JitterSketch: Finding Jittery Flows in Network Streams

Zhongxian Liang”
Harbin Institute of Technology
Shenzhen, China

Qilong Shi*
Tsinghua University
Beijing, China

Xiyan Liang
Nankai University
Tianjin, China

liangzhx@pcl.ac.cn sql23@mails.tsinghua.edu.cn 2212207@mail.nankai.edu.cn
Zihan Li Wenjun Li™ Tong Yang*
National University of Defense Pengcheng Laboratory Peking University
Technology, Changsha, China Shenzhen, China Beijing, China
lizihan23@nudt.edu.cn wenjunli@pku.org.cn yangtong@pku.edu.cn
Yangyang Wang Mingwei Xu Weizhe Zhang*
Tsinghua University Tsinghua University Harbin Institute of Technology

Beijing, China
wangyy-13@tsinghua.edu.cn

Abstract

In the modern internet, with the proliferation of real-time appli-
cations such as online gaming and video conferencing, the timely
detection of network jitter has become a critical task in network
measurement. Network jitter is defined as the abrupt fluctuations
in packet inter-arrival times within network flows, which severely
degrade the Quality of Service for these applications. Traditional
jitter detection methods primarily focus on macro-level end-to-end
or hop-by-hop latency variations, neglecting the fine-grained jitter
that occurs within specific flows. In this paper, we present JitterS-
ketch, the first sketch-based algorithm specifically designed for
detecting jittery flows. JitterSketch employs a novel three-stage
structure to efficiently filter out infrequent and stable flows, thereby
identifying and reporting the jittery flows that have the most signifi-
cant impact on network quality. Extensive experiments demonstrate
that JitterSketch achieves an improvement of up to 50 percentage
points in both recall and precision rates compared to baseline solu-
tions, while maintaining high processing throughput. Furthermore,
we deployed JitterSketch in a QoS simulation system, where it
yielded significant improvements in QoS.

CCS Concepts

+ Information systems — Data stream mining; « Networks —
Network measurement.

Keywords
Network stream processing, Packet delay, Jitter flows, Sketch, QoS.

“Co-first authors. Zhongxian Liang is also with Pengcheng Laboratory.

fWenjun Li also serves as a Ph.D. co-supervisor at Harbin Institute of Technology.
This work was conducted at Pengcheng Laboratory. The first four authors are students
and carried out this work under the guidance of the corresponding author, Wenjun Li.
iCcvcorresponding authors. Weizhe Zhang is also with Pengcheng Laboratory.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW °26, Dubai, United Arab Emirates

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2307-0/2026/04

https://doi.org/10.1145/3774904.3792328

Beijing, China
xumw@tsinghua.edu.cn

Shenzhen, China
wzzhang@hit.edu.cn

ACM Reference Format:

Zhongxian Liang, Qilong Shi, Xiyan Liang, Zihan Li, Wenjun Li, Tong Yang,
Yangyang Wang, Mingwei Xu, and Weizhe Zhang. 2026. JitterSketch: Finding
Jittery Flows in Network Streams. In Proceedings of the ACM Web Conference
2026 (WWW °26), April 13-17, 2026, Dubai, United Arab Emirates. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3774904.3792328

Resource Availability:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.18300502.

1 Introduction

As internet applications become increasingly popular and diverse,
from high-definition video streaming and online gaming to real-
time voice and video communication (VoIP) [19], user expecta-
tions for Quality of Service (QoS) [34] have reached unprecedented
heights. Network latency and its stability are key metrics for mea-
suring QoS. However, in complex network environments, data pack-
ets experience varying queuing, forwarding, and propagation delays
during transmission, which leads to dynamic changes in end-to-end
latency—a phenomenon known as network jitter. Severe network
jitter can seriously disrupt the internal temporal relationship within
a data flow, causing multimedia applications to suffer from issues
like video freezing and audio-video desynchronization. It can even
interfere with the congestion control mechanisms of transport pro-
tocols like TCP, leading to a decrease in network throughput.
Traditional end-to-end jitter metrics are too coarse, masking
the micro-dynamics within individual data flows. We therefore
focus on Intra-Flow Packet Delay (IFPD)—the time interval between
consecutive packets of a flow at a network device. By monitoring
significant IFPD changes (sudden increases, decreases, or mixed
patterns), we can identify micro-burst behaviors in what we term
"jittery flows". Detecting these flows is crucial for QoS optimization,
congestion detection, and security.
® QoS Optimization: Applications like video streaming, multi-
player games and VoIP are highly sensitive to jitter [5, 13, 16, 21,
26, 29, 31, 37, 50, 53], which degrades user experience by causing
lag and interruptions. This instability leads to buffer underruns or
overflows at the receiver, halting playback or causing packet loss.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792328
https://doi.org/10.1145/3774904.3792328
https://doi.org/10.5281/zenodo.18300502
https://doi.org/10.5281/zenodo.18300502

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

Real-time IFPD monitoring provides immediate feedback, enabling
operators to dynamically adjust buffering policies and ensure a
smooth, high-quality user experience.

e Network Congestion Detection: A sharp increase in IFPD, or
"deceleration jitter", is a strong, proactive indicator of queuing delay
caused by network congestion [6, 18, 35, 46]. Unlike loss-based
signals, it allows for early detection. Conversely, a subsequent drop
in IFPD, or "acceleration jitter", signals that congestion has subsided.
This delay-based principle is fundamental to congestion control.
e APT Detection: APT [15, 20, 23, 49, 52] attacks often evade
detection by using "low-and-slow" communication for command
and control (C2) or data exfiltration. This strategy creates a distinct
compound jitter pattern: a sharp drop in IFPD followed immediately
by a sharp rise. Identifying this specific signature offers a powerful
method to uncover otherwise hidden malicious channels.

However, detecting IFPD jitter in high-speed networks is a chal-
lenging task. Existing solutions are often limited to end-hosts [12,
35], are protocol-specific [11, 28, 29, 51], or rely on coarse-grained
metrics [24, 54]. Even advanced techniques typically measure sin-
gular delay events rather than the complex, dynamic patterns char-
acteristic of threats like APTs. Moreover, above approaches are not
designed for the scale and resource constraints of core switches.
This creates a clear and significant research gap: the need for an
online, efficient, and universal algorithm that combines universality,
complex pattern detection, and resource efficiency.

To fill this gap, we propose JitterSketch, a lightweight, high-
precision algorithm for resource-constrained core networks. Its
novel multi-stage pipeline minimizes overhead by progressively
filtering flows, performing detailed jitter analysis only on the most
relevant candidates. This resource-efficient approach enables iden-
tifying jittery behavior at scale. Our main contributions are:

(1) We shift the focus from traditional delay metrics to the dynamic
patterns of IFPD, defining acceleration, deceleration, and hybrid
jitter. This offers a more granular dimension for analyzing QoS
and security threats, filling a key gap in network measurement.

(2) We present JitterSketch, the first online and lightweight al-
gorithm that delivers high-precision identification of diverse
jittery flows in high-speed networks. Its unique architecture
achieves this by strategically concentrating computational re-
sources on the most critical data flows.

(3) We evaluate JitterSketch on real-world backbone traffic, where
it demonstrates exceptional performance. It improves both pre-
cision and recall by approximately 50 percentage points and
achieves 10x the throughput of baseline solutions, all while us-
ing significantly less memory. Its effectiveness is further proven
in QoS simulations, highlighting its practical value.

The rest of this paper is organized as follows. We review back-
ground work in Section 2 and detail the JitterSketch algorithm in
Section 3. We present our theoretical analysis in Appendix A and
experimental results in Section 4, before concluding in Section 5.

2 Preliminary

This section introduces the preliminary knowledge essential for
our work. This includes the formal definition of Intra-Flow Packet
Delay (IFPD), the concept of IFPD jitter, the implications of our
modeling choices, and a review of related work.

Zhongxian Liang et al.

2.1 Problem Definition

We formally define the core concepts for our study. We model
the inbound traffic at a network device as a stream of packets.
Each packet is represented by a tuple (x, t), where x denotes the
flow key (e.g., a source/destination IP address pair or a 5-tuple),
and t represents the packet’s arrival timestamp. A sequence of
packets sharing the same flow key constitutes a flow, denoted as
Fe ={(x,t1), (x,t2), ..., (x,tp)}, where the timestamps are chrono-
logically ordered (i.e., t; < t; for alli < j). The frequency of the
flow is denoted by f, = p. For convenience, we assume an idealized
scenario without packet loss or out-of-order delivery.

2.1.1 Intra-Flow Packet Delay (IFPD). Based on this model, we
define the Intra-Flow Packet Delay (IFPD) for the i-th packet in
flow fi, denoted as D7, as the time interval between its arrival and
that of its immediate predecessor. This is mathematically expressed
as DY =tf —t1, for i > 1. By convention, the IFPD for the first
packet in a flow is defined as zero (D7 = 0).

2.1.2 IFPD Jitter. Based on the IFPD, we formally define an IFPD
jitter event as a significant and abrupt fluctuation in the inter-arrival
times of a flow. A flow F is identified as a jittery flow if it satisfies
the following three conditions at some point during its lifecycle:

(1) Significant Relative Change: There must be a sharp relative
change between two consecutive IFPDs, DY and D} ,. For a
given jitter factor k > 1, this condition is met if either of the
following occurs:

o Deceleration: Sharp increase in delay, where D7, ; > k - D.
o Acceleration: Sharp decrease in delay, where D}, < % - Df.

