation.

2.2.1 AGMS Sketches. The AGMS sketch [17, 18] is the first sketch-
based algorithm for inner-product estimation. An AGMS sketch
consists of only a single counter 𝑠𝑘 (𝐹) that summarizes all of the
frequency information of a data stream. The AGMS sketch is as-
sociated with 𝜉 , a family of {+1,−1} random variables and 4-wise
independent. For every item 𝑒𝑖 in data stream 𝐹 = [𝑒1, 𝑒2, ..., 𝑒𝑆],
the AGMS sketch first calculates 𝜉 (𝑒𝑖) and then add it to its single
counter. The sketch counter 𝑠𝑘 (𝐹) can be calculated as follows:

𝑠𝑘 (𝐹) =
∑︁
𝑒𝑖 ∈𝐹

𝜉 (𝑒𝑖) . (2)

The standard technique to estimate the inner-product is to con-
struct AGMS sketches for data streams 𝐹 and𝐺 , respectively, with
the same random function 𝜉 . The inner-product of data stream 𝐹

and 𝐺 can be estimated as:

𝐽 = 𝐸𝑠𝑡 (𝐽) = 𝑠𝑘 (𝐹) × 𝑠𝑘 (𝐺) . (3)

The estimator suffers from a big variance. Thus, it is required to
use multiple independent single AGMS sketches to improve accu-
racy by taking the median or average of these sketches. However,
such technique leads to poor throughput and thus is impractical.

2.2.2 Fast-AGMS Sketches. A Fast-AGMS sketch [19] consists of
an array of𝑚 counters. Besides the random function 𝜉 , the Fast-
AGMS sketch has a hash function ℎ, which is used to hash an
item to a random counter. For item 𝑒𝑖 in data stream 𝐹 , the Fast-
AGMS sketch first calculates ℎ(𝑒𝑖) and updates the ℎ(𝑒𝑖)%𝑚-th
counter (denoted as 𝑠𝑘 (𝐹) [ℎ(𝑒𝑖)%𝑚]) by adding 𝜉 (𝑒𝑖). The Fast-
AGMS sketch is capable to estimate the frequency of 𝑒𝑖 by the
product 𝑠𝑘 (𝐹) [ℎ(𝑒𝑖)%𝑚] × 𝜉 (𝑒𝑖). The hash function ℎ helps reduce

the number of counters to be updated when inserting a new item.
Compared with the AGMS sketch, under the same space usage, the
Fast-AGMS sketch has the same variance as the AGMS sketch but
lower update and query time complexity.

As for inner-product estimation, the Fast-AGMS sketches for data
streams 𝐹 and 𝐺 are constructed in advance with the same hash
function ℎ and random function 𝜉 . The inner-product estimation is
the summation of the product of corresponding counters of the two
Fast-AGMS sketches. In other words, if we view the Fast-AGMS
sketch as a column vector, the estimation can be written as:

𝐽 = 𝐸𝑠𝑡 (𝐽) =
𝑚∑︁
𝑖=1

𝑠𝑘 (𝐹) [𝑖] × 𝑠𝑘 (𝐺) [𝑖] =
−−−−→
𝑠𝑘 (𝐹)T ·

−−−−→
𝑠𝑘 (𝐺) . (4)

The Fast-AGMS sketch also suffers from hash collisions. If two or
more items with high frequency are hashed into the same counter,
the accuracy of the inner-product estimation will be poor. In prac-
tice, researchers usually use the median estimation of multiple
Fast-AGMS sketches to improve accuracy.

3 JOINSKETCH
In this section, we first present the rationale of JoinSketch. Then
we describe the data structure and operations of JoinSketch. After
that, we show how JoinSketch estimates the inner-product of two
data streams. Finally, we present some optimization techniques for
JoinSketch. We list the symbols used frequently in this paper in
Table 1.

Table 1: Symbols Frequently Used in This Paper.
Symbols Meaning

𝐹,𝐺 a data stream
𝑓 , 𝑔 a frequency vector
𝐷 the domain of items and 𝐷 = {𝑒𝛽1 , 𝑒𝛽2 , ..., 𝑒𝛽𝑁 }
𝑁 the cardinality of 𝐷 and 𝑁 = |𝐷 |
𝑓𝑖 the frequency of 𝑖-th item 𝑒𝛽𝑖
𝑇 a predefined threshold for frequent items
𝐽 the inner-product of 𝐹 and 𝐺
𝐽 the estimated inner-product of 𝐹 and 𝐺

𝑀𝑃 [𝑖] the 𝑖𝑡ℎ bucket in the medium part
𝐵 [𝑖] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 the counter of item 𝑒 if 𝑒 exists in 𝐵 [𝑖]

𝐻 (.) the hash function used in the frequent part
𝐻𝑚 (.) the hash function used in the medium part
ℎ𝑖 (.) the 𝑖𝑡ℎ hash function in the infrequent part
𝜉𝑖 (.) the 𝑖𝑡ℎ random function in the infrequent part

3

Conference’17, July 2017, Washington, DC, USA Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

𝒉𝒉𝟏𝟏(𝒆𝒆)

𝒉𝒉𝟐𝟐(𝒆𝒆)

𝒉𝒉𝟑𝟑(𝒆𝒆)

Infrequent Part

Frequent Part

𝑯𝑯(𝒆𝒆)

Frequent
item

Infrequent
item

Medium Part
(𝒆𝒆𝟗𝟗,𝟏𝟏)

(𝒆𝒆𝟕𝟕,𝟐𝟐) (𝒆𝒆𝟐𝟐,𝟗𝟗 + 𝟏𝟏)

(𝒆𝒆𝟔𝟔,𝟑𝟑) 𝒆𝒆𝟒𝟒,𝟏𝟏

… …

(𝒆𝒆𝟏𝟏,𝟏𝟏𝟏𝟏 + 𝟏𝟏)

(𝒆𝒆𝟏𝟏,𝟐𝟐𝟐𝟐) (𝒆𝒆𝟐𝟐,𝟏𝟏𝟐𝟐)

(𝒆𝒆𝟖𝟖,𝟏𝟏𝟐𝟐)

… …

𝒆𝒆𝟒𝟒

𝒆𝒆𝟐𝟐

𝟐𝟐 −𝟏𝟏 𝟏𝟏𝟏𝟏 … 𝟗𝟗 𝟐𝟐

−𝟐𝟐 𝟐𝟐 𝟕𝟕 … 𝟏𝟏𝟏𝟏 𝟐𝟐

𝟐𝟐 𝟑𝟑 −𝟑𝟑 … 𝟏𝟏𝟏𝟏 𝟏𝟏

𝒆𝒆𝟏𝟏

(𝒆𝒆𝟑𝟑,𝟏𝟏)

Clear!

𝒆𝒆𝟑𝟑 𝒆𝒆𝟐𝟐
𝑯𝑯𝒎𝒎(𝒆𝒆)

Figure 2: Data Structure of JoinSketch.

3.1 Rationale of JoinSketch
The key idea of JoinSketch is to distinguish frequent items and
infrequent items from mixed data to improve the accuracy of inner-
product estimation. JoinSketch consists of three components: the
infrequent part, the frequent part, and the medium part. The infre-
quent part is a Fast-AGMS sketch used to record infrequent items.
The frequent part is a hash table used to record frequent items. The
medium part is the key component of JoinSketch, which separates
items based on their frequency. It is used to distinguish frequent
items from all data items. We organize these three components as
shown in Figure 2. When inserting an item, JoinSketch first accu-
mulates it in the medium part. If the frequency of an item grows
big enough and exceeds a predefined threshold 𝑇 , it is supposed to
be a frequent item and be stored in the frequent part. Otherwise, it
is supposed to be stored in the medium part or the infrequent part
if there is no room for new-come items in the medium part.

3.2 Data Structure and Operations
3.2.1 Data Structure. As shown in Figure 2, the data structure of
JoinSketch consists of three components, including the frequent
part, the medium part and the infrequent part from top to bottom.
Frequent part: The frequent part 𝐹𝑃 is a hash table of 𝑘 buckets
and is associated with a hash function 𝐻 (.). Each bucket of the
frequent part consists of 𝑐 entries. Each entry stores an item and
its current frequency.
Infrequent part: The infrequent part 𝐼𝐹𝑃 is a Fast-AGMS sketch.
Specifically, the infrequent part consists of 𝑑 arrays (𝐼𝐹𝑃1,𝐼𝐹𝑃2,· · · ,
𝐼𝐹𝑃𝑑). Each array consists of𝑤 counters and is associated with a
hash function ℎ𝑖 (.) and a random function 𝜉𝑖 (.).
Medium part: The medium part 𝑀𝑃 is the key component of
JoinSketch. As shown in Figure 2, the data structure of the medium
part is an array of 𝑙 buckets, and each bucket includes𝑚 entries.
Each entry is composed of an item and a counter. The medium part
is associated with a hash function 𝐻𝑚 (.).

3.2.2 Operations. JoinSketch supports two operations: inserting
an item and looking up the frequency of an item.

Algorithm 1: Insertion of medium part.
Input: Item 𝑒

1 ℎ ← 𝐻𝑚 (𝑒)
2 if 𝑒 ∈ 𝑀𝑃 [ℎ] then
3 𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
4 if 𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑇 then
5 return

6 else
7 insert ⟨𝑒,𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⟩ to 𝐹𝑃

8 clear𝑀𝑃 [ℎ] [𝑒]
9 return

10 else if 𝑀𝑃 [ℎ] is not full then
11 insert ⟨𝑒, 1⟩ to an empty entry of𝑀𝑃 [ℎ]
12 return

13 else
14 𝑦 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑦 (𝑀𝑃 [ℎ] [𝑦] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟)
15 insert ⟨𝑦,𝑀𝑃 [ℎ] [𝑦] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⟩ to 𝐼𝐹𝑃
16 claer𝑀𝑃 [ℎ] [𝑦] and insert ⟨𝑒, 1⟩ to𝑀𝑃 [ℎ]
17 return

Insertion: When an item 𝑒 is inserted, JoinSketch first checks
whether it is stored in the frequent part. If so, we simply incre-
ment its counter in the frequent part. Otherwise, the item will be
inserted into the medium part. The medium part hashes 𝑒 to bucket
𝑀𝑃 [ℎ] using an associated hash function 𝐻𝑚 (.), where ℎ = 𝐻𝑚 (𝑒).
There are three different cases according to whether bucket𝑀𝑃 [ℎ]
contains item 𝑒 . The pseudo-code is shown in algorithm 1.
Case 1 (line 2-9): If bucket𝑀𝑃 [ℎ] contains item 𝑒 , the counter of
item 𝑒 will be increased by 1. Then we check the updated counter.
If the updated frequency of item 𝑒 is less than threshold 𝑇 , the
insertion ends. Otherwise, we insert 𝑒 into the frequent part with
current frequency and remove it from the medium part.
Case 2 (line 10-12): If bucket 𝑀𝑃 [ℎ] does not contain item 𝑒 but
there exists at least one empty entry, we insert item 𝑒 into an empty
entry of bucket𝑀𝑃 [ℎ].
Case 3 (line 13-17): If bucket 𝑀𝑃 [ℎ] does not contain item 𝑒 and
it is full, we need to evict an entry to make room for item 𝑒 . We
select the smallest item 𝑦 in bucket𝑀𝑃 [ℎ]. Item 𝑦 is believed to be
an infrequent item, and is then inserted into the infrequent part.

