
JitterSketch: Finding Jittery Flows in Network Streams
Zhongxian Liang

∗

Harbin Institute of Technology

Shenzhen, China

liangzhx@pcl.ac.cn

Qilong Shi
∗

Tsinghua University

Beijing, China

sql23@mails.tsinghua.edu.cn

Xiyan Liang

Nankai University

Tianjin, China

2212207@mail.nankai.edu.cn

Zihan Li

National University of Defense

Technology, Changsha, China

lizihan23@nudt.edu.cn

Wenjun Li
†B

Pengcheng Laboratory

Shenzhen, China

wenjunli@pku.org.cn

Tong Yang
‡

Peking University

Beijing, China

yangtong@pku.edu.cn

Yangyang Wang

Tsinghua University

Beijing, China

wangyy-13@tsinghua.edu.cn

Mingwei Xu

Tsinghua University

Beijing, China

xumw@tsinghua.edu.cn

Weizhe Zhang
‡

Harbin Institute of Technology

Shenzhen, China

wzzhang@hit.edu.cn

Abstract
In the modern internet, with the proliferation of real-time appli-

cations such as online gaming and video conferencing, the timely

detection of network jitter has become a critical task in network

measurement. Network jitter is defined as the abrupt fluctuations

in packet inter-arrival times within network flows, which severely

degrade the Quality of Service for these applications. Traditional

jitter detection methods primarily focus on macro-level end-to-end

or hop-by-hop latency variations, neglecting the fine-grained jitter

that occurs within specific flows. In this paper, we present JitterS-

ketch, the first sketch-based algorithm specifically designed for

detecting jittery flows. JitterSketch employs a novel three-stage

structure to efficiently filter out infrequent and stable flows, thereby

identifying and reporting the jittery flows that have the most signifi-

cant impact on network quality. Extensive experiments demonstrate

that JitterSketch achieves an improvement of up to 50 percentage

points in both recall and precision rates compared to baseline solu-

tions, while maintaining high processing throughput. Furthermore,

we deployed JitterSketch in a QoS simulation system, where it

yielded significant improvements in QoS.

CCS Concepts
• Information systems→ Data stream mining; • Networks→
Network measurement.

Keywords
Network stream processing, Packet delay, Jitter flows, Sketch, QoS.

∗
Co-first authors. Zhongxian Liang is also with Pengcheng Laboratory.

†
Wenjun Li also serves as a Ph.D. co-supervisor at Harbin Institute of Technology.

This work was conducted at Pengcheng Laboratory. The first four authors are students

and carried out this work under the guidance of the corresponding author, Wenjun Li.

‡
Co-corresponding authors. Weizhe Zhang is also with Pengcheng Laboratory.

This work is licensed under a Creative Commons Attribution 4.0 International License.

WWW ’26, Dubai, United Arab Emirates

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2307-0/2026/04

https://doi.org/10.1145/3774904.3792328

ACM Reference Format:
Zhongxian Liang, Qilong Shi, Xiyan Liang, Zihan Li, Wenjun Li, Tong Yang,

YangyangWang,Mingwei Xu, andWeizhe Zhang. 2026. JitterSketch: Finding

Jittery Flows in Network Streams. In Proceedings of the ACMWeb Conference

2026 (WWW ’26), April 13–17, 2026, Dubai, United Arab Emirates. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3774904.3792328

Resource Availability:
The source code of this paper has been made publicly available at https:

//doi.org/10.5281/zenodo.18300502.

1 Introduction
As internet applications become increasingly popular and diverse,

from high-definition video streaming and online gaming to real-

time voice and video communication (VoIP) [19], user expecta-

tions for Quality of Service (QoS) [34] have reached unprecedented

heights. Network latency and its stability are key metrics for mea-

suring QoS. However, in complex network environments, data pack-

ets experience varying queuing, forwarding, and propagation delays

during transmission, which leads to dynamic changes in end-to-end

latency—a phenomenon known as network jitter. Severe network

jitter can seriously disrupt the internal temporal relationship within

a data flow, causing multimedia applications to suffer from issues

like video freezing and audio-video desynchronization. It can even

interfere with the congestion control mechanisms of transport pro-

tocols like TCP, leading to a decrease in network throughput.

Traditional end-to-end jitter metrics are too coarse, masking

the micro-dynamics within individual data flows. We therefore

focus on Intra-Flow Packet Delay (IFPD)—the time interval between

consecutive packets of a flow at a network device. By monitoring

significant IFPD changes (sudden increases, decreases, or mixed

patterns), we can identify micro-burst behaviors in what we term

"jittery flows". Detecting these flows is crucial for QoS optimization,

congestion detection, and security.

• QoS Optimization: Applications like video streaming, multi-

player games and VoIP are highly sensitive to jitter [5, 13, 16, 21,

26, 29, 31, 37, 50, 53], which degrades user experience by causing

lag and interruptions. This instability leads to buffer underruns or

overflows at the receiver, halting playback or causing packet loss.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792328
https://doi.org/10.1145/3774904.3792328
https://doi.org/10.5281/zenodo.18300502
https://doi.org/10.5281/zenodo.18300502

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Zhongxian Liang et al.

Real-time IFPD monitoring provides immediate feedback, enabling

operators to dynamically adjust buffering policies and ensure a

smooth, high-quality user experience.

• Network Congestion Detection: A sharp increase in IFPD, or

"deceleration jitter", is a strong, proactive indicator of queuing delay

caused by network congestion [6, 18, 35, 46]. Unlike loss-based

signals, it allows for early detection. Conversely, a subsequent drop

in IFPD, or "acceleration jitter", signals that congestion has subsided.

This delay-based principle is fundamental to congestion control.

• APT Detection: APT [15, 20, 23, 49, 52] attacks often evade

detection by using "low-and-slow" communication for command

and control (C2) or data exfiltration. This strategy creates a distinct

compound jitter pattern: a sharp drop in IFPD followed immediately

by a sharp rise. Identifying this specific signature offers a powerful

method to uncover otherwise hidden malicious channels.

However, detecting IFPD jitter in high-speed networks is a chal-

lenging task. Existing solutions are often limited to end-hosts [12,

35], are protocol-specific [11, 28, 29, 51], or rely on coarse-grained

metrics [24, 54]. Even advanced techniques typically measure sin-

gular delay events rather than the complex, dynamic patterns char-

acteristic of threats like APTs. Moreover, above approaches are not

designed for the scale and resource constraints of core switches.

This creates a clear and significant research gap: the need for an

online, efficient, and universal algorithm that combines universality,

complex pattern detection, and resource efficiency.

To fill this gap, we propose JitterSketch, a lightweight, high-

precision algorithm for resource-constrained core networks. Its

novel multi-stage pipeline minimizes overhead by progressively

filtering flows, performing detailed jitter analysis only on the most

relevant candidates. This resource-efficient approach enables iden-

tifying jittery behavior at scale. Our main contributions are:

(1) We shift the focus from traditional delay metrics to the dynamic

patterns of IFPD, defining acceleration, deceleration, and hybrid

jitter. This offers a more granular dimension for analyzing QoS

and security threats, filling a key gap in network measurement.

(2) We present JitterSketch, the first online and lightweight al-

gorithm that delivers high-precision identification of diverse

jittery flows in high-speed networks. Its unique architecture

achieves this by strategically concentrating computational re-

sources on the most critical data flows.

(3) We evaluate JitterSketch on real-world backbone traffic, where

it demonstrates exceptional performance. It improves both pre-

cision and recall by approximately 50 percentage points and

achieves 10x the throughput of baseline solutions, all while us-

ing significantly less memory. Its effectiveness is further proven

in QoS simulations, highlighting its practical value.

The rest of this paper is organized as follows. We review back-

ground work in Section 2 and detail the JitterSketch algorithm in

Section 3. We present our theoretical analysis in Appendix A and

experimental results in Section 4, before concluding in Section 5.

2 Preliminary
This section introduces the preliminary knowledge essential for

our work. This includes the formal definition of Intra-Flow Packet

Delay (IFPD), the concept of IFPD jitter, the implications of our

modeling choices, and a review of related work.

2.1 Problem Definition
We formally define the core concepts for our study. We model

the inbound traffic at a network device as a stream of packets.

Each packet is represented by a tuple (𝑥, 𝑡), where 𝑥 denotes the

flow key (e.g., a source/destination IP address pair or a 5-tuple),

and 𝑡 represents the packet’s arrival timestamp. A sequence of

packets sharing the same flow key constitutes a flow, denoted as

𝐹𝑥 = {(𝑥, 𝑡1), (𝑥, 𝑡2), . . . , (𝑥, 𝑡𝑝)}, where the timestamps are chrono-

logically ordered (i.e., 𝑡𝑖 < 𝑡 𝑗 for all 𝑖 < 𝑗). The frequency of the

flow is denoted by 𝑓𝑥 = 𝑝 . For convenience, we assume an idealized

scenario without packet loss or out-of-order delivery.

2.1.1 Intra-Flow Packet Delay (IFPD). Based on this model, we

define the Intra-Flow Packet Delay (IFPD) for the 𝑖-th packet in

flow 𝑓𝑥 , denoted as 𝐷𝑥
𝑖 , as the time interval between its arrival and

that of its immediate predecessor. This is mathematically expressed

as 𝐷𝑥
𝑖 = 𝑡𝑥𝑖 − 𝑡𝑥𝑖−1 for 𝑖 > 1. By convention, the IFPD for the first

packet in a flow is defined as zero (𝐷𝑥
1
= 0).

2.1.2 IFPD Jitter. Based on the IFPD, we formally define an IFPD

jitter event as a significant and abrupt fluctuation in the inter-arrival

times of a flow. A flow 𝐹𝑥 is identified as a jittery flow if it satisfies

the following three conditions at some point during its lifecycle:

(1) Significant Relative Change: There must be a sharp relative

change between two consecutive IFPDs, 𝐷𝑥
𝑖 and 𝐷𝑥

𝑖+1. For a
given jitter factor 𝑘 > 1, this condition is met if either of the

following occurs:

• Deceleration: Sharp increase in delay, where 𝐷𝑥
𝑖+1 ≥ 𝑘 · 𝐷𝑥

𝑖 .

• Acceleration: Sharp decrease in delay, where 𝐷𝑥
𝑖+1 ≤

1

𝑘
· 𝐷𝑥

𝑖 .

(2) Bounded Absolute Change: The fluctuation must be large

enough to be significant but not so large as to represent a pro-

longed transmission pause. This is enforced with lower and

upper thresholds, 𝑇min and 𝑇max:

𝑇min < |𝐷𝑥
𝑖+1 − 𝐷𝑥

𝑖 | < 𝑇max

The lower bound filters noise, while the upper bound distin-

guishes jitter from intentional idle periods.