(2) Bounded Absolute Change: The fluctuation must be large
enough to be significant but not so large as to represent a pro-
longed transmission pause. This is enforced with lower and
upper thresholds, Ty and Tiax:

x X
Tmin < |Di+1 - Di I < Tmax

The lower bound filters noise, while the upper bound distin-
guishes jitter from intentional idle periods.

(3) Minimum Flow Size: To focus on meaningful data flows and
avoid noise from very short-lived connections, the flow’s total
packet count f; must exceed a certain threshold C:

fozc

2.2 Rationale for the Jitter Definition

To substantiate our definition of IFPD jitter, we conducted an empir-
ical analysis of real-world network traffic. Our primary finding is
that the distribution of IFPD is neither uniform nor normal; instead,
it exhibits a pronounced heavy-tailed characteristic. As illustrated
in Figure 1a, this implies that while the vast majority of packet
delays are concentrated within a relatively small and stable range,
a small fraction of packets experiences delays that are orders of
magnitude larger (e.g., in the sampled flow, 5% of packets have an
IFPD of 3ms or more). These "long-tail" delays are symptomatic of
network anomalies such as congestion, route flapping, or process-
ing bottlenecks. Capturing these packets that constitute the
long tail of the delay distribution is the goal of our algorithm.

JitterSketch: Finding Jittery Flows in Network Streams

241 —————31.0 [25%~75% T 151QR
~204 — Median Line ¢ Outlier
X 10.8
‘gm 06 25% 75%
8 8 0.4 ere 00 s cm s
4
24 10.2
0 o 0.0 . . .
00 15 3.0 45 6.0 0.0 1.5 4.5 6.0

3.0
IFPD (ms) IFPD(ms)
(a) IFPD distribution. (b) A jitter flow’s distribution.
Figure 1: Analysis of IFPD and jitter flow distributions.

To statistically demarcate normal from anomalous delays, we
employ the Interquartile Range (IQR) method. This approach is a ro-
bust outlier detection technique that does not assume an underlying
data distribution (e.g., Gaussian), making it highly suitable for ana-
lyzing skewed, heavy-tailed data as seen in Figure 1a. The method
defines the central 50% of data—from the first quartile (Q;) to the
third quartile (Q3)—as the normal range. Outliers are then identified
as data points falling beyond Qs + 1.5 X IQR, where IQR = Q5 — Q;.
The box plot in Figure 1b provides a visual representation of this
principle: the box itself represents the flow’s typical delay range,
whereas the discrete points outside the whisker are identified as
delay anomalies. In this specific sample, the lower bound for an
anomalous delay is approximately four times the median delay, with
an absolute difference approaching 5ms, thereby quantifying the
magnitude of a "significant” deviation. Our objective is to reliably
detect packets corresponding to these outliers.

However, a fixed jitter threshold is impractical because IFPD
distributions vary significantly across flows (Figure 2). This het-
erogeneity necessitates a relative definition of jitter. We therefore
define a jitter event using two conditions: a multiplicative factor
between consecutive IFPDs to ensure relativity, and an absolute
difference threshold to filter out negligible fluctuations in otherwise
low-latency flows. This dual-condition definition naturally leads to
two jitter categories: Deceleration Jitter (a sharp IFPD increase), of-
ten linked to congestion, and Acceleration Jitter (a sharp decrease),
which may indicate congestion relief or routing improvements.

12
10

Llllieddl

Flo‘w1 FIo‘wZ FIt;wS Flo‘w4 FI(;WS Flt;wﬁ Flo‘w7 Flo‘w8 FIt;wB FIo\‘N10
Figure 2: Jitter flows distribution.

Flow Gap (ms)

Finally, it is crucial to note that our jitter detection is not ap-
plied to all flows. We strategically filter out flows with insufficient
traffic volume. For such flows, the small number of packet samples
precludes the formation of a statistically stable delay distribution,
rendering any statistical anomaly detection unreliable. By focusing
on persistent flows that contain enough packets to establish a mean-
ingful statistical profile, we ensure the accuracy of our detection
and avoid misinterpreting random volatility as genuine jitter.
Example: To provide a more intuitive understanding of our jitter
definitions, Figure 3 presents six typical IFPD sequence patterns
captured from real-world network traffic. In each plot, the x-axis

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

ther g to [the1

to, |

IFPD
IFPD
a
IFPD

tn
toe|-

the |

e

cn n+l ng N+l
Packet Sequence

T nn+l
Packet Sequence

C nn+l
Packet Sequence

(a) Deceleration (b) Acceleration (c) Mixed jitter
fa) /\ a v o)
o > Ty OO o M
L v\/ L o
< < <
Packet Sequence Packet Sequence Packet Sequence
(d) Potential idle flow (e) Micro flow (f) Stable flow

Figure 3: Examples of typical IFPD sequence patterns. (a)-(c)
show detectable jitter, (d)-(f) show patterns that are ignored.

represents the packet sequence index, and the y-axis shows the
corresponding IFPD. The first three patterns (Fig. 3a-3c) are tar-
gets for detection, while the last three (Fig. 3d-3f) are patterns our
algorithm is designed to ignore.

e Deceleration Jitter (Figure 3a): This plot depicts a classic de-
celeration jitter event. A sharp spike in the IFPD occurs between
two consecutive packets (e.g., packets n and n + 1). This abrupt
deterioration in latency is a hallmark of deceleration jitter, often
associated with increased congestion along the network path.

o Acceleration Jitter (Figure 3b): This figure illustrates a typical
acceleration jitter event, characterized by a precipitous drop in the
IFPD. The change satisfies both the multiplicative condition (e.g.,
being several times smaller than the preceding IFPD, far exceeding
a typical threshold like k = 4) and the absolute difference threshold,
clearly constituting a detectable event.

e Mixed Jitter (Figure 3c): This pattern describes a sequence
containing both deceleration and acceleration jitter events, where
the order and interval between these opposing events are not con-
strained. For instance, Figure 3c illustrates a representative example
where a sharp deceleration event (between packets n and n + 1) is
immediately followed by an acceleration event (between packets
ng and ng + 1). Our algorithm is designed to identify and report
these as distinct events, regardless of their specific arrangement.
o Potential Idle Flow (Figure 3d): This plot illustrates a potential
idle flow, characterized by an abnormally large spike in IFPD—so
large that the difference between its peak and baseline exceeds the
upper threshold T,,,4x. Such a spike typically occurs when a flow
has been idle for an extended period and resumes transmission.
Since this behavior stems from flow inactivity rather than network
timing instability, our algorithm excludes it from jitter detection.
e Micro Flow (Figure 3e): This plot represents the highly erratic
IFPD pattern of a micro, non-persistent flow. Although the IFPD
fluctuates, such flows lack the statistical stability necessary for
reliable analysis and are therefore intentionally filtered out by our
algorithm, not being subject to jitter detection.

o Stable Flow (Figure 3f): This figure shows the ideal pattern of a
stable, healthy flow. The IFPD remains consistently within a narrow
band, indicating reliable network conditions. This pattern serves
as the "healthy" baseline against which jittery flows are identified.

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

2.3 Related Work

Research on packet delay jitter can be categorized into three main
areas based on deployment and objective: end-host delay variation,
traffic-specific jitter detection, and in-network IFPD detection.

End-Host Packet Delay Variation Detection: A significant body
of research focuses on measuring delay jitter from an end-to-end
perspective, utilizing metrics such as One-Way Delay Variation
(OWDV) [4] or Round-Trip Time (RTT) [35]. Technically, some of
these methods are based on Inter-Packet Delay (IPD) [7] calcula-
tions, while others employ predictive models like Autoregressive
(AR) processes or adaptive filtering algorithms such as the Nor-
malized Least Mean Square (NLMS) [38] to assess network delay.
The main limitation of these end-host approaches is they cannot
pinpoint the source of the jitter; they only observe the cumulative
end-to-end result, not the specific node or link causing it. Further-
more, their focus on macroscopic characteristics, such as OWD
or RTT, differs in analytical granularity from this paper’s concern
with intra-flow, microscopic IFPD jitter.

Traffic-Specific Jitter Detection: A second category of works is
dedicated to tailoring jitter detection algorithms for specific types
of network traffic or protocols. For example, in the context of mul-
timedia streaming, certain strategies implement active buffer man-
agement mechanisms at the gateway to identify and discard packets
exhibiting excessive jitter [11], thereby preserving playback quality.
Similarly, there are methods strictly oriented towards Real-time
Transport Protocol (RTP) sessions [51]. These approaches evaluate
network congestion by parsing the specific jitter feedback fields
embedded within Real-time Transport Control Protocol (RTCP) re-
ports. Other researchers have focused on analyzing the Inter-Packet
Delay Variation (IPDV) within TCP connections to model its impact
on transmission throughput [28]. While these specialized methods
often yield high precision within their respective domains, their
inherent dependency on specific traffic features, payload inspection,
or protocol headers severely limits their universality across diverse,
multi-protocol network environments.