Example I: As shown in Figure 2, the frequent part and the
medium part of JoinSketch consist of multiple buckets. Each bucket
consist of 2 entries. The infrequent part is a Fast-AGMS sketch with
three arrays. The threshold of frequent item𝑇 = 10. When inserting
item 𝑒1 to JoinSketch, we first check whether 𝑒1 is in the frequent
part: we compute hash function 𝐻 (𝑒1) to locate the 2𝑛𝑑 bucket in
the frequent part. Since 𝑒1 is in the bucket, we simply increment
the counter by 1 to 16.

Example II:When inserting item 𝑒2 to JoinSketch, 𝑒2 is not in the
frequent part. Therefore, we insert it to the medium part: we com-
pute hash function ℎ𝑚 (𝑒2) to locate the 2𝑛𝑑 bucket in the medium
part. 𝑒2 is in the bucket, therefore, we increment the corresponding
counter by 1 to 10. After that, we compare the counter with the

4

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation Conference’17, July 2017, Washington, DC, USA

threshold 𝑇 . 10 ⩾ 𝑇 , therefore, we insert 𝑒2 with frequency 10 to
the frequent part, and remove it from the medium part.

Example III:When inserting item 𝑒3 to JoinSketch, 𝑒3 is not in the
frequent part. Therefore, we insert it to the medium part: we locate
it to the 3𝑟𝑑 bucket. The bucket is full, therefore, we remove the
least frequent item 𝑒4 from the bucket, and insert it to the infrequent
part. Finally, we insert 𝑒3 with frequency 1 to the bucket.
Discussion on the data structure: Our solution is a 3-part design.
According to reviewer comments, we can combine the frequent part
andmedium part into one, and get a 2-part design. Indeed, the 2-part
design is simple and easy to deploy. 3-part design is a little more
complicated but fine-grained. The frequent part is supposed to store
items with larger frequency than the medium part. Meanwhile, we
use bigger counters in the frequent part and smaller counters in the
medium part, which can further savememory usage. In section 3.4.3,
we present an optimization technique using fingerprints, which
can also benefit from the 3-part design.

Algorithm 2: Lookup of JoinSketch
Input: Item 𝑒

Output: The frequency estimation of item 𝑒

1 𝑟𝑒𝑡 ← 0
2 if 𝑒 ∈ 𝐹𝑃 [𝐻 (𝑒)] then
3 𝑟𝑒𝑡+ = 𝐹𝑃 [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟
4 else if 𝑒 ∈ 𝑀𝑃 [𝐻𝑚 (𝑒)] then
5 𝑟𝑒𝑡+ = 𝑀𝑃 [𝐻𝑚 (𝑒)] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟
6 for 𝑖 = 1→ 𝑑 do
7 𝑆 [𝑖] ← 𝐼𝐹𝑃𝑖 [ℎ𝑖 (𝑒)] × 𝜉𝑖 (𝑒)
8 𝑟𝑒𝑡+ =𝑚𝑒𝑑𝑖𝑎𝑛1≤𝑖≤𝑑 (𝑆 [𝑖])
9 return 𝑟𝑒𝑡

Lookup (frequency estimation): Besides the inner-product es-
timation (see details in Section 3.3), one can use JoinSketch to
estimate an item’s frequency. The pseudo-code for lookup oper-
ation is shown in Algorithm 2. JoinSketch initialize 𝑟𝑒𝑡 with 0 in
the beginning (line 1). To look up the frequency of an item 𝑒 , JoinS-
ketch first checks whether item 𝑒 exists in the frequent part or the
medium part (line 2-5). If so, add the corresponding counter’s value
to 𝑟𝑒𝑡 . Afterwards, JoinSketch will look up 𝑒 in the infrequent part.
The Infrequent part is associated with 𝑑 hash functions. JoinSketch
locates these 𝑑 hashed counters and then adds the median value of
the counters to 𝑟𝑒𝑡 (line 6-8). JoinSketch returns 𝑟𝑒𝑡 as the frequency
estimation of item 𝑒 .
Discussion on Lookup: Note that we always query the infrequent
part for frequency estimation. The reason is as follows. For an
arbitrary item 𝑒 , 1) if it does not exist in the frequent part or the
medium part, we can tell that all of its instances are recorded in the
infrequent part. In this case, JoinSketch only needs to look up its
frequency in the infrequent part. 2) If 𝑒 exists in the frequent part or
the medium part, however, we are faced with a more complicated
situation. The counter value will be the partial frequency of 𝑒 if
some instances of 𝑒 have been evicted to the infrequent part before
it grows into a frequent item. 2.1) If JoinSketch never evicts 𝑒 into
infrequent part, the counter value should be the true value of 𝑒’s
frequency. 2.2) Otherwise, it is a under estimation. Because we

do not use additional flag to indicate whether the above eviction
occurs to keep the data structure concise, we choose to always look
up the infrequent part to obtain unbiased frequency estimation. In
addition, it is also feasible to only return the counter value as the
estimated frequency and we compare the accuracy of these two
methods in Section 6.
Discussion on frequency estimation and inner-product esti-
mation: Indeed, JoinSketch is a frequency sketch that does inner-
product estimation. Using current evaluation metrics, nevertheless,
we observe that accurate frequency estimation does not always lead
to accurate inner-product estimation. Prior work usually evaluates
the performance of sketch algorithms using metrics of AAE (abso-
lute average error) and ARE (average relative error). Unfortunately,
these metrics can not reflect the accuracy for inner-product estima-
tion of sketches. An example is as follows. Consider we have two
data streams 𝐹 and𝐺 in which there are two items 𝑒1 and 𝑒2. The fre-
quency vectors of 𝐹 and 𝐺 are 𝑓 = (10000, 10) and 𝑔 = (10001, 11),
respectively. Assume the sketch gives an error-free estimation𝑔 = 𝑔

while the estimation of 𝑓 is not error-free.
• Example I: Consider two cases and the frequency estimation is
𝑓𝑐𝑎𝑠𝑒1 = (11000, 11), 𝑓𝑐𝑎𝑠𝑒2 = (10001, 1010). The AAE of both the
cases is 1000+1

10000+10 . The inner-product estimation is 𝐽 = 𝑓𝑐𝑎𝑠𝑒1⊙𝑔 =

110, 011, 121 for case 1 and 𝐽 = 𝑓𝑐𝑎𝑠𝑒2⊙𝑔 = 100, 031, 111 for case 2.
The same AAE for frequency estimation leads to inner-product
estimation in sharp contrast.
• Example II: Consider two cases and the frequency estimation is
𝑓𝑐𝑎𝑠𝑒1 = (11000, 11), 𝑓𝑐𝑎𝑠𝑒2 = (10000, 12). The ARE of both the
cases is 10%. The inner-product estimation is 𝐽 = 𝑓𝑐𝑎𝑠𝑒1 ⊙ 𝑔 =

110, 011, 121 for case 1 and 𝐽 = 𝑓𝑐𝑎𝑠𝑒2⊙𝑔 = 100, 010, 132 for case 2.
The same ARE for frequency estimation leads to inner-product
estimation in sharp contrast.

The above example shows that accurate frequency estimation does
not indicate the accurate inner-product estimation. It is still an open
question to design new appropriate metrics. We get an insight that
we need to obtain a higher accuracy for frequent items than infre-
quent items, which motivates us to separate frequent items from
infrequent items. JoinSketch is proposed based on the separation
of items.

3.3 Inner-product Estimation
Given two data streams 𝐹 and 𝐺 , we first construct JoinSketch for
them, i.e., we insert all items in 𝐹 and 𝐺 into JoinSketch respec-
tively. We name them 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐹 and 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 . As shown in
Figure 2, items are stored in the frequent part, the medium part
and the infrequent part. Thus, the inner-product estimation can be
obtained by adding up the inner-product of nine pieces, including
(1) frequent-frequent, (2) frequent-medium, (3) frequent-infrequent,
(4) medium-frequent, (5) medium-medium, (6) medium-infrequent,
(7) infrequent-frequent, (8) infrequent-medium, and (9) infrequent-
infrequent.

Formally, we define frequent vector 𝑓𝐹 = (𝑓𝐹1, 𝑓𝐹2, ..., 𝑓𝐹𝑁)where
𝑓𝐹𝑖 ≥ 𝑇 for 𝑖 = 1, ..., 𝑁 , medium vector 𝑓𝑀 = (𝑓𝑀1, 𝑓𝑀2, ..., 𝑓𝑀𝑁)
where 𝑓𝑀𝑖 < 𝑇 and infrequent vector 𝑓𝐼 = (𝑓𝐼1, 𝑓𝐼2, ..., 𝑓𝐼𝑁). Let the
frequent vector 𝑓𝐹 be the partial frequency vector of what has been
recorded in the frequent part. Let the medium vector 𝑓𝑀 be the

5

Conference’17, July 2017, Washington, DC, USA Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

partial frequency vector of what has been recorded in the medium
part. Note that the 𝑓𝐹 is not the frequency vector of the frequent
items, but represents the frequency vector of the instances recorded
in the frequent part. For example, if an item 𝑒𝛽𝑖 is never evicted to
the infrequent part before it grows to be a frequent item, 𝑓𝐹𝑖 will
be the true value of the frequency of 𝑒𝛽𝑖 . We have 𝑓𝐹𝑖 = 𝑓𝑖 , 𝑓𝑀𝑖 = 0
and 𝑓𝐼𝑖 = 0. Once JoinSketch evicts 𝑒𝛽 𝑗

to the infrequent part, some
instances of this items are recorded in the infrequent part. In this
case, 𝑓𝐹 𝑗 < 𝑓𝑗 and 𝑓𝐼 𝑗 > 0. Similarly, the 𝑓𝑀 is the frequency vector
of the instances which are recorded in the medium part. Since
an instance of any item is recorded in one and only one part of
JoinSketch, we have 𝑓 = 𝑓𝐹 + 𝑓𝑀 + 𝑓𝐼 and 𝑔 = 𝑔𝐹 + 𝑔𝑀 + 𝑔𝐼 . The
inner-product of 𝐹 and 𝐺 can be calculated by

𝐽 = 𝑓 ⊙ 𝑔 = (𝑓𝐹 + 𝑓𝑀 + 𝑓𝐼) ⊙ (𝑔𝐹 + 𝑔𝑀 + 𝑔𝐼)
= 𝑓𝐹 ⊙ 𝑔𝐹 + 𝑓𝐹 ⊙ 𝑔𝑀 + 𝑓𝐹 ⊙ 𝑔𝐼
+ 𝑓𝑀 ⊙ 𝑔𝐹 + 𝑓𝑀 ⊙ 𝑔𝑀 + 𝑓𝑀 ⊙ 𝑔𝐼
+ 𝑓𝐼 ⊙ 𝑔𝐹 + 𝑓𝐼 ⊙ 𝑔𝑀 + 𝑓𝐼 ⊙ 𝑔𝐼
= 𝐽𝐹𝐹 + 𝐽𝐹𝑀 + 𝐽𝐹𝐼 + 𝐽𝑀𝐹 + 𝐽𝑀𝑀 + 𝐽𝑀𝐼 + 𝐽𝐼𝐹 + 𝐽𝐼𝑀 + 𝐽𝐼 𝐼 .