(3) Minimum Flow Size: To focus on meaningful data flows and

avoid noise from very short-lived connections, the flow’s total

packet count 𝑓𝑥 must exceed a certain threshold 𝐶 :

𝑓𝑥 ≥ 𝐶

2.2 Rationale for the Jitter Definition
To substantiate our definition of IFPD jitter, we conducted an empir-

ical analysis of real-world network traffic. Our primary finding is

that the distribution of IFPD is neither uniform nor normal; instead,

it exhibits a pronounced heavy-tailed characteristic. As illustrated

in Figure 1a, this implies that while the vast majority of packet

delays are concentrated within a relatively small and stable range,

a small fraction of packets experiences delays that are orders of

magnitude larger (e.g., in the sampled flow, 5% of packets have an

IFPD of 3ms or more). These "long-tail" delays are symptomatic of

network anomalies such as congestion, route flapping, or process-

ing bottlenecks. Capturing these packets that constitute the
long tail of the delay distribution is the goal of our algorithm.

JitterSketch: Finding Jittery Flows in Network Streams WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

0.0 1.5 3.0 4.5 6.0
0

4

8

12

16

20

24

p
er

ce
n

ta
g

e(
%

)

IFPD (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(a) IFPD distribution.

25% 75%

0.0 1.5 3.0 4.5 6.0
IFPD(ms)

 25%~75% 1.5IQR

 Median Line Outlier

(b) A jitter flow’s distribution.
Figure 1: Analysis of IFPD and jitter flow distributions.

To statistically demarcate normal from anomalous delays, we

employ the Interquartile Range (IQR) method. This approach is a ro-

bust outlier detection technique that does not assume an underlying

data distribution (e.g., Gaussian), making it highly suitable for ana-

lyzing skewed, heavy-tailed data as seen in Figure 1a. The method

defines the central 50% of data—from the first quartile (𝑄1) to the

third quartile (𝑄3)—as the normal range. Outliers are then identified

as data points falling beyond 𝑄3 + 1.5 × IQR, where IQR =𝑄3 −𝑄1.

The box plot in Figure 1b provides a visual representation of this

principle: the box itself represents the flow’s typical delay range,

whereas the discrete points outside the whisker are identified as

delay anomalies. In this specific sample, the lower bound for an

anomalous delay is approximately four times themedian delay, with

an absolute difference approaching 5ms, thereby quantifying the

magnitude of a "significant" deviation. Our objective is to reliably

detect packets corresponding to these outliers.

However, a fixed jitter threshold is impractical because IFPD

distributions vary significantly across flows (Figure 2). This het-

erogeneity necessitates a relative definition of jitter. We therefore

define a jitter event using two conditions: a multiplicative factor

between consecutive IFPDs to ensure relativity, and an absolute

difference threshold to filter out negligible fluctuations in otherwise

low-latency flows. This dual-condition definition naturally leads to

two jitter categories: Deceleration Jitter (a sharp IFPD increase), of-

ten linked to congestion, and Acceleration Jitter (a sharp decrease),

which may indicate congestion relief or routing improvements.

Flow1 Flow2 Flow3 Flow4 Flow5 Flow6 Flow7 Flow8 Flow9 Flow10

0

2

4

6

8

10

12

Fl
ow

 G
ap

 (
m

s)

Figure 2: Jitter flows distribution.

Finally, it is crucial to note that our jitter detection is not ap-

plied to all flows. We strategically filter out flows with insufficient

traffic volume. For such flows, the small number of packet samples

precludes the formation of a statistically stable delay distribution,

rendering any statistical anomaly detection unreliable. By focusing

on persistent flows that contain enough packets to establish a mean-

ingful statistical profile, we ensure the accuracy of our detection

and avoid misinterpreting random volatility as genuine jitter.

Example: To provide a more intuitive understanding of our jitter

definitions, Figure 3 presents six typical IFPD sequence patterns

captured from real-world network traffic. In each plot, the x-axis

Packet Sequence

IF
P

D

tn

c n n+1

tn+1

4x

(a) Deceleration
Packet Sequence

IF
P

D

n n+1

tn+1

tn

c

5x

(b) Acceleration
Packet Sequence

IF
P

D

c n+1

tn+1

n

tn

nk+1

6x5x

nk

tn

tn +1

k

k

(c) Mixed jitter

Packet Sequence

IF
P

D

c

> TMAX

(d) Potential idle flow
Packet Sequence

IF
P

D

c

(e) Micro flow
Packet Sequence

IF
P

D

c

(f) Stable flow

Figure 3: Examples of typical IFPD sequence patterns. (a)-(c)
show detectable jitter, (d)-(f) show patterns that are ignored.

represents the packet sequence index, and the y-axis shows the

corresponding IFPD. The first three patterns (Fig. 3a-3c) are tar-

gets for detection, while the last three (Fig. 3d-3f) are patterns our

algorithm is designed to ignore.

• Deceleration Jitter (Figure 3a): This plot depicts a classic de-
celeration jitter event. A sharp spike in the IFPD occurs between

two consecutive packets (e.g., packets 𝑛 and 𝑛 + 1). This abrupt

deterioration in latency is a hallmark of deceleration jitter, often

associated with increased congestion along the network path.

• Acceleration Jitter (Figure 3b): This figure illustrates a typical
acceleration jitter event, characterized by a precipitous drop in the

IFPD. The change satisfies both the multiplicative condition (e.g.,

being several times smaller than the preceding IFPD, far exceeding

a typical threshold like 𝑘 = 4) and the absolute difference threshold,

clearly constituting a detectable event.

• Mixed Jitter (Figure 3c): This pattern describes a sequence

containing both deceleration and acceleration jitter events, where

the order and interval between these opposing events are not con-

strained. For instance, Figure 3c illustrates a representative example

where a sharp deceleration event (between packets 𝑛 and 𝑛 + 1) is
immediately followed by an acceleration event (between packets

𝑛𝑘 and 𝑛𝑘 + 1). Our algorithm is designed to identify and report

these as distinct events, regardless of their specific arrangement.

• Potential Idle Flow (Figure 3d): This plot illustrates a potential
idle flow, characterized by an abnormally large spike in IFPD—so

large that the difference between its peak and baseline exceeds the

upper threshold 𝑇𝑚𝑎𝑥 . Such a spike typically occurs when a flow

has been idle for an extended period and resumes transmission.

Since this behavior stems from flow inactivity rather than network

timing instability, our algorithm excludes it from jitter detection.

•Micro Flow (Figure 3e): This plot represents the highly erratic

IFPD pattern of a micro, non-persistent flow. Although the IFPD

fluctuates, such flows lack the statistical stability necessary for

reliable analysis and are therefore intentionally filtered out by our

algorithm, not being subject to jitter detection.

• Stable Flow (Figure 3f): This figure shows the ideal pattern of a

stable, healthy flow. The IFPD remains consistently within a narrow

band, indicating reliable network conditions. This pattern serves

as the "healthy" baseline against which jittery flows are identified.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Zhongxian Liang et al.

2.3 Related Work
Research on packet delay jitter can be categorized into three main

areas based on deployment and objective: end-host delay variation,

traffic-specific jitter detection, and in-network IFPD detection.

End-Host Packet Delay Variation Detection: A significant body

of research focuses on measuring delay jitter from an end-to-end

perspective, utilizing metrics such as One-Way Delay Variation

(OWDV) [4] or Round-Trip Time (RTT) [35]. Technically, some of

these methods are based on Inter-Packet Delay (IPD) [7] calcula-

tions, while others employ predictive models like Autoregressive

(AR) processes or adaptive filtering algorithms such as the Nor-

malized Least Mean Square (NLMS) [38] to assess network delay.

The main limitation of these end-host approaches is they cannot

pinpoint the source of the jitter; they only observe the cumulative

end-to-end result, not the specific node or link causing it. Further-

more, their focus on macroscopic characteristics, such as OWD

or RTT, differs in analytical granularity from this paper’s concern

with intra-flow, microscopic IFPD jitter.

Traffic-Specific Jitter Detection: A second category of works is

dedicated to tailoring jitter detection algorithms for specific types

of network traffic or protocols. For example, in the context of mul-

timedia streaming, certain strategies implement active buffer man-

agement mechanisms at the gateway to identify and discard packets

exhibiting excessive jitter [11], thereby preserving playback quality.

Similarly, there are methods strictly oriented towards Real-time

Transport Protocol (RTP) sessions [51]. These approaches evaluate

network congestion by parsing the specific jitter feedback fields

embedded within Real-time Transport Control Protocol (RTCP) re-

ports. Other researchers have focused on analyzing the Inter-Packet

Delay Variation (IPDV) within TCP connections to model its impact

on transmission throughput [28]. While these specialized methods

often yield high precision within their respective domains, their

inherent dependency on specific traffic features, payload inspection,

or protocol headers severely limits their universality across diverse,

multi-protocol network environments.

In-Network IFPD Detection: To achieve lightweight, line-rate de-

lay monitoring on network devices like switches, researchers have

proposed various schemes based on compact data structures such

as sketches [9, 10, 14, 17, 25, 27, 30, 36, 39–42, 44, 45, 47, 48]. The

primary goal of these schemes is to monitor the value of IFPD.

Prominent examples include DelaySketch [54] and FD-Filter [24].

They use sophisticated data structures to record the approximate

arrival time of a flow’s previous packet with minimal memory,

thereby enabling an estimation of the current packet’s IFPD. How-

ever, these methods are designed for IFPD estimation, not jitter

detection, as they do not store consecutive IFPD values. Adapting

them for jitter detection would require building more complex mod-

ules, such as hash tables, to track IFPD changes over time, which

would introduce significant memory overhead.

In summary, existing solutions exhibit clear gaps: end-host meth-

ods lack the necessary in-network visibility for fault localization;

traffic-specific solutions are, by definition, not protocol-agnostic;

and current in-network approaches focus on singular IFPD estima-

tions rather than capturing dynamic, consecutive jitter patterns.

Consequently, developing a lightweight, universal solution capable

of detecting complex jitter patterns directly within the network

infrastructure remains an open and significant challenge.

Micro

Filter

stage 1

micro flow

Micro

Filter

stage 1

micro flow

Stable

Cache

stage 2

stable flow

Stable

Cache

stage 2

stable flow

Jitter

Detector

stage 3

jitter flow

Jitter

Detector

stage 3

jitter flow

Stability
Achieved

Jitter
Detected

(x,t)

Flow
Progression

(x,t) Lookup

Insert

Figure 4: JitterSketch data structure.