In-Network IFPD Detection: To achieve lightweight, line-rate de-
lay monitoring on network devices like switches, researchers have
proposed various schemes based on compact data structures such
as sketches [9, 10, 14, 17, 25, 27, 30, 36, 39-42, 44, 45, 47, 48]. The
primary goal of these schemes is to monitor the value of IFPD.
Prominent examples include DelaySketch [54] and FD-Filter [24].
They use sophisticated data structures to record the approximate
arrival time of a flow’s previous packet with minimal memory,
thereby enabling an estimation of the current packet’s IFPD. How-
ever, these methods are designed for IFPD estimation, not jitter
detection, as they do not store consecutive IFPD values. Adapting
them for jitter detection would require building more complex mod-
ules, such as hash tables, to track IFPD changes over time, which
would introduce significant memory overhead.

In summary, existing solutions exhibit clear gaps: end-host meth-
ods lack the necessary in-network visibility for fault localization;
traffic-specific solutions are, by definition, not protocol-agnostic;
and current in-network approaches focus on singular IFPD estima-
tions rather than capturing dynamic, consecutive jitter patterns.
Consequently, developing a lightweight, universal solution capable
of detecting complex jitter patterns directly within the network
infrastructure remains an open and significant challenge.

Zhongxian Liang et al.

(x,t) Lookup

,,,,,,,,,,,,,,,,,,,,,,, oo | .

| stagel | | stage2 | | stage3 |

(x,t) Insert | Micro | Stable o Jitter |
! 1 Filter j '} Cache i '} Detector| |
___microflow | | stablefow | | jitterfiow |

N stability N Jitter /!
N Achieved 7 N Detected .7
SV Riow N2
Progression

Figure 4: JitterSketch data structure.

3 JitterSketch Design

This section details the design of JitterSketch. We first present its
three-stage architecture, then describe the design and implemen-
tation of each stage. A running example is provided at the end to
illustrate the algorithm’s operational flow.

3.1 Algorithm Framework Overview

To detect network jitter efficiently, JitterSketch utilizes a three-stage
pipeline architecture, as illustrated in Figure 4. The pipeline begins
with the Micro Filter, which screens incoming traffic based on flow
size to discard negligible, low-frequency flows. The surviving flows
are passed to the Stable Cache, which measures IFPDs and flags
flows that show signs of instability. These potential jittery flows
are then handed over to the final stage, the Jitter Detector, which
monitors them closely to verify and report actual jitter events.
When a packet (x, t) arrives, JitterSketch first performs a reverse
lookup, searching from Stage 3 back to Stage 1. This ensures that
an existing flow is always found in its most advanced monitoring
stage. If the flow x is found, it is updated directly within that stage.
Otherwise, it is treated as a new flow and processed by Stage 1.

Oy |] o
- fp freq
update | -1 [

Figure 5: Stage one data structure.

3.2 Micro Filter (Stage 1)

As depicted in Figure 5, the data structure for the Micro Filter
is an array of w buckets. Each bucket stores two fields: a finger-
print of a flow’s key (fp) and its frequency counter (freq). To
conserve memory, the fingerprint is generated by a dedicated func-
tion, fingerprint (), and is significantly shorter than the original
flow key (e.g., 8 bits). The processing in this stage is divided into
lookup and insert operations.

Operation: lookup, (x, t). This operation is performed as part of

the reverse lookup to check if flow x is currently tracked in Stage 1.
It traverses the bucket B; [h(x)].
(1) Fingerprint Match: If the bucket’s stored fingerprint matches
fingerprint (x), the flow’s frequency counter is incremented (i.e.,
Bi[h(x)].freq++). If the frequency reaches the threshold C (i.e.,
freq=C), the flow is promoted to Stage 2 via the insert,(x, t) opera-
tion, and the bucket is cleared. Otherwise, the operation concludes.
(2) No Match: If the fingerprint does not match (i.e., the bucket is
empty or occupied by another flow), the insert; (x,) operation is
called to handle the insertion.

JitterSketch: Finding Jittery Flows in Network Streams

(x,t) ~~~~~~ ~~ ~ Sable Cache!

update IFPD, [iey(m2 bi)| _timestamp At(nl bty | |

a() timestam —— |
long fp last arrival time | Small IFPD

Csiageone || — !

| T _— |

| [EMictoRy | | — —)
I |_Filter || | I i r S 7 \ \

[- E |

) e e e e

<key,t> .-

Figure 6: Stage two data structure.

Operation: insert; (x, t). This operation handles the insertion
of a new flow in bucket By [h(x)].

(1) Empty Bucket: If the bucket is empty, the new flow’s fingerprint,
fingerprint (x), is stored and its frequency is set to 1.

(2) Occupied Bucket: If the bucket is occupied by another flow,
the frequency counter of the existing flow is decremented. If the
counter drops to 0 as a result, the bucket is cleared.

This mechanism effectively acts as a filter, retaining a vast num-
ber of flows with a frequency less than C within this stage, thereby
significantly reducing the processing load on the subsequent stages.

Optimization: To further enhance accuracy, the Micro Filter
can be extended to use v hash functions (v > 1), mapping each
flow to v candidate buckets across parallel arrays. Since most net-
work flows are filtered within this stage, providing multiple place-
ment options mitigates the impact of hash collisions and improves
tracking fidelity. We denote the variant with this optimization as
FitterSketch-Opt. This enhancement, however, introduces a direct
trade-off between higher precision and the computational cost of
the additional hash calculations.

3.3 Stable Cache (Stage 2)

Figure 6 illustrates the data structure of the Stable Cache, which
consists of an array of s buckets. Each bucket contains three fields:
a long fingerprint (generated by fingerprint;), a timestamp (de-
noting the last-seen time), and the stored small IFPD (e.g., 4bits).
This stage employs a longer fingerprint (e.g., 16 bits) than that
in Stage 1, though it is still much shorter than the full flow key.
This is because flows that reach Stage 2 have already surpassed the
frequency threshold C and are considered more significant. The
process is also divided into lookup and insert operations here.
Operation: lookup, (x, t). This operation checks bucket Bz [A(x)]
during the reverse-lookup process.
(1) Fingerprint Match: If the bucket’s stored fingerprint matches
fingerprint;(x), the algorithm checks for a jitter event. A jitter event
is detected if the ratio of the current IFPD (¢ — timestamp) to the
previously stored IFPD satisfies the following condition:

t — timestamp t—timestamp 1
— >k or ——— < -
IFPD IFPD k

This condition identifies deceleration or acceleration jitter.

o If jitter is detected, the flow information is passed to Stage 3 by
calling inserts(x, t,t — timestamp), and B, [h(x)] is cleared.

o Ifno jitter is detected, the bucket is updated by setting IFPD = ¢ —
timestamp and timestamp = t.If the IFPD exceeds the maximum
value representable by its designated n;-bit field, the flow will be
promoted to Stage 3.

(2) No Match: If the fingerprint does not match, it means flow x
is not currently in this bucket. The reverse lookup process then
continues to Stage 1 to search for the flow there (i.e., lookup, (x,1)).

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

(X ’t) ‘ Bucket

update IFPD,
f0) timestamp _
last arrival

full 1D i | IFPD T

Report Jitter Event

Jitter Detector

key(ma bit) [timestamp| At (n: bit)

\

| Seere] P — T S——

| Cache

e e [—t5z 1t = T T 1/
<key,t,IFPD>

Figure 7: Stage three data structure.

Operation: insert;(x, t) This operation handles a flow’s promo-
tion from Stage 1. It unconditionally overwrites the contents of
bucket By [h(x)] with the new flow’s information: its 16-bit finger-
print, the current timestamp ¢, and an initial IFPD of zero.

This design creates a clear separation: potentially unstable flows
exhibiting even a single jitter event are immediately escalated to
Stage 3 for more detailed analysis. Meanwhile, stable flows are
efficiently monitored in Stage 2 using their compact fingerprint.

3.4 Jitter Detector (Stage 3)

Figure 7 illustrates the Jitter Detector. It is structured as an array of
I buckets, where each bucket contains d entries. Unlike the previous
stages, each entry stores the full flow key, timestamp, and IFPD.
The use of full keys is justified as flows promoted to this stage
are considered potentially jittery and require precise tracking. The
process is also divided into lookup and insert operations.
Operation: lookup,(x, t). This operation traverses the bucket
Bs[h(x)] to find an entry matching the flow key.
(1) Key Match: If an entry with key x is found, its jitter status is re-
evaluated using the same condition as in Stage 2. If the flow exhibits
jitter, an event is reported. Otherwise, if the flow is currently stable,
its IFPD and timestamp are updated with the new values.
(2) No Match: If the key is not found after checking all d entries,
the reverse lookup process continues to Stage 2 by performing the
lookup, (x, t) operation.
Operation: insert;(x, t, IFPD). This operation is executed when
a flow is promoted from Stage 2. It traverses the bucket Bs[h(x)].
(1) Empty Entry: If the bucket has an empty entry, the new flow
information (x, t, IFPD) is stored there.
(2) Bucket Full: If all entries in the bucket are occupied, an existing

entry must be evicted. The entry chosen for replacement is the one
t—entry.timestamp

entryIFPD :
The eviction policy is designed to identify and replace the flow

that is most likely to be inactive. A simple least-recently-seen (LRU)
approach, which would evict the entry with the oldest timestamp,
is unfair to stable flows that have a naturally large IFPD. Such flows
might be mistaken as inactive simply because their inter-packet
delay is large. To address this, our eviction metric considers both the
time elapsed since the last arrival and the flow’s typical IFPD. The

. _ t—entry.timestamp
ratio entry.IFPD

packet arrivals that have been missed, assuming a stable IFPD. This
approach, which we call the delay-fair replacement strategy, is
therefore fairer to flows with varying IFPDs and is more effective
at identifying truly inactive flows for eviction.

that maximizes the value of

can be interpreted as the number of expected

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Zhongxian Liang et al.