(5)

These nine addends in Equation (5) correspond to the nine pieces
above. JoinSketch estimates the inner-product by estimating the
nine pieces respectively. For piece (1) 𝐽𝐹𝐹 , JoinSketch compares
every item recorded in the frequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐹 with the
one recorded in the frequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 . For the same
item, JoinSketch multiplies the corresponding counters and sum up
all products. We estimate (2) 𝐽𝐹𝑀 (4) 𝐽𝑀𝐹 (5) 𝐽𝑀𝑀 using the same
method. For piece (9) 𝐽𝐼 𝐼 , JoinSketch sums up all of the multiplica-
tions of corresponding counters of the infrequent part, which is the
same as the Fast-AGMS sketch. JoinSketch traverses the frequent
parts to estimate (3) 𝐽𝐹𝐼 and (7) 𝐽𝐼𝐹 . For each item in the frequent
part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐹 , we look up the estimated frequency of the
item in the infrequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 and then estimate (3)
𝐽𝐹𝐼 . Similarly, we traverse the frequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 and
then get (7) 𝐽𝐼𝐹 . The same method is applied to estimate (6) 𝐽𝑀𝐼

and (8) 𝐽𝐼𝑀 . By adding the results of the above nine pieces, we get
the inner-product estimation of data stream 𝐹 and data stream 𝐺 .

3.4 Optimizations
3.4.1 Extension of Frequent Part. Ideally, the size of the frequent
part should match the number of frequent items. If the size of
frequent part is too small, a number of frequent items may be lost;
if the size of frequent part is too large, memory will be wasted.
Estimating the number of frequent items in advance is difficult,
so we decide to dynamically extend the size of the frequent part.
The method is borrowed from ElasticSketch [24]. If a bucket in
the frequent part is full, we copy the frequent part and merge the
frequent part and the copied one together as the new frequent part.
Suppose the old frequent part contains 𝑘 buckets. The new one
contains 2𝑘 buckets, and thus we change the hash function from
𝐻 (.)%𝑘 to 𝐻 (.)%(2𝑘). After the extension, half of the items should
be removed. The removal operation can be done incrementally.

3.4.2 Using SIMD Instructions. The medium part and the frequent
part consist of 𝑙 buckets and each bucket consists of 𝑚 entries.
When inserting an item, it is hashed into a bucket. Afterward,

we need to scan all entries in this bucket to determine whether
or not the item exists in this bucket, which is costly. To improve
insertion performance, we use SIMD (Single Instruction Multiple
Data) instructions to scan a specific hashed bucket [25, 26]. With
SIMD, we can scan and compare multiple entries with a single
instruction. In order to make JoinSketch compatible with SIMD, we
set the number of entries𝑚 = 4 or𝑚 = 8.

3.4.3 Fingerprint. We use fingerprints instead of the full item key
in order to save memory usage. The fingerprint of an item 𝑒 is a
fixed-length hash value of the item. For example, we can use a hash
function 𝐻𝑓 𝑝 to calculate the fingerprint and the fingerprint of 𝑒 is
𝐻𝑓 𝑝 (𝑒). We use the fingerprint to save memory footprint if the item
key is long. The usage of fingerprint, however, is likely to bring
about fingerprint collisions which would downgrade the accuracy
of inner-product estimation. Hence, we use longer fingerprints in
the frequent part to avoid fingerprint collisions as much as possible.
We set the length of fingerprint in the frequent part 𝐿𝐹 = 32. And
we set the length in the medium part 𝐿𝑀 = 22. The reason for
using 22-bit fingerprint is that in the experiment we find that 10-bit
counters is big enough for the medium part, and the remaining 22
bits of the 32-bit variable can be used as the fingerprint.

3.4.4 Picking the threshold 𝑇 . In terms of picking the threshold 𝑇 ,
one feasible method is to initialize 𝑇 with a moderate value and
adjust it according to the status of the frequent part. The initial
value of 𝑇 can be set according to the total number of items and
the estimated number of distinct items (if available). For example,
one can use the average frequency or a small portion of all items
as the initial value. JoinSketch checks the number of items in the
frequent part periodically. If the number of items in the frequent
part is small (e.g. ≤ 𝑟𝑧 · 𝑘𝑐 , 𝑟 is a constant, 𝑧 is the number of items
inserted to JoinSketch and 𝑘𝑐 is the total number of entries in the
frequent part), it suggests that the threshold 𝑇 is too high to find
the frequent items and JoinSketch will lower the threshold𝑇 . If the
frequent part is extended frequently, which indicates that many
items which are not so frequent are inserted to the frequent part,
JoinSketch will take a higher 𝑇 . In this way, JoinSketch will take a
proper threshold value to separate frequent and infrequent items.

3.5 Extension to Multi-Way Joins
To show how to extend JoinSketch to multi-way join size estimation,
we first introduce the concept of attributes. An item in data streams
may consist of several attributes. Let 𝑒𝑖 .𝐴 𝑗 be the attribute 𝐴 𝑗 of
the item 𝑒𝑖 , and let 𝐹 .𝐴 𝑗 be the attribute 𝐴 𝑗 of the data stream 𝐹 .
An example of multi-way join is like

𝐹 1 𝐺 1 𝐻 where 𝐹 .𝐴1 = 𝐺.𝐴1 ∧𝐺.𝐴2 = 𝐻.𝐴2 (6)

The typical work for multi-way joins is Compass [16], which uses
multi-dimensional Fast-AGMS sketches. Essentially, JoinSketch is
KV tables (the frequent part and the medium part) and a Fast-AGMS
sketch (the infrequent part). The infrequent part perfectly fits into
Compass. As for the KV tables, we modify them for multi-way
join as follows. We replace the item key in the frequent part and
the medium part with multiple item keys which are involved in
the join. For example, we record 𝐴1 for data stream 𝐹 , 𝐴2 for data

6

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation Conference’17, July 2017, Washington, DC, USA

stream 𝐻 , and both𝐴1 and𝐴2 for data stream𝐺 . We can obtain the
inner-product estimation in the same way as 2-way join.

4 THEORETICAL ANALYSIS
4.1 Unbiasedness of JoinSketch

Theorem 1. The inner-product estimation of two data streams
given by the standard version of JoinSketch is unbiased.

Proof. Suppose 𝑓 and 𝑔 are frequency vectors of two data
streams 𝐹 and 𝐺 . 𝐽 is the inner-product estimation given by JoinS-
ketch and the true value of the inner-product is 𝐽 . According to
Section 3.3, the inner-product estimation is obtained by

𝐽 = ˆ𝐽𝐹𝐹 + ˆ𝐽𝐹𝑀 + ˆ𝐽𝐹𝐼 + ˆ𝐽𝑀𝐹 + ˆ𝐽𝑀𝑀 + ˆ𝐽𝑀𝐼 + ˆ𝐽𝐼𝐹 + ˆ𝐽𝐼𝑀 + ˆ𝐽𝐼 𝐼 . (7)

The frequent part and the medium part record a part of all instances
of an frequent itemwith no error according to their definition, hence
we have 𝑓𝐹 = 𝑓𝐹 , ˆ𝑓𝑀 = 𝑓𝑀 , 𝑔𝐹 = 𝑔𝐹 and ˆ𝑔𝑀 = 𝑔𝑀 . Therefore, we
have

ˆ𝐽𝐹𝐹 = 𝑓𝐹 ⊙ 𝑔𝐹 = 𝑓𝐹 ⊙ 𝑓𝐹 = 𝐽𝐹𝐹

ˆ𝐽𝐹𝑀 = 𝑓𝐹 ⊙ ˆ𝑔𝑀 = 𝑓𝐹 ⊙ 𝑓𝑀 = 𝐽𝐹𝑀

ˆ𝐽𝑀𝐹 = ˆ𝑓𝑀 ⊙ 𝑔𝐹 = 𝑓𝑀 ⊙ 𝑓𝐹 = 𝐽𝑀𝐹

ˆ𝐽𝑀𝑀 = ˆ𝑓𝑀 ⊙ ˆ𝑔𝑀 = 𝑓𝑀 ⊙ 𝑓𝑀 = 𝐽𝑀𝑀 .

(8)

Further, note that
ˆ𝐽𝐹𝐼 = 𝑓𝐹 ⊙ 𝑔𝐼 = 𝑓𝐹 ⊙ 𝑔𝐼
ˆ𝐽𝑀𝐼 =

ˆ𝑓𝑀 ⊙ 𝑔𝐼 = 𝑓𝑀 ⊙ 𝑔𝐼
ˆ𝐽𝐼𝐹 = 𝑓𝐼 ⊙ 𝑔𝐹 = 𝑓𝐼 ⊙ 𝑔𝐹
ˆ𝐽𝐼𝑀 = 𝑓𝐼 ⊙ ˆ𝑔𝑀 = 𝑓𝐼 ⊙ 𝑔𝑀 .