3 JitterSketch Design
This section details the design of JitterSketch. We first present its

three-stage architecture, then describe the design and implemen-

tation of each stage. A running example is provided at the end to

illustrate the algorithm’s operational flow.

3.1 Algorithm Framework Overview
To detect network jitter efficiently, JitterSketch utilizes a three-stage

pipeline architecture, as illustrated in Figure 4. The pipeline begins

with the Micro Filter, which screens incoming traffic based on flow

size to discard negligible, low-frequency flows. The surviving flows

are passed to the Stable Cache, which measures IFPDs and flags

flows that show signs of instability. These potential jittery flows

are then handed over to the final stage, the Jitter Detector, which

monitors them closely to verify and report actual jitter events.

When a packet (𝑥, 𝑡) arrives, JitterSketch first performs a reverse
lookup, searching from Stage 3 back to Stage 1. This ensures that

an existing flow is always found in its most advanced monitoring

stage. If the flow 𝑥 is found, it is updated directly within that stage.

Otherwise, it is treated as a new flow and processed by Stage 1.

Micro Filter

w

+1h(.)
(x,t)

-1
Id=fp?

update

counter

fp freq

key(m1 bit) counter

fp freq

key(m1 bit) counter

Figure 5: Stage one data structure.

3.2 Micro Filter (Stage 1)
As depicted in Figure 5, the data structure for the Micro Filter

is an array of 𝑤 buckets. Each bucket stores two fields: a finger-

print of a flow’s key (𝑓 𝑝) and its frequency counter (𝑓 𝑟𝑒𝑞). To

conserve memory, the fingerprint is generated by a dedicated func-

tion, fingerprint𝑠 (), and is significantly shorter than the original

flow key (e.g., 8 bits). The processing in this stage is divided into

lookup and insert operations.

Operation: lookup
1
(𝑥, 𝑡). This operation is performed as part of

the reverse lookup to check if flow 𝑥 is currently tracked in Stage 1.

It traverses the bucket 𝐵1 [ℎ(𝑥)].
(1) Fingerprint Match: If the bucket’s stored fingerprint matches

fingerprint𝑠 (𝑥), the flow’s frequency counter is incremented (i.e.,

𝐵1 [ℎ(𝑥)] .𝑓 𝑟𝑒𝑞++). If the frequency reaches the threshold 𝐶 (i.e.,

𝑓 𝑟𝑒𝑞≥𝐶), the flow is promoted to Stage 2 via the insert2 (𝑥, 𝑡) opera-
tion, and the bucket is cleared. Otherwise, the operation concludes.

(2) No Match: If the fingerprint does not match (i.e., the bucket is

empty or occupied by another flow), the insert1 (𝑥, 𝑡) operation is

called to handle the insertion.

JitterSketch: Finding Jittery Flows in Network Streams WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

(x,t)

Micro

Filter

stage one

<key,t>

Stable Cache

s

update IFPD,

timestampg(.)
long fp last arrival time

key(m2 bit) timestamp

Small IFPD

∆t (n1 bit)

long fp last arrival time

key(m2 bit) timestamp

Small IFPD

∆t (n1 bit)

Figure 6: Stage two data structure.
Operation: insert1 (𝑥, 𝑡). This operation handles the insertion

of a new flow in bucket 𝐵1 [ℎ(𝑥)].
(1) Empty Bucket: If the bucket is empty, the new flow’s fingerprint,

fingerprint𝑠 (𝑥), is stored and its frequency is set to 1.

(2) Occupied Bucket: If the bucket is occupied by another flow,

the frequency counter of the existing flow is decremented. If the

counter drops to 0 as a result, the bucket is cleared.

This mechanism effectively acts as a filter, retaining a vast num-

ber of flows with a frequency less than 𝐶 within this stage, thereby

significantly reducing the processing load on the subsequent stages.

Optimization: To further enhance accuracy, the Micro Filter

can be extended to use 𝑣 hash functions (𝑣 ≥ 1), mapping each

flow to 𝑣 candidate buckets across parallel arrays. Since most net-

work flows are filtered within this stage, providing multiple place-

ment options mitigates the impact of hash collisions and improves

tracking fidelity. We denote the variant with this optimization as

JitterSketch-Opt. This enhancement, however, introduces a direct

trade-off between higher precision and the computational cost of

the additional hash calculations.

3.3 Stable Cache (Stage 2)
Figure 6 illustrates the data structure of the Stable Cache, which

consists of an array of 𝑠 buckets. Each bucket contains three fields:

a long fingerprint (generated by 𝑓 𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑙), a timestamp (de-

noting the last-seen time), and the stored small IFPD (e.g., 4bits).

This stage employs a longer fingerprint (e.g., 16 bits) than that

in Stage 1, though it is still much shorter than the full flow key.

This is because flows that reach Stage 2 have already surpassed the

frequency threshold 𝐶 and are considered more significant. The

process is also divided into lookup and insert operations here.

Operation: lookup
2
(𝑥, 𝑡).This operation checks bucket𝐵2 [ℎ(𝑥)]

during the reverse-lookup process.

(1) Fingerprint Match: If the bucket’s stored fingerprint matches

fingerprint𝑙 (𝑥), the algorithm checks for a jitter event. A jitter event

is detected if the ratio of the current IFPD (𝑡 − timestamp) to the
previously stored IFPD satisfies the following condition:

𝑡 − timestamp
IFPD

≥ 𝑘 or

𝑡 − timestamp
IFPD

≤ 1

𝑘

This condition identifies deceleration or acceleration jitter.

• If jitter is detected, the flow information is passed to Stage 3 by

calling insert3 (𝑥, 𝑡, 𝑡 − timestamp), and 𝐵2 [ℎ(𝑥)] is cleared.
• If no jitter is detected, the bucket is updated by setting IFPD = 𝑡 −
timestamp and timestamp = 𝑡 . If the IFPD exceeds themaximum

value representable by its designated 𝑛1-bit field, the flow will be

promoted to Stage 3.

(2) No Match: If the fingerprint does not match, it means flow 𝑥

is not currently in this bucket. The reverse lookup process then

continues to Stage 1 to search for the flow there (i.e., lookup
1
(𝑥, 𝑡)).

Stable

Cache

stage two

Jitter DetectorBucket
(x,t)

<key,t,IFPD>

f(.)
update IFPD,

timestamp

Report Jitter Event

Jitter?

ll

dd

timestamp ∆t (n2 bit)key(m3 bit)

...

last arrival

time
IFPDfull ID

timestamp ∆t (n2 bit)key(m3 bit)

...

last arrival

time
IFPDfull ID

Figure 7: Stage three data structure.

Operation: insert2 (𝑥, 𝑡) This operation handles a flow’s promo-

tion from Stage 1. It unconditionally overwrites the contents of

bucket 𝐵2 [ℎ(𝑥)] with the new flow’s information: its 16-bit finger-

print, the current timestamp 𝑡 , and an initial IFPD of zero.

This design creates a clear separation: potentially unstable flows

exhibiting even a single jitter event are immediately escalated to

Stage 3 for more detailed analysis. Meanwhile, stable flows are

efficiently monitored in Stage 2 using their compact fingerprint.

3.4 Jitter Detector (Stage 3)
Figure 7 illustrates the Jitter Detector. It is structured as an array of

𝑙 buckets, where each bucket contains 𝑑 entries. Unlike the previous

stages, each entry stores the full flow key, timestamp, and IFPD.

The use of full keys is justified as flows promoted to this stage

are considered potentially jittery and require precise tracking. The

process is also divided into lookup and insert operations.

Operation: lookup
3
(𝑥, 𝑡). This operation traverses the bucket

𝐵3 [ℎ(𝑥)] to find an entry matching the flow key.

(1) Key Match: If an entry with key x is found, its jitter status is re-

evaluated using the same condition as in Stage 2. If the flow exhibits

jitter, an event is reported. Otherwise, if the flow is currently stable,

its IFPD and timestamp are updated with the new values.

(2) No Match: If the key is not found after checking all 𝑑 entries,

the reverse lookup process continues to Stage 2 by performing the

lookup
2
(𝑥, 𝑡) operation.

Operation: insert3 (𝑥, 𝑡, IFPD). This operation is executed when

a flow is promoted from Stage 2. It traverses the bucket 𝐵3 [ℎ(𝑥)].
(1) Empty Entry: If the bucket has an empty entry, the new flow

information (𝑥, 𝑡, IFPD) is stored there.

(2) Bucket Full: If all entries in the bucket are occupied, an existing

entry must be evicted. The entry chosen for replacement is the one

that maximizes the value of
𝑡−entry.timestamp

entry.IFPD
.

The eviction policy is designed to identify and replace the flow

that is most likely to be inactive. A simple least-recently-seen (LRU)

approach, which would evict the entry with the oldest timestamp,

is unfair to stable flows that have a naturally large IFPD. Such flows

might be mistaken as inactive simply because their inter-packet

delay is large. To address this, our eviction metric considers both the

time elapsed since the last arrival and the flow’s typical IFPD. The

ratio
𝑡−entry.timestamp

entry.IFPD
can be interpreted as the number of expected

packet arrivals that have been missed, assuming a stable IFPD. This

approach, which we call the delay-fair replacement strategy, is
therefore fairer to flows with varying IFPDs and is more effective

at identifying truly inactive flows for eviction.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Zhongxian Liang et al.

Stage 3Stage 2

e9,55

FP1,37,null
empty
fp1,19

...

fp2,6

empty
fp1,19

...

fp2,6

fp3,13
...

fp4,1
empty

fp3,13
...

fp4,1
empty

Stage 1

OPT

empty
fp6,1 id16,64,9

id10,56,30

id9,55,50

Deceleration Jitter

Acceleration Jitter

e9,55,50

e10,56,30

e1,37 empty
FP8,21,12

FP9,5,null
...

FP10,26,5
...

FP11,14,34

FP7,32,21

id14,14,10
id15,6,30
id16,55,45

Bucket n+1

id12,61,3
id13,12,10

empty

Bucket n

e10,56

e16,64

-1-1

+1+1
e1,37

e5,39

e6,43

id10

id16

Figure 8: An example of JitterSketch.
3.5 Running Example
The complete pseudo code can be found in Appendix B.3. Figure

8 shows a running example of JitterSketch. In this example, we

set the jitter detection parameter 𝑘 = 4 and the stability threshold

𝐶 = 20. The bucket depth in Stage 3 is 𝑑 = 3, and the number of

hash functions in Stage 1 is 𝑣 = 2.

Stage 1: Micro Flow Filter.

• Case 1: Packet 𝑒1 arrives. Its fingerprint matches the one in its

hashed entry, and the counter increments from 19 to 20, reaching

the stability threshold𝐶 = 20. Consequently, flow 𝑒1 is promoted

to Stage 2. The corresponding entry in Stage 2 is empty, so it is

populated with the long fingerprint of 𝑒1 and its timestamp, 37.