1 i] .
emptyl | 15129€2 Ep7azar | i :iStages Skt : id10
fp1,19%---&-4-[1,37 }----» empty =] FP1,37,null | id12,61,3 .

o FP8,21,12 A id13,12,10]
2.6 | 1 | (e955— FP95nul_r-- 1195550 |--A emply e[195550 | 416

1 1 ¥ 1 n
i313] | ! (@1056—— FPI0.265 h---i-+[6105630}--+ Bucketn+l | [Acceleration Jitier

1 O id14,14,10 ==| id10,56,30 |
Tpd,1 = empty | FP11,1434 | 1 | id15,6,30 !
emptys= fp6,1 | i | (€16.64— id16,55,45 = id16,649 |

Figure 8: An example of JitterSketch.

3.5 Running Example

The complete pseudo code can be found in Appendix B.3. Figure
8 shows a running example of JitterSketch. In this example, we
set the jitter detection parameter k = 4 and the stability threshold
C = 20. The bucket depth in Stage 3 is d = 3, and the number of
hash functions in Stage 1is v = 2.

Stage 1: Micro Flow Filter.

e Case 1: Packet e; arrives. Its fingerprint matches the one in its
hashed entry, and the counter increments from 19 to 20, reaching
the stability threshold C = 20. Consequently, flow e; is promoted
to Stage 2. The corresponding entry in Stage 2 is empty, so it is
populated with the long fingerprint of e; and its timestamp, 37.

o Case 2: Packet es hashes to an occupied entry in Stage 1, causing
a collision. The existing entry’s counter is decremented to 0,
leading to its eviction.

e Case 3: Packet e5 uses v = 2 hash functions. Its first hash location
is a collision, but the second is empty. The fingerprint for e is
therefore inserted into the empty slot with a counter of 1.

Stage 2: Stable Flow Cache.

e Case 4: Packet ey arrives at Stage 2. Its newly calculated IFPD (50)
is large, flagging it as potentially jittery. The flow is promoted
and inserted into an available slot in Stage 3.

e Case 5: Packet ey arrives at Stage 2. Its new IFPD (30) is more
than k = 4 times its old IFPD (5), triggering a deceleration jitter
event. The flow is promoted to a full bucket in Stage 3. Our
eviction policy calculates inactivity metrics for the existing flows
(4.2 for idy4, 1.67 for id;s, and 0.02 for idy¢) and replaces the one
with the highest score (id4). A jitter event for ey is reported.

Stage 3: Jitter Detector.

e Case 6: Packet e;¢ arrives, which is already monitored in this
stage. Its IFPD is calculated as 9 (64-55). Compared to its recorded
IFPD of 45, the new IFPD is less than the old IFPD divided by k
(i.e., 9 < 45/4), indicating an acceleration jitter event. The system
reports an acceleration jitter event (ej, 45, 9) and updates the
flow’s recorded IFPD to 9.

4 Performance Evaluation
4.1 Experiment Setup

4.1.1 Platform. Experiments ran on a Linux server (Intel i7-13700KF,
32GB DRAM). We implemented JitterSketch, its optimized version
(JitterSketch-Opt), and baselines (DelaySketch and FDFilter, aug-
mented with hashtables) in C++ using Bob Hash [1]. To ensure
consistency, we disabled CPU frequency scaling and pinned pro-
cesses to dedicated cores. The source code is also available at [2, 3].

4.1.2 Datasets. We evaluate our algorithm on CAIDA [8] and
MAWTI [33] datasets, see Appendix B.1 for details.

4.1.3 Metrics. To evaluate the performance of our proposed al-
gorithms on jitter detection for network streams, we employ the
following metrics. The evaluation covers three distinct scenarios:
deceleration jitter, acceleration jitter, and mixed jitter.

Precision Rate (PR): This metric measures the fraction of cor-
rectly identified jitter events among all events reported as jitter.

Recall (RR): This metric measures the fraction of correctly
identified jitter events among all actual jitter events.

F1 Score (F1): This metric represents the harmonic mean of PR
and RR, providing a balanced measure of the overall performance.
It is calculated as zéﬁfﬁf.

Throughput (TP): The processing rate in million packets per
second (Mpps), calculated as ¥ where N is the total number of
items and T is the total processing time.

4.2 Parameter Settings

We tuned four key JitterSketch parameters on the CAIDA dataset:
the Stage 1 memory proportion (r;), the Stage 2/3 memory ratio (r3),
the Stage 3 bucket depth (d), and the Stage 1 hash count (v). A de-
tailed analysis is in Appendix B.2. Our final configuration allocates
memory evenly (r; = 0.5,r; = 0.5) for all tasks. To optimize perfor-
mance, we set bucket depth d=6 for mixed jitter (d=4 otherwise)
and the hash count v = 3 for acceleration jitter (v = 2 otherwise).

4.3 Deceleration Jitter Detection

For deceleration jitter detection (Figure 9), JitterSketch consistently
outperforms baselines, maintaining near-perfect precision (~1.0)
across all memory sizes due to its robustness against hash colli-
sions. Its recall on the CAIDA dataset scales from 0.64 to 0.93—sig-
nificantly higher than DelaySketch’s 0.47—with JitterSketch-Opt
providing a further 5-10% improvement. In terms of efficiency, Jit-
terSketch achieves an F1 score of 0.99 on MAWI2020 (200KB), far
surpassing DelaySketch (0.65) and FDFilter (0.20), while delivering
a stable throughput of 13.48 Mpps (4.3x and 10.3x faster than base-
lines, respectively); even the accuracy-optimized JitterSketch-Opt
(8.01 Mpps) exceeds baseline speeds. This performance is driven
by a multi-stage architecture where a lightweight Stage 1 filter
discards non-jittery flows, and a collision-free final stage eliminates
false positives to ensure high precision.

4.4 Acceleration Jitter Detection

In detecting acceleration jitter (Figure 10), JitterSketch demonstrates
significant advantages, achieving perfect precision (1.0) where base-
lines prove volatile against bursty patterns. Its recall improves

JitterSketch: Finding Jittery Flows in Network Streams

—x— JitterSketch

JitterSketch-Opt

=i~ FDFilter

WWW °26, April 13-17, 2026,

DelaySketch

Dubai, United Arab Emirates

1.00f7 e 1.0 1.0 ——] 1.0F¢ —S——a—r
o08 /PX‘W"_K g _08
o B B
&g-g &)g:./I/I"'H &’g.:
06150 200 300 400 500 600 O-30100 200 300 400 500 600 °-%160 200 300 400 500 600 O-%100 200 300 400 500 600 %100 200 300 400 500 600 100 200 300 400 500 600
Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB)
(a) CAIDA, PR (b) MAWI2025, PR (c) MAWI2020, PR (d) CAIDA, RR (e) MAWI2025,RR (f) MAWIZ2020, RR
1.0 1.0 1,057 15| 15| 15|
——— W T x| o | .k K
gos o B gog _ [gog g1 g2 g1
30,6 0.6 0.6 9 9 9
%04 %04 %04 § 6 § 6 § 6
"—o.z./l/"‘H_. Loz Loz Zs Zs3 Z3
00750 200 300 400 500 600 100 200 300 400 500 600 °-0700 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600 0700 200 300 400 500 600
Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB)
(g) CAIDA, F1 (h) MAWI2025, F1 (i) MAWI2020, F1 (j) CAIDA, THP (k) MAWI2025, THP () MAWI2020, THP

Figure 9: Performance comparison of deceleration jitter detection on different datasets.

1.0F 1.0f7 1.0 1.0 1= ————t
5 H _o08 //‘—4—'—‘(_ ,/‘_/.-—)Q—H B
208 208 Fo6 F08 F08
] ._./I—I/._.] oY S 3
Q 0.4 Q Q
£ 0.6 L 0.6 9 X 0.6 X 0.6]
o o 0.2
0.0 04 0-4100 200 300 400 500 600

04160 200 300 400 500 600

04750 200 300 400 500 600

0.80755 200 300 400 500 600

©100 200 300 400 500 600

100 200 300 400 500 600

Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB)
(a) CAIDA, PR (b) MAWI2025, PR (c) MAWI2020, PR (d) CAIDA, RR (6) MAWI2025, RR (f) MAWI2020, RR
1.0 —C 10— ——5¢ 15| 15| 15
® e s o @12 *\A/H’N 242 e ko 212 R . S— S— S— —
§°'8 '%o.s £ £ £
Logy mm—wEE 2, T 6 T Te
w w £ E 3 £ 3
00755 200 300 400 500 600 O-100 200 300 400 500 600 -0 200 300 400 500 600 0100 200 300 400 500 600 100 200 300 400 500 600 °100 200 300 400 500 600
Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB)
(g) CAIDA, F1 (h) MAWI2025, F1 (i) MAWI2020, F1 (j) CAIDA, THP (k) MAWI2025, THP (1) MAWI2020, THP

Figure 10: Performance comparison of accelerate jitter detection on different datasets.