(9)

Fast-AGMS gives unbiased estimation for both item frequency and
inner-product. Therefore, E(𝑓𝐼) = 𝑓𝐼 , E(𝑔𝐼) = 𝑔𝐼 and E(𝐽𝐼 𝐼) = 𝐽𝐼 𝐼 .
Hence, the estimation for the remaining five pieces is unbiased as
well. We have that
E(𝐽) = E(ˆ𝐽𝐹𝐹) + E(ˆ𝐽𝐹𝑀) + E(ˆ𝐽𝐹𝐼) + E(ˆ𝐽𝑀𝐹) + E(ˆ𝐽𝑀𝑀)

+ E(ˆ𝐽𝑀𝐼) + E(ˆ𝐽𝐼𝐹) + E(ˆ𝐽𝐼𝑀) + E(ˆ𝐽𝐼 𝐼)
= 𝐽𝐹𝐹 + 𝐽𝐹𝑀 + 𝐽𝐹𝐼 + 𝐽𝑀𝐹 + 𝐽𝑀𝑀 + 𝐽𝑀𝐼 + 𝐽𝐼𝐹 + 𝐽𝐼𝑀 + 𝐽𝐼 𝐼
= 𝐽 .

(10)
Therefore, the estimation given by JoinSketch is unbiased. □

Analysis on optimizations:We present several optimization tech-
niques in Section 3.4. The extension of frequent part and using SIMD
instructions don’t affect the unbiasedness of the inner-product esti-
mation. The fingerprint, however, will affect the unbiasedness. We
analyze the issue on the fingerprint in Section 4.4.

4.2 Variance of JoinSketch
As mentioned in Section 4.1, JoinSketch provides unbiased estima-
tion of the inner-product. In this section, we prove the estimation
offered by JoinSketch is of less variance, and thus JoinSketch im-
proves estimation accuracy compared with prior arts. We start from
the variance of the estimation given by the Fast-AGMS sketch.

Lemma 2. Consider a Fast-AGMS sketch with 𝑛𝐹𝑎𝑠𝑡 counters. The
variance of the inner-product estimation (denoted as ˆ𝐽𝐹𝑎𝑠𝑡) is

𝑉𝑎𝑟 [ˆ𝐽𝐹𝑎𝑠𝑡] ≤ 2| |𝑓 | |22 | |𝑔| |
2
2/𝑛𝐹𝑎𝑠𝑡 = 𝐵𝐹𝑎𝑠𝑡 (11)

according to [27] where 𝑓 and𝑔 is the frequency vector of data streams
𝐹 and 𝐺 .

Theorem 3. The bound of the variance of inner-product estimation
𝐽 given by JoinSketch satisfies that

𝑉𝑎𝑟 [𝐽] ≤
(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |

2
2 + ||𝑔𝑈 | |

2
2 | |𝑓𝐼 | |

2
2 + 2| |𝑓𝐼 | |

2
2 | |𝑔𝐼 | |

2
2

)
/𝑛

where 𝑓𝑈 = 𝑓𝐹 + 𝑓𝑀 , 𝑔𝑈 = 𝑔𝐹 + 𝑔𝑀 and 𝑛 is the number of counters
in the infrequent part.

Proof. JoinSketch stores the data stream in three components.
Note that the frequent part and the medium part only store the part
of all instances of a frequent itemwith no error. We can consider the
two parts as a whole and thus obtain the inner-product estimation
provided by JoinSketch 𝐽 from

𝐽 = ˆ𝐽𝑈𝑈 + ˆ𝐽𝑈 𝐼 + ˆ𝐽𝐼𝑈 + ˆ𝐽𝐼 𝐼 (12)

where ˆ𝐽𝑈𝑈 = ˆ𝑓𝑈 ⊙ ˆ𝑔𝑈 and 𝑓𝑈 = 𝑓𝐹 + 𝑓𝑀 . Since the 𝑓𝐹 and 𝑓𝑀 are
independent from 𝑓𝐼 , the variance of 𝐽 consists of four parts.

𝑉𝑎𝑟 [𝐽] = 𝑉𝑎𝑟 [ˆ𝐽𝑈𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝑈 𝐼] +𝑉𝑎𝑟 [ˆ𝐽𝐼𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝐼 𝐼] . (13)

Since there is no error in frequency vector 𝑓𝐹 and 𝑓𝑀 , ˆ𝐽𝑈𝑈 = 𝐽𝑈𝑈

and the variance of first part is
𝑉𝑎𝑟 [ˆ𝐽𝑈𝑈] = 0. (14)

The variance of the second part ˆ𝐽𝑈 𝐼 can be derived based on the
variance of frequency estimation of the Fast-AGMS sketch. The
variance of frequency estimation of the Fast-AGMS sketch is

𝑉𝑎𝑟 [𝑓𝑖] ≤ ||𝑓 | |22/𝑛 (15)
where 𝑓 is the frequency vector and 𝑛 is the number of counters in
the Fast-AGMS sketch. Combined with Equation (15)

𝑉𝑎𝑟 [ˆ𝐽𝑈 𝐼] = 𝑉𝑎𝑟 [ˆ𝑓𝑈 ⊙ 𝑔𝐼]
= 𝑓𝑈 ⊙ 𝑉𝑎𝑟 [𝑔𝐼] ≤ ||𝑓𝑈 | |22 | |𝑔𝐼 | |

2
2/𝑛.

(16)

The third part ˆ𝐽𝐼𝑈 is symmetric to the second part ˆ𝐽𝑈 𝐼 . The variance
of ˆ𝐽𝐼𝑈 is

𝑉𝑎𝑟 [ˆ𝐽𝐼𝑈] ≤ ||𝑔𝑈 | |22 | |𝑓𝐼 | |
2
2/𝑛. (17)

The fourth part ˆ𝐽𝐼 𝐼 is the estimation from the infrequent part which
is a Fast-AGMS sketch. The formula of the fourth part’s variance is
similar to Equation (11).

𝑉𝑎𝑟 [ˆ𝐽𝐼 𝐼] ≤ 2| |𝑓𝐼 | |22 | |𝑔𝐼 | |
2
2/𝑛. (18)

Substituting the above results into Equation (13), the bound of
variance of the inner-product estimation given by JoinSketch is
𝑉𝑎𝑟 [𝐽] =𝑉𝑎𝑟 [ˆ𝐽𝑈𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝑈 𝐼] +𝑉𝑎𝑟 [ˆ𝐽𝐼𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝐼 𝐼]

≤
(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |

2
2 + ||𝑔𝑈 | |

2
2 | |𝑓𝐼 | |

2
2 + 2| |𝑓𝐼 | |

2
2 | |𝑔𝐼 | |

2
2

)
/𝑛

=𝐵.

(19)

□

Theorem 4. The bound of JoinSketch is less than the bound of
Fast-AGMS, i.e., 𝐵 ≤ 𝐵𝐹𝑎𝑠𝑡 if 𝑛 ≥ 𝑛𝐹𝑎𝑠𝑡

7

Conference’17, July 2017, Washington, DC, USA Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

Proof. Since 𝑓𝑖 ≥ 0 and 𝑔𝑖 ≥ 0, we have

𝐵𝐹𝑎𝑠𝑡 =2| |𝑓 | |22 | |𝑔| |
2
2/𝑛𝐹𝑎𝑠𝑡 = 2| |𝑓𝑈 + 𝑓𝐼 | |22 | |𝑔𝑈 + 𝑔𝐼 | |

2
2/𝑛𝐹𝑎𝑠𝑡

=2(| |𝑓𝑈 | |22 + ||𝑓𝐼 | |
2
2 + 2𝑓𝑈 ⊙ 𝑓𝐼) (| |𝑔𝑈 | |22 + ||𝑔𝐼 | |

2
2 + 2𝑔𝑈 ⊙ 𝑔𝐼)/𝑛𝐹𝑎𝑠𝑡

=2(| |𝑓𝑈 | |22 | |𝑔𝑈 | |
2
2 + ||𝑓𝑈 | |

2
2 | |𝑔𝐼 | |

2
2 + ||𝑓𝐼 | |

2
2 | |𝑔𝑈 | |

2
2 + ||𝑓𝐼 | |

2
2 | |𝑔𝐼 | |

2
2

+ 4𝑓𝑈 ⊙ 𝑓𝐼 𝑔𝑈 ⊙ 𝑔𝐼 + 2𝑓𝑈 ⊙ 𝑓𝐼 | |𝑔| |22 + 2𝑔𝑈 ⊙ 𝑔𝐼 | |𝑓 | |
2
2)/𝑛𝐹𝑎𝑠𝑡

=

(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |

2
2 + ||𝑔𝑈 | |

2
2 | |𝑓𝐼 | |

2
2 + 2| |𝑓𝐼 | |

2
2 | |𝑔𝐼 | |

2
2

)
/𝑛𝐹𝑎𝑠𝑡

+ Rem/𝑛𝐹𝑎𝑠𝑡
(20)

where Rem stands for the word remain for brevity and Rem >(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |

2
2 + ||𝑔𝑈 | |

2
2 | |𝑓𝐼 | |

2
2 + 2| |𝑓𝑈 | |

2
2 | |𝑔𝑈 | |

2
2
)
/𝑛𝐹𝑎𝑠𝑡 .

𝐵𝐹𝑎𝑠𝑡

𝐵
=

2| |𝑓 | |22 | |𝑔| |
2
2/𝑛𝐹𝑎𝑠𝑡(

| |𝑓𝑈 | |22 | |𝑔𝐼 | |
2
2 + ||𝑔𝑈 | |

2
2 | |𝑓𝐼 | |

2
2 + 2| |𝑓𝐼 | |

2
2 | |𝑔𝐼 | |

2
2

)
/𝑛

=
𝑛

𝑛𝐹𝑎𝑠𝑡

(
1 + Rem
| |𝑓𝑈 | |21 | |𝑔𝐼 | |

2
2 + ||𝑔𝑈 | |

2
1 | |𝑓𝐼 | |

2
2 + 2| |𝑓𝐼 | |

2
2 | |𝑔𝐼 | |

2
2

)
.

(21)
Assume that𝑛 ≥ 𝑛𝐹𝑎𝑠𝑡 , i.e., the number of counters in the infrequent
part of JoinSketch is equal or greater than the number of counters
in the Fast-AGMS. No matter how much memory the frequent
part and the medium part consumes, Rem > 0 holds. Therefore,
𝐵𝐹𝑎𝑠𝑡/𝐵 > 1. The bound of JoinSketch is less than the bound of
Fast-AGMS, i.e., 𝐵 ≤ 𝐵𝐹𝑎𝑠𝑡 . □

As stated above, because the frequency of items stored in the
infrequent part is relatively low, we use small counters in the in-
frequent part. Under the same memory constraint, the assumption
𝑛 ≥ 𝑛𝐹𝑎𝑠𝑡 usually holds. We show that JoinSketch has a smaller
bound of the variance than Fast-AGMS. Note that 𝐵𝐹𝑎𝑠𝑡/𝐵 may be
very big in some cases and it is highly related to how big | |𝑓𝑈 | |22 and
| |𝑔𝑈 | |22 are. Intuitively, the more skewed the data is, the bigger the
ratio 𝐵𝐹𝑎𝑠𝑡/𝐵 is. It implies that JoinSketch is supposed to perform
much better when the data is high-skewed.