• Case 2: Packet 𝑒5 hashes to an occupied entry in Stage 1, causing

a collision. The existing entry’s counter is decremented to 0,

leading to its eviction.

• Case 3: Packet 𝑒6 uses 𝑣 = 2 hash functions. Its first hash location

is a collision, but the second is empty. The fingerprint for 𝑒6 is

therefore inserted into the empty slot with a counter of 1.

Stage 2: Stable Flow Cache.

• Case 4: Packet 𝑒9 arrives at Stage 2. Its newly calculated IFPD (50)

is large, flagging it as potentially jittery. The flow is promoted

and inserted into an available slot in Stage 3.

• Case 5: Packet 𝑒10 arrives at Stage 2. Its new IFPD (30) is more

than 𝑘 = 4 times its old IFPD (5), triggering a deceleration jitter

event. The flow is promoted to a full bucket in Stage 3. Our

eviction policy calculates inactivity metrics for the existing flows

(4.2 for 𝑖𝑑14, 1.67 for 𝑖𝑑15, and 0.02 for 𝑖𝑑16) and replaces the one

with the highest score (𝑖𝑑14). A jitter event for 𝑒10 is reported.

Stage 3: Jitter Detector.

• Case 6: Packet 𝑒16 arrives, which is already monitored in this

stage. Its IFPD is calculated as 9 (64-55). Compared to its recorded

IFPD of 45, the new IFPD is less than the old IFPD divided by 𝑘

(i.e., 9 < 45/4), indicating an acceleration jitter event. The system

reports an acceleration jitter event (𝑒16, 45, 9) and updates the

flow’s recorded IFPD to 9.

4 Performance Evaluation
4.1 Experiment Setup
4.1.1 Platform. Experiments ran on a Linux server (Intel i7-13700KF,

32GB DRAM). We implemented JitterSketch, its optimized version

(JitterSketch-Opt), and baselines (DelaySketch and FDFilter, aug-

mented with hashtables) in C++ using Bob Hash [1]. To ensure

consistency, we disabled CPU frequency scaling and pinned pro-

cesses to dedicated cores. The source code is also available at [2, 3].

4.1.2 Datasets. We evaluate our algorithm on CAIDA [8] and

MAWI [33] datasets, see Appendix B.1 for details.

4.1.3 Metrics. To evaluate the performance of our proposed al-

gorithms on jitter detection for network streams, we employ the

following metrics. The evaluation covers three distinct scenarios:

deceleration jitter, acceleration jitter, and mixed jitter.

Precision Rate (PR): This metric measures the fraction of cor-

rectly identified jitter events among all events reported as jitter.

Recall (RR): This metric measures the fraction of correctly

identified jitter events among all actual jitter events.

F1 Score (F1): This metric represents the harmonic mean of PR

and RR, providing a balanced measure of the overall performance.

It is calculated as
2·RR·PR
RR+PR .

Throughput (TP): The processing rate in million packets per

second (Mpps), calculated as
𝑁
𝑇
, where 𝑁 is the total number of

items and 𝑇 is the total processing time.

4.2 Parameter Settings
We tuned four key JitterSketch parameters on the CAIDA dataset:

the Stage 1 memory proportion (𝑟1), the Stage 2/3 memory ratio (𝑟2),

the Stage 3 bucket depth (𝑑), and the Stage 1 hash count (𝑣). A de-

tailed analysis is in Appendix B.2. Our final configuration allocates

memory evenly (𝑟1 = 0.5, 𝑟2 = 0.5) for all tasks. To optimize perfor-

mance, we set bucket depth 𝑑=6 for mixed jitter (𝑑=4 otherwise)

and the hash count 𝑣 = 3 for acceleration jitter (𝑣 = 2 otherwise).

4.3 Deceleration Jitter Detection
For deceleration jitter detection (Figure 9), JitterSketch consistently

outperforms baselines, maintaining near-perfect precision (≈1.0)
across all memory sizes due to its robustness against hash colli-

sions. Its recall on the CAIDA dataset scales from 0.64 to 0.93—sig-

nificantly higher than DelaySketch’s 0.47—with JitterSketch-Opt

providing a further 5–10% improvement. In terms of efficiency, Jit-

terSketch achieves an F1 score of 0.99 on MAWI2020 (200KB), far

surpassing DelaySketch (0.65) and FDFilter (0.20), while delivering

a stable throughput of 13.48 Mpps (4.3x and 10.3x faster than base-

lines, respectively); even the accuracy-optimized JitterSketch-Opt

(8.01 Mpps) exceeds baseline speeds. This performance is driven

by a multi-stage architecture where a lightweight Stage 1 filter

discards non-jittery flows, and a collision-free final stage eliminates

false positives to ensure high precision.

4.4 Acceleration Jitter Detection
In detecting acceleration jitter (Figure 10), JitterSketch demonstrates

significant advantages, achieving perfect precision (1.0) where base-

lines prove volatile against bursty patterns. Its recall improves

JitterSketch: Finding Jittery Flows in Network Streams WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

JitterSketch JitterSketch-Opt FDFilter DelaySketch

100 200 300 400 500 600
Memory(KB)

0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

(a) CAIDA, PR

100 200 300 400 500 600
Memory(KB)

0.80
0.85
0.90
0.95
1.00

Pr
ec

is
io

n
(b) MAWI2025, PR

100 200 300 400 500 600
Memory(KB)

0.80
0.85
0.90
0.95
1.00

Pr
ec

is
io

n

(c) MAWI2020, PR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

(d) CAIDA, RR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

(e) MAWI2025, RR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

(f) MAWI2020, RR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
-S

co
re

(g) CAIDA, F1

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
-S

co
re

(h) MAWI2025, F1

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
-S

co
re

(i) MAWI2020, F1

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(j) CAIDA, THP

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(k) MAWI2025, THP

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(l) MAWI2020, THP
Figure 9: Performance comparison of deceleration jitter detection on different datasets.

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(a) CAIDA, PR

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(b) MAWI2025, PR

100 200 300 400 500 600
Memory(KB)

0.80
0.85
0.90
0.95
1.00

Pr
ec

is
io

n

(c) MAWI2020, PR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

(d) CAIDA, RR

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

R
ec

al
l

(e) MAWI2025, RR

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

R
ec

al
l

(f) MAWI2020, RR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
-S

co
re

(g) CAIDA, F1

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

F1
-S

co
re

(h) MAWI2025, F1

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

F1
-S

co
re

(i) MAWI2020, F1

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(j) CAIDA, THP

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(k) MAWI2025, THP

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(l) MAWI2020, THP
Figure 10: Performance comparison of accelerate jitter detection on different datasets.

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(a) CAIDA, PR

100 200 300 400 500 600
Memory(KB)

0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

(b) MAWI2025, PR

100 200 300 400 500 600
Memory(KB)

0.80
0.85
0.90
0.95
1.00

Pr
ec

is
io

n

(c) MAWI2020, PR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

(d) CAIDA, RR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

(e) MAWI2025, RR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

(f) MAWI2020, RR

100 200 300 400 500 600
Memory(KB)

0.0
0.2
0.4
0.6
0.8
1.0

F1
-S

co
re

(g) CAIDA, F1

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

F1
-S

co
re

(h) MAWI2025, F1

100 200 300 400 500 600
Memory(KB)

0.4

0.6

0.8

1.0

F1
-S

co
re

(i) MAWI2020, F1

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(j) CAIDA, THP

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(k) MAWI2025, THP

100 200 300 400 500 600
Memory(KB)

0
3
6
9

12
15

TH
P(

M
pp

s)

(l) MAWI2020, THP
Figure 11: Performance comparison of mix jitter detection on different datasets.

dramatically with memory, with JitterSketch-Opt notably achiev-

ing 0.997 recall on MAWI2020 with just 200KB, whereas baselines

fail to saturate even at 600KB. High memory efficiency is confirmed

by an F1 score of 0.98 on the CAIDA dataset (100KB)—drastically

outperforming DelaySketch (0.68) and FDFilter (0.58)—alongside

an outstanding throughput of 12.71 Mpps (4.0x and 9.6x faster than

baselines). These results stem from the algorithm’s innovative de-

sign, where the lightweight first-stage filter effectively absorbs

traffic spikes and decouples initial processing from detailed state-

tracking, thereby preventing the bottlenecks typical of baselines.

4.5 Mixed Jitter Detection
For mixed jitter detection (Figure 11), JitterSketch establishes com-

prehensive superiority by maintaining perfect precision (1.0) and

high stability, even as baseline methods become highly unstable. On

MAWI2020 (600KB), its recall reaches 0.996, far surpassing FDFilter

(0.32) and DelaySketch (0.82), with JitterSketch-Opt consistently

outperforming the standard version by roughly 5%. The algorithm

exhibits "fast convergence", reaching an F1 score above 0.9 with

minimal memory, and maintains a stable throughput of 12.67 Mpps

despite traffic complexity. This robustness is attributed to our delay-

fair replacement strategy, which ensures unbiased monitoring of

diverse latency characteristics, preventing bias toward any single

jitter type when acceleration and deceleration events coexist.

4.6 Practical Application
4.6.1 Background. In Quality of Service (QoS) networks, delay

jitter—the variance in packet delay—is a critical metric [22, 43].

To mitigate this, we employ an optimized framework leveraging

JitterSketch, benchmarked against the classic On-Line Delay-Jitter

Control (OLDC) algorithm [32]. OLDC utilizes a buffer of size 2𝐵

to regularize output. It accumulates 𝐵 packets before computing

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Zhongxian Liang et al.

Ingress Flows

Non-Jitter Flows

Jitter

Sketch

Jitter Report

OLDC

algorithm

Control Signal

Jitter

Flows

Jitter Flow Filter

Jitter Monitor

Flow Separator

Per-Flow Buffer(flow_ id)

Per-Flow Buffer(flow_ id)

Per-Flow Buffer(flow_ id)

Jitter Control Module

Per-Flow Buffer(flow_ id)

Per-Flow Buffer(flow_ id)

Per-Flow Buffer(flow_ id)

Jitter Control Module

Figure 12: Optimized jitter control framework.

a periodic release schedule, subject to two key constraints: the

Arrival Constraint, ensuring a packet is not released before its

actual arrival; and the Overflow Constraint, which mandates the

𝑘-th packet be released by the time the (𝑘 + 2𝐵)-th packet arrives

to prevent buffer overflows.