1.0F 1,057 1.0 L EEE———y
s So.9 038 //w——w—'—x _os
3 0.8 M @ T 0.6 T 0.6
S 508 3 3
9 0.6 e omonow o 04 o 04
o o 0.7] 0.2 0.2
04 06190 200 300 400 500 600 O-80160 200 300 400 500 600 °° 0.0 0-0160 200 300 400 500 600

100 200 300 400 500 600

©100 200 300 400 500 600

100 200 300 400 500 600

Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB)
(a) CAIDA, PR (b) MAWI2025, PR (c) MAWI2020, PR (d) CAIDA, RR (6) MAWI2025, RR (f) MAWI2020, RR
1.0 ———=——7 15— _15 _15 _15
g P g B 2k h——t k| Qg k| B
gog gos g5 g5 g5
20 2o a6 a6 a6
w w £ £ 3 £ 3
00750 200 300 400 500 600 O-*100 200 300 400 500 600 4100 200 300 400 500 600 0100 200 300 400 500 600 100 200 300 400 500 600 °100 200 300 400 500 600
Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB) Memory(KB)
(g) CAIDA, F1 (h) MAWI2025, F1 (i) MAWI2020, F1 (j) CAIDA, THP (k) MAWI2025, THP () MAWI2020, THP

Figure 11: Performance comparison of mix jitter detection on different datasets.

dramatically with memory, with JitterSketch-Opt notably achiev-
ing 0.997 recall on MAWI2020 with just 200KB, whereas baselines
fail to saturate even at 600KB. High memory efficiency is confirmed
by an F1 score of 0.98 on the CAIDA dataset (100KB)—drastically
outperforming DelaySketch (0.68) and FDFilter (0.58)—alongside
an outstanding throughput of 12.71 Mpps (4.0x and 9.6x faster than
baselines). These results stem from the algorithm’s innovative de-
sign, where the lightweight first-stage filter effectively absorbs
traffic spikes and decouples initial processing from detailed state-
tracking, thereby preventing the bottlenecks typical of baselines.

4.5 Mixed Jitter Detection

For mixed jitter detection (Figure 11), JitterSketch establishes com-
prehensive superiority by maintaining perfect precision (1.0) and
high stability, even as baseline methods become highly unstable. On
MAWI2020 (600KB), its recall reaches 0.996, far surpassing FDFilter

(0.32) and DelaySketch (0.82), with JitterSketch-Opt consistently
outperforming the standard version by roughly 5%. The algorithm
exhibits "fast convergence", reaching an F1 score above 0.9 with
minimal memory, and maintains a stable throughput of 12.67 Mpps
despite traffic complexity. This robustness is attributed to our delay-
fair replacement strategy, which ensures unbiased monitoring of
diverse latency characteristics, preventing bias toward any single
jitter type when acceleration and deceleration events coexist.

4.6 Practical Application

4.6.1 Background. In Quality of Service (QoS) networks, delay
jitter—the variance in packet delay—is a critical metric [22, 43].
To mitigate this, we employ an optimized framework leveraging
JitterSketch, benchmarked against the classic On-Line Delay-Jitter
Control (OLDC) algorithm [32]. OLDC utilizes a buffer of size 2B
to regularize output. It accumulates B packets before computing

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

/- oo)
algorithm

i Jitter Report i Control Signal
v 3

Jitter Flow Filter Jitter Control Module

Flow Separator
K lNon-Jiner Flows J

Figure 12: Optimized jitter control framework.

Jitter
Flows

a periodic release schedule, subject to two key constraints: the
Arrival Constraint, ensuring a packet is not released before its
actual arrival; and the Overflow Constraint, which mandates the
k-th packet be released by the time the (k + 2B)-th packet arrives
to prevent buffer overflows.

4.6.2 Jitter Flow Optimization Framework. Since device memory
and computational resources are finite, providing unlimited jitter
control for all flows is infeasible. It is therefore essential to prioritize
resources for flows exhibiting significant jitter. To address this, we
propose an optimized framework that integrates JitterSketch for
real-time jitter detection as shown in Figure 12.

The workflow of the optimized framework is as follows:

(1) Jitter Flow Filter: Ingress flows are directed to a Jitter Flow
Filter. A Jitter Monitor component, powered by the JitterS-
ketch algorithm, analyzes traffic in real-time to identify jittery
flows. A Flow Separator then divides the traffic into Jitter
Flows and Non-Jitter Flows. Non-jittery flows are forwarded
directly without further processing.

(2) Jitter Control: The identified Jitter Flows are sent to a Jitter
Control Module. Guided by the OLDC algorithm, this module
uses its limited per-flow buffers to shape the flows and suppress
jitter before outputting the processed traffic.

This targeted approach ensures that valuable resources are allo-
cated precisely to the flows most in need of traffic shaping, maxi-
mizing resource efficiency and overall network QoS.

4.6.3 Performance Evaluation Metrics. We adopt metrics from the
original OLDC paper, starting with the Flow Delay Variation (D).
Unlike instantaneous IFPD, D, measures macroscopic stability by
calculating the maximum deviation between actual release times
(#;) and the ideal period based on average inter-arrival time (X,):
Dy = max {[t; — tr — (i — k)Xal} (1)
0<i,k<n
From D,, we derive two network-wide metrics: the Sum of Delay
Variations (Dsym = X.secs Do), where a lower sum indicates bet-
ter overall service quality; and the Number of Variation Flows
(Nfiow = {o € S | Dy > 0}|), which counts persistent flows with
non-zero variation to measure the scope of jitter impact.

4.6.4 Experimental Results. Sum of Delay Variations (Dgy,): As
shown in Figure 13, our JitterSketch-optimized (OLDC+]JitterSketch)
framework consistently outperforms the standard OLDC algorithm.
In Figure 13a, with a fixed buffer of 4000, increasing the OLDC
parameter B from 1 to 6 reduces Dy, for our framework from

Zhongxian Liang et al.

—s— OLDCH+JitterSketch —— oLDC Original
1e9 1e9 1e4 1ed
1.8 A -
H £ £1.2 51.2
£ 3
5 1.6/ §1s 2 2
- B ;1.1 1.0
5 5 o o
>1.4\\~ 10 “1.0 -
123456 234567 123456 234567
B size Buffer AmoJﬁ? B size Buffer AmoJﬁ%
(a) Dsum. (b) Dsum. (C) Nflow~ (d) Nflow~

Figure 13: Performance evaluation on D, and Ny,

1.50 X 10° to 1.39 X 10°, significantly outperforming OLDC. In
Figure 13b, with B fixed at 4, increasing the buffer amount from
2000 to 7000 lowers the Dg,p, for our framework to 1.04 x 107,
compared to 1.33 x 10° for OLDC.

Number of Variation Flows (Nyj,.,): As shown in Figure 13c,
13d. Our framework also reduces the scope of jitter-affected services
more effectively. By either increasing the B size (reducing variation
flows from 11,538 to 9,905) or the buffer amount (reducing them
from 11,577 to 8,250), our framework eliminates jitter entirely for
more flows than the OLDC algorithm across all configurations.

Summary: The results confirm the superiority of our JitterSketch-
optimized framework. Its advantage lies in intelligent resource
allocation. The traditional OLDC algorithm treats all flows indis-
criminately, wasting limited buffer resources on flows that exhibit
little to no jitter. In contrast, our framework uses JitterSketch to
first identify problematic flows and then concentrates resources
where they are most needed. This targeted approach leads to a
greater reduction in both Dy, and Nyjo,, under identical resource
constraints. As resources increase, the performance of both meth-
ods improves, but the efficiency gap widens, further highlighting
the superiority of our optimized framework.

5 Conclusion

This paper introduces JitterSketch, the first sketch-based algorithm
specifically designed for high-precision detection of diverse jittery
flows. Its resource-efficient, multi-stage architecture filters non-
essential traffic, enabling it to outperform baselines with a ~50%
point improvement in both precision and recall, and a 10x higher
throughput. The practical value of JitterSketch was further validated
in a QoS system, where it yielded significant improvements in
quality of service. This work establishes JitterSketch as a powerful
solution for modern network quality and jitter monitoring.

Acknowledgments

We sincerely thank the anonymous reviewers for their constructive
comments. This work was conducted under the leadership of the
corresponding authors, Wenjun Li, Weizhe Zhang, and Tong Yang,
and was supported in part by the National Key Research and De-
velopment Program of China (No. 2025YFE0200100), the Major Key
Project of Peng Cheng Laboratory (No. PCL2025A07), the National
Natural Science Foundation of China (NSFC) / Research Grants
Council (RGC) Collaborative Research Scheme (No. 62461160332 &
CRS_HKUST602/24), the National Natural Science Foundation of
China (No. 62221003, 62132004, 62472246, 62102203), the Young Top-
notch Talent Project of Guangdong Province (No. 2023TQ07X362),
the Basic Research Enhancement Program (No. 2021-JCJQ-JJ-0483),
and the Shenzhen Postdoctoral Fund (No. DZ31000010).

JitterSketch: Finding Jittery Flows in Network Streams

References

(1]
(2]
(3]
(4]

=

[10]

[11

=
&

[13]

[14

[15]

[16

=
=

(18]

[19

[20]

[21

[22]

[23

[24]

[25

[26

[27]

[28

Bob Hash Website. http://burtleburtle.net/bob/hash/evahash.html.