4.3 Effectiveness of Finding Frequent Items
In this section, we provide theoretical analysis on the effective-
ness of finding frequent items for JoinSketch. Every bucket in the
medium part is the same as each other, and every bucket is inde-
pendent of each other. We only analyze one bucket and the items
hashed to it. Assume that the number of entries in this bucket is
𝑀 . Before the formal analysis, we make assumptions about the
data stream to simplify the problem. Since the number of frequent
items is rather few compared to the number of all distinct items,
we assume the data stream hashed to the bucket contains only one
frequent item 𝑥 with frequency 𝑡 and all of the other items in this
data stream appear for one time. The data stream contains 𝑁 items
in total. We use 𝑥𝑖 to represent item 𝑥 that appears for the 𝑖-th
time. We use 𝑘𝑖 to represent the number of other items between 2
consecutive items 𝑥𝑖 and 𝑥𝑖+1. W.L.O.G., we assume 𝑥0 is the first
item, and 𝑥𝑡 is the last item in this data sequence. Obviously, we
have 𝑘𝑖 ≥ 0 and

∑𝑡−1
𝑖=1 𝑘𝑖 + 𝑡 = 𝑁 .

Theorem 5. The probability of finding 𝑥 a frequent item is

P(𝑓 𝑜𝑢𝑛𝑑) = 1 −
𝑡−1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (22)

Proof. Since frequencies of items other than 𝑥 is 1, once the
frequency of 𝑥 in the medium part is equal or greater than 2, 𝑥 will
not be replaced anymore. It will grow bigger and bigger and the
medium part will find out it is a frequent item. When 𝑥1 comes,
it will be inserted into a random entry. Afterward, every item (𝑘1
items in total) before 𝑥2 will bring out a replacement of a random
entry. The probability of replacing 𝑥 is 1

𝑀
for every replacement.

So the probability of that 𝑥 is not replaced by other items until 𝑥2
is (1 − 1

𝑀
)𝑘1 . The probability of replacing 𝑥1 is 1 − (1 − 1

𝑀
)𝑘1 .

If 𝑥1 is replaced by other item before 𝑥2 comes, the medium
part can not distinguish item 𝑥 as a frequent item when 𝑥2 comes.
Instead, 𝑥2 will bring out a replacement and insert item 𝑥 with
frequency 1 into a random entry. The situation between 𝑥2 and 𝑥3
is the same as the situation between 𝑥1 and 𝑥2. The probability of
that 𝑥 is replaced by other items before 𝑥3 is 1 − (1 − 1

𝑀
)𝑘2 . When

𝑥3 comes, the probability for the medium part not to find out 𝑥 a
frequent item is (1 − (1 − 1

𝑀
)𝑘1) × (1 − (1 − 1

𝑀
)𝑘2). Similarly, the

probability for the medium part not to find out 𝑥 a frequent item
after the last item 𝑥𝑡 comes is

P(𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑎𝑙𝑙) =
𝑡−1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (23)

Therefore, the probability of finding 𝑥 as a frequent item is

P(𝑓 𝑜𝑢𝑛𝑑) = 1 − P(𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑎𝑙𝑙) = 1 −
𝑡−1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (24)

□

Now we consider the error of the frequent part produced by the
medium part. Define 𝑡 is the frequency of 𝑥 recorded in the medium
part or the frequent part. The error 𝑒𝑟 = 𝑡 −𝑡 . Note that the frequent
part and the medium part never provide over estimation so that
𝑒𝑟 ≥ 0.

Theorem 6. E(𝑒𝑟) = ∑𝑡
𝑗=1 𝑗 ×

∏𝑗+1
𝑖=1

(
1 − (1 − 1

𝑀
)𝑘𝑖

)
.

Proof. After the frequency of 𝑥 grows to 2, the following item
𝑥 will not produce any error. If 𝑥𝑖 makes the frequency grow to 2,
the error 𝑒𝑟 = 𝑖 − 2. Therefore, we have P(𝑒𝑟 = 𝑗), 𝑗 = 0, ..., 𝑡 − 2

P(𝑒𝑟 = 𝑗) =
𝑗+1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (25)

Hence, the expectation of 𝑒𝑟

E(𝑒𝑟) =
𝑡∑︁
𝑗=1

𝑗 × P (𝑒𝑟 = 𝑗) =
𝑡∑︁
𝑗=1

𝑗 ×
𝑗+1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (26)

□

Theorem 7. If the frequency of item 𝑥 follows Poisson distribution

P(𝑡
𝑁
), E(𝑒𝑟) =

(
ln 𝑀

𝑀−1 ·
𝑁
𝑡

)2
.

8

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation Conference’17, July 2017, Washington, DC, USA

Proof. If the frequency of item 𝑥 follows Poisson distribution
P(𝑡

𝑁
), the interval 𝑘𝑖 between 𝑥𝑖 and 𝑥𝑖+1 follows exponential dis-

tribution 𝐸 (𝑡
𝑁
). Therefore, we have 𝑘𝑖 ∼ 𝐸 (𝜆) = 𝐸 (𝑡

𝑁
) and 𝑘𝑖 is

independent from 𝑘 𝑗 for ∀𝑖 ≠ 𝑗 .
Hence, we have

𝜁 =E

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
= 1 − E

(
1 − 1

𝑀

)𝑘𝑖
=1 −

∫ ∞

0

(
1 − 1

𝑀

)𝑘𝑖
𝜆𝑒−𝜆𝑘𝑖 d𝑘𝑖 =

ln𝑀 − ln(𝑀 − 1)
ln𝑀 − ln(𝑀 − 1) + 𝑡

𝑁

.

(27)

Since 𝜁 < 1, we have

E(𝑒𝑟) =
𝑡∑︁
𝑗=1

𝑗 × P(𝑒𝑟 = 𝑗) =
𝑡∑︁
𝑗=1

𝑗 × 𝜁 𝑗+1

≈ 𝜁 2

(1 − 𝜁)2
=

(
ln 𝑀

𝑀 − 1 ·
𝑁

𝑡

)2
.

(28)

□

According to Equation (28), if the number of entries in a bucket
(𝑀) is bigger or the proportion of frequent items to all items is
bigger (𝑡/𝑁), E(𝑒𝑟) will be smaller.

4.4 Analysis on Fingerprint
The fingerprints in the medium part and the frequent part are used
to identify different items and reduce memory costs. However, fin-
gerprints bring about the problem of fingerprint collisions. If two
or more items, especially frequent items, have the same finger-
print, the accuracy of the estimation will be degraded a lot. In this
section, we analyze how fingerprints affect the accuracy of the
inner-product estimation. Consider a set of 𝑁 items.𝐴𝑖 denotes the
random event that there is no fingerprint collision among 𝑖 distinct
independent items.

Lemma 8. If the length of the fingerprint is 𝑙 , the probability of
fingerprint collision between two items is P(𝐴2) = 1 − 2𝑙

(2𝑙)2 .

Theorem 9. The probability of no fingerprint collision between 𝑁

items is P(𝐴𝑁) =
∏𝑁

𝑖=1
(
2𝑙−𝑖

)
2𝑙𝑁 .

Proof. We derive P(𝐴𝑁) from the formula of conditional prob-
ability. We have

P(𝐴𝑁) = P(𝐴𝑁−1) × P (𝐴𝑁 |𝐴𝑁−1) = P(𝐴𝑁−1) ×
2𝑙 − 𝑁
2𝑙

=

∏𝑁
𝑖=1

(
2𝑙 − 𝑖

)
2𝑙𝑁

.

(29)

□

Table 2: The probability of no hash collision.

Probability 𝑁 = 4 𝑁 = 16 𝑁 = 64 𝑁 = 128
𝑙 = 16 1.5𝐸 − 04 2.0𝐸 − 03 3.1𝐸 − 02 1.2𝐸 − 01
𝑙 = 32 2.3𝐸 − 09 3.2𝐸 − 08 4.8𝐸 − 07 1.9𝐸 − 06

As shown in Table 2, the probability of fingerprint collisions is
rather small when the length of fingerprint 𝑙 = 32. If fingerprint

collisions occur, JoinSketch will regard two or more items as the
same item. In this case, the reported inner-product estimation is
expected to be slightly larger. Such an error is small and can be
much smaller when using more bits for the fingerprints.

5 APPLICATIONS
JoinSketch is proposed for accurate and fast inner-product esti-
mation in data stream scenarios. In Section 5.1, we describe the
applications of JoinSketch in data stream scenarios. JoinSketch
can be applied in more one-pass scenarios. In Section 5.2 and Sec-
tion 5.3, we discuss how to apply JoinSketch in one-pass scenarios
of database and cosine similarity.

5.1 Applications in Data Stream Processing
The inner-product of data streams is an important statistic for data
stream processing. For example, we need to analyze the correlation
between two data streams in many large-scale network measure-
ment systems. To be specific, tracking the join size of abnormal
traffic on several routers can help network administrators analyze
the current running status of the network system. If a link failure
happens, a practical network measurement system should be able
to allow us to locate the link failure as soon as possible. In the
scenario, the data stream processing is proposed to be real-time and
fast enough. JoinSketch is suitable for data streams’ inner-product
estimation. We can deploy JoinSketch in measurement nodes (e.g.,
IP routers). The function of JoinSketch is to provide key statistics of
data flows through the router and send the measurement result to
the controller node. The estimation of the inner-product will then
be used to analyze the real-time running status of the network.

5.2 Applications in Database
Inner-product estimation is an essential step in multi-way join.
Most systems perform multi-way join by binary join algorithms,
i.e., they iteratively select two tables and join them into intermediate
relations. However, a poor join plan may lead to a large volume
of intermediate relations and result in high computation overhead.
Therefore, many existing solutions [16, 20, 28, 29] present to use
sketches to estimate join size in advance and avoid poor plans.
JoinSketch supports join size estimation. Given two tables and join
predicates, we build a JoinSketch for each table. Then, we estimate
the inner-product of the two tables as the join size.

5.3 Applications in Cosine Similarity
Cosine similarity is a key metric in many fields of data science,
including data mining, natural language processing, recommenda-
tion systems and so on. Cosine similarity computation, however,
is often the bottleneck in some applications with massive volumes
of data. Fortunately, it is acceptable to use the estimated cosine
similarity instead of the true value in some cases. For example,
researchers propose to estimate cosine similarity of data streams
using the AGMS sketch in [30].