4.6.2 Jitter Flow Optimization Framework. Since device memory

and computational resources are finite, providing unlimited jitter

control for all flows is infeasible. It is therefore essential to prioritize

resources for flows exhibiting significant jitter. To address this, we

propose an optimized framework that integrates JitterSketch for

real-time jitter detection as shown in Figure 12.

The workflow of the optimized framework is as follows:

(1) Jitter Flow Filter: Ingress flows are directed to a Jitter Flow

Filter. A Jitter Monitor component, powered by the JitterS-

ketch algorithm, analyzes traffic in real-time to identify jittery

flows. A Flow Separator then divides the traffic into Jitter

Flows and Non-Jitter Flows. Non-jittery flows are forwarded

directly without further processing.

(2) Jitter Control: The identified Jitter Flows are sent to a Jitter

Control Module. Guided by the OLDC algorithm, this module

uses its limited per-flow buffers to shape the flows and suppress

jitter before outputting the processed traffic.

This targeted approach ensures that valuable resources are allo-

cated precisely to the flows most in need of traffic shaping, maxi-

mizing resource efficiency and overall network QoS.

4.6.3 Performance Evaluation Metrics. We adopt metrics from the

original OLDC paper, starting with the FlowDelay Variation (𝐷𝜎).
Unlike instantaneous IFPD, 𝐷𝜎 measures macroscopic stability by

calculating the maximum deviation between actual release times

(𝑡𝑖) and the ideal period based on average inter-arrival time (𝑋𝑎):

𝐷𝜎 = max

0≤𝑖,𝑘≤𝑛
{|𝑡𝑖 − 𝑡𝑘 − (𝑖 − 𝑘)𝑋𝑎 |} (1)

From 𝐷𝜎 , we derive two network-wide metrics: the Sum of Delay
Variations (𝐷𝑠𝑢𝑚 =

∑
𝜎∈𝑆 𝐷𝜎), where a lower sum indicates bet-

ter overall service quality; and the Number of Variation Flows
(𝑁𝑓 𝑙𝑜𝑤 = |{𝜎 ∈ 𝑆 | 𝐷𝜎 > 0}|), which counts persistent flows with

non-zero variation to measure the scope of jitter impact.

4.6.4 Experimental Results. Sum of Delay Variations (𝐷𝑠𝑢𝑚): As
shown in Figure 13, our JitterSketch-optimized (OLDC+JitterSketch)

framework consistently outperforms the standard OLDC algorithm.

In Figure 13a, with a fixed buffer of 4000, increasing the OLDC

parameter 𝐵 from 1 to 6 reduces 𝐷𝑠𝑢𝑚 for our framework from

OLDC+JitterSketch OLDC Original

1 2 3 4 5 6
B size

1.4

1.6

1.8

Va
ria

tio
n

Su
m

1e9

(a) 𝐷𝑠𝑢𝑚 .

2 3 4 5 6 7
Buffer Amount1e3

1.0

1.5

Va
ria

tio
n

Su
m

1e9

(b) 𝐷𝑠𝑢𝑚 .

1 2 3 4 5 6
B size

1.0

1.1

1.2

Fl
ow

 N
um

be
r

1e4

(c) 𝑁𝑓 𝑙𝑜𝑤 .

2 3 4 5 6 7
Buffer Amount1e3

1.0

1.2

Fl
ow

 N
um

be
r

1e4

(d) 𝑁𝑓 𝑙𝑜𝑤 .
Figure 13: Performance evaluation on 𝐷𝑠𝑢𝑚 and 𝑁𝑓 𝑙𝑜𝑤 .

1.50 × 10
9
to 1.39 × 10

9
, significantly outperforming OLDC. In

Figure 13b, with 𝐵 fixed at 4, increasing the buffer amount from

2000 to 7000 lowers the 𝐷𝑠𝑢𝑚 for our framework to 1.04 × 10
9
,

compared to 1.33 × 109 for OLDC.
Number of Variation Flows (𝑁𝑓 𝑙𝑜𝑤): As shown in Figure 13c,

13d. Our framework also reduces the scope of jitter-affected services

more effectively. By either increasing the B size (reducing variation

flows from 11,538 to 9,905) or the buffer amount (reducing them

from 11,577 to 8,250), our framework eliminates jitter entirely for

more flows than the OLDC algorithm across all configurations.

Summary:The results confirm the superiority of our JitterSketch-

optimized framework. Its advantage lies in intelligent resource

allocation. The traditional OLDC algorithm treats all flows indis-

criminately, wasting limited buffer resources on flows that exhibit

little to no jitter. In contrast, our framework uses JitterSketch to

first identify problematic flows and then concentrates resources

where they are most needed. This targeted approach leads to a

greater reduction in both 𝐷𝑠𝑢𝑚 and 𝑁𝑓 𝑙𝑜𝑤 under identical resource

constraints. As resources increase, the performance of both meth-

ods improves, but the efficiency gap widens, further highlighting

the superiority of our optimized framework.

5 Conclusion
This paper introduces JitterSketch, the first sketch-based algorithm

specifically designed for high-precision detection of diverse jittery

flows. Its resource-efficient, multi-stage architecture filters non-

essential traffic, enabling it to outperform baselines with a ∼50%
point improvement in both precision and recall, and a 10x higher

throughput. The practical value of JitterSketchwas further validated

in a QoS system, where it yielded significant improvements in

quality of service. This work establishes JitterSketch as a powerful

solution for modern network quality and jitter monitoring.

Acknowledgments
We sincerely thank the anonymous reviewers for their constructive

comments. This work was conducted under the leadership of the

corresponding authors, Wenjun Li, Weizhe Zhang, and Tong Yang,

and was supported in part by the National Key Research and De-

velopment Program of China (No. 2025YFE0200100), the Major Key

Project of Peng Cheng Laboratory (No. PCL2025A07), the National

Natural Science Foundation of China (NSFC) / Research Grants

Council (RGC) Collaborative Research Scheme (No. 62461160332 &

CRS_HKUST602/24), the National Natural Science Foundation of

China (No. 62221003, 62132004, 62472246, 62102203), the Young Top-

notch Talent Project of Guangdong Province (No. 2023TQ07X362),

the Basic Research Enhancement Program (No. 2021-JCJQ-JJ-0483),

and the Shenzhen Postdoctoral Fund (No. DZ31000010).

JitterSketch: Finding Jittery Flows in Network Streams WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

References
[1] Bob Hash Website. http://burtleburtle.net/bob/hash/evahash.html.

[2] JitterSketch GitHub. https://github.com/wenjunpaper/JitterSketch.

[3] JitterSketch Website. https://turbonet.team/JitterSketch.

[4] Makoto Aoki, Eiji Oki, and Roberto Rojas-Cessa. 2010. Scheme to measure one-

way delay variation with detection and removal of clock skew. in IEEE HPSR

(2010).

[5] Anastasiia Beznosyk, Peter Quax, Karin Coninx, and Wim Lamotte. 2011. In-

fluence of network delay and jitter on cooperation in multiplayer games. In

Proceedings of the 10th international conference on virtual reality continuum and

its applications in industry. 351–354.

[6] Lawrence S Brakmo, Sean W O’malley, and Larry L Peterson. 1994. TCP Vegas:

New techniques for congestion detection and avoidance. In Proceedings of the

conference on Communications architectures, protocols and applications. 24–35.

[7] Dinh Thai Bui, Arnaud Dupas, and Michel Le Pallec. 2009. Packet delay varia-

tion management for a better IEEE1588V2 performance. In 2009 International

Symposium on Precision Clock Synchronization for Measurement, Control and

Communication. IEEE, 1–6.

[8] CAIDA. 2025. The CAIDA Anonymized Internet Traces. http://www.caida.org/

data/overview/.

[9] Lu Cao, Qilong Shi, Yuxi Liu, Hanyue Zheng, Yao Xin, et al. 2024. Bubble Sketch:

A High-performance and Memory-efficient Sketch for Finding Top-k Items in

Data Streams. in ACM CIKM (2024).

[10] Lu Cao, Qilong Shi, Weiqiang Xiao, Nianfu Wang, Wenjun Li, Zhijun Li, Weizhe

Zhang, and Mingwei Xu. 2025. Hypersistent Sketch: Enhanced Persistence

Estimation via Fast Item Separation. in IEEE ICDE (2025).

[11] Siu-Ping Chan, C-W Kok, and Albert K Wong. 2005. Multimedia streaming

gateway with jitter detection. IEEE Transactions on Multimedia 7, 3 (2005), 585–

592.

[12] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papagiannaki, and

Christophe Diot. 2007. Analysis of point-to-point packet delay in an operational

network. Computer Networks 51, 13 (2007), 3812–3827.

[13] Mark Claypool and Jonathan Tanner. 1999. The effects of jitter on the peceptual

quality of video. In Proceedings of the seventh ACM international conference on

Multimedia (Part 2). 115–118.

[14] Shuang Cui, Kai Han, Jing Tang, He Huang, Xueying Li, and Zhiyu Li. 2023.

Streaming algorithms for constrained submodular maximization. in ACM SIG-

METRICS (2023).

[15] Michael K Daly. 2009. Advanced persistent threat. Usenix, Nov 4, 4 (2009),

2013–2016.

[16] Edward J Daniel, Christopher M White, and Keith A Teague. 2003. An interar-

rival delay jitter model using multistructure network delay characteristics for

packet networks. In The Thrity-Seventh Asilomar Conference on Signals, Systems

& Computers, 2003, Vol. 2. IEEE, 1738–1742.

[17] Zhuochen Fan, Zhongxian Liang, Zirui Liu, Dayu Wang, Dong Wen, Wenjun Li,

Tong Yang, Yuzhou Liu, and Weizhe Zhang. 2026. PSSketch: Finding Persistent

and Sparse Flow with High Accuracy and Efficiency. in ACM SIGKDD (2026).

[18] Domenico Ferrari. 1992. Delay jitter control scheme for packet-switching inter-

networks. Computer communications 15, 6 (1992), 367–373.

[19] Bur Goode. 2002. Voice over internet protocol (VoIP). Proc. IEEE 90, 9 (2002),

1495–1517.

[20] Rong Gu, Simian Li, Haipeng Dai, Hancheng Wang, Yili Luo, et al. 2023. Adaptive

online cache capacity optimization via lightweight working set size estimation

at scale. in USENIX ATC (2023).

[21] Stephen R Gulliver and Gheorghita Ghinea. 2007. The perceptual and atten-

tive impact of delay and jitter in multimedia delivery. IEEE Transactions on

Broadcasting 53, 2 (2007), 449–458.

[22] Karim Hammad, Abdallah Moubayed, Abdallah Shami, and Serguei Primak. 2016.

Analytical approximation of packet delay jitter in simple queues. IEEE Wireless

Communications Letters 5, 6 (2016), 564–567.