JitterSketch GitHub. https://github.com/wenjunpaper/JitterSketch.

JitterSketch Website. https://turbonet.team/JitterSketch.

Makoto Aoki, Eiji Oki, and Roberto Rojas-Cessa. 2010. Scheme to measure one-
way delay variation with detection and removal of clock skew. in IEEE HPSR
(2010).

Anastasiia Beznosyk, Peter Quax, Karin Coninx, and Wim Lamotte. 2011. In-
fluence of network delay and jitter on cooperation in multiplayer games. In
Proceedings of the 10th international conference on virtual reality continuum and
its applications in industry. 351-354.

Lawrence S Brakmo, Sean W O’malley, and Larry L Peterson. 1994. TCP Vegas:
New techniques for congestion detection and avoidance. In Proceedings of the
conference on Communications architectures, protocols and applications. 24-35.
Dinh Thai Bui, Arnaud Dupas, and Michel Le Pallec. 2009. Packet delay varia-
tion management for a better IEEE1588V2 performance. In 2009 International
Symposium on Precision Clock Synchronization for Measurement, Control and
Communication. IEEE, 1-6.

CAIDA. 2025. The CAIDA Anonymized Internet Traces. http://www.caida.org/
data/overview/.

Lu Cao, Qilong Shi, Yuxi Liu, Hanyue Zheng, Yao Xin, et al. 2024. Bubble Sketch:
A High-performance and Memory-efficient Sketch for Finding Top-k Items in
Data Streams. in ACM CIKM (2024).

Lu Cao, Qilong Shi, Weigiang Xiao, Nianfu Wang, Wenjun Li, Zhijun Li, Weizhe
Zhang, and Mingwei Xu. 2025. Hypersistent Sketch: Enhanced Persistence
Estimation via Fast Item Separation. in IEEE ICDE (2025).

Siu-Ping Chan, C-W Kok, and Albert K Wong. 2005. Multimedia streaming
gateway with jitter detection. IEEE Transactions on Multimedia 7, 3 (2005), 585—
592.

Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papagiannaki, and
Christophe Diot. 2007. Analysis of point-to-point packet delay in an operational
network. Computer Networks 51, 13 (2007), 3812-3827.

Mark Claypool and Jonathan Tanner. 1999. The effects of jitter on the peceptual
quality of video. In Proceedings of the seventh ACM international conference on
Multimedia (Part 2). 115-118.

Shuang Cui, Kai Han, Jing Tang, He Huang, Xueying Li, and Zhiyu Li. 2023.
Streaming algorithms for constrained submodular maximization. in ACM SIG-
METRICS (2023).

Michael K Daly. 2009. Advanced persistent threat. Usenix, Nov 4, 4 (2009),
2013-2016.

Edward J Daniel, Christopher M White, and Keith A Teague. 2003. An interar-
rival delay jitter model using multistructure network delay characteristics for
packet networks. In The Thrity-Seventh Asilomar Conference on Signals, Systems
& Computers, 2003, Vol. 2. IEEE, 1738-1742.

Zhuochen Fan, Zhongxian Liang, Zirui Liu, Dayu Wang, Dong Wen, Wenjun Li,
Tong Yang, Yuzhou Liu, and Weizhe Zhang. 2026. PSSketch: Finding Persistent
and Sparse Flow with High Accuracy and Efficiency. in ACM SIGKDD (2026).
Domenico Ferrari. 1992. Delay jitter control scheme for packet-switching inter-
networks. Computer communications 15, 6 (1992), 367-373.

Bur Goode. 2002. Voice over internet protocol (VoIP). Proc. IEEE 90, 9 (2002),
1495-1517.

Rong Gu, Simian Li, Haipeng Dai, Hancheng Wang, Yili Luo, et al. 2023. Adaptive
online cache capacity optimization via lightweight working set size estimation
at scale. in USENIX ATC (2023).

Stephen R Gulliver and Gheorghita Ghinea. 2007. The perceptual and atten-
tive impact of delay and jitter in multimedia delivery. IEEE Transactions on
Broadcasting 53, 2 (2007), 449-458.

Karim Hammad, Abdallah Moubayed, Abdallah Shami, and Serguei Primak. 2016.
Analytical approximation of packet delay jitter in simple queues. IEEE Wireless
Communications Letters 5, 6 (2016), 564-567.

Thoufique Hag, Jinjian Zhai, and Vinay K Pidathala. 2017. Advanced persistent
threat (APT) detection center. US Patent 9,628,507.

Jintao He, Jie Gui, Tian Lv, Jiaqi Zhu, and Qun Huang. 2025. FD-Filter: A Compact
Data Structure for Fine-Grained Intra-Flow Packet Delay Monitoring. in IEEE
INFOCOM (2025).

He Huang, Jiakun Yu, Yang Du, Jia Liu, Haipeng Dai, and Yu-E Sun. 2023. Memory-
Efficient and Flexible Detection of Heavy Hitters in High-Speed Networks. in
ACM SIGMOD (2023).

Sofiene Jelassi, Habib Youssef, and Guy Pujolle. 2009. Parametric speech quality
models for measuring the perceptual effect of network delay jitter. In 2009 IEEE
34th Conference on Local Computer Networks. IEEE, 193-200.

Peng Jia, Pinghui Wang, Rundong Li, Junzhou Zhao, Junlan Feng, Xidian Wang,
and Xiaohong Guan. 2024. A Compact and Accurate Sketch for Estimating a
Large Range of Set Difference Cardinalities. in IEEE ICDE (2024).

Martin E Jobst, Stephan M Gunther, Maximilian Riemensbergery, Georg Carle,
and Wolfgang Utschicky. 2015. Adaptive suppression of inter-packet delay
variations in coded packet networks. in IEEE NetCod (2015).

[29]

(30]

(31]

[36

(37]

"
&,

[39

[40

[41

[42

[43

[44

[45

[46]

(48

[49

[50

[51

[52

[53

[54

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Mansour] Karam and Fouad A Tobagi. 2002. Analysis of delay and delay jitter of
voice traffic in the Internet. Computer Networks 40, 6 (2002), 711-726.

Jiagian Liu, Ran Ben Basat, Louis De Wardt, Haipeng Dai, and Guihai Chen. 2024.
DISCO: A Dynamically Configurable Sketch Framework in Skewed Data Streams.
in IEEE ICDE (2024).

Aneeq Mahmood, Reinhard Exel, and Thilo Sauter. 2014. Delay and jitter char-
acterization for software-based clock synchronization over WLAN using PTP.
IEEE Transactions on industrial informatics 10, 2 (2014), 1198-1206.

Yishay Mansour and Boaz Patt-Shamir. 2002. Jitter control in QoS networks.
IEEE/ACM Transactions On Networking 9, 4 (2002), 492-502.

MAWI Working Group. 2024. MAWI Working Group Traffic Archive.
//mawi.wide.ad.jp/mawi/.

Daniel A Menasce. 2002. QoS issues in web services. IEEE internet computing 6,
6 (2002), 72-75.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM
Computer Communication Review 45, 4 (2015), 537-550.

Yiyan Qi, Pinghui Wang, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang,
Guangjian Tian, John CS Lui, and Xiaohong Guan. 2020. Streaming algorithms for
estimating high set similarities in loglog space. IEEE Transactions on Knowledge
and Data Engineering 33, 10 (2020), 3438-3452.

Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer, and
Natalie Degrande. 2004. Objective and subjective evaluation of the influence of
small amounts of delay and jitter on a recent first person shooter game. In ACM
SIGCOMM workshop on Network and system support for games.

Aziz Shallwani and Peter Kabal. 2003. An adaptive playout algorithm with
delay spike detection for real-time VoIP. In CCECE 2003-Canadian Conference on
Electrical and Computer Engineering. Toward a Caring and Humane Technology
(Cat. No. 03CH37436), Vol. 2. IEEE, 997-1000.

Qilong Shi, Chengjun Jia, Wenjun Li, Zaoxing Liu, Tong Yang, Jianan Ji, Gao-
gang Xie, Weizhe Zhang, and Minlan Yu. 2024. BitMatcher: Bit-level Counter
Adjustment for Sketches. in IEEE ICDE (2024).

Qilong Shi, Xirui Li, Hanyue Zheng, Tong Yang, Yangyang Wang, and Mingwei
Xu. 2025. HeavyLocker: Lock Heavy Hitters in Distributed Data Streams. in
ACM SIGKDD (2025).

Qilong Shi, Yuchen Xu, Jiuhua Qi, Wenjun Li, Tong Yang, Yang Xu, and Yi Wang.
2023. Cuckoo Counter: Adaptive Structure of Counters for Accurate Frequency
and Top-k Estimation. IEEE/ACM Transactions on Networking (2023).

Lu Tang, Qun Huang, and Patrick PC Lee. 2019. Mv-sketch: A fast and com-
pact invertible sketch for heavy flow detection in network data streams. IEEE
INFOCOM (2019).

Dinesh C Verma, Hui Zhang, and Domenico Ferrari. 1991. Delay jitter control for
real-time communication in a packet switching network. International Computer
Science Institute.