JoinSketch can be also applied to estimate the cosine similarity
in data stream scenarios. To be specific, cosine similarity can be
derived from inner-product as shown below:

𝑐𝑜𝑠 (𝐹,𝐺) = 𝑓 ⊙ 𝑔√︁
(𝑓 ⊙ 𝑓) (𝑔 ⊙ 𝑔)

. (30)

9

Conference’17, July 2017, Washington, DC, USA Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

After constructing JoinSketch for 𝐹 and 𝐺 , we can derive cosine
similarity using three inner-product estimations.

6 EXPERIMENTAL RESULTS
In this section, we provide experimental results of JoinSketch. We
present experimental setup in Section 6.1. First, data stream sce-
narios are the main and the most critical scenarios of JoinSketch.
We show the performance of JoinSketch in data stream scenarios
compared with prior arts. Second, we demonstrate a few properties
of JoinSketch itself through experiments, including stability and
throughput. Third, we show the performance of JoinSketch in find-
ing frequent items and frequency estimation. Finally, we analyze
the influence of parameters and give recommended settings. We
show that JoinSketch has an advantage over existing algorithms
when the data is skewed and the memory is limited.

6.1 Experimental Setup
6.1.1 Datasets.
1) CAIDA dataset: CAIDA Anonymized Internet Trace [31] is a
data stream of anonymized IP trace collected in 2018. Each item is
identified by its source IP (4 bytes) and destination IP (4 bytes).
2) TPC-DS dataset: The TPC Benchmark™ DS (TPC-DS) [32]
is a decision support benchmark that models several generally
applicable aspects of a decision support system, including queries
and data maintenance. The benchmark provides a representative
evaluation of the System Under Test’s (SUT) performance as a
general-purpose decision support system.
3) MovieLens dataset: The MovieLens datasets [33] are widely
used in education, research, and industry. These datasets are a
product of member activity in the MovieLens movie recommen-
dation system, an active research platform that has hosted many
experiments since its launch in 1997.
4) Zipf datasets:Wegenerate synthetic datasets of Zipf distribution
with different parameters and every dataset contains 32,000,000
items in completely random order.
5) Zipf with shifting: Two Zipf datasets with the same distribution
will have frequent items with the same id. A shifting of 𝑘 means that
the 𝑖𝑡ℎ most frequent item in the original dataset is the (𝑖 +𝑘)%𝑁 𝑡ℎ

most frequent item in the shifted dataset, where 𝑁 is the number
of distinct items. We use a pair of Zipf dataset and shifted Zipf
dataset to evaluate the impact of different correlations. The larger
the shifting is, the less correlated the datasets are.
6) Zipf with different data arrival orders: In the scenarios of
traditional database systems, the physical layout of data is often
ordered, semi-ordered, or clustered, which leads to different data
arrival orders. We reshuffle the Zipf datasets to generate datasets
of different data arrival orders. We sort the items by their ID to
generate ordered datasets. We swap every item with one of the
100 items closest to it based on the ordered datasets to generate
clustered datasets. We swap every item with one of the 1000 items
closest to it based on the ordered datasets to generate semi-ordered
datasets.

6.1.2 Platform and implementation. We evaluate all algorithms
on a server with 18-core CPUs (36 threads, Intel CPU i9-10980XE
@3.00 GHz) with 128GB 3200MHz DDR4 memory and 24.75MB L3
cache. We implement all algorithms with C++ and build them with

g++ 7.5.0 (Ubuntu 7.5.0-6ubuntu2) and the -O3 option. The hash
functions we use are 32-bit Murmur Hash [34].
6.1.3 Metrics.
1) Absolute Error (AE): 1

Ψ

∑ ��𝐽 − 𝐽
��, where 𝐽 is the true value of

inner-product, 𝐽 is the estimated value, and Ψ is the number of
testing rounds.
2) Relative Error (RE): 1

Ψ

∑ ��𝐽 − 𝐽
�� /𝐽 .

3) Variance (Var): 1
Ψ

∑ (
𝐽 − 𝐽

)2
. We use variance to measure the

stability of the algorithm.
4) Throughput (Mops): Million operations per second.
5) Maximum Absolute Error and Minimum Absolute Error:
We use them to measure the algorithm’s best- and worst-case errors.
6) Precision Rate (PR): Reported top-𝑘

Reported items . We use the precision rate
to evaluate the ability to find frequent items.
7) Average Relative Error (ARE): 1

|K |
∑
𝑒𝛽𝑖 ∈K |𝑓𝑒𝛽𝑖 −

ˆ𝑓𝑒𝛽𝑖 |/𝑓𝑒𝛽𝑖 ,
where 𝑓𝑒𝛽𝑖

is the real frequency of item 𝑒𝛽𝑖 , 𝑓𝑒𝛽𝑖 is the estimated
frequency of 𝑒𝛽𝑖 , and K is the query set.
8) Average Absolute Error (AAE): 1

|K |
∑
𝑒𝛽𝑖 ∈K |𝑓𝑒𝛽𝑖 − 𝑓𝑒𝛽𝑖 |, where

K, 𝑓𝑒𝛽𝑖 and 𝑓𝑒𝛽𝑖
are the same as those defined in ARE.

6.1.4 Parameter setting.
We compare JoinSketch with the Fast-AGMS sketch [19] (F-AGMS
for short), the Count-Min sketch [35, 36], and the Skimmed sketch
[20]. We set the number of hashes 𝑑 = 3 by default, and all results
are averaged over 50 runs with different hash seeds. For the CAIDA
dataset, we set the threshold 𝑇 to 400 for both JoinSketch and
the Skimmed sketch. For the Zipf datasets, the threshold we set is
adjusted according to the distribution’s parameter 𝛼 .

6.2 Experiments on Accuracy
Impact of memory size (Figure 3): We evaluate the accuracy
of JoinSketch and its competitors. The memory allocated to these
algorithms ranges from 8KB to 128KB on each dataset. We find
that JoinSketch always achieves the best accuracy. The Count-Min
sketch needs more memory to work well, while in practice, we
don’t always have that much memory. The accuracy of the Fast-
AGMS sketch and the Skimmed sketch is comparable. Because
the separated frequent items are not accurate, the performance
of the Skimmed sketch is always inferior to JoinSketch, and even
sometimes inferior to the Fast-AGMS sketch. Compared to the
Skimmed sketch, the error of the frequent items found by JoinSketch
is so small that JoinSketch achieves the best performance. When the
memory is large enough, the average absolute error of JoinSketch
is up to 15× smaller than that of the Fast-AGMS sketch. On average,
JoinSketch is 10 times better than the Fast-AGMS sketch.

In addition to the CAIDA and the generated Zipf datasets, we
also conduct experiments on the TPC-DS dataset and MovieLens
dataset, which corresponds to the applications in database systems
and cosine similaritymentioned in Section 5.2 and Section 5.3. These
two datasets are in the form of key-value pairs, where key is the data
item and the value is the frequency of the item. The experimental
results show that JoinSketch can still achieve good performance.
The TPC-DS dataset is a benchmark for database systems that has
a bit of skewness. Therefore, JoinSketch still performs well since
the frequent items are separated from the infrequent items. We use
the Movielens dataset to evaluate the performance of JoinSketch

10

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation Conference’17, July 2017, Washington, DC, USA

25 50 75 100 125
Memory Usage (KB)

10
6

10
7

10
8

10
9

A
E

Ours
F-AGMS

Count-Min
Skimmed

(a) AE on CAIDA.

25 50 75 100 125
Memory Usage (KB)

10
7

10
8

10
9

10
10

10
11

A
E

Ours
F-AGMS

Count-Min
Skimmed

(b) AE on Zipf (𝛼 = 0.8).

25 50 75 100 125
Memory Usage (KB)

10
7

10
8

10
9

A
E

Ours
F-AGMS

Count-Min
Skimmed

(c) AE on TPC-DS.

25 50 75 100 125
Memory Usage (KB)

10
4

10
5

10
6

10
7

A
E

Ours
F-AGMS

Count-Min
Skimmed

(d) AE on MovieLens.

Figure 3: AE on various datasets.

0.00 0.25 0.50 0.75 1.00
Alpha

10
7

10
5

10
3

10
1

10
1

R
E

Ours
F-AGMS

Count-Min
Skimmed

Figure 4: Impact of dataset
skewness.

100 200 300
Shifting

10
2

10
1

10
0

R
E Ours

F-AGMS
Count-Min
Skimmed

Figure 5: Impact of dataset
correlation.

100 200 300
Shifting

10
2

R
E

Ours-80KB
Ours-40KB

Ours-120KB

Figure 6: Dataset correlation
v.s. memory usage.

CAIDA TPC-DS Zipf(0.8)
Datasets

0

5

10

15

20

25

A
IT

(M
op

s)

Ours
F-AGMS

Count-Min

Figure 7: Throughput.

on cosine similarity estimation as in [30]. The dataset consists of
movie ratings on a 5-star scale, with half-star increments. As shown
in Figure 3(d), the absolute error of JoinSketch is small. This dataset
only has ratings from 0 to 5 in the vector, but even for such a dataset
with little skewness, JoinSketch still outperforms the Fast-AGMS
sketch and the Count-Min sketch. On these datasets, the Skimmed
sketch has almost no optimization effect.
Impact of dataset skewness (Figure 4): To simulate data with
different skewness, we conduct experiments on the datasets of
Zipf distribution with alpha ranging from 0.0 to 0.9. We fixed the
memory size of all algorithms to 80KB. We use RE instead of AE
because the true value of the inner-product changes as the alpha
changes. We find that as the skewness of the dataset increases, the
RE of each algorithm decreases. This is because of the nature of the
Zipf distribution. As alpha increases, the number of distinct items in
the data stream decreases, and the true value of the inner-product
increases considerably. Both of the above factors will lead to smaller
RE. From Figure 4, we can clearly see that JoinSketch achieves the
best accuracy. The higher the skewness of the dataset is, the greater
the advantage of JoinSketch is.
Impact of dataset correlations (Figure 5 and Figure 6): We
generate two Zipf datasets with 𝛼 = 0.8 and shift one of them
by different parameters between 0 and 300. The memory used
by the algorithms is fixed to 80KB and the accuracy is measured
with RE. The experimental results show that when the datasets
are less correlated, the accuracy of all algorithms becomes lower,
which indicates that the inner-product estimation becomes more
difficult. More shifting degrades the accuracy of JoinSketch because
when the intersection between the frequent items of two datasets is
small, the benefit of separating frequent items and infrequent items
is small. JoinSketch, however, always achieves the best accuracy
among competitors. We also study the impact of memory usage and
data correlations together. Figure 6 shows that more memory usage

25 50 75 100 125
Memory Usage (KB)

10
7

10
8

10
9

A
E

random
semiordered

ordered
clustered

(a) AE.