[23] Thoufique Haq, Jinjian Zhai, and Vinay K Pidathala. 2017. Advanced persistent

threat (APT) detection center. US Patent 9,628,507.

[24] Jintao He, Jie Gui, Tian Lv, Jiaqi Zhu, and Qun Huang. 2025. FD-Filter: A Compact

Data Structure for Fine-Grained Intra-Flow Packet Delay Monitoring. in IEEE

INFOCOM (2025).

[25] He Huang, Jiakun Yu, Yang Du, Jia Liu, Haipeng Dai, and Yu-E Sun. 2023. Memory-

Efficient and Flexible Detection of Heavy Hitters in High-Speed Networks. in

ACM SIGMOD (2023).

[26] Sofiene Jelassi, Habib Youssef, and Guy Pujolle. 2009. Parametric speech quality

models for measuring the perceptual effect of network delay jitter. In 2009 IEEE

34th Conference on Local Computer Networks. IEEE, 193–200.

[27] Peng Jia, Pinghui Wang, Rundong Li, Junzhou Zhao, Junlan Feng, Xidian Wang,

and Xiaohong Guan. 2024. A Compact and Accurate Sketch for Estimating a

Large Range of Set Difference Cardinalities. in IEEE ICDE (2024).

[28] Martin E Jobst, Stephan M Gunther, Maximilian Riemensbergery, Georg Carle,

and Wolfgang Utschicky. 2015. Adaptive suppression of inter-packet delay

variations in coded packet networks. in IEEE NetCod (2015).

[29] Mansour J Karam and Fouad A Tobagi. 2002. Analysis of delay and delay jitter of

voice traffic in the Internet. Computer Networks 40, 6 (2002), 711–726.

[30] Jiaqian Liu, Ran Ben Basat, Louis De Wardt, Haipeng Dai, and Guihai Chen. 2024.

DISCO: A Dynamically Configurable Sketch Framework in Skewed Data Streams.

in IEEE ICDE (2024).

[31] Aneeq Mahmood, Reinhard Exel, and Thilo Sauter. 2014. Delay and jitter char-

acterization for software-based clock synchronization over WLAN using PTP.

IEEE Transactions on industrial informatics 10, 2 (2014), 1198–1206.

[32] Yishay Mansour and Boaz Patt-Shamir. 2002. Jitter control in QoS networks.

IEEE/ACM Transactions On Networking 9, 4 (2002), 492–502.

[33] MAWI Working Group. 2024. MAWI Working Group Traffic Archive. http:

//mawi.wide.ad.jp/mawi/.

[34] Daniel A Menasce. 2002. QoS issues in web services. IEEE internet computing 6,

6 (2002), 72–75.

[35] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.

2015. TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM

Computer Communication Review 45, 4 (2015), 537–550.

[36] Yiyan Qi, Pinghui Wang, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang,

Guangjian Tian, John CS Lui, and Xiaohong Guan. 2020. Streaming algorithms for

estimating high set similarities in loglog space. IEEE Transactions on Knowledge

and Data Engineering 33, 10 (2020), 3438–3452.

[37] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer, and

Natalie Degrande. 2004. Objective and subjective evaluation of the influence of

small amounts of delay and jitter on a recent first person shooter game. In ACM

SIGCOMM workshop on Network and system support for games.

[38] Aziz Shallwani and Peter Kabal. 2003. An adaptive playout algorithm with

delay spike detection for real-time VoIP. In CCECE 2003-Canadian Conference on

Electrical and Computer Engineering. Toward a Caring and Humane Technology

(Cat. No. 03CH37436), Vol. 2. IEEE, 997–1000.

[39] Qilong Shi, Chengjun Jia, Wenjun Li, Zaoxing Liu, Tong Yang, Jianan Ji, Gao-

gang Xie, Weizhe Zhang, and Minlan Yu. 2024. BitMatcher: Bit-level Counter

Adjustment for Sketches. in IEEE ICDE (2024).

[40] Qilong Shi, Xirui Li, Hanyue Zheng, Tong Yang, Yangyang Wang, and Mingwei

Xu. 2025. HeavyLocker: Lock Heavy Hitters in Distributed Data Streams. in

ACM SIGKDD (2025).

[41] Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang.

2023. Cuckoo Counter: Adaptive Structure of Counters for Accurate Frequency

and Top-k Estimation. IEEE/ACM Transactions on Networking (2023).

[42] Lu Tang, Qun Huang, and Patrick PC Lee. 2019. Mv-sketch: A fast and com-

pact invertible sketch for heavy flow detection in network data streams. IEEE

INFOCOM (2019).

[43] Dinesh C Verma, Hui Zhang, and Domenico Ferrari. 1991. Delay jitter control for

real-time communication in a packet switching network. International Computer

Science Institute.

[44] Jiayao Wang, Qilong Shi, Xiyan Liang, Han Wang, Wenjun Li, Ziling Wei, Weizhe

Zhang, and Shuhui Chen. 2025. PBSketch: Finding Periodic Burst Items in Data

Streams. in ACM SIGKDD (2025).

[45] PinghuiWang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, ChenxuWang, John CS

Lui, and Xiaohong Guan. 2019. A memory-efficient sketch method for estimating

high similarities in streaming sets. in ACM SIGKDD (2019).

[46] EH-K Wu and Mei-Zhen Chen. 2004. JTCP: Jitter-based TCP for heterogeneous

wireless networks. IEEE Journal on Selected Areas in Communications 22, 4 (2004),

757–766.

[47] Yuhan Wu, Zhuochen Fan, Qilong Shi, Yixin Zhang, Tong Yang, Cheng Chen,

Zheng Zhong, Junnan Li, Ariel Shtul, and Yaofeng Tu. 2022. She: A generic

framework for data stream mining over sliding windows. in ACM ICPP (2022).

[48] Kaicheng Yang, Sheng Long, Qilong Shi, Yuanpeng Li, Zirui Liu, Yuhan Wu, Tong

Yang, and Zhengyi Jia. 2023. Sketchint: Empowering int with towersketch for

per-flow per-switch measurement. IEEE Transactions on Parallel and Distributed

Systems (2023).

[49] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-

ment with OpenSketch. in USENIX NSDI (2013).

[50] Liren Zhang, Li Zheng, and Koh Soo Ngee. 2002. Effect of delay and delay jitter

on voice/video over IP. Computer Communications 25, 9 (2002), 863–873.

[51] Quanxin Zhang, Hanxiao Gong, Xiaosong Zhang, Chen Liang, and Yu-an Tan.

2019. A sensitive network jitter measurement for covert timing channels over

interactive traffic. Multimedia Tools and Applications 78, 3 (2019), 3493–3509.

[52] Yinda Zhang, Peiqing Chen, and Zaoxing Liu. 2024. OctoSketch: Enabling Real-

Time, Continuous Network Monitoring over Multiple Cores. in USENIX NSDI

(2024).

[53] Li Zheng, Liren Zhang, and Dong Xu. 2001. Characteristics of network delay and

delay jitter and its effect on voice over IP (VoIP). In ICC 2001. IEEE International

Conference on Communications. Conference Record (Cat. No. 01CH37240), Vol. 1.

IEEE, 122–126.

[54] Jiaqi Zhu, Kai Zhang, and Qun Huang. 2021. A sketch algorithm to monitor high

packet delay in network traffic. in ACM APNet (2021).

http://burtleburtle.net/bob/hash/evahash.html
https://github.com/wenjunpaper/JitterSketch
https://turbonet.team/JitterSketch
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Zhongxian Liang et al.

A Mathematical Analysis
A.1 Hypotheses and Notation
Flows are independent. For a given flow 𝑥 , arrivals form a Poisson

process with rate 𝜆𝑥 > 0. Write 𝑁𝑥 (𝑡) ∼ Poisson(𝜆𝑥𝑡) for the
number of arrivals by time 𝑡 , we define the interarrival

𝐷𝑥
𝑛 = inf{𝑡 : 𝑁𝑥 (𝑡) = 𝑛} − inf{𝑡 : 𝑁𝑥 (𝑡) = 𝑛 − 1}.

Algorithm parameters: frequency threshold𝐶 , multiplicative thresh-

old 𝐾 , difference threshold 𝑇 , and upper cap 𝐹 . Short / long finger-

print collision rates are 𝑝1 = 2
−𝑚1

and 𝑝2 = 2
−𝑚2

.

A.2 Error Analysis
Stage 1 (Frequency Counter: Over-/Under-Estimation): Let
Λ(1)𝑥 =

∑
𝑦≠𝑥, 𝐻1 (𝑦)=𝐻1 (𝑥) 𝜆𝑦 . Set

𝑢 = 𝜆𝑥 + Λ(1)𝑥 𝑝1, 𝑑 = Λ(1)𝑥 (1 − 𝑝1), 𝜌 =
𝑞

𝑝
=
𝑑

𝑢
.

Definition A.1 (Birth–Death Abstraction). Let

𝑢 = 𝜆𝑥 + Λ(1)𝑥 𝑝1, 𝑑 = Λ(1)𝑥 (1 − 𝑝1), 𝜌 =
𝑞

𝑝
=
𝑑

𝑢
.

During a period “owned by 𝑥”, the counter 𝑐 (𝑡) ∈ {0, 1, . . . ,𝐶} evolves
on {1, . . . ,𝐶 − 1} with upward rate 𝑢 and downward rate 𝑑 ; states 0

and 𝐶 are absorbing. Each new owned period starts at 𝑐 (0) = 1.

Theorem A.1 (Gambler’s Ruin Closed Form). With ℎ(𝑗) the
probability to hit 𝐶 before 0 from 𝑗 ,

ℎ(𝑗) = 1 − 𝜌 𝑗

1 − 𝜌 𝐶
(𝜌 ≠ 1), ℎ(𝑗) = 𝑗

𝐶
(𝜌 = 1) .

In particular,

P1
overflow

(𝑥 | Λ(1)𝑥 , 𝑝1,𝐶) =
1 − 𝜌
1 − 𝜌 𝐶

.

Proof. Embed the continuous-time chain at jump epochs to

get a simple random walk with step probabilities 𝑝 = 𝑢/(𝑢 + 𝑑),
𝑞 = 𝑑/(𝑢 + 𝑑). Solve the two-point boundary value problem ℎ(𝑗) =
𝑝ℎ(𝑗 + 1) + 𝑞ℎ(𝑗 − 1) with ℎ(0) = 0, ℎ(𝐶) = 1. □

Theorem A.2 (High-/Low-Bias Bounds).