Jiayao Wang, Qilong Shi, Xiyan Liang, Han Wang, Wenjun Li, Ziling Wei, Weizhe
Zhang, and Shuhui Chen. 2025. PBSketch: Finding Periodic Burst Items in Data
Streams. in ACM SIGKDD (2025).

Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang, John CS
Lui, and Xiaohong Guan. 2019. A memory-efficient sketch method for estimating
high similarities in streaming sets. in ACM SIGKDD (2019).

EH-K Wu and Mei-Zhen Chen. 2004. JTCP: Jitter-based TCP for heterogeneous
wireless networks. IEEE Journal on Selected Areas in Communications 22, 4 (2004),
757-1766.

Yuhan Wu, Zhuochen Fan, Qilong Shi, Yixin Zhang, Tong Yang, Cheng Chen,
Zheng Zhong, Junnan Li, Ariel Shtul, and Yaofeng Tu. 2022. She: A generic
framework for data stream mining over sliding windows. in ACM ICPP (2022).
Kaicheng Yang, Sheng Long, Qilong Shi, Yuanpeng Li, Zirui Liu, Yuhan Wu, Tong
Yang, and Zhengyi Jia. 2023. Sketchint: Empowering int with towersketch for
per-flow per-switch measurement. IEEE Transactions on Parallel and Distributed
Systems (2023).

Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. in USENIX NSDI (2013).

Liren Zhang, Li Zheng, and Koh Soo Ngee. 2002. Effect of delay and delay jitter
on voice/video over IP. Computer Communications 25, 9 (2002), 863-873.
Quanxin Zhang, Hanxiao Gong, Xiaosong Zhang, Chen Liang, and Yu-an Tan.
2019. A sensitive network jitter measurement for covert timing channels over
interactive traffic. Multimedia Tools and Applications 78, 3 (2019), 3493-3509.
Yinda Zhang, Peiging Chen, and Zaoxing Liu. 2024. OctoSketch: Enabling Real-
Time, Continuous Network Monitoring over Multiple Cores. in USENIX NSDI
(2024).

Li Zheng, Liren Zhang, and Dong Xu. 2001. Characteristics of network delay and
delay jitter and its effect on voice over IP (VoIP). In ICC 2001. IEEE International
Conference on Communications. Conference Record (Cat. No. 01CH37240), Vol. 1.
IEEE, 122-126.

Jiaqi Zhu, Kai Zhang, and Qun Huang. 2021. A sketch algorithm to monitor high
packet delay in network traffic. in ACM APNet (2021).

http:

http://burtleburtle.net/bob/hash/evahash.html
https://github.com/wenjunpaper/JitterSketch
https://turbonet.team/JitterSketch
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

A Mathematical Analysis
A.1 Hypotheses and Notation

Flows are independent. For a given flow x, arrivals form a Poisson
process with rate A, > 0. Write Ny(t) ~ Poisson(A,t) for the
number of arrivals by time ¢, we define the interarrival

=inf{t : Ny(t) =n} —inf{t : Ny(t) =n—1}.

Algorithm parameters: frequency threshold C, multiplicative thresh-
old K, difference threshold T, and upper cap F. Short / long finger-
print collision rates are p; = 27™! and p, = 27™2.

A.2 Error Analysis

Stage 1 (Frequency Counter: Over-/Under-Estimation): Let
1

Al = Ly, Hy(y)=Hi (x) Ay- Set

d
u:/1x+A,(\,1)p1, d:Ag(l)(l—pl), p:z:—.

p u

DEFINITION A.1 (BIRTH-DEATH ABSTRACTION). Let

d

u:/1x+A§C1)p1, d:Agcl)(l—pl), p:g:—.

p u

During a period “owned by x”) the counterc(t) € {0,1,...,C} evolves

on{l,...,C — 1} with upward rate u and downward rate d; states 0
and C are absorbing. Each new owned period starts at c¢(0) = 1.

THEOREM A.1 (GAMBLER’S RUIN CLOSED Form). With h(j) the
probability to hit C before 0 from j,

J
P, k()=

N 1= Joo_
h(j) = - c(p—1)~

In particular,

(1) _ 1=
overﬂow(x|AX ,Pl,c) pc.

Proor. Embed the continuous-time chain at jump epochs to
get a simple random walk with step probabilities p = u/(u + d),
q = d/(u + d). Solve the two-point boundary value problem h(j) =
ph(j+1) + gh(j — 1) with h(0) =0, h(C) = 1. m]

THEOREM A.2 (HIGH-/Low-B1as BOUNDs).

1 4 1
HighBiass, < W,Low&mg <1- —c(zrm "t
Proor.

HighBiass, = Poﬂerflow(xle’pl’ c) - ouerﬂow(xv\x’ 0,¢)

Ax+Ax P1
I GE p>) -G
Ax"'Ax P1 1- ()C
1 - c
(AL (-pr))
AM (1 - 1
X Pl) -1 P)c—l - -
e+ 2D p, L= py (@m —1)e-t?

Zhongxian Liang et al.

LowBiass; =1— overﬂow(xmx,pl,c)

-1 1
:1—p 1

pc—l - cpc—l
1 A+ AWM
:1__(x + xpl)c—l
¢ AL 1-py)
1 1
zl——(L)c_lzl——.
c'1-p c(2m — 1)1

o
Stage 2 (Pairing Cache: No Over-Estimation; Coverage Miss):

2
Let A% = %, ()=t () Av-

ProrosITION A.2 (No OVER-ESTIMATION; PROOF BY CONTRADIC-
TION). Assume HighBiass, > 0. Then some pair (t;_1, t;) is counted
although it is not a true adjacent pair of flow x or does not satisfy
thresholds. If produced by a long-fingerprint collision, its ID differs
from x’s and will be rejected in Stage 3 by full-ID equality. If it has
the same ID, Stage 2 merely relays the true adjacent pair; whether it
triggers is decided in Stage 3. Contradiction. Hence HighBiass, = 0.

THEOREM A.3 (COVERAGE PROBABILITY; UNDER-ESTIMATION).
The underestimation due to long-fingerprint collisions:

2
LowBiassy = L)(z < %
NN

Proor. During A, ~ Exp(Ay), the coverage probability due to
other flows sharing the Stage-2 index and colliding with rate p; is

P(non-coverage = E[P(non-coverage|A = t)] (2)
(2)
=E[e" 4] ®3)
0 @ A
:./ /'lxe_(’l’“"\’fZ dp = — 2 (4)
0 Ax + Afc)
AR
LowBiass; = 1 — P(non-coverage) = Ed (5)
+AP
X X
(2)
Al 1
< _° p2= o (6)
m]

Stage 3 (IFPD Detector: No Over / Under-Estimation, Misses
Only): Let Af) = X y#x, Hy(y)=Hs (x) 4y Define the long-run inten-
sity of full-bucket insertions for bucket b by

ro= AP 7z (b),

where 7,1 (D) € [0, 1] is the steady-state fraction of time bucket
b is full.

ProrosITION A.3 (No OVER-ESTIMATION; PROOF BY CONTRADIC-
TION). Suppose Stage 3 over-estimates. Then a non-matching-ID pair
or a below-threshold pair must be counted. But Stage 3 compares full
IDs for equality and applies the fixed threshold rule to true adjacent
interarrivals; such pairs cannot be counted. Contradiction.

DEFINITION A.4 (FULL-BUCKET INSERTION INTENSITY). Define

1
ry = Th_r)r;o T E[#{full-bucket insertions to bucket b in [0,T]}] .

JitterSketch: Finding Jittery Flows in Network Streams

By Campbell’s theorem/PASTA, r; = A,(C3> a1 (D), where g (D) is
the steady-state fraction of time bucket b is full.

LEMMA A.5 (EQUIPROBABLE EVICTION). At a full-bucket time, let
t- tlast,j
——= and
IFPD;

with Aj := t —tiast j ~ Exp(As;), [IFPD; ~ Exp(Ay;) independent, the
variables S; arei.i.d. with density fs; (s) = m (s = 0), independent
of Ax;. Hence argmax,<j<q Sj is uniform on {1,...,d}; any fixed
entry is evicted with conditional probability 1/d.

the d resident entries be x, . .., xq. With scoring S; =

THEOREM A.4 (Miss-ProBaBILITY UPPER BoUND). For flow x
with rate Ay, the effective eviction intensity for x is %r;. Competing
with the next-arrival clock A,

1.+ +
Ly r
(3) _ d’b b
]Pmiss(x) - 1.+ s o
Ax + arb /1x

Proor. Thin the full-bucket insertion process of mean rate r;
by 1/d (Lemma A.5) to get an eviction clock of rate (1/d)r;. The
miss event is {Teyict < Ty} for independent exponentials, yielding
the stated formula as follows,

1.+
@) ~ __dh
Pmiss(x) = P(Teuict < Ax) - /1x + %r;— (7)
rr ry
- 8)
d/lx + r; Ax
]

B Performance Evaluation

B.1 Datasets

CAIDA: The CAIDA dataset comprises network traffic traces from
the Equinix-Chicago monitor. It contains approximately 1.1M pack-
ets across 110K flows. For this dataset, we configure the jitter de-
tection parameters as k = 4.0, C = 10, T,;;, = 5ms, and Tp,q = 1s.
Under this configuration, we identified 55,431 deceleration jitter
events in 9,497 flows and 55,476 acceleration jitter events in 9,438
flows.