25 50 75 100 125
Memory Usage (KB)

10
14

10
15

10
16

10
17

10
18

VA
R

random
semiordered

ordered
clustered

(b) Variance.

Figure 8: Impact of data arrival orders.

improves the accuracy of JoinSketch while the impact of dataset
correlations remains the same.
Impact of data arrival orders:We study the impact of data arrival
orders on JoinSketch because the data arrival skew will affect the
effectiveness of separating the frequent items for JoinSketch. As
shown in Figure 8, data arrival orders affect the performance of
JoinSketch. The random dataset is the worst case because many
instances of frequent items may be evicted to the infrequent part
before they grow frequent. JoinSketch achieves the best accuracy on
the ordered dataset because when the dataset is ordered, JoinSketch
can find frequent items efficiently. The accuracy of JoinSketch on
clustered and semi-ordered datasets is between the ordered and
random ones, which is consistent with how much ordered these
datasets are. More ordered datasets lead to better performance of
JoinSketch.

6.3 Experiments on Stability
An important indicator to measure the quality of an algorithm is
the variance because the algorithm with less variance leads to more
stability. We evaluate the variance of JoinSketch and its competitors
for 100 rounds on the CAIDA and Zipf datasets with fixed memory
of 80KB. The results are shown in Figure 9. From Figure 9(a) and
Figure 9(c), we can see that JoinSketch has a clear advantage on

11

Conference’17, July 2017, Washington, DC, USA Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

50 100
Memory Usage (KB)

10
12

10
14

10
16

10
18

VA
R

Ours
F-AGMS

Count-Min
Skimmed

(a) Variance on CAIDA.

Ours F-AGMS Skimmed
Algorithms

105

106

107

RE
(b) Stability on CAIDA.

25 50 75 100 125
Memory Usage (KB)

10
15

10
17

10
19

10
21

10
23

VA
R

Ours
F-AGMS

Count-Min
Skimmed

(c) Variance on Zipf (𝛼 = 0.8)

Ours F-AGMS Skimmed
Algorithms

105

106

107

108

109

RE

(d) Stability on Zipf (𝛼 = 0.8)

Figure 9: Experiments on stability.

25 50 75 100 125
Memory Usage (KB)

10
2

10
1

10
0

A
R

E

Ours
F-AGMS

Count-Min

(a) ARE on CAIDA.

25 50 75 100 125
Memory Usage (KB)

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Ours

(b) Precision on CAIDA.

25 50 75 100 125
Memory Usage (KB)

10
2

10
1

10
0

10
1

A
R

E

Ours
F-AGMS

Count-Min

(c) ARE on Zipf (𝛼=0.8).

25 50 75 100 125
Memory Usage (KB)

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Ours

(d) Precision on Zipf (𝛼 = 0.8).

Figure 10: Accuracy of finding frequent items.

the variance. Besides the variance, Figure 9(b) and Figure 9(d) show
that JoinSketch also performs better than other algorithms in terms
of max, min, and median. Benefiting from separating the frequent
items, the stability of JoinSketch for inner-product estimation are
significantly better than other algorithms.

6.4 Experiments on Throughput
We evaluate the throughput of each algorithm on different datasets.
The operation of JoinSketch is more complex, so it generally takes
more time to insert an item than other algorithms. But with SIMD
optimization, JoinSketch can sometimes achieve better throughput.
As shown in Figure 7, we can see that JoinSketch, the Fast-AGMS
sketch, and the Count-Min sketch have comparable throughput. The
Skimmed sketch is not a one-pass algorithm, so we don’t compare
its throughput with other algorithms.

6.5 Experiments on Finding Frequent Items
Finding frequent items is a fundamental problem in data stream
processing. JoinSketch is not specific to this problem, but can re-
port frequent items approximately using the frequent part. We
conducted two experiments related to finding frequent items, and
the two experiments can also reflect the efficiency of our algorithm
on separating the frequent items and the infrequent items. First, we
query the frequency of the 500 most frequent items in the CAIDA
and Zipf (𝛼 = 0.8) datasets. As shown in Figure 10(a) and Fig-
ure 10(c), the ARE of JoinSketch is the smallest, which means that
JoinSketch performs very well in the frequency estimation of the
500 most frequent items. We then evaluate how many items of the
top 500 frequent items appear in the frequent part, and Figure 10(b)
and Figure 10(d) show that JoinSketch is very accurate in finding
the frequent items. In fact, when the memory is more than 30KB,
the precision can reach more than 90%, which means that most of
the frequent items are successfully classified into the frequent part.

200 400 600 800 1000
Memory Usage (KB)

10
1

10
0

10
1

A
A

E

Ours
F-AGMS

Count-Min
Ours-biased

(a) AAE on CAIDA.

200 400 600 800 1000
Memory Usage (KB)

10
0

10
1

A
A

E

Ours
F-AGMS

Count-Min
Ours-biased

(b) AAE on Zipf (𝛼 = 0.8).

Figure 11: Frequency estimation.

6.6 Experiments on Frequency Estimation
Figure 11 shows the experimental results of frequency estimation
on CAIDA and Zipf (𝛼 = 0.8). The line of Ours-biased represents
the lookup operation which does not query an item in the infre-
quent part if it exists in the frequent part or the medium part.
JoinSketch outperforms the Count-Min sketch and the Fast-AGMS
sketch in terms of frequency estimation. The performance of JoinS-
ketch is nearly the same as JoinSketch-biased, which means that
few instances of frequent items are evicted to the infrequent part
compared with the instances recorded in the frequent part and the
medium part.

6.7 Experiments on Parameters
Impact of Threshold T (Figure 12(a)): JoinSketch needs to set
a threshold 𝑇 . It affects which items go into the frequent part. In
fact, threshold 𝑇 is strongly related to the skewness of the dataset.
Our goal is to filter out the frequent items in the dataset. On the
one hand, if the threshold 𝑇 is small, some infrequent items will be
considered as frequent items, which will downgrade the accuracy
of JoinSketch. On the other hand, if the threshold 𝑇 is set too large,
frequent items will be considered infrequent and the counters in the
medium part may overflow, which will also downgrade the accuracy

12

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation Conference’17, July 2017, Washington, DC, USA

200 400 600 800 1000
Threshold

1M

2M

3M

A
E

(a) Effect of Threshold T.

0.2 0.4 0.6 0.8
Ratio

300k

325k

350k

375k

400k

425k

A
E

(b) Effect of memory allocation.

Figure 12: Impact of different parameters of JoinSketch.

of JoinSketch. Figure 12(a) shows the results of JoinSketch on the
CAIDA dataset with threshold 𝑇 ranging from 100 to 1000. The
results are in line with the above discussion. When the threshold
is greater than 300, the difference is not big. This is because the
error of items with a frequency greater than 300 in the CAIDA
dataset entering the frequent part is relatively small. The reason
that there is no overflow caused by a large threshold is that the size
of the counter in the medium part is set to 10 bits in our algorithm
optimization. The threshold is less than 1024, and there will be no
overflow on the CAIDA dataset.
Impact of memory allocation (Figure 12(b)): The memory used
by JoinSketch is divided into three parts. The memory of the fre-
quent part should be positively related to the number of frequent
items, so it actually depends on the threshold𝑇 . Assuming the mem-
ory of frequent part is set according to the threshold𝑇 , we consider
only the size ratio of the medium part and the infrequent part.
We evaluate the performance of JoinSketch with Medium Part size

Total size
ranging from 1

8 to 7
8 on the CAIDA dataset. As shown in fig. 12(b),

we can find that when the memory of the medium part is small, the
error is large because the size of the medium part affects the effec-
tiveness of finding the frequent items. When the infrequent part is
too small, the error of the infrequent items due to hash collisions
can also lead to inaccurate estimation. Therefore, we should set a
moderate memory ratio of the medium part to the infrequent part.

7 RELATEDWORK
This section first discusses related work for the inner-product esti-
mation and the join size estimation and then presents algorithms for
finding frequent items and sketch algorithms designed for skewed
data streams.

7.1 Inner-product Estimation
There are three mainstream inner-product size estimation tech-
niques in the literature: histograms, sampling techniques, and sketches.

7.1.1 Histograms. Histograms[37–40] are common column statis-
tics that provide information about the data distribution of column
data in database. It divides the domain of an attribute into several
buckets and assumes a uniform distribution within each bucket.
7.1.2 Sampling Techniques. Sampling techniques[41] are widely
used in inner-product/join size estimation. The cross-product sam-
pling scheme[41] is believed to give the best estimation out of the
simple sampling schemes. However, sampling techniques are sen-
sitive to skewed and sparse data, while skewed data are common
in real scenarios. To address this drawback, researchers propose

Bifocal[42] sampling algorithm and End-biased[43] sampling algo-
rithm. Correlated sampling is proposed in [44], which is a part of
CS2 algorithm and [45] improved correlated sampling.
7.1.3 Sketches. Sketches [35, 36, 46] are especially appropriate for
the scenarios of data streams. There are several pieces of research
focusing on the inner-product estimation using sketches. The basic
AGMS sketch is first presented in [17, 18]. Dobra et al. [47, 48]
extends AGMS to multi-way join size estimation. The Fast-AGMS
sketch [19] preserves a matrix of basic AGMS counters to improve
accuracy and efficiency simultaneously and achieves the best perfor-
mance according to [27, 36]. The Skimmed sketch[20] and the Red
sketch [21] propose to estimate the inner-product by estimating the
inner-product of frequent items and infrequent items separately.
The Skimmed sketch first builds a Fast-AGMS sketch for a data
stream. Then it goes through the domain of the data stream to find
frequent items. The Skimmed sketch and the Red sketch need to go
through the domain of the data stream before estimating the inner-
product, which means these multi-pass techniques are not practical.
[28] extends the sketch-based method to join sketch estimation
subject to filters. [16] proposes an online query optimizer exclu-
sively based on sketches in a real database system and proposes to
reorganize arrays of counters into a matrix to support multi-way
join using the Fast-AGMS sketch. [29] introduces bound sketches
that provide theoretical upper bounds for cardinality estimation.

7.2 Finding Frequent Items
There are many solutions in finding frequent items, includingMisra-
Gries algorithm [49], Lossy counting [50], SpaceSaving [4], Unbi-
ased SpaceSaving [51], e.t.c. [5]. They report high accuracy for the
frequent items but report 0 for the infrequent items and are thus
not suitable for inner-product estimation.