𝐻𝑖𝑔ℎ𝐵𝑖𝑎𝑠𝑆1 ≤
1

(2𝑚1 − 1)𝑐−1 , 𝐿𝑜𝑤𝐵𝑖𝑎𝑠𝑆1 ≤ 1 − 1

𝑐 (2𝑚1 − 1)𝑐−1 .

Proof.

𝐻𝑖𝑔ℎ𝐵𝑖𝑎𝑠𝑆1 = P1
𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤

(𝑥 |Λ𝑥 , 𝑝1, 𝑐) − P1𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 (𝑥 |Λ𝑥 , 0, 𝑐)

=

1 − (𝜆𝑥+Λ
(1)
𝑥 𝑝1

Λ
(1)
𝑥 (1−𝑝1)

)

1 − (𝜆𝑥+Λ
(1)
𝑥 𝑝1

Λ
(1)
𝑥 (1−𝑝1)

)𝑐
−

1 − (Λ𝑥

𝜆𝑥
)

1 − (Λ𝑥

𝜆𝑥
)𝑐

≤ (Λ
(1)
𝑥 (1 − 𝑝1)
𝜆𝑥 + Λ(1)𝑥 𝑝1

)𝑐−1 ≈ (𝑝1

1 − 𝑝1
)𝑐−1 = 1

(2𝑚1 − 1)𝑐−1 ,

𝐿𝑜𝑤𝐵𝑖𝑎𝑠𝑆1 = 1 − P1
𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤

(𝑥 |Λ𝑥 , 𝑝1, 𝑐)

= 1 − 𝜌 − 1
𝜌𝑐 − 1 ≤ 1 − 1

𝑐𝜌𝑐−1

= 1 − 1

𝑐
(𝜆𝑥 + Λ

(1)
𝑥 𝑝1

Λ(1)𝑥 (1 − 𝑝1)
)𝑐−1

≈ 1 − 1

𝑐
(𝑝1

1 − 𝑝1
)𝑐−1 = 1 − 1

𝑐 (2𝑚1 − 1)𝑐−1 .

□
Stage 2 (Pairing Cache: No Over-Estimation; Coverage Miss):
Let Λ(2)𝑥 =

∑
𝑦≠𝑥, 𝐻2 (𝑦)=𝐻2 (𝑥) 𝜆𝑦 .

Proposition A.2 (No Over-Estimation; Proof by Contradic-

tion). Assume 𝐻𝑖𝑔ℎ𝐵𝑖𝑎𝑠𝑆2 > 0. Then some pair (𝑡𝑖−1, 𝑡𝑖) is counted
although it is not a true adjacent pair of flow 𝑥 or does not satisfy

thresholds. If produced by a long-fingerprint collision, its ID differs

from 𝑥 ’s and will be rejected in Stage 3 by full-ID equality. If it has

the same ID, Stage 2 merely relays the true adjacent pair; whether it

triggers is decided in Stage 3. Contradiction. Hence 𝐻𝑖𝑔ℎ𝐵𝑖𝑎𝑠𝑆2 = 0.

Theorem A.3 (Coverage Probability; Under-Estimation).

The underestimation due to long-fingerprint collisions:

𝐿𝑜𝑤𝐵𝑖𝑎𝑠𝑆2 =
Λ(2)𝑥

𝜆𝑥 + Λ(2)𝑥

≤ 1

2
𝑚2

.

Proof. During Δ𝑥 ∼ Exp(𝜆𝑥), the coverage probability due to

other flows sharing the Stage-2 index and colliding with rate 𝑝2 is

P(non-coverage = E[𝑃 (non-coverage|Δ = 𝑡)] (2)

= E[𝑒−Λ
(2)
𝑥 Δ] (3)

=

∫ ∞

0

𝜆𝑥𝑒
−(𝜆𝑥+Λ(2)𝑥)𝑡𝑑𝑡 =

𝜆𝑥

𝜆𝑥 + Λ(2)𝑥

(4)

𝐿𝑜𝑤𝐵𝑖𝑎𝑠𝑆2 = 1 − P(non-coverage) = Λ(2)𝑥

𝜆𝑥 + Λ(2)𝑥

(5)

≤ Λ(2)𝑥

𝜆𝑥
≈ 𝑝2 =

1

2
𝑚2

. (6)

□
Stage 3 (IFPD Detector: No Over / Under-Estimation, Misses
Only): Let Λ(3)𝑥 =

∑
𝑦≠𝑥, 𝐻3 (𝑦)=𝐻3 (𝑥) 𝜆𝑦 . Define the long-run inten-

sity of full-bucket insertions for bucket 𝑏 by

𝑟+
𝑏

= Λ(3)𝑥 𝜋full (𝑏),
where 𝜋full (𝑏) ∈ [0, 1] is the steady-state fraction of time bucket

𝑏 is full.

Proposition A.3 (No Over-Estimation; Proof by Contradic-

tion). Suppose Stage 3 over-estimates. Then a non-matching-ID pair

or a below-threshold pair must be counted. But Stage 3 compares full

IDs for equality and applies the fixed threshold rule to true adjacent

interarrivals; such pairs cannot be counted. Contradiction.

Definition A.4 (Full-Bucket Insertion Intensity). Define

𝑟+
𝑏

= lim

𝑇→∞

1

𝑇
E[#{full-bucket insertions to bucket 𝑏 in [0,𝑇]}] .

JitterSketch: Finding Jittery Flows in Network Streams WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

By Campbell’s theorem/PASTA, 𝑟+
𝑏
= Λ(3)𝑥 𝜋full (𝑏), where 𝜋full (𝑏) is

the steady-state fraction of time bucket 𝑏 is full.

Lemma A.5 (Eqiprobable Eviction). At a full-bucket time, let

the 𝑑 resident entries be 𝑥1, . . . , 𝑥𝑑 . With scoring 𝑆 𝑗 =
𝑡 − 𝑡last, 𝑗
𝐼𝐹𝑃𝐷 𝑗

and

with𝐴 𝑗 := 𝑡−𝑡last, 𝑗 ∼ Exp(𝜆𝑥 𝑗), 𝐼𝐹𝑃𝐷 𝑗 ∼ Exp(𝜆𝑥 𝑗) independent, the
variables 𝑆 𝑗 are i.i.d. with density 𝑓𝑆 𝑗 (𝑠) = 1

(1+𝑠)2 (𝑠 ≥ 0), independent

of 𝜆𝑥 𝑗 . Hence argmax1≤ 𝑗≤𝑑 𝑆 𝑗 is uniform on {1, . . . , 𝑑}; any fixed

entry is evicted with conditional probability 1/𝑑 .

Theorem A.4 (Miss-Probability Upper Bound). For flow 𝑥

with rate 𝜆𝑥 , the effective eviction intensity for 𝑥 is
1

𝑑
𝑟+
𝑏
. Competing

with the next-arrival clock 𝜆𝑥 ,

P(3)
miss
(𝑥) =

1

𝑑
𝑟+
𝑏

𝜆𝑥 + 1

𝑑
𝑟+
𝑏

≤
𝑟+
𝑏

𝜆𝑥
.

Proof. Thin the full-bucket insertion process of mean rate 𝑟+
𝑏

by 1/𝑑 (Lemma A.5) to get an eviction clock of rate (1/𝑑)𝑟+
𝑏
. The

miss event is {𝑇evict < 𝑇𝑥 } for independent exponentials, yielding
the stated formula as follows,

P(3)
𝑚𝑖𝑠𝑠
(𝑥) = P(𝑇𝑒𝑣𝑖𝑐𝑡 < Δ𝑥) =

1

𝑑
𝑟+
𝑏

𝜆𝑥 + 1

𝑑
𝑟+
𝑏

(7)

=
𝑟+
𝑏

𝑑𝜆𝑥 + 𝑟+𝑏
≤
𝑟+
𝑏

𝜆𝑥
. (8)

□

B Performance Evaluation
B.1 Datasets
CAIDA: The CAIDA dataset comprises network traffic traces from

the Equinix-Chicago monitor. It contains approximately 1.1M pack-

ets across 110K flows. For this dataset, we configure the jitter de-

tection parameters as 𝑘 = 4.0, 𝐶 = 10, 𝑇𝑚𝑖𝑛 = 5ms, and 𝑇𝑚𝑎𝑥 = 1s.

Under this configuration, we identified 55,431 deceleration jitter

events in 9,497 flows and 55,476 acceleration jitter events in 9,438

flows.

MAWI: The MAWI datasets are public traffic traces collected by

the MAWIWorking Group. We use two subsets from different dates

in our experiments.

•MAWI2020: This subset includes approximately 10M packets

from 1.9M flows. With parameters set to 𝑘 = 10.0, 𝐶 = 100, 𝑇𝑚𝑖𝑛 =

5ms, and 𝑇𝑚𝑎𝑥 = 1s, we detected 353,814 deceleration jitter events

across 1,787 flows and 1,075,182 acceleration jitter events across

1,840 flows.

•MAWI2025: This subset consists of about 5M packets from

1.1M flows. The parameters were set to𝑘 = 4.0,𝐶 = 30,𝑇𝑚𝑖𝑛 = 10ms,

and𝑇𝑚𝑎𝑥 = 1s. This resulted in the detection of 411,323 deceleration

jitter events in 3,538 flows and 410,956 acceleration jitter events in

3,535 flows.

B.2 Parameter Settings
Effects of 𝑟1: As illustrated in Figure 14, the F1 score first increases

and then decreases as 𝑟1 grows, peaking at 𝑟1 = 0.5. This is because

𝑟1 balances the memory allocation between Stage 1 and Stages 2

and 3. When 𝑟1 is too small, Stage 1 has insufficient memory to

screen and record flows, leading to low recall. Conversely, when 𝑟1

is too large, the memory allocated for Stages 2 and 3 is constrained,

which hinders the precise measurement of jitter features and thus

reduces precision. Therefore, we set 𝑟1 = 0.5 for all tasks to balance

the memory requirements for jitter measurement optimally.

100 KB 300 KB 500 KB

0.1 0.3 0.5 0.7 0.9
r1

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-S

co
re

(a) Deceleration

0.1 0.3 0.5 0.7 0.9
r1

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-S

co
re

(b) Acceleration

0.1 0.3 0.5 0.7 0.9
r1

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-S

co
re

(c) Mix
Figure 14: Evaluation on parameter 𝑟1.

0.1 0.3 0.5 0.7 0.9
r2

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-S

co
re

(a) Deceleration

0.1 0.3 0.5 0.7 0.9
r2

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-S

co
re

(b) Acceleration

0.1 0.3 0.5 0.7 0.9
r2

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-S

co
re

(c) Mix
Figure 15: Evaluation on parameter 𝑟2.