MAWTI: The MAWI datasets are public traffic traces collected by
the MAWI Working Group. We use two subsets from different dates
in our experiments.

o MAWI2020: This subset includes approximately 10M packets
from 1.9M flows. With parameters set to k = 10.0, C = 100, T,ip, =
5ms, and T, = 1s, we detected 353,814 deceleration jitter events
across 1,787 flows and 1,075,182 acceleration jitter events across
1,840 flows.

e MAWI2025: This subset consists of about 5M packets from
1.1M flows. The parameters were set to k = 4.0, C = 30, T,,;, = 10ms,
and Ty,,q = 1s. This resulted in the detection of 411,323 deceleration
jitter events in 3,538 flows and 410,956 acceleration jitter events in
3,535 flows.

B.2 Parameter Settings

Effects of r;: As illustrated in Figure 14, the F1 score first increases
and then decreases as r; grows, peaking at r; = 0.5. This is because
r1 balances the memory allocation between Stage 1 and Stages 2
and 3. When ry is too small, Stage 1 has insufficient memory to
screen and record flows, leading to low recall. Conversely, when r;

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

is too large, the memory allocated for Stages 2 and 3 is constrained,
which hinders the precise measurement of jitter features and thus
reduces precision. Therefore, we set r; = 0.5 for all tasks to balance
the memory requirements for jitter measurement optimally.

—k— 100KB —»— 300 KB 500 KB

F1-Scor
cocoo
mmqu}
F1-Scor
ocoooo
uoN®
-\ >>
F1-Scor
cooo
mmj

04703 05 07 09 O%71 03 05 07 09 %7 03 05 07 09
r r r

(a) Deceleration (b) Acceleration (c) Mix
Figure 14: Evaluation on parameter r,.

1.0, - 1.0 1.0, -
0.9p— 03>~—V“>—ﬂ\\‘ 0.9 *
(] @ o
Sos Sos Sos
307 307 807
0.6 $0.6 5 0.6
0.5 0.5 0.5
0.4 0.4 0.4
0.1 0.3 05 0.7 0.9 %01 0.3 0.5 0.7 0.9 %01 0.3 05 0.7 0.9

r2 r2 r2
(a) Deceleration (b) Acceleration (c) Mix

Figure 15: Evaluation on parameter r;.

1.0 1.0 1.0

@ (3 [

200 ﬁ—»—» 209 />/>———>—> 200 ﬁ——»—»

13 Q %]

Eo.s//g—/A———* Eo.s//k—"—" EO.S‘/‘/*/—’"—"
0O >4 6 8 %77 4 6 8 Y1z 4 6 8

d d d
(a) Deceleration (b) Acceleration (c) Mix
Figure 16: Evaluation on parameter d.

1.0 1.0 1.0

o
©

F1-Score
o
©
F1-Score
o
o
F1-Score
o
1

T2 3 4 5 Y93 3 4 5
v v v

(a) Deceleration (b) Accelerate (c) Mix
Figure 17: Evaluation on parameter o.

o
N
Al
N
)
IN
)
o
N

Effects of ry: As illustrated in Figure 15, r, determines the mem-
ory allocation between Stage 2 and Stage 3. The F1 score remains
high as r; increases from 0.1 to 0.5, but it drops significantly when
ry exceeds 0.5. This indicates that Stage 3 requires more memory
than Stage 2 to store and analyze the jitter information of candidate
flows. An overly large r; results in insufficient memory for Stage
3, causing information loss. Consequently, we choose r, = 0.5 as a
robust setting for all tasks, as it provides the best balance before
performance begins to decline.

Effects of d: The parameter d, which controls the bucket depth
in Stage 3, directly impacts both measurement accuracy and pro-
cessing throughput. As shown in Figure 16, increasing d improves
the F1 score by reducing hash collisions. However, a massive d
increases memory access overhead, which in turn can degrade
throughput. We aim to find a trade-off by selecting the smallest
value of d where the F1 score begins to plateau. For the Deceleration
and Acceleration tasks, this balance point is at d = 4. For the more
complex Mix task, the F1 score continues to improve significantly
until d = 6, justifying the choice of a greater depth.

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

Algorithm 4: STAGETWOLOOKUP(x, t)

1
2
3
4

o N WG

11
12
13
14
15

16
17
18

19
20

21
22

Input :Flow key x, timestamp #
Output: Tuple (Status, IFPD value)
idx « h(x);
fp « fingerprint; (x);
if By[idx].fp = fp then
currentlfpd « t — By[idx].timestamp;
storedIfpd «— By|idx].if pd;
promote « false;
if storedIfpd > 0 then
ratio « currentlfpd/storedIfpd;
if ratio > k orratio < 1/k then
L promote « true;

if not promote then

Bylidx].if pd < currentlfpd,;

B;lidx].timestamp « t;

if By[idx].if pd > MAX_IFPD then
L promote « true;

if promote then
Bylidx].fp < 0;
| return (PROMOTED, currentIfpd);

else
L return (UPDATED, 0);

else
L return (NOT_FOUND, 0);

Algorithm 5: STAGETWOINSERT(x, t)

1
2

Input:Flow key x, timestamp ¢
idx < h(x); fp « fingerprint;(x); Bylidx].fp « fp;
Bylidx].timestamp < t; Bylidx].if pd < 0;

Algorithm 6: STAGETHREELOOKUP(x, t)

1
2
3

A G e

8

9

Input :Flow key x, timestamp #
Output:Boolean indicating if flow was found
bucket «— Bs[h(x)];
fori < 1tod do
if bucket[i].key = x then
currentlfpd « t — bucket[i].timestamp;
storedIfpd < bucket[i].if pd;
if storedIfpd > 0 and (currentIfpd/storedlfpd > a
orcurrentlfpd/storedlfpd < 1/a) then
L REPORTJITTER(x, currentlfpd);

return true;

return false;

Algorithm 7: STAGETHREEINSERT(x, t, initiall f pd)

G W N e

aN

Input:Flow key x, timestamp ¢, initial IFPD initiallfpd
bucket «— Bs[h(x)];
fori «— 1tod do
if bucket[i] is empty then
bucket|i] « (x, ¢t initiallfpd);
L return;

5

evictldx «— argmax(bucket |1/ pd

ie[1d]
bucket|evictldx] « (x, timestamp, initiall fpd);

t—bucket|i].timestamp)

Zhongxian Liang et al.

Effects of v: The parameter v, the number of hash functions in
Stage 1, also presents a trade-off between accuracy and throughput.
As seen in Figure 17, more hash functions can boost the F1 score by
mitigating estimation errors. However, each additional hash func-
tion adds to the computational load of packet processing, thereby
lowering throughput. We therefore select the value of v that strikes
the best balance between F1 score improvement and performance
cost. For the Deceleration and Mix tasks, v = 2 achieves peak per-
formance. For the Accelerate task, v = 3 yields a significant F1 score
gain, making it the optimal choice.

B.3 Pseudo Code

This section presents the complete insertion and lookup process of
JitterSketch through pseudocode, as illustrated in Algorithms 1-7.

Algorithm 1: MAINPROCESS(x, t)

Input:Flow key x, timestamp ¢
1 if STAGETHREELOOKUP(x, t) then
2 L return;

3 statusy, if pd < STAGETWOLOOKUP(x, t);

4 if status, = PROMOTED then

5 ‘ STAGETHREEINSERT(x, t,if pd); return;
6 else if status, = UPDATED then

7 L return;

8 status; <« STAGEONELOOKUP(x, t);
9 if status; = PROMOTED then

10 ‘ STAGETWOINSERT(x,);

11 else if status; = COLLISION _OR_NEW then
12 L STAGEONEINSERT(x, t);

Algorithm 2: STAGEONELOOKUP(x, t)

Input :Flow key x, timestamp ¢
Output: Status indicating the outcome
idx < h(x);
fp « fingerprint (x);
if B;[idx].fp = fp then
Bilidx].freq « Bylidx].freq + 1;
if B;[idx].freq > C then
B;lidx].fp < 0; Bilidx].freq < 0;
L return PROMOTED;

return UPDATED;

NN G e W N

else
10 L return COLLISION_OR_NEW;

Algorithm 3: STAGEONEINSERT(x, t)

Input:Flow key x, timestamp ¢
1 idx < h(x);
2 if By[idx].freq = 0 then
3 L fp < fingerprint (x); Bilidx] < (fp,1);
4 else
5 Bilidx].freq « Bqlidx].freq —1;
6 if B;[idx].freq = 0 then
7 | Bilidx].fp < 0;

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Rationale for the Jitter Definition
	2.3 Related Work

	3 JitterSketch Design
	3.1 Algorithm Framework Overview
	3.2 Micro Filter (Stage 1)
	3.3 Stable Cache (Stage 2)
	3.4 Jitter Detector (Stage 3)
	3.5 Running Example

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Parameter Settings
	4.3 Deceleration Jitter Detection
	4.4 Acceleration Jitter Detection
	4.5 Mixed Jitter Detection
	4.6 Practical Application

	5 Conclusion
	Acknowledgments
	References
	A Mathematical Analysis
	A.1 Hypotheses and Notation
	A.2 Error Analysis

	B Performance Evaluation
	B.1 Datasets
	B.2 Parameter Settings
	B.3 Pseudo Code