7.3 Separating Frequent and Infrequent Items
Real data often obeys unbalanced data distribution such as Zipf [22,
23]. There are a number of sketch algorithms that record frequent
and infrequent items separately in the literature, such as ASketch
[25], ColdFilter [26], ElasticSketch [24], and so on [10, 52–57]. After
adjustment to the scenarios of inner-product, they can be applied
to estimate inner-product of data streams. However, the adjustment
may require a lot of hard work because these algorithms are not
particularly designed for inner-product estimation. Most of them
cannot provide an unbiased estimation.

8 CONCLUSION
This paper proposes an algorithm called JoinSketch for inner-product
estimation. It can provide accurate, fast, and unbiased inner-product
estimation for data streams. By separating frequent and infrequent
items, JoinSketch improves the accuracy of inner-product estima-
tion, especially when the data is highly-skewed. We prove mathe-
matically the unbiasedness of inner-product estimation given by
JoinSketch and that it has lower variance than the prior art, Fast-
AGMS sketch. We conduct extensive experiments on various real-
world and synthetic datasets. Our experimental results show that
JoinSketch maintains unbiasedness, and the error is 10 times on
average smaller than the state-of-the-art on high-skewed datasets.
JoinSketch outperforms the state-of-the-art with respect to both
accuracy and stability.

13

Conference’17, July 2017, Washington, DC, USA Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

REFERENCES
[1] Related source code. https://github.com/JoinSketch/JoinSketch.
[2] Graham Cormode and S Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[3] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In Automata, Languages and Programming. Springer, 2002.

[4] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation
of frequent and top-k elements in data streams. In International Conference on
Database Theory. Springer, 2005.

[5] Ben Basat Ran, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in
streams and sliding windows. In Proc. IEEE INFOCOM 2016, 2016.

[6] K. Balachander, S. Subhabrata, Z. Yin, and C. Yan. Sketch-based change detection:
methods, evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pages 234–247. ACM, 2003.

[7] Robert Schweller, Zhichun Li, Yan Chen, et al. Reversible sketches: enabling
monitoring and analysis over high-speed data streams. IEEE/ACM Transactions
on Networking (ToN), 15(5):1059–1072, 2007.

[8] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. In Discrete Math-
ematics and Theoretical Computer Science, pages 137–156. Discrete Mathematics
and Theoretical Computer Science, 2007.

[9] S. Venkataraman, D. Xiaodong Song, P. B. Gibbons, and A. Blum. New streaming
algorithms for fast detection of superspreaders. In NDSS, 2005.

[10] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. Bursts-
ketch: Finding bursts in data streams. In Proceedings of the 2021 International
Conference on Management of Data, pages 2375–2383, 2021.

[11] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin
Cui. On-off sketch: A fast and accurate sketch on persistence. Proceedings of the
VLDB Endowment, 14(2):128–140, 2020.

[12] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? Proceedings of the
VLDB Endowment, 9(3):204–215, 2015.

[13] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz,
Alfons Kemper, and Thomas Neumann. Query optimization through the looking
glass, and what we found running the join order benchmark. The VLDB Journal,
27(5):643–668, 2018.

[14] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice:
Efficient join query evaluation in a parallel database system. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, pages
63–78, 2015.

[15] Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. Degree sequence
bound for join cardinality estimation. arXiv preprint arXiv:2201.04166, 2022.

[16] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. Compass:
Online sketch-based query optimization for in-memory databases. In Proceedings
of the 2021 International Conference on Management of Data, pages 804–816, 2021.

[17] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of ap-
proximating the frequency moments. Journal of Computer and system sciences,
58(1):137–147, 1999.

[18] Noga Alon, Phillip B Gibbons, Yossi Matias, and Mario Szegedy. Tracking join
and self-join sizes in limited storage. Journal of Computer and System Sciences,
64(3):719–747, 2002.

[19] Graham Cormode and Minos Garofalakis. Sketching streams through the net:
Distributed approximate query tracking. In Proceedings of the 31st international
conference on Very large data bases, pages 13–24, 2005.

[20] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. Processing data-stream
join aggregates using skimmed sketches. In International Conference on Extending
Database Technology, pages 569–586. Springer, 2004.

[21] Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Practical algorithms for
tracking database join sizes. In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 297–309. Springer, 2005.

[22] David MW Powers. Applications and explanations of Zipf’s law. In Proc. EMNLP-
CoNLL. Association for Computational Linguistics, 1998.

[23] Lada A Adamic and Bernardo A Huberman. Power-law distribution of the world
wide web. science, 287(5461):2115–2115, 2000.

[24] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 561–575, 2018.

[25] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and
more accurate stream processing. In Proceedings of the 2016 International Confer-
ence on Management of Data, pages 1449–1463, 2016.

[26] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig.
Cold filter: A meta-framework for faster and more accurate stream processing.
In SIGMOD Conference, 2018.

[27] Florin Rusu and Alin Dobra. Statistical analysis of sketch estimators. In Proceed-
ings of the 2007 ACM SIGMOD international conference on Management of data,
pages 187–198, 2007.

[28] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P Chakkap-
pen. Join size estimation subject to filter conditions. Proceedings of the VLDB
Endowment, 8(12):1530–1541, 2015.

[29] Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality esti-
mation: Tighter upper bounds for intermediate join cardinalities. In Proceedings
of the 2019 International Conference on Management of Data, pages 18–35, 2019.

[30] Konstantin Kutzkov, Mohamed Ahmed, and Sofia Nikitaki. Weighted similarity
estimation in data streams. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pages 1051–1060, 2015.

[31] The CAIDA UCSD Anonymized Internet Traces 2018. https://www.caida.org/
catalog/datasets/passive_dataset/.

[32] Meikel Poess. TPC-DS, pages 1–8. Springer International Publishing, Cham, 2018.
[33] F. M. Harper and J. A. Konstan. The movielens datasets. ACM Transactions on

Interactive Intelligent Systems (TiiS), 2015.
[34] Murmur hashing source codes. https://github.com/aappleby/smhasher/blob/

master/src/MurmurHash3.cpp.
[35] Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. Syn-

opses for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends® in Databases, 4(1–3):1–294, 2011.

[36] Florin Rusu and Alin Dobra. Sketches for size of join estimation. ACM Transac-
tions on Database Systems (TODS), 33(3):1–46, 2008.

[37] Yannis E Ioannidis and Stavros Christodoulakis. On the propagation of errors
in the size of join results. In Proceedings of the 1991 ACM SIGMOD International
Conference on Management of data, pages 268–277, 1991.

[38] Viswanath Poosala and Yannis E Ioannidis. Selectivity estimation without the
attribute value independence assumption. In VLDB, volume 97, pages 486–495.
Citeseer, 1997.

[39] Yannis E Ioannidis and Stavros Christodoulakis. Optimal histograms for limiting
worst-case error propagation in the size of join results. ACM Transactions on
Database Systems (TODS), 18(4):709–748, 1993.

[40] Yannis E Ioannidis and Viswanath Poosala. Balancing histogram optimality and
practicality for query result size estimation. Acm Sigmod Record, 24(2):233–244,
1995.

[41] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. Fixed-precision
estimation of join selectivity. In Proceedings of the twelfth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 190–201, 1993.

[42] Sumit Ganguly, Phillip B Gibbons, Yossi Matias, and Avi Silberschatz. Bifocal
sampling for skew-resistant join size estimation. In Proceedings of the 1996 ACM
SIGMOD international conference on management of data, pages 271–281, 1996.

[43] Cristian Estan and Jeffrey F Naughton. End-biased samples for join cardinality
estimation. In 22nd International Conference on Data Engineering (ICDE’06), pages
20–20. IEEE, 2006.

[44] Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu. Cs2: a new
database synopsis for query estimation. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages 469–480, 2013.

[45] TaiNing Wang and Chee-Yong Chan. Improved correlated sampling for join size
estimation. In 2020 IEEE 36th International Conference on Data Engineering (ICDE),
pages 325–336. IEEE, 2020.

[46] Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang. Out of
many we are one: Measuring item batch with clock-sketch. In Proceedings of the
2021 International Conference on Management of Data, pages 261–273, 2021.

[47] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Processing
complex aggregate queries over data streams. In Proc. ACM SIGMOD, pages
61–72. ACM, 2002.

[48] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Sketch-
based multi-query processing over data streams. In International Conference on
Extending Database Technology, pages 551–568. Springer, 2004.

[49] Jayadev Misra and David Gries. Finding repeated elements. Science of computer
programming, 2(2):143–152, 1982.

[50] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts
over data streams. In VLDB’02: Proceedings of the 28th International Conference
on Very Large Databases, pages 346–357. Elsevier, 2002.

[51] Daniel Ting. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on Management of
Data, pages 1129–1140, 2018.

[52] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the ACM Special Interest Group
on Data Communication, pages 334–350. 2019.

[53] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. Salsa:
self-adjusting lean streaming analytics. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pages 864–875. IEEE, 2021.

[54] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. Dhs: Adaptive
memory layout organization of sketch slots for fast and accurate data stream
processing. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2285–2293, 2021.

[55] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. Stingy sketch: a
sketch framework for accurate and fast frequency estimation. Proceedings of the

14

https://github.com/JoinSketch/JoinSketch
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation Conference’17, July 2017, Washington, DC, USA

VLDB Endowment, 15(7):1426–1438, 2022.
[56] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, JintaoHe, Tong Zhao,

Zhengyi Jia, Yongqiang Yang, et al. Sketchint: Empowering int with towersketch
for per-flow per-switch measurement. In 2021 IEEE 29th International Conference

on Network Protocols (ICNP), pages 1–12. IEEE, 2021.
[57] Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo Ma, and

Shigang Chen. Pyramid family: Generic frameworks for accurate and fast flow
size measurement. IEEE/ACM Transactions on Networking, 30(2):586–600, 2021.

15

	Abstract
	Acknowledgments
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Sketch-Based Inner-product Estimation

	3 JoinSketch
	3.1 Rationale of JoinSketch
	3.2 Data Structure and Operations
	3.3 Inner-product Estimation
	3.4 Optimizations
	3.5 Extension to Multi-Way Joins

	4 Theoretical Analysis
	4.1 Unbiasedness of JoinSketch
	4.2 Variance of JoinSketch
	4.3 Effectiveness of Finding Frequent Items
	4.4 Analysis on Fingerprint

	5 Applications
	5.1 Applications in Data Stream Processing
	5.2 Applications in Database
	5.3 Applications in Cosine Similarity

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Experiments on Accuracy
	6.3 Experiments on Stability
	6.4 Experiments on Throughput
	6.5 Experiments on Finding Frequent Items
	6.6 Experiments on Frequency Estimation
	6.7 Experiments on Parameters

	7 Related Work
	7.1 Inner-product Estimation
	7.2 Finding Frequent Items
	7.3 Separating Frequent and Infrequent Items

	8 Conclusion
	References