1 2 4 6 8
d

0.7

0.8

0.9

1.0

F1
-S

co
re

(a) Deceleration

1 2 4 6 8
d

0.7

0.8

0.9

1.0

F1
-S

co
re

(b) Acceleration

1 2 4 6 8
d

0.7

0.8

0.9

1.0

F1
-S

co
re

(c) Mix
Figure 16: Evaluation on parameter 𝑑 .

1 2 3 4 5
v

0.7

0.8

0.9

1.0

F1
-S

co
re

(a) Deceleration

1 2 3 4 5
v

0.7

0.8

0.9

1.0

F1
-S

co
re

(b) Accelerate

1 2 3 4 5
v

0.7

0.8

0.9

1.0

F1
-S

co
re

(c) Mix
Figure 17: Evaluation on parameter 𝑣 .

Effects of 𝑟2: As illustrated in Figure 15, 𝑟2 determines the mem-

ory allocation between Stage 2 and Stage 3. The F1 score remains

high as 𝑟2 increases from 0.1 to 0.5, but it drops significantly when

𝑟2 exceeds 0.5. This indicates that Stage 3 requires more memory

than Stage 2 to store and analyze the jitter information of candidate

flows. An overly large 𝑟2 results in insufficient memory for Stage

3, causing information loss. Consequently, we choose 𝑟2 = 0.5 as a

robust setting for all tasks, as it provides the best balance before

performance begins to decline.

Effects of 𝑑: The parameter 𝑑 , which controls the bucket depth

in Stage 3, directly impacts both measurement accuracy and pro-

cessing throughput. As shown in Figure 16, increasing 𝑑 improves

the F1 score by reducing hash collisions. However, a massive 𝑑

increases memory access overhead, which in turn can degrade

throughput. We aim to find a trade-off by selecting the smallest

value of𝑑 where the F1 score begins to plateau. For the Deceleration

and Acceleration tasks, this balance point is at 𝑑 = 4. For the more

complex Mix task, the F1 score continues to improve significantly

until 𝑑 = 6, justifying the choice of a greater depth.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Zhongxian Liang et al.

Algorithm 4: StageTwoLookup(𝑥, 𝑡)

Input :Flow key 𝑥 , timestamp 𝑡

Output :Tuple (Status, IFPD value)

1 𝑖𝑑𝑥 ← ℎ (𝑥) ;
2 𝑓 𝑝 ← fingerprint𝑙 (𝑥) ;
3 if 𝐵2 [𝑖𝑑𝑥] .𝑓 𝑝 = 𝑓 𝑝 then
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑 ← 𝑡 − 𝐵2 [𝑖𝑑𝑥] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ;

5 𝑠𝑡𝑜𝑟𝑒𝑑𝐼 𝑓 𝑝𝑑 ← 𝐵2 [𝑖𝑑𝑥] .𝑖 𝑓 𝑝𝑑 ;
6 𝑝𝑟𝑜𝑚𝑜𝑡𝑒 ← false;

7 if 𝑠𝑡𝑜𝑟𝑒𝑑𝐼 𝑓 𝑝𝑑 > 0 then
8 𝑟𝑎𝑡𝑖𝑜 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑/𝑠𝑡𝑜𝑟𝑒𝑑𝐼 𝑓 𝑝𝑑 ;
9 if 𝑟𝑎𝑡𝑖𝑜 ≥ 𝑘 or 𝑟𝑎𝑡𝑖𝑜 ≤ 1/𝑘 then
10 𝑝𝑟𝑜𝑚𝑜𝑡𝑒 ← true;

11 if not 𝑝𝑟𝑜𝑚𝑜𝑡𝑒 then
12 𝐵2 [𝑖𝑑𝑥] .𝑖 𝑓 𝑝𝑑 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑 ;

13 𝐵2 [𝑖𝑑𝑥] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑡 ;

14 if 𝐵2 [𝑖𝑑𝑥] .𝑖 𝑓 𝑝𝑑 > MAX_IFPD then
15 𝑝𝑟𝑜𝑚𝑜𝑡𝑒 ← true;

16 if 𝑝𝑟𝑜𝑚𝑜𝑡𝑒 then
17 𝐵2 [𝑖𝑑𝑥] .𝑓 𝑝 ← 0;

18 return (PROMOTED, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑) ;
19 else
20 return (UPDATED, 0) ;

21 else
22 return (NOT_FOUND, 0) ;

Algorithm 5: StageTwoInsert(𝑥, 𝑡)

Input :Flow key 𝑥 , timestamp 𝑡

1 𝑖𝑑𝑥 ← ℎ (𝑥) ; 𝑓 𝑝 ← fingerprint𝑙 (𝑥) ; 𝐵2 [𝑖𝑑𝑥] .𝑓 𝑝 ← 𝑓 𝑝 ;

2 𝐵2 [𝑖𝑑𝑥] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑡 ; 𝐵2 [𝑖𝑑𝑥] .𝑖 𝑓 𝑝𝑑 ← 0;

Algorithm 6: StageThreeLookup(𝑥, 𝑡)
Input :Flow key 𝑥 , timestamp 𝑡

Output :Boolean indicating if flow was found

1 𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝐵3 [ℎ (𝑥)];
2 for 𝑖 ← 1 to 𝑑 do
3 if 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] .𝑘𝑒𝑦 = 𝑥 then
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑 ← 𝑡 − 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ;

5 𝑠𝑡𝑜𝑟𝑒𝑑𝐼 𝑓 𝑝𝑑 ← 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] .𝑖 𝑓 𝑝𝑑 ;
6 if 𝑠𝑡𝑜𝑟𝑒𝑑𝐼 𝑓 𝑝𝑑 > 0 and (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑/𝑠𝑡𝑜𝑟𝑒𝑑𝐼 𝑓 𝑝𝑑 ≥ 𝛼

or 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑/𝑠𝑡𝑜𝑟𝑒𝑑𝐼 𝑓 𝑝𝑑 ≤ 1/𝛼) then
7 ReportJitter(𝑥 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼 𝑓 𝑝𝑑);

8 return true;

9 return false;

Algorithm 7: StageThreeInsert(𝑥, 𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼 𝑓 𝑝𝑑)
Input :Flow key 𝑥 , timestamp 𝑡 , initial IFPD 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼 𝑓 𝑝𝑑

1 𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝐵3 [ℎ (𝑥)];
2 for 𝑖 ← 1 to 𝑑 do
3 if 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] is empty then
4 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] ← (𝑥, 𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼 𝑓 𝑝𝑑) ;
5 return;

6 𝑒𝑣𝑖𝑐𝑡𝐼𝑑𝑥 ← argmax

𝑖∈ [1,𝑑]

(
𝑡−𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑏𝑢𝑐𝑘𝑒𝑡 [𝑖] .𝑖 𝑓 𝑝𝑑

)
;

7 𝑏𝑢𝑐𝑘𝑒𝑡 [𝑒𝑣𝑖𝑐𝑡𝐼𝑑𝑥] ← (𝑥, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼 𝑓 𝑝𝑑) ;

Effects of 𝑣 : The parameter 𝑣 , the number of hash functions in

Stage 1, also presents a trade-off between accuracy and throughput.

As seen in Figure 17, more hash functions can boost the F1 score by

mitigating estimation errors. However, each additional hash func-

tion adds to the computational load of packet processing, thereby

lowering throughput. We therefore select the value of 𝑣 that strikes

the best balance between F1 score improvement and performance

cost. For the Deceleration and Mix tasks, 𝑣 = 2 achieves peak per-

formance. For the Accelerate task, 𝑣 = 3 yields a significant F1 score

gain, making it the optimal choice.

B.3 Pseudo Code
This section presents the complete insertion and lookup process of

JitterSketch through pseudocode, as illustrated in Algorithms 1-7.

Algorithm 1:MainProcess(𝑥, 𝑡)

Input :Flow key 𝑥 , timestamp 𝑡

1 if StageThreeLookup(𝑥, 𝑡) then
2 return;

3 𝑠𝑡𝑎𝑡𝑢𝑠2, 𝑖 𝑓 𝑝𝑑 ← StageTwoLookup(𝑥, 𝑡) ;
4 if 𝑠𝑡𝑎𝑡𝑢𝑠2 = PROMOTED then
5 StageThreeInsert(𝑥, 𝑡, 𝑖 𝑓 𝑝𝑑); return;
6 else if 𝑠𝑡𝑎𝑡𝑢𝑠2 = UPDATED then
7 return;

8 𝑠𝑡𝑎𝑡𝑢𝑠1 ← StageOneLookup(𝑥, 𝑡) ;
9 if 𝑠𝑡𝑎𝑡𝑢𝑠1 = PROMOTED then
10 StageTwoInsert(𝑥, 𝑡);

11 else if 𝑠𝑡𝑎𝑡𝑢𝑠1 = COLLISION_OR_NEW then
12 StageOneInsert(𝑥, 𝑡);

Algorithm 2: StageOneLookup(𝑥, 𝑡)
Input :Flow key 𝑥 , timestamp 𝑡

Output :Status indicating the outcome

1 𝑖𝑑𝑥 ← ℎ (𝑥) ;
2 𝑓 𝑝 ← fingerprint𝑠 (𝑥) ;
3 if 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑝 = 𝑓 𝑝 then
4 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 ← 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 + 1;
5 if 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 ≥ 𝐶 then
6 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑝 ← 0; 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 ← 0;

7 return PROMOTED;

8 return UPDATED;

9 else
10 return COLLISION_OR_NEW;

Algorithm 3: StageOneInsert(𝑥, 𝑡)
Input :Flow key 𝑥 , timestamp 𝑡

1 𝑖𝑑𝑥 ← ℎ (𝑥) ;
2 if 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 = 0 then
3 𝑓 𝑝 ← fingerprint𝑠 (𝑥) ; 𝐵1 [𝑖𝑑𝑥] ← (𝑓 𝑝, 1) ;
4 else
5 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 ← 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 − 1;

6 if 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑟𝑒𝑞 = 0 then
7 𝐵1 [𝑖𝑑𝑥] .𝑓 𝑝 ← 0;

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Rationale for the Jitter Definition
	2.3 Related Work

	3 JitterSketch Design
	3.1 Algorithm Framework Overview
	3.2 Micro Filter (Stage 1)
	3.3 Stable Cache (Stage 2)
	3.4 Jitter Detector (Stage 3)
	3.5 Running Example

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Parameter Settings
	4.3 Deceleration Jitter Detection
	4.4 Acceleration Jitter Detection
	4.5 Mixed Jitter Detection
	4.6 Practical Application

	5 Conclusion
	Acknowledgments
	References
	A Mathematical Analysis
	A.1 Hypotheses and Notation
	A.2 Error Analysis

	B Performance Evaluation
	B.1 Datasets
	B.2 Parameter Settings
	B.3 Pseudo Code

